Near Real-Time Flood Mapping with Weakly Supervised Machine Learning

Advances in deep learning and computer vision are making significant contributions to flood mapping, particularly when integrated with remotely sensed data. Although existing supervised methods, especially deep convolutional neural networks, have proved to be effective, they require intensive manual...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 13; p. 3263
Main Authors Vongkusolkit, Jirapa, Peng, Bo, Wu, Meiliu, Huang, Qunying, Andresen, Christian G.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Advances in deep learning and computer vision are making significant contributions to flood mapping, particularly when integrated with remotely sensed data. Although existing supervised methods, especially deep convolutional neural networks, have proved to be effective, they require intensive manual labeling of flooded pixels to train a multi-layer deep neural network that learns abstract semantic features of the input data. This research introduces a novel weakly supervised approach for pixel-wise flood mapping by leveraging multi-temporal remote sensing imagery and image processing techniques (e.g., Normalized Difference Water Index and edge detection) to create weakly labeled data. Using these weakly labeled data, a bi-temporal U-Net model is then proposed and trained for flood detection without the need for time-consuming and labor-intensive human annotations. Using floods from Hurricanes Florence and Harvey as case studies, we evaluated the performance of the proposed bi-temporal U-Net model and baseline models, such as decision tree, random forest, gradient boost, and adaptive boosting classifiers. To assess the effectiveness of our approach, we conducted a comprehensive assessment that (1) covered multiple test sites with varying degrees of urbanization, and (2) utilized both bi-temporal (i.e., pre- and post-flood) and uni-temporal (i.e., only post-flood) input. The experimental results showed that the proposed framework of weakly labeled data generation and the bi-temporal U-Net could produce near real-time urban flood maps with consistently high precision, recall, f1 score, IoU score, and overall accuracy compared with baseline machine learning algorithms.
AbstractList Advances in deep learning and computer vision are making significant contributions to flood mapping, particularly when integrated with remotely sensed data. Although existing supervised methods, especially deep convolutional neural networks, have proved to be effective, they require intensive manual labeling of flooded pixels to train a multi-layer deep neural network that learns abstract semantic features of the input data. This research introduces a novel weakly supervised approach for pixel-wise flood mapping by leveraging multi-temporal remote sensing imagery and image processing techniques (e.g., Normalized Difference Water Index and edge detection) to create weakly labeled data. Using these weakly labeled data, a bi-temporal U-Net model is then proposed and trained for flood detection without the need for time-consuming and labor-intensive human annotations. Using floods from Hurricanes Florence and Harvey as case studies, we evaluated the performance of the proposed bi-temporal U-Net model and baseline models, such as decision tree, random forest, gradient boost, and adaptive boosting classifiers. To assess the effectiveness of our approach, we conducted a comprehensive assessment that (1) covered multiple test sites with varying degrees of urbanization, and (2) utilized both bi-temporal (i.e., pre- and post-flood) and uni-temporal (i.e., only post-flood) input. The experimental results showed that the proposed framework of weakly labeled data generation and the bi-temporal U-Net could produce near real-time urban flood maps with consistently high precision, recall, f1 score, IoU score, and overall accuracy compared with baseline machine learning algorithms.
Audience Academic
Author Huang, Qunying
Vongkusolkit, Jirapa
Wu, Meiliu
Andresen, Christian G.
Peng, Bo
Author_xml – sequence: 1
  givenname: Jirapa
  surname: Vongkusolkit
  fullname: Vongkusolkit, Jirapa
– sequence: 2
  givenname: Bo
  orcidid: 0000-0003-1514-6881
  surname: Peng
  fullname: Peng, Bo
– sequence: 3
  givenname: Meiliu
  surname: Wu
  fullname: Wu, Meiliu
– sequence: 4
  givenname: Qunying
  orcidid: 0000-0003-3499-7294
  surname: Huang
  fullname: Huang, Qunying
– sequence: 5
  givenname: Christian G.
  surname: Andresen
  fullname: Andresen, Christian G.
BookMark eNptUVtPFDEYbQgmIvLiL5iEF2My0HunjwRFSBZNFONj0-18XbrOtmM7q-Hf02EhEmL70Ob0XNqeN2g_pggIvSP4hDGNT3MhgjBGJdtDBxQr2nKq6f6z_Wt0VMoa18EY0ZgfoI9fwObmG9ihvQkbaC6GlPrm2o5jiKvmb5hum59gfw13zfftCPlPKDAfu9sQoVlUbay8t-iVt0OBo8f1EP24-HRzftkuvn6-Oj9btI4zNrWaCC59pzWVnZOSe8ls5zkFwJoLVW-keyK07ZVaeiyldUAUFtIzr5bUaXaIrna-fbJrM-awsfnOJBvMA5Dyytg8BTeAoVCTWDWvaZxxsRRLgqUXDmYYz17vd15jTr-3UCazCcXBMNgIaVsMwxxzrqRmlXr8grpO2xzrSw3tmORKCM4r62THWtmaH6JPU7auzh42wdWmfKj4mRKdUErrWYB3ApdTKRm8cWGyU0ixCsNgCDZzreZfrVXy4YXk6RP-Q74HMnKgPA
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_131508
crossref_primary_10_1007_s00477_024_02712_4
crossref_primary_10_1016_j_isprsjprs_2023_12_009
crossref_primary_10_3390_su162411041
crossref_primary_10_1007_s11269_025_04171_0
crossref_primary_10_1109_JSTARS_2024_3460531
crossref_primary_10_1007_s12145_023_01155_9
crossref_primary_10_1108_JAL_08_2024_0202
crossref_primary_10_3390_w17050707
Cites_doi 10.1109/SNPD.2012.26
10.1016/j.isprsjprs.2016.01.011
10.1109/IGARSS47720.2021.9554302
10.1080/01431169608948714
10.1007/s11707-020-0818-0
10.1038/nature14539
10.1007/s10462-018-9641-3
10.1109/CVPR.2015.7298965
10.3390/rs10071036
10.1007/978-3-319-24574-4_28
10.1016/j.ecss.2011.10.009
10.1007/s11269-017-1568-y
10.3390/rs70303372
10.1109/CVPRW50498.2020.00113
10.1016/j.geoderma.2022.115802
10.1016/j.scitotenv.2023.161757
10.3390/rs9060617
10.1080/01431160600589179
10.1016/j.rse.2019.05.022
10.3390/rs14030613
10.1016/j.rse.2013.08.029
10.1109/CIBCB48159.2020.9277638
10.1007/s11269-005-3281-5
10.3390/ijgi6070203
10.1002/inst.12434
10.3390/rs10050780
10.1109/ECTI-CON47248.2019.8955273
10.3390/s19071486
10.1109/JSTARS.2020.3047677
10.3390/rs15092359
10.1016/j.scitotenv.2018.12.217
10.1145/3219819.3220053
10.1080/01431160500309934
10.20944/preprints201811.0157.v1
10.1038/s41598-020-70816-2
10.3390/rs71114853
10.3390/w7041437
10.1016/j.procs.2015.06.090
10.1007/s11069-017-2755-0
10.1109/JSTARS.2011.2179638
10.1016/j.catena.2014.10.017
10.1109/CVPR42600.2020.00975
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15133263
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_2e6f83f429924345b5b106f5cef83f09
A758577994
10_3390_rs15133263
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-91546f899268c664f63a8f42ee094573199d159ad77bf066ace17056f3f7b2c93
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:27:53 EDT 2025
Fri Jul 11 18:42:32 EDT 2025
Fri Jul 25 11:41:44 EDT 2025
Tue Jun 10 20:53:40 EDT 2025
Thu Apr 24 22:53:57 EDT 2025
Tue Jul 01 03:11:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-91546f899268c664f63a8f42ee094573199d159ad77bf066ace17056f3f7b2c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1514-6881
0000-0003-3499-7294
OpenAccessLink https://doaj.org/article/2e6f83f429924345b5b106f5cef83f09
PQID 2836475544
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_2e6f83f429924345b5b106f5cef83f09
proquest_miscellaneous_3040447693
proquest_journals_2836475544
gale_infotracacademiconefile_A758577994
crossref_citationtrail_10_3390_rs15133263
crossref_primary_10_3390_rs15133263
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Feng (ref_7) 2015; 7
Jain (ref_33) 2005; 19
Zhao (ref_38) 2019; 659
Tehrany (ref_41) 2015; 125
ref_14
ref_36
ref_12
ref_11
Ouma (ref_22) 2006; 27
ref_32
Sivanpillai (ref_24) 2021; 15
Peng (ref_17) 2020; 14
Raman (ref_48) 2023; 26
ref_18
Xu (ref_26) 2006; 27
ref_39
LeCun (ref_10) 2015; 521
ref_16
ref_15
Rosser (ref_23) 2017; 87
McFeeters (ref_25) 1996; 17
Liu (ref_43) 2022; 416
Malinowski (ref_6) 2015; 7
Tabari (ref_1) 2020; 10
ref_47
ref_46
ref_45
Belgiu (ref_34) 2016; 114
ref_44
ref_21
Nandi (ref_35) 2017; 31
ref_42
Li (ref_37) 2023; 869
ref_40
Longbotham (ref_19) 2012; 5
Feyisa (ref_27) 2014; 140
ref_3
ref_2
Billa (ref_30) 2011; 95
ref_29
Dhanachandra (ref_31) 2015; 54
ref_28
ref_9
ref_8
Wieland (ref_20) 2019; 230
Ireland (ref_5) 2015; 7
Liu (ref_13) 2019; 52
ref_4
References_xml – ident: ref_32
  doi: 10.1109/SNPD.2012.26
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_34
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– ident: ref_16
  doi: 10.1109/IGARSS47720.2021.9554302
– volume: 17
  start-page: 1425
  year: 1996
  ident: ref_25
  article-title: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608948714
– volume: 15
  start-page: 1
  year: 2021
  ident: ref_24
  article-title: Rapid flood inundation mapping by differencing water indices from pre-and post-flood Landsat images
  publication-title: Front. Earth Sci.
  doi: 10.1007/s11707-020-0818-0
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_10
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 52
  start-page: 1089
  year: 2019
  ident: ref_13
  article-title: Recent progress in semantic image segmentation
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-9641-3
– ident: ref_36
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_47
– ident: ref_9
  doi: 10.3390/rs10071036
– ident: ref_12
  doi: 10.1007/978-3-319-24574-4_28
– volume: 95
  start-page: 395
  year: 2011
  ident: ref_30
  article-title: Semi-automated procedures for shoreline extraction using single RADARSAT-1 SAR image
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2011.10.009
– ident: ref_40
– ident: ref_14
– volume: 31
  start-page: 1157
  year: 2017
  ident: ref_35
  article-title: Floodplain mapping through support vector machine and optical/infrared images from Landsat 8 OLI/TIRS sensors: Case study from Varanasi
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1568-y
– volume: 7
  start-page: 3372
  year: 2015
  ident: ref_5
  article-title: Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: A case study from a Mediterranean flood
  publication-title: Remote Sens.
  doi: 10.3390/rs70303372
– ident: ref_39
  doi: 10.1109/CVPRW50498.2020.00113
– volume: 416
  start-page: 115802
  year: 2022
  ident: ref_43
  article-title: Influence of legacy soil map accuracy on soil map updating with data mining methods
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.115802
– volume: 869
  start-page: 161757
  year: 2023
  ident: ref_37
  article-title: U-net-based semantic classification for flood extent extraction using SAR imagery and GEE platform: A case study for 2019 central US flooding
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.161757
– ident: ref_18
  doi: 10.3390/rs9060617
– volume: 27
  start-page: 3025
  year: 2006
  ident: ref_26
  article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600589179
– volume: 230
  start-page: 111203
  year: 2019
  ident: ref_20
  article-title: Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.05.022
– ident: ref_29
  doi: 10.3390/rs14030613
– volume: 140
  start-page: 23
  year: 2014
  ident: ref_27
  article-title: Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.029
– ident: ref_44
  doi: 10.1109/CIBCB48159.2020.9277638
– volume: 19
  start-page: 333
  year: 2005
  ident: ref_33
  article-title: Delineation of flood-prone areas using remote sensing techniques
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-005-3281-5
– ident: ref_2
– ident: ref_21
  doi: 10.3390/ijgi6070203
– volume: 26
  start-page: 91
  year: 2023
  ident: ref_48
  article-title: Framework for Formal Verification of Machine Learning Based Complex System-of-Systems
  publication-title: Insight
  doi: 10.1002/inst.12434
– ident: ref_4
  doi: 10.3390/rs10050780
– ident: ref_46
– ident: ref_28
  doi: 10.1109/ECTI-CON47248.2019.8955273
– ident: ref_11
  doi: 10.3390/s19071486
– volume: 14
  start-page: 2001
  year: 2020
  ident: ref_17
  article-title: Urban Flood Mapping With Bitemporal Multispectral Imagery Via a Self-Supervised Learning Framework
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3047677
– ident: ref_42
  doi: 10.3390/rs15092359
– volume: 659
  start-page: 940
  year: 2019
  ident: ref_38
  article-title: Assessment of urban flood susceptibility using semi-supervised machine learning model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.217
– ident: ref_8
  doi: 10.1145/3219819.3220053
– volume: 27
  start-page: 3153
  year: 2006
  ident: ref_22
  article-title: A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: An empirical analysis using Landsat TM and ETM+ data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500309934
– ident: ref_3
  doi: 10.20944/preprints201811.0157.v1
– volume: 10
  start-page: 13768
  year: 2020
  ident: ref_1
  article-title: Climate change impact on flood and extreme precipitation increases with water availability
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-70816-2
– volume: 7
  start-page: 14853
  year: 2015
  ident: ref_6
  article-title: Detection and delineation of localized flooding from WorldView-2 multispectral data
  publication-title: Remote Sens.
  doi: 10.3390/rs71114853
– volume: 7
  start-page: 1437
  year: 2015
  ident: ref_7
  article-title: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—A case of Yuyao, China
  publication-title: Water
  doi: 10.3390/w7041437
– volume: 54
  start-page: 764
  year: 2015
  ident: ref_31
  article-title: Image segmentation using K-means clustering algorithm and subtractive clustering algorithm
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.06.090
– ident: ref_45
– volume: 87
  start-page: 103
  year: 2017
  ident: ref_23
  article-title: Rapid flood inundation mapping using social media, remote sensing and topographic data
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-2755-0
– volume: 5
  start-page: 331
  year: 2012
  ident: ref_19
  article-title: Multi-modal change detection, application to the detection of flooded areas: Outcome of the 2009–2010 data fusion contest
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2011.2179638
– volume: 125
  start-page: 91
  year: 2015
  ident: ref_41
  article-title: Flood susceptibility assessment using GIS-based support vector machine model with different kernel types
  publication-title: Catena
  doi: 10.1016/j.catena.2014.10.017
– ident: ref_15
  doi: 10.1109/CVPR42600.2020.00975
SSID ssj0000331904
Score 2.4099085
Snippet Advances in deep learning and computer vision are making significant contributions to flood mapping, particularly when integrated with remotely sensed data....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3263
SubjectTerms Algorithms
Annotations
Artificial neural networks
Classification
Climate change
Computer vision
Data mining
decision support systems
Decision trees
Deep learning
Edge detection
Emergency preparedness
flood detection
flood extent mapping
Flood mapping
Floods
humans
Hurricanes
Image processing
Labeling
Learning algorithms
Machine learning
Machine vision
Mapping
Methods
Multilayers
Neural networks
Pixels
Real time
Remote sensing
Supervised learning
United States
Urban areas
Urbanization
weakly supervised
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BeoALKi-xtCAjkBCHVTdrrx-nqqWNKqRGqFDRm2V77VSiSkI2OfTfd2bjpEKCXtde73rseXr8DcCnqFrtnNClixwdFLomY7RvyhS8HkYdA--x9M7H8uxSfLtqrnLArctplRuZ2AvqdhYoRn6AalAKhcpPHM7_lFQ1ik5XcwmNx7CDIljrAewcn46_X2yjLBXHr1dijUvK0b8_WHRDKmlSS_6XJuoB-_8nlntdM9qFZ9lIZEfrVX0Oj-L0BTzJ9cqvb1_CyRg3KLtAI6-kOxxsROnn7NwR2MKEUWyV_Yru980t-7GakzToIjVT3mRkGVJ18gouR6c_v56VuR5CGQTnS5RLjZAJHaRa6iClSJI7nUQdI_pojcKZmhatE9cq5ROaEi5EAsuRiSfl62D4axhMZ9P4BljVtspULXozOuKr2B-HNr5Kxteta4cFfNnQxoYMFk41K24sOg1ER3tPxwI-bvvO1xAZ_-x1TCTe9iBY6_7BbDGxmUtsHXF-PJGOrAUXjW88uqypCZEeV6aAz7RAlpgPfye4fIcAJ0UwVvaIvB-ljBEF7G_W0Gau7Oz9Hirgw7YZ-YkOSdw0zlad5SjVhKAKkW8fHmIPnlLp-XXq7j4MlotVfIcGytK_z7vwDrOW41k
  priority: 102
  providerName: ProQuest
Title Near Real-Time Flood Mapping with Weakly Supervised Machine Learning
URI https://www.proquest.com/docview/2836475544
https://www.proquest.com/docview/3040447693
https://doaj.org/article/2e6f83f429924345b5b106f5cef83f09
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9wwDLc29sBepm2Adhs7ZQIJ8VBx16RJ-ngMbmjanRAfgrcoSR2Qhg50Hw_3389uyw2kTXvZU6XEbRM7cezW_hlgF01lvVc28yjJQeE0mdKGIksx2D5ajLLG0huN9cml-n5dXD8p9cUxYQ08cMO4gxx1sjKx2syVVEUoAnkxqYjIzU3qHp15T5ypWgdLemtPNXikkvz6g-msz6VMci2fnUA1UP_f1HF9xgzfwpvWOBSDZlDv4AVO3sN6W6f8drkBR2NamOKMjLuMczfEkMPOxcgzyMKN4G-q4gr9z7ulOF88sBaYIXdzvCSKFkr1ZhMuh8cXX0-ytg5CFpWUc9JHhSImEAO0jVqrpKW3xBFE8s0KQzMtK7JKfGVMSGRC-IgMkqOTTCbksZRbsDa5n-AHEL2qMmWvIi_GIt1K9PToMvRSGfLKV_0O7D_yxsUWJJxrVdw5chaYj-43Hzuws6J9aKAx_kh1yCxeUTCcdd1AQnatkN2_hNyBPRaQ401Hw4m-zR2gSTF8lRuw12NMWaoObD_K0LW7cebIhNLKkOFE3V9W3bSP-OeIn-D9YuYkaTOluDLkx_8x4k_wmgvTN4G927A2ny7wM5kv89CFl3b4rQuvBkejH-d0PTwen5516_X7C1br7fE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V5VAuqHyJ0AJGgBCHqNnYSexDhQpl2dLuHqAVvRnbsbdSq91ls6tq_xS_kZl8bIUE3HqNHSsee2b8HPs9gNe-KKUxQsbGcwQodE1GSZvFwVnZ89I7XnPpDUf54Ex8Oc_ON-BXdxeGjlV2MbEO1OXU0R75HqbBXBSY_MT72c-YVKPo72onodFMi2O_ukbIVu0fHeL4vknT_qfTj4O4VRWIneB8gd6diTwgzEhz6fJchJwbGUTqPSKdrMCvVSXmeFMWhQ2YkI3zRDmTBx4KmzoiX8KQfwfbUgT2ZP_zek8n4fh2IhoWVCxP9uZVjwRU0pz_kfdqeYB_JYE6s_W34V67JGUHzRy6Dxt-8gC2WnX0i9VDOBxhv9lXXFLGdGOE9emwOxsaonYYM9rJZd-9ubxasW_LGcWeylMxndL0rCVwHT-Cs1ux02PYnEwn_gmwpCwLlZSInaTHV7E-Nq1sEpRNS1P2InjX2Ua7lpqcFDKuNEIUsqO-sWMEr9Z1Zw0hx19rfSATr2sQiXb9YDof69YndeqxfzxQRk4FF5nNLALkkDlPjxMVwVsaIE2ujp_jTHtjATtFpFn6gLBWUSglItjtxlC3MaDSNzM2gpfrYvRe-iVjJn66rDTHGCoE6VE-_X8TL2BrcDo80SdHo-MduEui982h4V3YXMyX_hkujRb2eT0fGfy4bQf4DXDIHSo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnQS8ID5FYIARIMRD1NR24uQBoY2u2hirpsHE3jzHsYvE1JamFeq_xl_HXeJ0QgLe9ho7Vny-D_-c8-8AXjlV5cbIPDZOIEChazJFXqaxt2U-cLmzouHSOx5nB2fy43l6vgW_urswlFbZ-cTGUVczS2fkfQyDmVQY_GTfh7SIk-Ho_fxHTBWk6E9rV06jVZEjt_6J8K1-dzjEtX7N-Wj_y4eDOFQYiK0UYomWnsrMI-TgWW6zTPpMmNxL7hyinlThlxcVxntTKVV6DM7GOqKfybzwquSWiJjQ_W8rQkU92N7bH5-cbk54EoHvJ7LlRBWiSPqLekDlVHgm_oiCTbGAf4WEJs6N7sDtsEFlu61G3YUtN70HN0Ot9G_r-zAc48zZKW4wY7o_wkaU-s6ODRE9TBid67Kvzny_XLPPqzl5otpRM-VsOhboXCcP4OxaJPUQetPZ1D0CllSVKpIKkVTu8FXsj0MXZeKLklemGkTwtpONtoGonOplXGoELCRHfSXHCF5u-s5beo6_9tojEW96EKV282C2mOhgoZo7nJ_wFJ-5FDIt0xLhsk-to8dJEcEbWiBNho-fY024v4CTIgotvUvIS6mikBHsdGuog0eo9ZX-RvBi04y2TD9ozNTNVrUW6FGlpOqUj_8_xHO4gcqvPx2Oj57ALY77rjaDeAd6y8XKPcV90rJ8FhSSwcV128BvmikivA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near+Real-Time+Flood+Mapping+with+Weakly+Supervised+Machine+Learning&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Vongkusolkit%2C+Jirapa&rft.au=Peng%2C+Bo&rft.au=Wu%2C+Meiliu&rft.au=Huang%2C+Qunying&rft.date=2023-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=13&rft.spage=3263&rft_id=info:doi/10.3390%2Frs15133263&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15133263
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon