Selenium accumulation by plants

Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoa...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 117; no. 2; pp. 217 - 235
Main Author White, Philip J.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.
AbstractList Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.
Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg–¹ dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg–¹ dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–¹ dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.
Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators.BACKGROUNDSelenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators.This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues.SCOPEThis article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues.The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.CONCLUSIONSThe trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.
Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg –1 dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg –1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg –1  dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.
Author White, Philip J.
Author_xml – sequence: 1
  givenname: Philip J.
  surname: White
  fullname: White, Philip J.
  organization: Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26718221$$D View this record in MEDLINE/PubMed
BookMark eNqFkdtLwzAYxYNM3EVffFf3KELdl0vb5EWQ4Q0EH9TnkKSZdrTNbNrB_nszO8cUwadA8vtOzvnOEPUqV1mEjjFcYhB0opyelGaJOeyhQbiJI04E9NAAKMRRShPWR0Pv5wBAEoEPUJ8kKeaE4AE6e7aFrfK2HCtj2rItVJO7aqxX40WhqsYfov2ZKrw92pwj9Hp78zK9jx6f7h6m14-RYZQ2kSCZUZmOLQhmgzjGhNgUsNWaJdRkiiWMqZkW3CqdaZEB5TjlkM24ZamO6QhddbqLVpc2M7ZqalXIRZ2Xql5Jp3L586XK3-WbW0qWEgYxCQLnG4HafbTWN7LMvbFFSGFd6yWhOCYJFkT8i-I0AYEx5Wtbp7u2tn6-FxiAiw4wtfO-trMtgkGu25GhHdm1E2D4BZu8-Vp4iJQXf4-cdCNz37h65_8QhnJCPwFMtZzG
CitedBy_id crossref_primary_10_1080_11263504_2024_2320170
crossref_primary_10_3390_app10155368
crossref_primary_10_1007_s11104_017_3556_7
crossref_primary_10_3389_fpls_2016_01438
crossref_primary_10_1007_s11130_019_00731_z
crossref_primary_10_1007_s12161_021_02208_9
crossref_primary_10_1007_s00425_022_04017_8
crossref_primary_10_3389_fpls_2023_1198847
crossref_primary_10_1007_s11104_022_05480_8
crossref_primary_10_1021_acs_jafc_0c05594
crossref_primary_10_3389_fpls_2021_625520
crossref_primary_10_3390_plants10071277
crossref_primary_10_1038_s41598_023_43677_8
crossref_primary_10_1021_acs_jafc_3c02031
crossref_primary_10_1080_03650340_2020_1718112
crossref_primary_10_3389_fpls_2018_00326
crossref_primary_10_1007_s42729_023_01278_4
crossref_primary_10_1007_s42729_022_00814_y
crossref_primary_10_1007_s11104_020_04635_9
crossref_primary_10_3389_fpls_2022_987935
crossref_primary_10_1007_s40495_024_00381_z
crossref_primary_10_3389_fpls_2022_1060154
crossref_primary_10_1080_00032719_2020_1719127
crossref_primary_10_3389_fpls_2022_848349
crossref_primary_10_1007_s11104_019_04275_8
crossref_primary_10_1186_s40104_022_00706_2
crossref_primary_10_1080_00103624_2023_2274530
crossref_primary_10_1007_s10343_023_00835_2
crossref_primary_10_1016_j_plantsci_2023_111747
crossref_primary_10_1021_acs_jafc_7b01085
crossref_primary_10_1007_s00299_021_02685_6
crossref_primary_10_3389_fpls_2022_988140
crossref_primary_10_1007_s10343_023_00840_5
crossref_primary_10_1080_10408398_2021_1925629
crossref_primary_10_1007_s10653_021_01126_3
crossref_primary_10_1007_s11738_025_03769_6
crossref_primary_10_1080_15226514_2024_2311725
crossref_primary_10_3389_fnut_2022_962312
crossref_primary_10_1021_acs_jafc_2c08112
crossref_primary_10_3389_fpls_2020_586421
crossref_primary_10_3389_fpls_2020_00874
crossref_primary_10_1007_s13762_023_05169_0
crossref_primary_10_3389_fpls_2022_881098
crossref_primary_10_3389_fpls_2023_1121605
crossref_primary_10_1007_s11356_020_08202_8
crossref_primary_10_1007_s11104_020_04686_y
crossref_primary_10_1007_s42729_023_01448_4
crossref_primary_10_7717_peerj_14488
crossref_primary_10_1007_s42729_020_00206_0
crossref_primary_10_1021_acsfoodscitech_0c00026
crossref_primary_10_1007_s42729_024_02119_8
crossref_primary_10_1021_acs_jafc_9b02446
crossref_primary_10_1007_s11356_019_05226_7
crossref_primary_10_3389_fpls_2017_01425
crossref_primary_10_1021_acs_jafc_3c00273
crossref_primary_10_1080_10643389_2019_1598240
crossref_primary_10_1021_acs_jafc_7b04246
crossref_primary_10_1007_s11104_024_06633_7
crossref_primary_10_1007_s11259_019_09766_8
crossref_primary_10_2903_sp_efsa_2020_EN_1881
crossref_primary_10_1071_CP21529
crossref_primary_10_1134_S1021443724606323
crossref_primary_10_1134_S263516762202015X
crossref_primary_10_1007_s42729_024_02049_5
crossref_primary_10_3389_fnut_2021_787085
crossref_primary_10_1007_s42729_023_01395_0
crossref_primary_10_1007_s42729_023_01431_z
crossref_primary_10_1007_s11104_023_06293_z
crossref_primary_10_1071_CP21501
crossref_primary_10_1007_s10653_023_01595_8
crossref_primary_10_1021_acs_jafc_1c00708
crossref_primary_10_1021_acs_jafc_3c08116
crossref_primary_10_1007_s44281_024_00056_1
crossref_primary_10_1021_acs_jafc_0c02130
crossref_primary_10_1007_s42729_023_01357_6
crossref_primary_10_3389_fpls_2017_02207
crossref_primary_10_3389_fpls_2016_01371
crossref_primary_10_3389_fpls_2017_01365
crossref_primary_10_24857_rgsa_v18n4_053
crossref_primary_10_3389_fpls_2023_1268537
crossref_primary_10_1021_acsagscitech_1c00237
crossref_primary_10_3389_fpls_2024_1387460
crossref_primary_10_1002_jsfa_14061
crossref_primary_10_1080_10826068_2024_2426744
crossref_primary_10_1021_acs_jafc_8b03396
crossref_primary_10_3389_fchem_2018_00042
crossref_primary_10_1080_24750263_2020_1853831
crossref_primary_10_3103_S0147687421050033
crossref_primary_10_1080_14620316_2022_2068458
Cites_doi 10.1104/pp.110.162867
10.1007/s12011-010-8770-6
10.1016/j.scitotenv.2014.10.038
10.1104/pp.014787
10.1016/j.foodchem.2014.05.134
10.1111/j.1469-8137.2011.03670.x
10.1104/pp.102.014639
10.1007/s00425-003-1070-z
10.1186/1471-2229-4-1
10.1039/b618637h
10.1016/j.jfca.2008.10.012
10.1104/pp.001693
10.3732/ajb.1400041
10.1007/s11104-004-0909-9
10.3389/fpls.2015.00002
10.1016/j.chemosphere.2005.02.033
10.1271/bbb.68.193
10.1094/CCHEM-09-12-0111-R
10.1021/jf0256541
10.1023/A:1003065618315
10.3732/ajb.1400223
10.1104/pp.110.156570
10.1104/pp.104.045625
10.1007/s12161-013-9728-z
10.1016/j.envpol.2006.01.008
10.1017/S0007114508922522
10.1081/PLN-120025477
10.1021/es049035f
10.1080/01904168109362867
10.1201/b12531-18
10.1016/j.foodchem.2010.08.038
10.1016/j.plantsci.2007.10.004
10.1016/j.aca.2012.08.016
10.1021/jf802307h
10.1007/s00217-006-0409-7
10.15835/nsb729491
10.4141/CJPS09154
10.1111/j.1469-8137.2008.02738.x
10.3389/fpls.2015.00113
10.1007/s00217-006-0281-5
10.2116/analsci.21.1501
10.1021/jf040077x
10.1093/jxb/erh192
10.1080/01904167.2012.639923
10.2136/sssaj1992.03615995005600060028x
10.2307/2436867
10.1016/0045-6535(94)00409-N
10.1385/BTER:103:2:155
10.1016/j.foodchem.2005.05.002
10.2307/2436464
10.1104/pp.106.081158
10.1007/s10653-005-8625-9
10.1038/srep00072
10.1021/es203871j
10.1111/j.1095-8339.2009.00996.x
10.1016/j.foodchem.2007.07.036
10.1002/ieam.5630030317
10.1111/j.1469-185X.1982.tb00364.x
10.1007/s00425-013-1983-0
10.1104/pp.104.046441
10.1021/jf034835f
10.1046/j.0960-7412.2001.01232.x
10.1111/j.1365-3040.2010.02235.x
10.3390/nu7031494
10.1021/es061152i
10.1007/s00425-010-1323-6
10.1111/nph.13164
10.1111/j.1439-0523.2007.01294.x
10.1080/00380768.2011.641909
10.1016/j.jfca.2014.10.009
10.1016/j.pbi.2009.04.009
10.2135/cropsci1991.0011183X003100030013x
10.2307/2437092
10.1201/b18458-24
10.1104/pp.103.026989
10.1007/s11104-010-0523-y
10.2527/jas.2013-6595
10.1007/s11120-005-5222-9
10.1016/j.envexpbot.2012.09.002
10.1104/pp.107.110742
10.1006/eesa.1996.1517
10.1093/aob/mcm084
10.1111/j.1469-8137.2006.01635.x
10.1248/bpb.b212016
10.1111/nph.12596
10.1104/pp.108.118612
10.1023/B:PLSO.0000035580.32406.e3
10.1093/aob/mct163
10.1111/j.1399-3054.2006.00739.x
10.1016/j.chroma.2003.11.039
10.1021/jf505963c
10.5923/j.fs.20120205.04
10.1016/j.pbi.2012.02.001
10.1016/j.foodchem.2010.12.079
10.1016/S2095-3119(13)60640-1
10.1016/j.tplants.2009.06.006
10.1046/j.1365-313x.2000.00768.x
10.1039/b707348h
10.1007/s11032-015-0252-2
10.1016/S0147-6513(03)00064-2
10.1089/ars.2010.3275
10.1016/B978-1-4832-2800-6.50005-5
10.1071/FP05090
10.1016/j.jtemb.2014.04.009
10.1007/s12230-011-9232-1
10.1016/j.plantsci.2015.06.002
10.1093/mp/ssp119
10.1016/j.foodchem.2012.01.043
10.1016/j.phytochem.2011.11.021
10.1016/j.scitotenv.2006.09.028
10.1039/b205802m
10.1007/s11032-014-0045-z
10.1007/s11104-012-1287-3
10.1016/S0140-6736(11)61452-9
10.1039/c3mt00140g
10.1016/S0065-2113(02)79003-2
10.1039/c2mt20085f
10.1016/j.jfca.2011.04.016
10.1016/j.plantsci.2014.03.022
10.1111/j.1399-3054.2007.01002.x
10.1021/jf00055a002
10.1111/j.1365-313X.2005.02413.x
10.1111/j.1469-8137.2007.02343.x
10.1016/j.envexpbot.2011.12.011
10.1007/978-94-007-4375-5_16
10.3390/su3030500
10.1104/pp.112.199307
10.1016/j.jfoodeng.2006.01.075
10.1385/BTER:93:1-3:249
10.1111/tpj.12059
10.1146/annurev.arplant.51.1.401
10.1093/aob/mcq085
10.1017/S0021859614000495
10.1007/s00425-009-1096-y
10.1111/j.1744-7348.2012.00549.x
10.1104/pp.107.114033
10.1104/pp.110.153759
10.1016/j.microc.2004.06.001
10.1104/pp.111.183897
10.1021/es0613714
10.1046/j.1469-8137.2001.00004.x
10.1034/j.1399-3054.2003.00136.x
10.1079/PNS2006490
10.2134/jeq1992.00472425002100030006x
10.1105/tpc.104.023960
10.1007/s11104-009-0141-8
10.1111/j.1751-0813.1959.tb08462.x
10.3389/fpls.2015.00232
10.1111/j.1365-313X.2009.03855.x
10.3109/09637489709028586
10.1002/jps.3080260507
10.1104/pp.114.247825
10.1016/j.jplph.2015.05.009
10.3389/fpls.2014.00442
10.2134/jeq1999.00472425002800030035x
10.1104/pp.109.144808
10.1079/BJN2000280
10.1111/j.1438-8677.2011.00535.x
10.1111/j.1469-8137.2006.01943.x
10.1104/pp.119.1.123
10.1016/j.chroma.2005.07.081
10.1016/j.foodres.2012.08.007
10.1016/j.phytochem.2009.06.001
10.1007/978-1-4020-5887-5_10
10.1111/ppl.12144
10.2135/cropsci2013.08.0568
10.2137/1239099041837941
10.1104/pp.104.056549
10.1007/s00425-013-1996-8
10.1111/nph.13071
10.1021/es900671m
10.1016/j.fcr.2011.08.014
10.1111/j.1469-8137.2007.02078.x
10.2307/2436499
10.1016/j.gexplo.2010.09.009
10.1016/j.scitotenv.2007.08.024
10.1104/pp.014712
10.4141/cjps2013-136
10.1002/jsfa.2601
10.1016/j.talanta.2013.02.014
10.2307/2437716
10.1016/j.jcs.2008.11.007
10.1080/01904160600851437
10.1039/c3mt00113j
10.21273/JASHS.126.3.329
10.1021/jf104731f
10.1111/j.1469-8137.2008.02604.x
10.1016/j.jplph.2006.01.008
10.1104/pp.105.068684
10.1104/pp.106.091462
10.1016/j.foodchem.2005.04.004
10.1016/j.copbio.2009.02.001
10.1016/S0946-672X(96)80017-4
10.1007/s10681-008-9681-x
10.1016/j.foodchem.2013.08.116
10.1007/s11703-009-0070-6
10.1371/journal.pone.0065615
10.1080/16226510490454786
10.1007/s11248-008-9233-0
10.1007/s11104-012-1492-0
10.1104/pp.110.157867
ContentType Journal Article
Copyright The Author 2015
The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015
Copyright_xml – notice: The Author 2015
– notice: The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1093/aob/mcv180
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1095-8290
EndPage 235
ExternalDocumentID PMC4724052
26718221
10_1093_aob_mcv180
26526382
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
1TH
1~5
23M
2WC
2~F
4.4
482
48X
4G.
5GY
5VS
5WA
5WD
6J9
7-5
70D
79B
A8Z
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAXTN
ABBHK
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACHIC
ACIWK
ACNCT
ACPRK
ACUFI
ACUHS
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AOIJS
APIBT
APWMN
AQVQM
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
COF
CS3
CZ4
DAKXR
DATOO
DILTD
D~K
E3Z
EBD
EBS
EDH
EE~
EJD
EMOBN
ESX
F5P
F9B
FDB
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H5~
HAR
HW0
HYE
HZ~
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
NU-
NVLIB
O-L
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RPM
RUSNO
RW1
RXO
SA0
SV3
TCN
TEORI
TLC
TN5
TR2
UPT
W8F
WH7
WOQ
X7H
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
AAYXX
CITATION
H13
--K
1B1
53G
71M
AAEDT
AALCJ
AALRI
AAQFI
AAQXK
AAWDT
AAXUO
AAYWO
ABDPE
ABEFU
ABIME
ABNGD
ABPIB
ABSMQ
ABWVN
ABZEO
ACFRR
ACPQN
ACRPL
ACUKT
ACVCV
ACZBC
ADFGL
ADMUD
ADNMO
ADXHL
AEHUL
AEKPW
AETEA
AFFNX
AFSHK
AFSWV
AFYAG
AGKRT
AGMDO
AGQPQ
AHGBF
AI.
AJDVS
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
C1A
CAG
CGR
CUY
CVF
CXTWN
DFGAJ
DM4
ECM
EIF
ELUNK
FA8
FEDTE
FGOYB
FIRID
HVGLF
IHE
LG5
MBTAY
NEJ
NPM
NTWIH
O0~
OHT
OZT
O~Y
PB-
QBD
R2-
RIG
RNI
RPZ
RZF
RZO
SSZ
UHS
VH1
XOL
XPP
ZCG
ZMT
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c433t-92dcadb5e094e6711122e701ebb463cda4644afb98eabdb9d0381780df8e47b53
ISSN 0305-7364
1095-8290
IngestDate Thu Aug 21 18:19:45 EDT 2025
Fri Jul 11 03:25:41 EDT 2025
Fri Jul 11 06:54:06 EDT 2025
Mon Jul 21 05:43:26 EDT 2025
Tue Jul 01 01:39:17 EDT 2025
Thu Apr 24 23:05:30 EDT 2025
Thu Jul 03 22:18:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ecology
Stanleya
selenium
Arabidopsis
sulphur
genetic variation
metabolism
quantitative trait locus (QTL)
evolution
hyperaccumulation
Astragalus
Language English
License The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c433t-92dcadb5e094e6711122e701ebb463cda4644afb98eabdb9d0381780df8e47b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://academic.oup.com/aob/article-pdf/117/2/217/17848529/mcv180.pdf
PMID 26718221
PQID 1760911385
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4724052
proquest_miscellaneous_2315261929
proquest_miscellaneous_1760911385
pubmed_primary_26718221
crossref_primary_10_1093_aob_mcv180
crossref_citationtrail_10_1093_aob_mcv180
jstor_primary_26526382
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2016012223123407000_mcv180v1.124
2016012223123407000_mcv180v1.125
2016012223123407000_mcv180v1.122
2016012223123407000_mcv180v1.123
2016012223123407000_mcv180v1.120
2016012223123407000_mcv180v1.121
2016012223123407000_mcv180v1.128
2016012223123407000_mcv180v1.126
2016012223123407000_mcv180v1.127
2016012223123407000_mcv180v1.114
2016012223123407000_mcv180v1.111
2016012223123407000_mcv180v1.112
2016012223123407000_mcv180v1.110
Yang (2016012223123407000_mcv180v1.205) 2013; 10
2016012223123407000_mcv180v1.119
2016012223123407000_mcv180v1.117
2016012223123407000_mcv180v1.118
2016012223123407000_mcv180v1.115
Kopsell (2016012223123407000_mcv180v1.96) 2001; 126
2016012223123407000_mcv180v1.146
2016012223123407000_mcv180v1.147
2016012223123407000_mcv180v1.144
2016012223123407000_mcv180v1.145
2016012223123407000_mcv180v1.142
2016012223123407000_mcv180v1.143
2016012223123407000_mcv180v1.140
2016012223123407000_mcv180v1.141
2016012223123407000_mcv180v1.148
2016012223123407000_mcv180v1.149
McCray (2016012223123407000_mcv180v1.113) 1963; 20
2016012223123407000_mcv180v1.135
2016012223123407000_mcv180v1.136
2016012223123407000_mcv180v1.133
2016012223123407000_mcv180v1.134
2016012223123407000_mcv180v1.131
2016012223123407000_mcv180v1.132
2016012223123407000_mcv180v1.130
2016012223123407000_mcv180v1.139
2016012223123407000_mcv180v1.137
2016012223123407000_mcv180v1.172
2016012223123407000_mcv180v1.170
2016012223123407000_mcv180v1.168
Mangan (2016012223123407000_mcv180v1.108) 2015; 3
2016012223123407000_mcv180v1.169
2016012223123407000_mcv180v1.166
2016012223123407000_mcv180v1.167
2016012223123407000_mcv180v1.164
2016012223123407000_mcv180v1.165
2016012223123407000_mcv180v1.162
2016012223123407000_mcv180v1.163
2016012223123407000_mcv180v1.160
2016012223123407000_mcv180v1.161
Chilimba (2016012223123407000_mcv180v1.41) 2011; 1
2016012223123407000_mcv180v1.157
2016012223123407000_mcv180v1.158
2016012223123407000_mcv180v1.156
2016012223123407000_mcv180v1.153
2016012223123407000_mcv180v1.154
2016012223123407000_mcv180v1.151
2016012223123407000_mcv180v1.152
Rayman (2016012223123407000_mcv180v1.150) 2008; 100
2016012223123407000_mcv180v1.159
Mikkelsen (2016012223123407000_mcv180v1.116) 1989; 23
2016012223123407000_mcv180v1.28
2016012223123407000_mcv180v1.193
2016012223123407000_mcv180v1.27
2016012223123407000_mcv180v1.194
2016012223123407000_mcv180v1.26
El Mehdawi (2016012223123407000_mcv180v1.53) 2012; 14
2016012223123407000_mcv180v1.191
2016012223123407000_mcv180v1.25
2016012223123407000_mcv180v1.192
2016012223123407000_mcv180v1.190
2016012223123407000_mcv180v1.29
2016012223123407000_mcv180v1.20
2016012223123407000_mcv180v1.188
2016012223123407000_mcv180v1.24
2016012223123407000_mcv180v1.186
2016012223123407000_mcv180v1.23
2016012223123407000_mcv180v1.187
2016012223123407000_mcv180v1.22
2016012223123407000_mcv180v1.184
2016012223123407000_mcv180v1.21
2016012223123407000_mcv180v1.185
2016012223123407000_mcv180v1.7
2016012223123407000_mcv180v1.8
2016012223123407000_mcv180v1.5
2016012223123407000_mcv180v1.6
2016012223123407000_mcv180v1.9
2016012223123407000_mcv180v1.182
2016012223123407000_mcv180v1.16
2016012223123407000_mcv180v1.183
2016012223123407000_mcv180v1.15
2016012223123407000_mcv180v1.180
2016012223123407000_mcv180v1.14
2016012223123407000_mcv180v1.3
2016012223123407000_mcv180v1.4
2016012223123407000_mcv180v1.1
2016012223123407000_mcv180v1.19
2016012223123407000_mcv180v1.2
2016012223123407000_mcv180v1.18
Beath (2016012223123407000_mcv180v1.17) 1937; 26
2016012223123407000_mcv180v1.179
2016012223123407000_mcv180v1.178
2016012223123407000_mcv180v1.13
2016012223123407000_mcv180v1.175
2016012223123407000_mcv180v1.12
2016012223123407000_mcv180v1.176
2016012223123407000_mcv180v1.11
2016012223123407000_mcv180v1.173
2016012223123407000_mcv180v1.10
2016012223123407000_mcv180v1.174
2016012223123407000_mcv180v1.49
2016012223123407000_mcv180v1.48
2016012223123407000_mcv180v1.47
2016012223123407000_mcv180v1.42
2016012223123407000_mcv180v1.40
2016012223123407000_mcv180v1.46
2016012223123407000_mcv180v1.45
2016012223123407000_mcv180v1.44
2016012223123407000_mcv180v1.43
Gigolashvili (2016012223123407000_mcv180v1.73) 2014; 5
2016012223123407000_mcv180v1.39
2016012223123407000_mcv180v1.38
2016012223123407000_mcv180v1.37
2016012223123407000_mcv180v1.36
2016012223123407000_mcv180v1.31
Schiavon (2016012223123407000_mcv180v1.155) 2015; 6
2016012223123407000_mcv180v1.30
2016012223123407000_mcv180v1.199
2016012223123407000_mcv180v1.35
2016012223123407000_mcv180v1.197
2016012223123407000_mcv180v1.34
2016012223123407000_mcv180v1.198
2016012223123407000_mcv180v1.33
2016012223123407000_mcv180v1.195
2016012223123407000_mcv180v1.32
2016012223123407000_mcv180v1.196
Van Hoewyk (2016012223123407000_mcv180v1.189) 2008; 132
Paul (2016012223123407000_mcv180v1.129) 2015; 6
2016012223123407000_mcv180v1.69
2016012223123407000_mcv180v1.64
2016012223123407000_mcv180v1.63
2016012223123407000_mcv180v1.62
2016012223123407000_mcv180v1.61
2016012223123407000_mcv180v1.68
2016012223123407000_mcv180v1.67
2016012223123407000_mcv180v1.66
2016012223123407000_mcv180v1.65
2016012223123407000_mcv180v1.60
2016012223123407000_mcv180v1.59
2016012223123407000_mcv180v1.58
2016012223123407000_mcv180v1.52
2016012223123407000_mcv180v1.51
2016012223123407000_mcv180v1.50
2016012223123407000_mcv180v1.57
2016012223123407000_mcv180v1.56
2016012223123407000_mcv180v1.55
2016012223123407000_mcv180v1.54
Lyons (2016012223123407000_mcv180v1.106) 2005; 269
Terry (2016012223123407000_mcv180v1.177) 1992; 21
2016012223123407000_mcv180v1.86
Sura-de Jong (2016012223123407000_mcv180v1.171) 2015; 6
2016012223123407000_mcv180v1.201
2016012223123407000_mcv180v1.85
2016012223123407000_mcv180v1.202
2016012223123407000_mcv180v1.84
2016012223123407000_mcv180v1.83
2016012223123407000_mcv180v1.200
2016012223123407000_mcv180v1.89
2016012223123407000_mcv180v1.88
2016012223123407000_mcv180v1.87
2016012223123407000_mcv180v1.209
2016012223123407000_mcv180v1.207
2016012223123407000_mcv180v1.208
2016012223123407000_mcv180v1.82
2016012223123407000_mcv180v1.81
Thavarajah (2016012223123407000_mcv180v1.181) 2008; 57
2016012223123407000_mcv180v1.206
2016012223123407000_mcv180v1.80
2016012223123407000_mcv180v1.203
2016012223123407000_mcv180v1.204
Pilon-Smits (2016012223123407000_mcv180v1.138) 1999; 28
2016012223123407000_mcv180v1.75
2016012223123407000_mcv180v1.74
2016012223123407000_mcv180v1.72
2016012223123407000_mcv180v1.79
2016012223123407000_mcv180v1.78
2016012223123407000_mcv180v1.77
2016012223123407000_mcv180v1.76
2016012223123407000_mcv180v1.71
2016012223123407000_mcv180v1.70
Zhao (2016012223123407000_mcv180v1.213) 2015; 7
2016012223123407000_mcv180v1.102
2016012223123407000_mcv180v1.103
2016012223123407000_mcv180v1.100
2016012223123407000_mcv180v1.101
2016012223123407000_mcv180v1.109
2016012223123407000_mcv180v1.107
2016012223123407000_mcv180v1.104
2016012223123407000_mcv180v1.105
2016012223123407000_mcv180v1.97
2016012223123407000_mcv180v1.212
2016012223123407000_mcv180v1.95
2016012223123407000_mcv180v1.210
2016012223123407000_mcv180v1.94
2016012223123407000_mcv180v1.211
2016012223123407000_mcv180v1.99
2016012223123407000_mcv180v1.98
2016012223123407000_mcv180v1.93
2016012223123407000_mcv180v1.216
2016012223123407000_mcv180v1.92
2016012223123407000_mcv180v1.217
2016012223123407000_mcv180v1.91
2016012223123407000_mcv180v1.214
2016012223123407000_mcv180v1.90
2016012223123407000_mcv180v1.215
References_xml – ident: 2016012223123407000_mcv180v1.13
  doi: 10.1104/pp.110.162867
– ident: 2016012223123407000_mcv180v1.203
  doi: 10.1007/s12011-010-8770-6
– ident: 2016012223123407000_mcv180v1.93
– ident: 2016012223123407000_mcv180v1.88
  doi: 10.1016/j.scitotenv.2014.10.038
– ident: 2016012223123407000_mcv180v1.132
  doi: 10.1104/pp.014787
– ident: 2016012223123407000_mcv180v1.6
  doi: 10.1016/j.foodchem.2014.05.134
– ident: 2016012223123407000_mcv180v1.54
  doi: 10.1111/j.1469-8137.2011.03670.x
– ident: 2016012223123407000_mcv180v1.135
  doi: 10.1104/pp.102.014639
– ident: 2016012223123407000_mcv180v1.30
– ident: 2016012223123407000_mcv180v1.190
  doi: 10.1007/s00425-003-1070-z
– ident: 2016012223123407000_mcv180v1.56
  doi: 10.1186/1471-2229-4-1
– ident: 2016012223123407000_mcv180v1.44
  doi: 10.1039/b618637h
– ident: 2016012223123407000_mcv180v1.76
  doi: 10.1016/j.jfca.2008.10.012
– ident: 2016012223123407000_mcv180v1.172
  doi: 10.1104/pp.001693
– ident: 2016012223123407000_mcv180v1.36
  doi: 10.3732/ajb.1400041
– volume: 269
  start-page: 269
  year: 2005
  ident: 2016012223123407000_mcv180v1.106
  article-title: Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding?
  publication-title: Plant and Soil
  doi: 10.1007/s11104-004-0909-9
– volume: 20
  start-page: 475
  year: 1963
  ident: 2016012223123407000_mcv180v1.113
  article-title: Selenosis in North-Western Queensland associated with a marine Cretaceous formation
  publication-title: Queensland Journal of Agricultural Science
– volume: 6
  start-page: 2
  year: 2015
  ident: 2016012223123407000_mcv180v1.155
  article-title: Exploring the importance of sulphate transporters and ATPsulphurylases for selenium hyperaccumulation – comparison of Stanleya pinnata and Brassica juncea (Brassicaceae)
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2015.00002
– ident: 2016012223123407000_mcv180v1.10
  doi: 10.1016/j.chemosphere.2005.02.033
– volume: 3
  start-page: 293
  year: 2015
  ident: 2016012223123407000_mcv180v1.108
  article-title: Nutritional characteristics and starch properties of Tibetan barley
  publication-title: International Journal of Agricultural Policy and Research
– ident: 2016012223123407000_mcv180v1.170
  doi: 10.1271/bbb.68.193
– ident: 2016012223123407000_mcv180v1.49
  doi: 10.1094/CCHEM-09-12-0111-R
– ident: 2016012223123407000_mcv180v1.192
  doi: 10.1021/jf0256541
– ident: 2016012223123407000_mcv180v1.98
– ident: 2016012223123407000_mcv180v1.95
  doi: 10.1023/A:1003065618315
– ident: 2016012223123407000_mcv180v1.2
  doi: 10.3732/ajb.1400223
– ident: 2016012223123407000_mcv180v1.68
  doi: 10.1104/pp.110.156570
– ident: 2016012223123407000_mcv180v1.91
  doi: 10.1104/pp.104.045625
– ident: 2016012223123407000_mcv180v1.157
  doi: 10.1007/s12161-013-9728-z
– ident: 2016012223123407000_mcv180v1.101
  doi: 10.1016/j.envpol.2006.01.008
– volume: 100
  start-page: 238
  year: 2008
  ident: 2016012223123407000_mcv180v1.150
  article-title: Food-chain selenium and human health: spotlight on speciation
  publication-title: British Journal of Nutrition
  doi: 10.1017/S0007114508922522
– ident: 2016012223123407000_mcv180v1.9
  doi: 10.1081/PLN-120025477
– ident: 2016012223123407000_mcv180v1.11
  doi: 10.1021/es049035f
– ident: 2016012223123407000_mcv180v1.7
  doi: 10.1080/01904168109362867
– ident: 2016012223123407000_mcv180v1.136
  doi: 10.1201/b12531-18
– ident: 2016012223123407000_mcv180v1.183
  doi: 10.1016/j.foodchem.2010.08.038
– ident: 2016012223123407000_mcv180v1.188
  doi: 10.1016/j.plantsci.2007.10.004
– ident: 2016012223123407000_mcv180v1.74
  doi: 10.1016/j.aca.2012.08.016
– volume: 57
  start-page: 10747
  year: 2008
  ident: 2016012223123407000_mcv180v1.181
  article-title: High potential for selenium biofortification of lentils (Lens culinaris L.)
  publication-title: Journal of Agriculture and Food Chemistry
  doi: 10.1021/jf802307h
– ident: 2016012223123407000_mcv180v1.163
  doi: 10.1007/s00217-006-0409-7
– volume: 7
  start-page: 210
  year: 2015
  ident: 2016012223123407000_mcv180v1.213
  article-title: Systematic comparisons of orthologous selenocysteine methyltransferase and homocysteine methyltransferase genes from seven monocots species
  publication-title: Notulae Scientia Biologicae
  doi: 10.15835/nsb729491
– ident: 2016012223123407000_mcv180v1.182
  doi: 10.4141/CJPS09154
– ident: 2016012223123407000_mcv180v1.194
  doi: 10.1111/j.1469-8137.2008.02738.x
– volume: 6
  start-page: 113
  year: 2015
  ident: 2016012223123407000_mcv180v1.171
  article-title: Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2015.00113
– ident: 2016012223123407000_mcv180v1.77
  doi: 10.1007/s00217-006-0281-5
– ident: 2016012223123407000_mcv180v1.161
  doi: 10.2116/analsci.21.1501
– ident: 2016012223123407000_mcv180v1.184
  doi: 10.1021/jf040077x
– ident: 2016012223123407000_mcv180v1.196
  doi: 10.1093/jxb/erh192
– ident: 2016012223123407000_mcv180v1.84
  doi: 10.1080/01904167.2012.639923
– ident: 2016012223123407000_mcv180v1.22
  doi: 10.2136/sssaj1992.03615995005600060028x
– ident: 2016012223123407000_mcv180v1.21
  doi: 10.2307/2436867
– ident: 2016012223123407000_mcv180v1.39
  doi: 10.1016/0045-6535(94)00409-N
– ident: 2016012223123407000_mcv180v1.107
  doi: 10.1385/BTER:103:2:155
– ident: 2016012223123407000_mcv180v1.162
  doi: 10.1016/j.foodchem.2005.05.002
– ident: 2016012223123407000_mcv180v1.19
  doi: 10.2307/2436464
– ident: 2016012223123407000_mcv180v1.67
  doi: 10.1104/pp.106.081158
– ident: 2016012223123407000_mcv180v1.117
  doi: 10.1007/s10653-005-8625-9
– volume: 1
  start-page: 72
  year: 2011
  ident: 2016012223123407000_mcv180v1.41
  article-title: Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi
  publication-title: Scientific Reports
  doi: 10.1038/srep00072
– ident: 2016012223123407000_mcv180v1.38
  doi: 10.1021/es203871j
– ident: 2016012223123407000_mcv180v1.4
  doi: 10.1111/j.1095-8339.2009.00996.x
– ident: 2016012223123407000_mcv180v1.112
  doi: 10.1016/j.foodchem.2007.07.036
– ident: 2016012223123407000_mcv180v1.143
  doi: 10.1002/ieam.5630030317
– ident: 2016012223123407000_mcv180v1.26
  doi: 10.1111/j.1469-185X.1982.tb00364.x
– ident: 2016012223123407000_mcv180v1.83
– ident: 2016012223123407000_mcv180v1.35
  doi: 10.1007/s00425-013-1983-0
– ident: 2016012223123407000_mcv180v1.27
  doi: 10.1104/pp.104.046441
– ident: 2016012223123407000_mcv180v1.202
  doi: 10.1021/jf034835f
– ident: 2016012223123407000_mcv180v1.158
  doi: 10.1046/j.0960-7412.2001.01232.x
– ident: 2016012223123407000_mcv180v1.81
  doi: 10.1111/j.1365-3040.2010.02235.x
– ident: 2016012223123407000_mcv180v1.169
  doi: 10.3390/nu7031494
– ident: 2016012223123407000_mcv180v1.12
  doi: 10.1021/es061152i
– ident: 2016012223123407000_mcv180v1.146
  doi: 10.1007/s00425-010-1323-6
– ident: 2016012223123407000_mcv180v1.55
  doi: 10.1111/nph.13164
– ident: 2016012223123407000_mcv180v1.62
  doi: 10.1111/j.1439-0523.2007.01294.x
– ident: 2016012223123407000_mcv180v1.102
  doi: 10.1080/00380768.2011.641909
– ident: 2016012223123407000_mcv180v1.120
  doi: 10.1016/j.jfca.2014.10.009
– ident: 2016012223123407000_mcv180v1.140
  doi: 10.1016/j.pbi.2009.04.009
– ident: 2016012223123407000_mcv180v1.115
  doi: 10.2135/cropsci1991.0011183X003100030013x
– ident: 2016012223123407000_mcv180v1.20
  doi: 10.2307/2437092
– ident: 2016012223123407000_mcv180v1.134
  doi: 10.1201/b18458-24
– ident: 2016012223123407000_mcv180v1.100
  doi: 10.1104/pp.103.026989
– ident: 2016012223123407000_mcv180v1.156
  doi: 10.1007/s11104-010-0523-y
– ident: 2016012223123407000_mcv180v1.131
  doi: 10.2527/jas.2013-6595
– ident: 2016012223123407000_mcv180v1.165
  doi: 10.1007/s11120-005-5222-9
– ident: 2016012223123407000_mcv180v1.64
  doi: 10.1016/j.envexpbot.2012.09.002
– ident: 2016012223123407000_mcv180v1.175
  doi: 10.1104/pp.107.110742
– ident: 2016012223123407000_mcv180v1.8
  doi: 10.1006/eesa.1996.1517
– ident: 2016012223123407000_mcv180v1.197
  doi: 10.1093/aob/mcm084
– ident: 2016012223123407000_mcv180v1.209
  doi: 10.1111/j.1469-8137.2006.01635.x
– ident: 2016012223123407000_mcv180v1.125
  doi: 10.1248/bpb.b212016
– ident: 2016012223123407000_mcv180v1.212
  doi: 10.1111/nph.12596
– ident: 2016012223123407000_mcv180v1.154
  doi: 10.1104/pp.108.118612
– ident: 2016012223123407000_mcv180v1.61
  doi: 10.1023/B:PLSO.0000035580.32406.e3
– ident: 2016012223123407000_mcv180v1.99
– ident: 2016012223123407000_mcv180v1.186
  doi: 10.1093/aob/mct163
– ident: 2016012223123407000_mcv180v1.208
  doi: 10.1111/j.1399-3054.2006.00739.x
– ident: 2016012223123407000_mcv180v1.15
– ident: 2016012223123407000_mcv180v1.75
  doi: 10.1016/j.chroma.2003.11.039
– ident: 2016012223123407000_mcv180v1.111
  doi: 10.1021/jf505963c
– ident: 2016012223123407000_mcv180v1.118
– ident: 2016012223123407000_mcv180v1.174
  doi: 10.5923/j.fs.20120205.04
– ident: 2016012223123407000_mcv180v1.176
  doi: 10.1016/j.pbi.2012.02.001
– ident: 2016012223123407000_mcv180v1.80
  doi: 10.1016/j.foodchem.2010.12.079
– ident: 2016012223123407000_mcv180v1.142
  doi: 10.1016/S2095-3119(13)60640-1
– ident: 2016012223123407000_mcv180v1.217
  doi: 10.1016/j.tplants.2009.06.006
– ident: 2016012223123407000_mcv180v1.173
  doi: 10.1046/j.1365-313x.2000.00768.x
– ident: 2016012223123407000_mcv180v1.127
  doi: 10.1039/b707348h
– ident: 2016012223123407000_mcv180v1.48
  doi: 10.1007/s11032-015-0252-2
– ident: 2016012223123407000_mcv180v1.201
  doi: 10.1016/S0147-6513(03)00064-2
– ident: 2016012223123407000_mcv180v1.59
  doi: 10.1089/ars.2010.3275
– ident: 2016012223123407000_mcv180v1.153
  doi: 10.1016/B978-1-4832-2800-6.50005-5
– ident: 2016012223123407000_mcv180v1.1
  doi: 10.1071/FP05090
– ident: 2016012223123407000_mcv180v1.3
  doi: 10.1016/j.jtemb.2014.04.009
– ident: 2016012223123407000_mcv180v1.130
  doi: 10.1007/s12230-011-9232-1
– ident: 2016012223123407000_mcv180v1.141
  doi: 10.1016/j.plantsci.2015.06.002
– ident: 2016012223123407000_mcv180v1.28
  doi: 10.1093/mp/ssp119
– ident: 2016012223123407000_mcv180v1.90
  doi: 10.1016/j.foodchem.2012.01.043
– ident: 2016012223123407000_mcv180v1.110
  doi: 10.1016/j.phytochem.2011.11.021
– ident: 2016012223123407000_mcv180v1.214
  doi: 10.1016/j.scitotenv.2006.09.028
– ident: 2016012223123407000_mcv180v1.23
  doi: 10.1039/b205802m
– ident: 2016012223123407000_mcv180v1.145
  doi: 10.1007/s11032-014-0045-z
– ident: 2016012223123407000_mcv180v1.57
  doi: 10.1007/s11104-012-1287-3
– ident: 2016012223123407000_mcv180v1.149
  doi: 10.1016/S0140-6736(11)61452-9
– ident: 2016012223123407000_mcv180v1.122
  doi: 10.1039/c3mt00140g
– ident: 2016012223123407000_mcv180v1.46
  doi: 10.1016/S0065-2113(02)79003-2
– ident: 2016012223123407000_mcv180v1.5
  doi: 10.1039/c2mt20085f
– ident: 2016012223123407000_mcv180v1.152
  doi: 10.1016/j.jfca.2011.04.016
– ident: 2016012223123407000_mcv180v1.167
  doi: 10.1016/j.plantsci.2014.03.022
– volume: 132
  start-page: 236
  year: 2008
  ident: 2016012223123407000_mcv180v1.189
  article-title: Transcriptome and biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.2007.01002.x
– ident: 2016012223123407000_mcv180v1.33
  doi: 10.1021/jf00055a002
– ident: 2016012223123407000_mcv180v1.164
  doi: 10.1111/j.1365-313X.2005.02413.x
– ident: 2016012223123407000_mcv180v1.168
– ident: 2016012223123407000_mcv180v1.103
  doi: 10.1111/j.1469-8137.2007.02343.x
– ident: 2016012223123407000_mcv180v1.104
  doi: 10.1016/j.envexpbot.2011.12.011
– ident: 2016012223123407000_mcv180v1.66
  doi: 10.1007/978-94-007-4375-5_16
– ident: 2016012223123407000_mcv180v1.121
  doi: 10.3390/su3030500
– ident: 2016012223123407000_mcv180v1.185
  doi: 10.1104/pp.112.199307
– ident: 2016012223123407000_mcv180v1.89
  doi: 10.1016/j.jfoodeng.2006.01.075
– ident: 2016012223123407000_mcv180v1.204
  doi: 10.1385/BTER:93:1-3:249
– ident: 2016012223123407000_mcv180v1.34
  doi: 10.1111/tpj.12059
– ident: 2016012223123407000_mcv180v1.178
  doi: 10.1146/annurev.arplant.51.1.401
– ident: 2016012223123407000_mcv180v1.195
  doi: 10.1093/aob/mcq085
– ident: 2016012223123407000_mcv180v1.144
  doi: 10.1017/S0021859614000495
– ident: 2016012223123407000_mcv180v1.31
  doi: 10.1007/s00425-009-1096-y
– ident: 2016012223123407000_mcv180v1.124
  doi: 10.1111/j.1744-7348.2012.00549.x
– ident: 2016012223123407000_mcv180v1.51
  doi: 10.1104/pp.107.114033
– ident: 2016012223123407000_mcv180v1.151
– ident: 2016012223123407000_mcv180v1.159
  doi: 10.1104/pp.110.153759
– ident: 2016012223123407000_mcv180v1.65
  doi: 10.1016/j.microc.2004.06.001
– ident: 2016012223123407000_mcv180v1.32
  doi: 10.1104/pp.111.183897
– ident: 2016012223123407000_mcv180v1.97
  doi: 10.1021/es0613714
– ident: 2016012223123407000_mcv180v1.63
  doi: 10.1046/j.1469-8137.2001.00004.x
– ident: 2016012223123407000_mcv180v1.70
  doi: 10.1034/j.1399-3054.2003.00136.x
– ident: 2016012223123407000_mcv180v1.25
  doi: 10.1079/PNS2006490
– volume: 21
  start-page: 341
  year: 1992
  ident: 2016012223123407000_mcv180v1.177
  article-title: Rates of selenium volatilization among crop species
  publication-title: Journal of Environmental Quality
  doi: 10.2134/jeq1992.00472425002100030006x
– ident: 2016012223123407000_mcv180v1.92
  doi: 10.1105/tpc.104.023960
– ident: 2016012223123407000_mcv180v1.123
  doi: 10.1007/s11104-009-0141-8
– ident: 2016012223123407000_mcv180v1.94
  doi: 10.1111/j.1751-0813.1959.tb08462.x
– volume: 6
  start-page: 232
  year: 2015
  ident: 2016012223123407000_mcv180v1.129
  article-title: miRNA regulation of nutrient homeostasis in plants
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2015.00232
– ident: 2016012223123407000_mcv180v1.166
  doi: 10.1111/j.1365-313X.2009.03855.x
– ident: 2016012223123407000_mcv180v1.133
  doi: 10.3109/09637489709028586
– volume: 26
  start-page: 394
  year: 1937
  ident: 2016012223123407000_mcv180v1.17
  article-title: Selenium distribution in and seasonal variation of type vegetation occurring on seleniferous soils
  publication-title: Journal of the American Pharmaceutical Association
  doi: 10.1002/jps.3080260507
– ident: 2016012223123407000_mcv180v1.40
  doi: 10.1104/pp.114.247825
– ident: 2016012223123407000_mcv180v1.45
  doi: 10.1016/j.jplph.2015.05.009
– volume: 5
  start-page: 422
  year: 2014
  ident: 2016012223123407000_mcv180v1.73
  article-title: Transporters in plant sulphur metabolism
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2014.00442
– volume: 28
  start-page: 1011
  year: 1999
  ident: 2016012223123407000_mcv180v1.138
  article-title: Selenium volatalization and accumulation by twenty aquatic plant species
  publication-title: Journal of Environmental Quality
  doi: 10.2134/jeq1999.00472425002800030035x
– ident: 2016012223123407000_mcv180v1.82
  doi: 10.1104/pp.109.144808
– ident: 2016012223123407000_mcv180v1.43
  doi: 10.1079/BJN2000280
– volume: 14
  start-page: 1
  year: 2012
  ident: 2016012223123407000_mcv180v1.53
  article-title: Ecological aspects of plant selenium hyperaccumulation
  publication-title: Plant Biology
  doi: 10.1111/j.1438-8677.2011.00535.x
– ident: 2016012223123407000_mcv180v1.69
  doi: 10.1111/j.1469-8137.2006.01943.x
– ident: 2016012223123407000_mcv180v1.139
  doi: 10.1104/pp.119.1.123
– ident: 2016012223123407000_mcv180v1.126
  doi: 10.1016/j.chroma.2005.07.081
– ident: 2016012223123407000_mcv180v1.180
  doi: 10.1016/j.foodres.2012.08.007
– ident: 2016012223123407000_mcv180v1.109
  doi: 10.1016/j.phytochem.2009.06.001
– ident: 2016012223123407000_mcv180v1.198
  doi: 10.1007/978-1-4020-5887-5_10
– ident: 2016012223123407000_mcv180v1.87
  doi: 10.1111/ppl.12144
– ident: 2016012223123407000_mcv180v1.148
  doi: 10.2135/cropsci2013.08.0568
– ident: 2016012223123407000_mcv180v1.58
  doi: 10.2137/1239099041837941
– ident: 2016012223123407000_mcv180v1.105
  doi: 10.1104/pp.104.056549
– ident: 2016012223123407000_mcv180v1.79
  doi: 10.1007/s00425-013-1996-8
– ident: 2016012223123407000_mcv180v1.37
  doi: 10.1111/nph.13071
– ident: 2016012223123407000_mcv180v1.200
  doi: 10.1021/es900671m
– ident: 2016012223123407000_mcv180v1.42
  doi: 10.1016/j.fcr.2011.08.014
– ident: 2016012223123407000_mcv180v1.193
  doi: 10.1111/j.1469-8137.2007.02078.x
– ident: 2016012223123407000_mcv180v1.18
  doi: 10.2307/2436499
– ident: 2016012223123407000_mcv180v1.24
  doi: 10.1016/j.gexplo.2010.09.009
– ident: 2016012223123407000_mcv180v1.60
  doi: 10.1016/j.scitotenv.2007.08.024
– ident: 2016012223123407000_mcv180v1.199
– ident: 2016012223123407000_mcv180v1.206
  doi: 10.1104/pp.014712
– ident: 2016012223123407000_mcv180v1.71
  doi: 10.4141/cjps2013-136
– ident: 2016012223123407000_mcv180v1.72
  doi: 10.1002/jsfa.2601
– ident: 2016012223123407000_mcv180v1.86
– ident: 2016012223123407000_mcv180v1.160
  doi: 10.1016/j.talanta.2013.02.014
– ident: 2016012223123407000_mcv180v1.16
  doi: 10.2307/2437716
– ident: 2016012223123407000_mcv180v1.215
  doi: 10.1016/j.jcs.2008.11.007
– volume: 23
  start-page: 65
  volume-title: Selenium in agriculture and the environment
  year: 1989
  ident: 2016012223123407000_mcv180v1.116
  article-title: Factors affecting selenium accumulation by agricultural crops
– ident: 2016012223123407000_mcv180v1.210
  doi: 10.1080/01904160600851437
– ident: 2016012223123407000_mcv180v1.128
  doi: 10.1039/c3mt00113j
– volume: 126
  start-page: 329
  year: 2001
  ident: 2016012223123407000_mcv180v1.96
  article-title: Genetic variances and selection potential for selenium accumulation in a rapid-cycling Brassica oleracea population
  publication-title: Journal of the American Society for Horticultural Science
  doi: 10.21273/JASHS.126.3.329
– ident: 2016012223123407000_mcv180v1.147
  doi: 10.1021/jf104731f
– volume: 10
  start-page: 1
  year: 2013
  ident: 2016012223123407000_mcv180v1.205
  article-title: QTL location and analysis of selenium content in tetraploid wheat grain
  publication-title: Guizhou Agricultural Sciences
– ident: 2016012223123407000_mcv180v1.14
  doi: 10.1111/j.1469-8137.2008.02604.x
– ident: 2016012223123407000_mcv180v1.211
  doi: 10.1016/j.jplph.2006.01.008
– ident: 2016012223123407000_mcv180v1.187
  doi: 10.1104/pp.105.068684
– ident: 2016012223123407000_mcv180v1.52
  doi: 10.1104/pp.106.091462
– ident: 2016012223123407000_mcv180v1.50
  doi: 10.1016/j.foodchem.2005.04.004
– ident: 2016012223123407000_mcv180v1.137
  doi: 10.1016/j.copbio.2009.02.001
– ident: 2016012223123407000_mcv180v1.78
  doi: 10.1016/S0946-672X(96)80017-4
– ident: 2016012223123407000_mcv180v1.119
  doi: 10.1007/s10681-008-9681-x
– ident: 2016012223123407000_mcv180v1.179
  doi: 10.1016/j.foodchem.2013.08.116
– ident: 2016012223123407000_mcv180v1.47
  doi: 10.1007/s11703-009-0070-6
– ident: 2016012223123407000_mcv180v1.207
  doi: 10.1371/journal.pone.0065615
– ident: 2016012223123407000_mcv180v1.191
  doi: 10.1080/16226510490454786
– ident: 2016012223123407000_mcv180v1.114
  doi: 10.1007/s11248-008-9233-0
– ident: 2016012223123407000_mcv180v1.85
  doi: 10.1007/s11104-012-1492-0
– ident: 2016012223123407000_mcv180v1.29
– ident: 2016012223123407000_mcv180v1.216
  doi: 10.1104/pp.110.157867
SSID ssj0002691
Score 2.6219501
SecondaryResourceType review_article
Snippet Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is...
Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants...
Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 217
SubjectTerms Angiospermae
Animals
Biological Transport
crops
enzymes
food plants
genes
genetically modified organisms
humans
hyperaccumulators
loci
metabolism
minerals
organic compounds
Plants - genetics
Plants - metabolism
Plants, Genetically Modified
proteins
REVIEW
Rhizosphere
selenium
Selenium - metabolism
Selenium - pharmacokinetics
selenocysteine
selenomethionine
soil
Soil - chemistry
Species Specificity
tissues
toxicity
Title Selenium accumulation by plants
URI https://www.jstor.org/stable/26526382
https://www.ncbi.nlm.nih.gov/pubmed/26718221
https://www.proquest.com/docview/1760911385
https://www.proquest.com/docview/2315261929
https://pubmed.ncbi.nlm.nih.gov/PMC4724052
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5ByoEL4lUwTyO4IOTU-_T62ECjCpVyIJFys3bXa1GpdSJwkODXM-tduzYNUuGyiuzROpovmfnGOw-E3pBMaCaFSjCpbMJUJZJccbcILSubWtlOLfl0Ko6X7OOKry7r79vqkkZPza-ddSX_gypcA1xdlew_INtvChfgM-ALKyAM67Uw_uJ8xplLLzZmexEGcTlCuTlXoUXT9EqjZL1uOgMwHJDn36yEU6LwGgD3mcO95QKulLhT0ZFp83WRAUPybjOFCCQhlI9MVjbwfuHeFcPqm06ptYb1wvzAfvzSuH_16edivjw5KRZHq8VNtEeAuJMJ2jucfZjNe-9IRDvFsP-6XcvYnB7A7gd-7xFJ8HmiuyKAPxNZB8xgcRfdCZQ-PvT43EM3bH0f3Zq1an6AXnYgxUOQYv0z9iA9RMv50eL9cRKmUiSGUdokOSmNKjW3EBhbkYGvIMRmKbZaM0FNqRhQTFXpXFqlS52XbRNEmZaVtCzTnO6jSb2u7WMUg7cxQKAFFrKCQLWSzEpsacrKtALuW0bobaeGwoSW7W5yyHnhUwdoASorvMoi9LqX3fhGJTul9ltt9iJEcAImmEToVafeAgyMOzVStV1vvxc4E8ApMZX87zIQJPA2FM8j9MhDMngC0B9CcISyEVi9gGtwPr5Tn31tG52zDPgmJ0-u8dyn6Pblv-IZmjTftvY50MVGvwi_wN-88mvy
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selenium+accumulation+by+plants&rft.jtitle=Annals+of+botany&rft.au=White%2C+Philip+J&rft.date=2016-02-01&rft.issn=1095-8290&rft.volume=117&rft.issue=2+p.217-235&rft.spage=217&rft.epage=235&rft_id=info:doi/10.1093%2Faob%2Fmcv180&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon