Selenium accumulation by plants
Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoa...
Saved in:
Published in | Annals of botany Vol. 117; no. 2; pp. 217 - 235 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators.
This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues.
The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans. |
---|---|
AbstractList | Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators.
This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues.
The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans. Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg–¹ dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg–¹ dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–¹ dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans. Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators.BACKGROUNDSelenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators.This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues.SCOPEThis article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues.The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.CONCLUSIONSThe trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans. Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg –1 dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg –1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg –1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans. |
Author | White, Philip J. |
Author_xml | – sequence: 1 givenname: Philip J. surname: White fullname: White, Philip J. organization: Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26718221$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkdtLwzAYxYNM3EVffFf3KELdl0vb5EWQ4Q0EH9TnkKSZdrTNbNrB_nszO8cUwadA8vtOzvnOEPUqV1mEjjFcYhB0opyelGaJOeyhQbiJI04E9NAAKMRRShPWR0Pv5wBAEoEPUJ8kKeaE4AE6e7aFrfK2HCtj2rItVJO7aqxX40WhqsYfov2ZKrw92pwj9Hp78zK9jx6f7h6m14-RYZQ2kSCZUZmOLQhmgzjGhNgUsNWaJdRkiiWMqZkW3CqdaZEB5TjlkM24ZamO6QhddbqLVpc2M7ZqalXIRZ2Xql5Jp3L586XK3-WbW0qWEgYxCQLnG4HafbTWN7LMvbFFSGFd6yWhOCYJFkT8i-I0AYEx5Wtbp7u2tn6-FxiAiw4wtfO-trMtgkGu25GhHdm1E2D4BZu8-Vp4iJQXf4-cdCNz37h65_8QhnJCPwFMtZzG |
CitedBy_id | crossref_primary_10_1080_11263504_2024_2320170 crossref_primary_10_3390_app10155368 crossref_primary_10_1007_s11104_017_3556_7 crossref_primary_10_3389_fpls_2016_01438 crossref_primary_10_1007_s11130_019_00731_z crossref_primary_10_1007_s12161_021_02208_9 crossref_primary_10_1007_s00425_022_04017_8 crossref_primary_10_3389_fpls_2023_1198847 crossref_primary_10_1007_s11104_022_05480_8 crossref_primary_10_1021_acs_jafc_0c05594 crossref_primary_10_3389_fpls_2021_625520 crossref_primary_10_3390_plants10071277 crossref_primary_10_1038_s41598_023_43677_8 crossref_primary_10_1021_acs_jafc_3c02031 crossref_primary_10_1080_03650340_2020_1718112 crossref_primary_10_3389_fpls_2018_00326 crossref_primary_10_1007_s42729_023_01278_4 crossref_primary_10_1007_s42729_022_00814_y crossref_primary_10_1007_s11104_020_04635_9 crossref_primary_10_3389_fpls_2022_987935 crossref_primary_10_1007_s40495_024_00381_z crossref_primary_10_3389_fpls_2022_1060154 crossref_primary_10_1080_00032719_2020_1719127 crossref_primary_10_3389_fpls_2022_848349 crossref_primary_10_1007_s11104_019_04275_8 crossref_primary_10_1186_s40104_022_00706_2 crossref_primary_10_1080_00103624_2023_2274530 crossref_primary_10_1007_s10343_023_00835_2 crossref_primary_10_1016_j_plantsci_2023_111747 crossref_primary_10_1021_acs_jafc_7b01085 crossref_primary_10_1007_s00299_021_02685_6 crossref_primary_10_3389_fpls_2022_988140 crossref_primary_10_1007_s10343_023_00840_5 crossref_primary_10_1080_10408398_2021_1925629 crossref_primary_10_1007_s10653_021_01126_3 crossref_primary_10_1007_s11738_025_03769_6 crossref_primary_10_1080_15226514_2024_2311725 crossref_primary_10_3389_fnut_2022_962312 crossref_primary_10_1021_acs_jafc_2c08112 crossref_primary_10_3389_fpls_2020_586421 crossref_primary_10_3389_fpls_2020_00874 crossref_primary_10_1007_s13762_023_05169_0 crossref_primary_10_3389_fpls_2022_881098 crossref_primary_10_3389_fpls_2023_1121605 crossref_primary_10_1007_s11356_020_08202_8 crossref_primary_10_1007_s11104_020_04686_y crossref_primary_10_1007_s42729_023_01448_4 crossref_primary_10_7717_peerj_14488 crossref_primary_10_1007_s42729_020_00206_0 crossref_primary_10_1021_acsfoodscitech_0c00026 crossref_primary_10_1007_s42729_024_02119_8 crossref_primary_10_1021_acs_jafc_9b02446 crossref_primary_10_1007_s11356_019_05226_7 crossref_primary_10_3389_fpls_2017_01425 crossref_primary_10_1021_acs_jafc_3c00273 crossref_primary_10_1080_10643389_2019_1598240 crossref_primary_10_1021_acs_jafc_7b04246 crossref_primary_10_1007_s11104_024_06633_7 crossref_primary_10_1007_s11259_019_09766_8 crossref_primary_10_2903_sp_efsa_2020_EN_1881 crossref_primary_10_1071_CP21529 crossref_primary_10_1134_S1021443724606323 crossref_primary_10_1134_S263516762202015X crossref_primary_10_1007_s42729_024_02049_5 crossref_primary_10_3389_fnut_2021_787085 crossref_primary_10_1007_s42729_023_01395_0 crossref_primary_10_1007_s42729_023_01431_z crossref_primary_10_1007_s11104_023_06293_z crossref_primary_10_1071_CP21501 crossref_primary_10_1007_s10653_023_01595_8 crossref_primary_10_1021_acs_jafc_1c00708 crossref_primary_10_1021_acs_jafc_3c08116 crossref_primary_10_1007_s44281_024_00056_1 crossref_primary_10_1021_acs_jafc_0c02130 crossref_primary_10_1007_s42729_023_01357_6 crossref_primary_10_3389_fpls_2017_02207 crossref_primary_10_3389_fpls_2016_01371 crossref_primary_10_3389_fpls_2017_01365 crossref_primary_10_24857_rgsa_v18n4_053 crossref_primary_10_3389_fpls_2023_1268537 crossref_primary_10_1021_acsagscitech_1c00237 crossref_primary_10_3389_fpls_2024_1387460 crossref_primary_10_1002_jsfa_14061 crossref_primary_10_1080_10826068_2024_2426744 crossref_primary_10_1021_acs_jafc_8b03396 crossref_primary_10_3389_fchem_2018_00042 crossref_primary_10_1080_24750263_2020_1853831 crossref_primary_10_3103_S0147687421050033 crossref_primary_10_1080_14620316_2022_2068458 |
Cites_doi | 10.1104/pp.110.162867 10.1007/s12011-010-8770-6 10.1016/j.scitotenv.2014.10.038 10.1104/pp.014787 10.1016/j.foodchem.2014.05.134 10.1111/j.1469-8137.2011.03670.x 10.1104/pp.102.014639 10.1007/s00425-003-1070-z 10.1186/1471-2229-4-1 10.1039/b618637h 10.1016/j.jfca.2008.10.012 10.1104/pp.001693 10.3732/ajb.1400041 10.1007/s11104-004-0909-9 10.3389/fpls.2015.00002 10.1016/j.chemosphere.2005.02.033 10.1271/bbb.68.193 10.1094/CCHEM-09-12-0111-R 10.1021/jf0256541 10.1023/A:1003065618315 10.3732/ajb.1400223 10.1104/pp.110.156570 10.1104/pp.104.045625 10.1007/s12161-013-9728-z 10.1016/j.envpol.2006.01.008 10.1017/S0007114508922522 10.1081/PLN-120025477 10.1021/es049035f 10.1080/01904168109362867 10.1201/b12531-18 10.1016/j.foodchem.2010.08.038 10.1016/j.plantsci.2007.10.004 10.1016/j.aca.2012.08.016 10.1021/jf802307h 10.1007/s00217-006-0409-7 10.15835/nsb729491 10.4141/CJPS09154 10.1111/j.1469-8137.2008.02738.x 10.3389/fpls.2015.00113 10.1007/s00217-006-0281-5 10.2116/analsci.21.1501 10.1021/jf040077x 10.1093/jxb/erh192 10.1080/01904167.2012.639923 10.2136/sssaj1992.03615995005600060028x 10.2307/2436867 10.1016/0045-6535(94)00409-N 10.1385/BTER:103:2:155 10.1016/j.foodchem.2005.05.002 10.2307/2436464 10.1104/pp.106.081158 10.1007/s10653-005-8625-9 10.1038/srep00072 10.1021/es203871j 10.1111/j.1095-8339.2009.00996.x 10.1016/j.foodchem.2007.07.036 10.1002/ieam.5630030317 10.1111/j.1469-185X.1982.tb00364.x 10.1007/s00425-013-1983-0 10.1104/pp.104.046441 10.1021/jf034835f 10.1046/j.0960-7412.2001.01232.x 10.1111/j.1365-3040.2010.02235.x 10.3390/nu7031494 10.1021/es061152i 10.1007/s00425-010-1323-6 10.1111/nph.13164 10.1111/j.1439-0523.2007.01294.x 10.1080/00380768.2011.641909 10.1016/j.jfca.2014.10.009 10.1016/j.pbi.2009.04.009 10.2135/cropsci1991.0011183X003100030013x 10.2307/2437092 10.1201/b18458-24 10.1104/pp.103.026989 10.1007/s11104-010-0523-y 10.2527/jas.2013-6595 10.1007/s11120-005-5222-9 10.1016/j.envexpbot.2012.09.002 10.1104/pp.107.110742 10.1006/eesa.1996.1517 10.1093/aob/mcm084 10.1111/j.1469-8137.2006.01635.x 10.1248/bpb.b212016 10.1111/nph.12596 10.1104/pp.108.118612 10.1023/B:PLSO.0000035580.32406.e3 10.1093/aob/mct163 10.1111/j.1399-3054.2006.00739.x 10.1016/j.chroma.2003.11.039 10.1021/jf505963c 10.5923/j.fs.20120205.04 10.1016/j.pbi.2012.02.001 10.1016/j.foodchem.2010.12.079 10.1016/S2095-3119(13)60640-1 10.1016/j.tplants.2009.06.006 10.1046/j.1365-313x.2000.00768.x 10.1039/b707348h 10.1007/s11032-015-0252-2 10.1016/S0147-6513(03)00064-2 10.1089/ars.2010.3275 10.1016/B978-1-4832-2800-6.50005-5 10.1071/FP05090 10.1016/j.jtemb.2014.04.009 10.1007/s12230-011-9232-1 10.1016/j.plantsci.2015.06.002 10.1093/mp/ssp119 10.1016/j.foodchem.2012.01.043 10.1016/j.phytochem.2011.11.021 10.1016/j.scitotenv.2006.09.028 10.1039/b205802m 10.1007/s11032-014-0045-z 10.1007/s11104-012-1287-3 10.1016/S0140-6736(11)61452-9 10.1039/c3mt00140g 10.1016/S0065-2113(02)79003-2 10.1039/c2mt20085f 10.1016/j.jfca.2011.04.016 10.1016/j.plantsci.2014.03.022 10.1111/j.1399-3054.2007.01002.x 10.1021/jf00055a002 10.1111/j.1365-313X.2005.02413.x 10.1111/j.1469-8137.2007.02343.x 10.1016/j.envexpbot.2011.12.011 10.1007/978-94-007-4375-5_16 10.3390/su3030500 10.1104/pp.112.199307 10.1016/j.jfoodeng.2006.01.075 10.1385/BTER:93:1-3:249 10.1111/tpj.12059 10.1146/annurev.arplant.51.1.401 10.1093/aob/mcq085 10.1017/S0021859614000495 10.1007/s00425-009-1096-y 10.1111/j.1744-7348.2012.00549.x 10.1104/pp.107.114033 10.1104/pp.110.153759 10.1016/j.microc.2004.06.001 10.1104/pp.111.183897 10.1021/es0613714 10.1046/j.1469-8137.2001.00004.x 10.1034/j.1399-3054.2003.00136.x 10.1079/PNS2006490 10.2134/jeq1992.00472425002100030006x 10.1105/tpc.104.023960 10.1007/s11104-009-0141-8 10.1111/j.1751-0813.1959.tb08462.x 10.3389/fpls.2015.00232 10.1111/j.1365-313X.2009.03855.x 10.3109/09637489709028586 10.1002/jps.3080260507 10.1104/pp.114.247825 10.1016/j.jplph.2015.05.009 10.3389/fpls.2014.00442 10.2134/jeq1999.00472425002800030035x 10.1104/pp.109.144808 10.1079/BJN2000280 10.1111/j.1438-8677.2011.00535.x 10.1111/j.1469-8137.2006.01943.x 10.1104/pp.119.1.123 10.1016/j.chroma.2005.07.081 10.1016/j.foodres.2012.08.007 10.1016/j.phytochem.2009.06.001 10.1007/978-1-4020-5887-5_10 10.1111/ppl.12144 10.2135/cropsci2013.08.0568 10.2137/1239099041837941 10.1104/pp.104.056549 10.1007/s00425-013-1996-8 10.1111/nph.13071 10.1021/es900671m 10.1016/j.fcr.2011.08.014 10.1111/j.1469-8137.2007.02078.x 10.2307/2436499 10.1016/j.gexplo.2010.09.009 10.1016/j.scitotenv.2007.08.024 10.1104/pp.014712 10.4141/cjps2013-136 10.1002/jsfa.2601 10.1016/j.talanta.2013.02.014 10.2307/2437716 10.1016/j.jcs.2008.11.007 10.1080/01904160600851437 10.1039/c3mt00113j 10.21273/JASHS.126.3.329 10.1021/jf104731f 10.1111/j.1469-8137.2008.02604.x 10.1016/j.jplph.2006.01.008 10.1104/pp.105.068684 10.1104/pp.106.091462 10.1016/j.foodchem.2005.04.004 10.1016/j.copbio.2009.02.001 10.1016/S0946-672X(96)80017-4 10.1007/s10681-008-9681-x 10.1016/j.foodchem.2013.08.116 10.1007/s11703-009-0070-6 10.1371/journal.pone.0065615 10.1080/16226510490454786 10.1007/s11248-008-9233-0 10.1007/s11104-012-1492-0 10.1104/pp.110.157867 |
ContentType | Journal Article |
Copyright | The Author 2015 The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015 |
Copyright_xml | – notice: The Author 2015 – notice: The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1093/aob/mcv180 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1095-8290 |
EndPage | 235 |
ExternalDocumentID | PMC4724052 26718221 10_1093_aob_mcv180 26526382 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 1TH 1~5 23M 2WC 2~F 4.4 482 48X 4G. 5GY 5VS 5WA 5WD 6J9 7-5 70D 79B A8Z AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAXTN ABBHK ABDBF ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ACGFO ACGFS ACHIC ACIWK ACNCT ACPRK ACUFI ACUHS ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AOIJS APIBT APWMN AQVQM ARIXL ATGXG AXUDD AYOIW BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE COF CS3 CZ4 DAKXR DATOO DILTD D~K E3Z EBD EBS EDH EE~ EJD EMOBN ESX F5P F9B FDB FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H5~ HAR HW0 HYE HZ~ IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NLBLG NOMLY NU- NVLIB O-L O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RPM RUSNO RW1 RXO SA0 SV3 TCN TEORI TLC TN5 TR2 UPT W8F WH7 WOQ X7H Y6R YAYTL YKOAZ YSK YXANX YZZ ZKX ~02 ~91 ~KM AAYXX CITATION H13 --K 1B1 53G 71M AAEDT AALCJ AALRI AAQFI AAQXK AAWDT AAXUO AAYWO ABDPE ABEFU ABIME ABNGD ABPIB ABSMQ ABWVN ABZEO ACFRR ACPQN ACRPL ACUKT ACVCV ACZBC ADFGL ADMUD ADNMO ADXHL AEHUL AEKPW AETEA AFFNX AFSHK AFSWV AFYAG AGKRT AGMDO AGQPQ AHGBF AI. AJDVS ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN C1A CAG CGR CUY CVF CXTWN DFGAJ DM4 ECM EIF ELUNK FA8 FEDTE FGOYB FIRID HVGLF IHE LG5 MBTAY NEJ NPM NTWIH O0~ OHT OZT O~Y PB- QBD R2- RIG RNI RPZ RZF RZO SSZ UHS VH1 XOL XPP ZCG ZMT 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c433t-92dcadb5e094e6711122e701ebb463cda4644afb98eabdb9d0381780df8e47b53 |
ISSN | 0305-7364 1095-8290 |
IngestDate | Thu Aug 21 18:19:45 EDT 2025 Fri Jul 11 03:25:41 EDT 2025 Fri Jul 11 06:54:06 EDT 2025 Mon Jul 21 05:43:26 EDT 2025 Tue Jul 01 01:39:17 EDT 2025 Thu Apr 24 23:05:30 EDT 2025 Thu Jul 03 22:18:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | ecology Stanleya selenium Arabidopsis sulphur genetic variation metabolism quantitative trait locus (QTL) evolution hyperaccumulation Astragalus |
Language | English |
License | The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c433t-92dcadb5e094e6711122e701ebb463cda4644afb98eabdb9d0381780df8e47b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://academic.oup.com/aob/article-pdf/117/2/217/17848529/mcv180.pdf |
PMID | 26718221 |
PQID | 1760911385 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4724052 proquest_miscellaneous_2315261929 proquest_miscellaneous_1760911385 pubmed_primary_26718221 crossref_primary_10_1093_aob_mcv180 crossref_citationtrail_10_1093_aob_mcv180 jstor_primary_26526382 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Annals of botany |
PublicationTitleAlternate | Ann Bot |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016012223123407000_mcv180v1.124 2016012223123407000_mcv180v1.125 2016012223123407000_mcv180v1.122 2016012223123407000_mcv180v1.123 2016012223123407000_mcv180v1.120 2016012223123407000_mcv180v1.121 2016012223123407000_mcv180v1.128 2016012223123407000_mcv180v1.126 2016012223123407000_mcv180v1.127 2016012223123407000_mcv180v1.114 2016012223123407000_mcv180v1.111 2016012223123407000_mcv180v1.112 2016012223123407000_mcv180v1.110 Yang (2016012223123407000_mcv180v1.205) 2013; 10 2016012223123407000_mcv180v1.119 2016012223123407000_mcv180v1.117 2016012223123407000_mcv180v1.118 2016012223123407000_mcv180v1.115 Kopsell (2016012223123407000_mcv180v1.96) 2001; 126 2016012223123407000_mcv180v1.146 2016012223123407000_mcv180v1.147 2016012223123407000_mcv180v1.144 2016012223123407000_mcv180v1.145 2016012223123407000_mcv180v1.142 2016012223123407000_mcv180v1.143 2016012223123407000_mcv180v1.140 2016012223123407000_mcv180v1.141 2016012223123407000_mcv180v1.148 2016012223123407000_mcv180v1.149 McCray (2016012223123407000_mcv180v1.113) 1963; 20 2016012223123407000_mcv180v1.135 2016012223123407000_mcv180v1.136 2016012223123407000_mcv180v1.133 2016012223123407000_mcv180v1.134 2016012223123407000_mcv180v1.131 2016012223123407000_mcv180v1.132 2016012223123407000_mcv180v1.130 2016012223123407000_mcv180v1.139 2016012223123407000_mcv180v1.137 2016012223123407000_mcv180v1.172 2016012223123407000_mcv180v1.170 2016012223123407000_mcv180v1.168 Mangan (2016012223123407000_mcv180v1.108) 2015; 3 2016012223123407000_mcv180v1.169 2016012223123407000_mcv180v1.166 2016012223123407000_mcv180v1.167 2016012223123407000_mcv180v1.164 2016012223123407000_mcv180v1.165 2016012223123407000_mcv180v1.162 2016012223123407000_mcv180v1.163 2016012223123407000_mcv180v1.160 2016012223123407000_mcv180v1.161 Chilimba (2016012223123407000_mcv180v1.41) 2011; 1 2016012223123407000_mcv180v1.157 2016012223123407000_mcv180v1.158 2016012223123407000_mcv180v1.156 2016012223123407000_mcv180v1.153 2016012223123407000_mcv180v1.154 2016012223123407000_mcv180v1.151 2016012223123407000_mcv180v1.152 Rayman (2016012223123407000_mcv180v1.150) 2008; 100 2016012223123407000_mcv180v1.159 Mikkelsen (2016012223123407000_mcv180v1.116) 1989; 23 2016012223123407000_mcv180v1.28 2016012223123407000_mcv180v1.193 2016012223123407000_mcv180v1.27 2016012223123407000_mcv180v1.194 2016012223123407000_mcv180v1.26 El Mehdawi (2016012223123407000_mcv180v1.53) 2012; 14 2016012223123407000_mcv180v1.191 2016012223123407000_mcv180v1.25 2016012223123407000_mcv180v1.192 2016012223123407000_mcv180v1.190 2016012223123407000_mcv180v1.29 2016012223123407000_mcv180v1.20 2016012223123407000_mcv180v1.188 2016012223123407000_mcv180v1.24 2016012223123407000_mcv180v1.186 2016012223123407000_mcv180v1.23 2016012223123407000_mcv180v1.187 2016012223123407000_mcv180v1.22 2016012223123407000_mcv180v1.184 2016012223123407000_mcv180v1.21 2016012223123407000_mcv180v1.185 2016012223123407000_mcv180v1.7 2016012223123407000_mcv180v1.8 2016012223123407000_mcv180v1.5 2016012223123407000_mcv180v1.6 2016012223123407000_mcv180v1.9 2016012223123407000_mcv180v1.182 2016012223123407000_mcv180v1.16 2016012223123407000_mcv180v1.183 2016012223123407000_mcv180v1.15 2016012223123407000_mcv180v1.180 2016012223123407000_mcv180v1.14 2016012223123407000_mcv180v1.3 2016012223123407000_mcv180v1.4 2016012223123407000_mcv180v1.1 2016012223123407000_mcv180v1.19 2016012223123407000_mcv180v1.2 2016012223123407000_mcv180v1.18 Beath (2016012223123407000_mcv180v1.17) 1937; 26 2016012223123407000_mcv180v1.179 2016012223123407000_mcv180v1.178 2016012223123407000_mcv180v1.13 2016012223123407000_mcv180v1.175 2016012223123407000_mcv180v1.12 2016012223123407000_mcv180v1.176 2016012223123407000_mcv180v1.11 2016012223123407000_mcv180v1.173 2016012223123407000_mcv180v1.10 2016012223123407000_mcv180v1.174 2016012223123407000_mcv180v1.49 2016012223123407000_mcv180v1.48 2016012223123407000_mcv180v1.47 2016012223123407000_mcv180v1.42 2016012223123407000_mcv180v1.40 2016012223123407000_mcv180v1.46 2016012223123407000_mcv180v1.45 2016012223123407000_mcv180v1.44 2016012223123407000_mcv180v1.43 Gigolashvili (2016012223123407000_mcv180v1.73) 2014; 5 2016012223123407000_mcv180v1.39 2016012223123407000_mcv180v1.38 2016012223123407000_mcv180v1.37 2016012223123407000_mcv180v1.36 2016012223123407000_mcv180v1.31 Schiavon (2016012223123407000_mcv180v1.155) 2015; 6 2016012223123407000_mcv180v1.30 2016012223123407000_mcv180v1.199 2016012223123407000_mcv180v1.35 2016012223123407000_mcv180v1.197 2016012223123407000_mcv180v1.34 2016012223123407000_mcv180v1.198 2016012223123407000_mcv180v1.33 2016012223123407000_mcv180v1.195 2016012223123407000_mcv180v1.32 2016012223123407000_mcv180v1.196 Van Hoewyk (2016012223123407000_mcv180v1.189) 2008; 132 Paul (2016012223123407000_mcv180v1.129) 2015; 6 2016012223123407000_mcv180v1.69 2016012223123407000_mcv180v1.64 2016012223123407000_mcv180v1.63 2016012223123407000_mcv180v1.62 2016012223123407000_mcv180v1.61 2016012223123407000_mcv180v1.68 2016012223123407000_mcv180v1.67 2016012223123407000_mcv180v1.66 2016012223123407000_mcv180v1.65 2016012223123407000_mcv180v1.60 2016012223123407000_mcv180v1.59 2016012223123407000_mcv180v1.58 2016012223123407000_mcv180v1.52 2016012223123407000_mcv180v1.51 2016012223123407000_mcv180v1.50 2016012223123407000_mcv180v1.57 2016012223123407000_mcv180v1.56 2016012223123407000_mcv180v1.55 2016012223123407000_mcv180v1.54 Lyons (2016012223123407000_mcv180v1.106) 2005; 269 Terry (2016012223123407000_mcv180v1.177) 1992; 21 2016012223123407000_mcv180v1.86 Sura-de Jong (2016012223123407000_mcv180v1.171) 2015; 6 2016012223123407000_mcv180v1.201 2016012223123407000_mcv180v1.85 2016012223123407000_mcv180v1.202 2016012223123407000_mcv180v1.84 2016012223123407000_mcv180v1.83 2016012223123407000_mcv180v1.200 2016012223123407000_mcv180v1.89 2016012223123407000_mcv180v1.88 2016012223123407000_mcv180v1.87 2016012223123407000_mcv180v1.209 2016012223123407000_mcv180v1.207 2016012223123407000_mcv180v1.208 2016012223123407000_mcv180v1.82 2016012223123407000_mcv180v1.81 Thavarajah (2016012223123407000_mcv180v1.181) 2008; 57 2016012223123407000_mcv180v1.206 2016012223123407000_mcv180v1.80 2016012223123407000_mcv180v1.203 2016012223123407000_mcv180v1.204 Pilon-Smits (2016012223123407000_mcv180v1.138) 1999; 28 2016012223123407000_mcv180v1.75 2016012223123407000_mcv180v1.74 2016012223123407000_mcv180v1.72 2016012223123407000_mcv180v1.79 2016012223123407000_mcv180v1.78 2016012223123407000_mcv180v1.77 2016012223123407000_mcv180v1.76 2016012223123407000_mcv180v1.71 2016012223123407000_mcv180v1.70 Zhao (2016012223123407000_mcv180v1.213) 2015; 7 2016012223123407000_mcv180v1.102 2016012223123407000_mcv180v1.103 2016012223123407000_mcv180v1.100 2016012223123407000_mcv180v1.101 2016012223123407000_mcv180v1.109 2016012223123407000_mcv180v1.107 2016012223123407000_mcv180v1.104 2016012223123407000_mcv180v1.105 2016012223123407000_mcv180v1.97 2016012223123407000_mcv180v1.212 2016012223123407000_mcv180v1.95 2016012223123407000_mcv180v1.210 2016012223123407000_mcv180v1.94 2016012223123407000_mcv180v1.211 2016012223123407000_mcv180v1.99 2016012223123407000_mcv180v1.98 2016012223123407000_mcv180v1.93 2016012223123407000_mcv180v1.216 2016012223123407000_mcv180v1.92 2016012223123407000_mcv180v1.217 2016012223123407000_mcv180v1.91 2016012223123407000_mcv180v1.214 2016012223123407000_mcv180v1.90 2016012223123407000_mcv180v1.215 |
References_xml | – ident: 2016012223123407000_mcv180v1.13 doi: 10.1104/pp.110.162867 – ident: 2016012223123407000_mcv180v1.203 doi: 10.1007/s12011-010-8770-6 – ident: 2016012223123407000_mcv180v1.93 – ident: 2016012223123407000_mcv180v1.88 doi: 10.1016/j.scitotenv.2014.10.038 – ident: 2016012223123407000_mcv180v1.132 doi: 10.1104/pp.014787 – ident: 2016012223123407000_mcv180v1.6 doi: 10.1016/j.foodchem.2014.05.134 – ident: 2016012223123407000_mcv180v1.54 doi: 10.1111/j.1469-8137.2011.03670.x – ident: 2016012223123407000_mcv180v1.135 doi: 10.1104/pp.102.014639 – ident: 2016012223123407000_mcv180v1.30 – ident: 2016012223123407000_mcv180v1.190 doi: 10.1007/s00425-003-1070-z – ident: 2016012223123407000_mcv180v1.56 doi: 10.1186/1471-2229-4-1 – ident: 2016012223123407000_mcv180v1.44 doi: 10.1039/b618637h – ident: 2016012223123407000_mcv180v1.76 doi: 10.1016/j.jfca.2008.10.012 – ident: 2016012223123407000_mcv180v1.172 doi: 10.1104/pp.001693 – ident: 2016012223123407000_mcv180v1.36 doi: 10.3732/ajb.1400041 – volume: 269 start-page: 269 year: 2005 ident: 2016012223123407000_mcv180v1.106 article-title: Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? publication-title: Plant and Soil doi: 10.1007/s11104-004-0909-9 – volume: 20 start-page: 475 year: 1963 ident: 2016012223123407000_mcv180v1.113 article-title: Selenosis in North-Western Queensland associated with a marine Cretaceous formation publication-title: Queensland Journal of Agricultural Science – volume: 6 start-page: 2 year: 2015 ident: 2016012223123407000_mcv180v1.155 article-title: Exploring the importance of sulphate transporters and ATPsulphurylases for selenium hyperaccumulation – comparison of Stanleya pinnata and Brassica juncea (Brassicaceae) publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2015.00002 – ident: 2016012223123407000_mcv180v1.10 doi: 10.1016/j.chemosphere.2005.02.033 – volume: 3 start-page: 293 year: 2015 ident: 2016012223123407000_mcv180v1.108 article-title: Nutritional characteristics and starch properties of Tibetan barley publication-title: International Journal of Agricultural Policy and Research – ident: 2016012223123407000_mcv180v1.170 doi: 10.1271/bbb.68.193 – ident: 2016012223123407000_mcv180v1.49 doi: 10.1094/CCHEM-09-12-0111-R – ident: 2016012223123407000_mcv180v1.192 doi: 10.1021/jf0256541 – ident: 2016012223123407000_mcv180v1.98 – ident: 2016012223123407000_mcv180v1.95 doi: 10.1023/A:1003065618315 – ident: 2016012223123407000_mcv180v1.2 doi: 10.3732/ajb.1400223 – ident: 2016012223123407000_mcv180v1.68 doi: 10.1104/pp.110.156570 – ident: 2016012223123407000_mcv180v1.91 doi: 10.1104/pp.104.045625 – ident: 2016012223123407000_mcv180v1.157 doi: 10.1007/s12161-013-9728-z – ident: 2016012223123407000_mcv180v1.101 doi: 10.1016/j.envpol.2006.01.008 – volume: 100 start-page: 238 year: 2008 ident: 2016012223123407000_mcv180v1.150 article-title: Food-chain selenium and human health: spotlight on speciation publication-title: British Journal of Nutrition doi: 10.1017/S0007114508922522 – ident: 2016012223123407000_mcv180v1.9 doi: 10.1081/PLN-120025477 – ident: 2016012223123407000_mcv180v1.11 doi: 10.1021/es049035f – ident: 2016012223123407000_mcv180v1.7 doi: 10.1080/01904168109362867 – ident: 2016012223123407000_mcv180v1.136 doi: 10.1201/b12531-18 – ident: 2016012223123407000_mcv180v1.183 doi: 10.1016/j.foodchem.2010.08.038 – ident: 2016012223123407000_mcv180v1.188 doi: 10.1016/j.plantsci.2007.10.004 – ident: 2016012223123407000_mcv180v1.74 doi: 10.1016/j.aca.2012.08.016 – volume: 57 start-page: 10747 year: 2008 ident: 2016012223123407000_mcv180v1.181 article-title: High potential for selenium biofortification of lentils (Lens culinaris L.) publication-title: Journal of Agriculture and Food Chemistry doi: 10.1021/jf802307h – ident: 2016012223123407000_mcv180v1.163 doi: 10.1007/s00217-006-0409-7 – volume: 7 start-page: 210 year: 2015 ident: 2016012223123407000_mcv180v1.213 article-title: Systematic comparisons of orthologous selenocysteine methyltransferase and homocysteine methyltransferase genes from seven monocots species publication-title: Notulae Scientia Biologicae doi: 10.15835/nsb729491 – ident: 2016012223123407000_mcv180v1.182 doi: 10.4141/CJPS09154 – ident: 2016012223123407000_mcv180v1.194 doi: 10.1111/j.1469-8137.2008.02738.x – volume: 6 start-page: 113 year: 2015 ident: 2016012223123407000_mcv180v1.171 article-title: Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2015.00113 – ident: 2016012223123407000_mcv180v1.77 doi: 10.1007/s00217-006-0281-5 – ident: 2016012223123407000_mcv180v1.161 doi: 10.2116/analsci.21.1501 – ident: 2016012223123407000_mcv180v1.184 doi: 10.1021/jf040077x – ident: 2016012223123407000_mcv180v1.196 doi: 10.1093/jxb/erh192 – ident: 2016012223123407000_mcv180v1.84 doi: 10.1080/01904167.2012.639923 – ident: 2016012223123407000_mcv180v1.22 doi: 10.2136/sssaj1992.03615995005600060028x – ident: 2016012223123407000_mcv180v1.21 doi: 10.2307/2436867 – ident: 2016012223123407000_mcv180v1.39 doi: 10.1016/0045-6535(94)00409-N – ident: 2016012223123407000_mcv180v1.107 doi: 10.1385/BTER:103:2:155 – ident: 2016012223123407000_mcv180v1.162 doi: 10.1016/j.foodchem.2005.05.002 – ident: 2016012223123407000_mcv180v1.19 doi: 10.2307/2436464 – ident: 2016012223123407000_mcv180v1.67 doi: 10.1104/pp.106.081158 – ident: 2016012223123407000_mcv180v1.117 doi: 10.1007/s10653-005-8625-9 – volume: 1 start-page: 72 year: 2011 ident: 2016012223123407000_mcv180v1.41 article-title: Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi publication-title: Scientific Reports doi: 10.1038/srep00072 – ident: 2016012223123407000_mcv180v1.38 doi: 10.1021/es203871j – ident: 2016012223123407000_mcv180v1.4 doi: 10.1111/j.1095-8339.2009.00996.x – ident: 2016012223123407000_mcv180v1.112 doi: 10.1016/j.foodchem.2007.07.036 – ident: 2016012223123407000_mcv180v1.143 doi: 10.1002/ieam.5630030317 – ident: 2016012223123407000_mcv180v1.26 doi: 10.1111/j.1469-185X.1982.tb00364.x – ident: 2016012223123407000_mcv180v1.83 – ident: 2016012223123407000_mcv180v1.35 doi: 10.1007/s00425-013-1983-0 – ident: 2016012223123407000_mcv180v1.27 doi: 10.1104/pp.104.046441 – ident: 2016012223123407000_mcv180v1.202 doi: 10.1021/jf034835f – ident: 2016012223123407000_mcv180v1.158 doi: 10.1046/j.0960-7412.2001.01232.x – ident: 2016012223123407000_mcv180v1.81 doi: 10.1111/j.1365-3040.2010.02235.x – ident: 2016012223123407000_mcv180v1.169 doi: 10.3390/nu7031494 – ident: 2016012223123407000_mcv180v1.12 doi: 10.1021/es061152i – ident: 2016012223123407000_mcv180v1.146 doi: 10.1007/s00425-010-1323-6 – ident: 2016012223123407000_mcv180v1.55 doi: 10.1111/nph.13164 – ident: 2016012223123407000_mcv180v1.62 doi: 10.1111/j.1439-0523.2007.01294.x – ident: 2016012223123407000_mcv180v1.102 doi: 10.1080/00380768.2011.641909 – ident: 2016012223123407000_mcv180v1.120 doi: 10.1016/j.jfca.2014.10.009 – ident: 2016012223123407000_mcv180v1.140 doi: 10.1016/j.pbi.2009.04.009 – ident: 2016012223123407000_mcv180v1.115 doi: 10.2135/cropsci1991.0011183X003100030013x – ident: 2016012223123407000_mcv180v1.20 doi: 10.2307/2437092 – ident: 2016012223123407000_mcv180v1.134 doi: 10.1201/b18458-24 – ident: 2016012223123407000_mcv180v1.100 doi: 10.1104/pp.103.026989 – ident: 2016012223123407000_mcv180v1.156 doi: 10.1007/s11104-010-0523-y – ident: 2016012223123407000_mcv180v1.131 doi: 10.2527/jas.2013-6595 – ident: 2016012223123407000_mcv180v1.165 doi: 10.1007/s11120-005-5222-9 – ident: 2016012223123407000_mcv180v1.64 doi: 10.1016/j.envexpbot.2012.09.002 – ident: 2016012223123407000_mcv180v1.175 doi: 10.1104/pp.107.110742 – ident: 2016012223123407000_mcv180v1.8 doi: 10.1006/eesa.1996.1517 – ident: 2016012223123407000_mcv180v1.197 doi: 10.1093/aob/mcm084 – ident: 2016012223123407000_mcv180v1.209 doi: 10.1111/j.1469-8137.2006.01635.x – ident: 2016012223123407000_mcv180v1.125 doi: 10.1248/bpb.b212016 – ident: 2016012223123407000_mcv180v1.212 doi: 10.1111/nph.12596 – ident: 2016012223123407000_mcv180v1.154 doi: 10.1104/pp.108.118612 – ident: 2016012223123407000_mcv180v1.61 doi: 10.1023/B:PLSO.0000035580.32406.e3 – ident: 2016012223123407000_mcv180v1.99 – ident: 2016012223123407000_mcv180v1.186 doi: 10.1093/aob/mct163 – ident: 2016012223123407000_mcv180v1.208 doi: 10.1111/j.1399-3054.2006.00739.x – ident: 2016012223123407000_mcv180v1.15 – ident: 2016012223123407000_mcv180v1.75 doi: 10.1016/j.chroma.2003.11.039 – ident: 2016012223123407000_mcv180v1.111 doi: 10.1021/jf505963c – ident: 2016012223123407000_mcv180v1.118 – ident: 2016012223123407000_mcv180v1.174 doi: 10.5923/j.fs.20120205.04 – ident: 2016012223123407000_mcv180v1.176 doi: 10.1016/j.pbi.2012.02.001 – ident: 2016012223123407000_mcv180v1.80 doi: 10.1016/j.foodchem.2010.12.079 – ident: 2016012223123407000_mcv180v1.142 doi: 10.1016/S2095-3119(13)60640-1 – ident: 2016012223123407000_mcv180v1.217 doi: 10.1016/j.tplants.2009.06.006 – ident: 2016012223123407000_mcv180v1.173 doi: 10.1046/j.1365-313x.2000.00768.x – ident: 2016012223123407000_mcv180v1.127 doi: 10.1039/b707348h – ident: 2016012223123407000_mcv180v1.48 doi: 10.1007/s11032-015-0252-2 – ident: 2016012223123407000_mcv180v1.201 doi: 10.1016/S0147-6513(03)00064-2 – ident: 2016012223123407000_mcv180v1.59 doi: 10.1089/ars.2010.3275 – ident: 2016012223123407000_mcv180v1.153 doi: 10.1016/B978-1-4832-2800-6.50005-5 – ident: 2016012223123407000_mcv180v1.1 doi: 10.1071/FP05090 – ident: 2016012223123407000_mcv180v1.3 doi: 10.1016/j.jtemb.2014.04.009 – ident: 2016012223123407000_mcv180v1.130 doi: 10.1007/s12230-011-9232-1 – ident: 2016012223123407000_mcv180v1.141 doi: 10.1016/j.plantsci.2015.06.002 – ident: 2016012223123407000_mcv180v1.28 doi: 10.1093/mp/ssp119 – ident: 2016012223123407000_mcv180v1.90 doi: 10.1016/j.foodchem.2012.01.043 – ident: 2016012223123407000_mcv180v1.110 doi: 10.1016/j.phytochem.2011.11.021 – ident: 2016012223123407000_mcv180v1.214 doi: 10.1016/j.scitotenv.2006.09.028 – ident: 2016012223123407000_mcv180v1.23 doi: 10.1039/b205802m – ident: 2016012223123407000_mcv180v1.145 doi: 10.1007/s11032-014-0045-z – ident: 2016012223123407000_mcv180v1.57 doi: 10.1007/s11104-012-1287-3 – ident: 2016012223123407000_mcv180v1.149 doi: 10.1016/S0140-6736(11)61452-9 – ident: 2016012223123407000_mcv180v1.122 doi: 10.1039/c3mt00140g – ident: 2016012223123407000_mcv180v1.46 doi: 10.1016/S0065-2113(02)79003-2 – ident: 2016012223123407000_mcv180v1.5 doi: 10.1039/c2mt20085f – ident: 2016012223123407000_mcv180v1.152 doi: 10.1016/j.jfca.2011.04.016 – ident: 2016012223123407000_mcv180v1.167 doi: 10.1016/j.plantsci.2014.03.022 – volume: 132 start-page: 236 year: 2008 ident: 2016012223123407000_mcv180v1.189 article-title: Transcriptome and biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.2007.01002.x – ident: 2016012223123407000_mcv180v1.33 doi: 10.1021/jf00055a002 – ident: 2016012223123407000_mcv180v1.164 doi: 10.1111/j.1365-313X.2005.02413.x – ident: 2016012223123407000_mcv180v1.168 – ident: 2016012223123407000_mcv180v1.103 doi: 10.1111/j.1469-8137.2007.02343.x – ident: 2016012223123407000_mcv180v1.104 doi: 10.1016/j.envexpbot.2011.12.011 – ident: 2016012223123407000_mcv180v1.66 doi: 10.1007/978-94-007-4375-5_16 – ident: 2016012223123407000_mcv180v1.121 doi: 10.3390/su3030500 – ident: 2016012223123407000_mcv180v1.185 doi: 10.1104/pp.112.199307 – ident: 2016012223123407000_mcv180v1.89 doi: 10.1016/j.jfoodeng.2006.01.075 – ident: 2016012223123407000_mcv180v1.204 doi: 10.1385/BTER:93:1-3:249 – ident: 2016012223123407000_mcv180v1.34 doi: 10.1111/tpj.12059 – ident: 2016012223123407000_mcv180v1.178 doi: 10.1146/annurev.arplant.51.1.401 – ident: 2016012223123407000_mcv180v1.195 doi: 10.1093/aob/mcq085 – ident: 2016012223123407000_mcv180v1.144 doi: 10.1017/S0021859614000495 – ident: 2016012223123407000_mcv180v1.31 doi: 10.1007/s00425-009-1096-y – ident: 2016012223123407000_mcv180v1.124 doi: 10.1111/j.1744-7348.2012.00549.x – ident: 2016012223123407000_mcv180v1.51 doi: 10.1104/pp.107.114033 – ident: 2016012223123407000_mcv180v1.151 – ident: 2016012223123407000_mcv180v1.159 doi: 10.1104/pp.110.153759 – ident: 2016012223123407000_mcv180v1.65 doi: 10.1016/j.microc.2004.06.001 – ident: 2016012223123407000_mcv180v1.32 doi: 10.1104/pp.111.183897 – ident: 2016012223123407000_mcv180v1.97 doi: 10.1021/es0613714 – ident: 2016012223123407000_mcv180v1.63 doi: 10.1046/j.1469-8137.2001.00004.x – ident: 2016012223123407000_mcv180v1.70 doi: 10.1034/j.1399-3054.2003.00136.x – ident: 2016012223123407000_mcv180v1.25 doi: 10.1079/PNS2006490 – volume: 21 start-page: 341 year: 1992 ident: 2016012223123407000_mcv180v1.177 article-title: Rates of selenium volatilization among crop species publication-title: Journal of Environmental Quality doi: 10.2134/jeq1992.00472425002100030006x – ident: 2016012223123407000_mcv180v1.92 doi: 10.1105/tpc.104.023960 – ident: 2016012223123407000_mcv180v1.123 doi: 10.1007/s11104-009-0141-8 – ident: 2016012223123407000_mcv180v1.94 doi: 10.1111/j.1751-0813.1959.tb08462.x – volume: 6 start-page: 232 year: 2015 ident: 2016012223123407000_mcv180v1.129 article-title: miRNA regulation of nutrient homeostasis in plants publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2015.00232 – ident: 2016012223123407000_mcv180v1.166 doi: 10.1111/j.1365-313X.2009.03855.x – ident: 2016012223123407000_mcv180v1.133 doi: 10.3109/09637489709028586 – volume: 26 start-page: 394 year: 1937 ident: 2016012223123407000_mcv180v1.17 article-title: Selenium distribution in and seasonal variation of type vegetation occurring on seleniferous soils publication-title: Journal of the American Pharmaceutical Association doi: 10.1002/jps.3080260507 – ident: 2016012223123407000_mcv180v1.40 doi: 10.1104/pp.114.247825 – ident: 2016012223123407000_mcv180v1.45 doi: 10.1016/j.jplph.2015.05.009 – volume: 5 start-page: 422 year: 2014 ident: 2016012223123407000_mcv180v1.73 article-title: Transporters in plant sulphur metabolism publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2014.00442 – volume: 28 start-page: 1011 year: 1999 ident: 2016012223123407000_mcv180v1.138 article-title: Selenium volatalization and accumulation by twenty aquatic plant species publication-title: Journal of Environmental Quality doi: 10.2134/jeq1999.00472425002800030035x – ident: 2016012223123407000_mcv180v1.82 doi: 10.1104/pp.109.144808 – ident: 2016012223123407000_mcv180v1.43 doi: 10.1079/BJN2000280 – volume: 14 start-page: 1 year: 2012 ident: 2016012223123407000_mcv180v1.53 article-title: Ecological aspects of plant selenium hyperaccumulation publication-title: Plant Biology doi: 10.1111/j.1438-8677.2011.00535.x – ident: 2016012223123407000_mcv180v1.69 doi: 10.1111/j.1469-8137.2006.01943.x – ident: 2016012223123407000_mcv180v1.139 doi: 10.1104/pp.119.1.123 – ident: 2016012223123407000_mcv180v1.126 doi: 10.1016/j.chroma.2005.07.081 – ident: 2016012223123407000_mcv180v1.180 doi: 10.1016/j.foodres.2012.08.007 – ident: 2016012223123407000_mcv180v1.109 doi: 10.1016/j.phytochem.2009.06.001 – ident: 2016012223123407000_mcv180v1.198 doi: 10.1007/978-1-4020-5887-5_10 – ident: 2016012223123407000_mcv180v1.87 doi: 10.1111/ppl.12144 – ident: 2016012223123407000_mcv180v1.148 doi: 10.2135/cropsci2013.08.0568 – ident: 2016012223123407000_mcv180v1.58 doi: 10.2137/1239099041837941 – ident: 2016012223123407000_mcv180v1.105 doi: 10.1104/pp.104.056549 – ident: 2016012223123407000_mcv180v1.79 doi: 10.1007/s00425-013-1996-8 – ident: 2016012223123407000_mcv180v1.37 doi: 10.1111/nph.13071 – ident: 2016012223123407000_mcv180v1.200 doi: 10.1021/es900671m – ident: 2016012223123407000_mcv180v1.42 doi: 10.1016/j.fcr.2011.08.014 – ident: 2016012223123407000_mcv180v1.193 doi: 10.1111/j.1469-8137.2007.02078.x – ident: 2016012223123407000_mcv180v1.18 doi: 10.2307/2436499 – ident: 2016012223123407000_mcv180v1.24 doi: 10.1016/j.gexplo.2010.09.009 – ident: 2016012223123407000_mcv180v1.60 doi: 10.1016/j.scitotenv.2007.08.024 – ident: 2016012223123407000_mcv180v1.199 – ident: 2016012223123407000_mcv180v1.206 doi: 10.1104/pp.014712 – ident: 2016012223123407000_mcv180v1.71 doi: 10.4141/cjps2013-136 – ident: 2016012223123407000_mcv180v1.72 doi: 10.1002/jsfa.2601 – ident: 2016012223123407000_mcv180v1.86 – ident: 2016012223123407000_mcv180v1.160 doi: 10.1016/j.talanta.2013.02.014 – ident: 2016012223123407000_mcv180v1.16 doi: 10.2307/2437716 – ident: 2016012223123407000_mcv180v1.215 doi: 10.1016/j.jcs.2008.11.007 – volume: 23 start-page: 65 volume-title: Selenium in agriculture and the environment year: 1989 ident: 2016012223123407000_mcv180v1.116 article-title: Factors affecting selenium accumulation by agricultural crops – ident: 2016012223123407000_mcv180v1.210 doi: 10.1080/01904160600851437 – ident: 2016012223123407000_mcv180v1.128 doi: 10.1039/c3mt00113j – volume: 126 start-page: 329 year: 2001 ident: 2016012223123407000_mcv180v1.96 article-title: Genetic variances and selection potential for selenium accumulation in a rapid-cycling Brassica oleracea population publication-title: Journal of the American Society for Horticultural Science doi: 10.21273/JASHS.126.3.329 – ident: 2016012223123407000_mcv180v1.147 doi: 10.1021/jf104731f – volume: 10 start-page: 1 year: 2013 ident: 2016012223123407000_mcv180v1.205 article-title: QTL location and analysis of selenium content in tetraploid wheat grain publication-title: Guizhou Agricultural Sciences – ident: 2016012223123407000_mcv180v1.14 doi: 10.1111/j.1469-8137.2008.02604.x – ident: 2016012223123407000_mcv180v1.211 doi: 10.1016/j.jplph.2006.01.008 – ident: 2016012223123407000_mcv180v1.187 doi: 10.1104/pp.105.068684 – ident: 2016012223123407000_mcv180v1.52 doi: 10.1104/pp.106.091462 – ident: 2016012223123407000_mcv180v1.50 doi: 10.1016/j.foodchem.2005.04.004 – ident: 2016012223123407000_mcv180v1.137 doi: 10.1016/j.copbio.2009.02.001 – ident: 2016012223123407000_mcv180v1.78 doi: 10.1016/S0946-672X(96)80017-4 – ident: 2016012223123407000_mcv180v1.119 doi: 10.1007/s10681-008-9681-x – ident: 2016012223123407000_mcv180v1.179 doi: 10.1016/j.foodchem.2013.08.116 – ident: 2016012223123407000_mcv180v1.47 doi: 10.1007/s11703-009-0070-6 – ident: 2016012223123407000_mcv180v1.207 doi: 10.1371/journal.pone.0065615 – ident: 2016012223123407000_mcv180v1.191 doi: 10.1080/16226510490454786 – ident: 2016012223123407000_mcv180v1.114 doi: 10.1007/s11248-008-9233-0 – ident: 2016012223123407000_mcv180v1.85 doi: 10.1007/s11104-012-1492-0 – ident: 2016012223123407000_mcv180v1.29 – ident: 2016012223123407000_mcv180v1.216 doi: 10.1104/pp.110.157867 |
SSID | ssj0002691 |
Score | 2.6219501 |
SecondaryResourceType | review_article |
Snippet | Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is... Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants... Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 217 |
SubjectTerms | Angiospermae Animals Biological Transport crops enzymes food plants genes genetically modified organisms humans hyperaccumulators loci metabolism minerals organic compounds Plants - genetics Plants - metabolism Plants, Genetically Modified proteins REVIEW Rhizosphere selenium Selenium - metabolism Selenium - pharmacokinetics selenocysteine selenomethionine soil Soil - chemistry Species Specificity tissues toxicity |
Title | Selenium accumulation by plants |
URI | https://www.jstor.org/stable/26526382 https://www.ncbi.nlm.nih.gov/pubmed/26718221 https://www.proquest.com/docview/1760911385 https://www.proquest.com/docview/2315261929 https://pubmed.ncbi.nlm.nih.gov/PMC4724052 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5ByoEL4lUwTyO4IOTU-_T62ECjCpVyIJFys3bXa1GpdSJwkODXM-tduzYNUuGyiuzROpovmfnGOw-E3pBMaCaFSjCpbMJUJZJccbcILSubWtlOLfl0Ko6X7OOKry7r79vqkkZPza-ddSX_gypcA1xdlew_INtvChfgM-ALKyAM67Uw_uJ8xplLLzZmexEGcTlCuTlXoUXT9EqjZL1uOgMwHJDn36yEU6LwGgD3mcO95QKulLhT0ZFp83WRAUPybjOFCCQhlI9MVjbwfuHeFcPqm06ptYb1wvzAfvzSuH_16edivjw5KRZHq8VNtEeAuJMJ2jucfZjNe-9IRDvFsP-6XcvYnB7A7gd-7xFJ8HmiuyKAPxNZB8xgcRfdCZQ-PvT43EM3bH0f3Zq1an6AXnYgxUOQYv0z9iA9RMv50eL9cRKmUiSGUdokOSmNKjW3EBhbkYGvIMRmKbZaM0FNqRhQTFXpXFqlS52XbRNEmZaVtCzTnO6jSb2u7WMUg7cxQKAFFrKCQLWSzEpsacrKtALuW0bobaeGwoSW7W5yyHnhUwdoASorvMoi9LqX3fhGJTul9ltt9iJEcAImmEToVafeAgyMOzVStV1vvxc4E8ApMZX87zIQJPA2FM8j9MhDMngC0B9CcISyEVi9gGtwPr5Tn31tG52zDPgmJ0-u8dyn6Pblv-IZmjTftvY50MVGvwi_wN-88mvy |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selenium+accumulation+by+plants&rft.jtitle=Annals+of+botany&rft.au=White%2C+Philip+J&rft.date=2016-02-01&rft.issn=1095-8290&rft.volume=117&rft.issue=2+p.217-235&rft.spage=217&rft.epage=235&rft_id=info:doi/10.1093%2Faob%2Fmcv180&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon |