Near Real-Time Flood Mapping with Weakly Supervised Machine Learning
Advances in deep learning and computer vision are making significant contributions to flood mapping, particularly when integrated with remotely sensed data. Although existing supervised methods, especially deep convolutional neural networks, have proved to be effective, they require intensive manual...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 13; p. 3263 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Advances in deep learning and computer vision are making significant contributions to flood mapping, particularly when integrated with remotely sensed data. Although existing supervised methods, especially deep convolutional neural networks, have proved to be effective, they require intensive manual labeling of flooded pixels to train a multi-layer deep neural network that learns abstract semantic features of the input data. This research introduces a novel weakly supervised approach for pixel-wise flood mapping by leveraging multi-temporal remote sensing imagery and image processing techniques (e.g., Normalized Difference Water Index and edge detection) to create weakly labeled data. Using these weakly labeled data, a bi-temporal U-Net model is then proposed and trained for flood detection without the need for time-consuming and labor-intensive human annotations. Using floods from Hurricanes Florence and Harvey as case studies, we evaluated the performance of the proposed bi-temporal U-Net model and baseline models, such as decision tree, random forest, gradient boost, and adaptive boosting classifiers. To assess the effectiveness of our approach, we conducted a comprehensive assessment that (1) covered multiple test sites with varying degrees of urbanization, and (2) utilized both bi-temporal (i.e., pre- and post-flood) and uni-temporal (i.e., only post-flood) input. The experimental results showed that the proposed framework of weakly labeled data generation and the bi-temporal U-Net could produce near real-time urban flood maps with consistently high precision, recall, f1 score, IoU score, and overall accuracy compared with baseline machine learning algorithms. |
---|---|
AbstractList | Advances in deep learning and computer vision are making significant contributions to flood mapping, particularly when integrated with remotely sensed data. Although existing supervised methods, especially deep convolutional neural networks, have proved to be effective, they require intensive manual labeling of flooded pixels to train a multi-layer deep neural network that learns abstract semantic features of the input data. This research introduces a novel weakly supervised approach for pixel-wise flood mapping by leveraging multi-temporal remote sensing imagery and image processing techniques (e.g., Normalized Difference Water Index and edge detection) to create weakly labeled data. Using these weakly labeled data, a bi-temporal U-Net model is then proposed and trained for flood detection without the need for time-consuming and labor-intensive human annotations. Using floods from Hurricanes Florence and Harvey as case studies, we evaluated the performance of the proposed bi-temporal U-Net model and baseline models, such as decision tree, random forest, gradient boost, and adaptive boosting classifiers. To assess the effectiveness of our approach, we conducted a comprehensive assessment that (1) covered multiple test sites with varying degrees of urbanization, and (2) utilized both bi-temporal (i.e., pre- and post-flood) and uni-temporal (i.e., only post-flood) input. The experimental results showed that the proposed framework of weakly labeled data generation and the bi-temporal U-Net could produce near real-time urban flood maps with consistently high precision, recall, f1 score, IoU score, and overall accuracy compared with baseline machine learning algorithms. |
Audience | Academic |
Author | Huang, Qunying Vongkusolkit, Jirapa Wu, Meiliu Andresen, Christian G. Peng, Bo |
Author_xml | – sequence: 1 givenname: Jirapa surname: Vongkusolkit fullname: Vongkusolkit, Jirapa – sequence: 2 givenname: Bo orcidid: 0000-0003-1514-6881 surname: Peng fullname: Peng, Bo – sequence: 3 givenname: Meiliu surname: Wu fullname: Wu, Meiliu – sequence: 4 givenname: Qunying orcidid: 0000-0003-3499-7294 surname: Huang fullname: Huang, Qunying – sequence: 5 givenname: Christian G. surname: Andresen fullname: Andresen, Christian G. |
BookMark | eNptUVtPFDEYbQgmIvLiL5iEF2My0HunjwRFSBZNFONj0-18XbrOtmM7q-Hf02EhEmL70Ob0XNqeN2g_pggIvSP4hDGNT3MhgjBGJdtDBxQr2nKq6f6z_Wt0VMoa18EY0ZgfoI9fwObmG9ihvQkbaC6GlPrm2o5jiKvmb5hum59gfw13zfftCPlPKDAfu9sQoVlUbay8t-iVt0OBo8f1EP24-HRzftkuvn6-Oj9btI4zNrWaCC59pzWVnZOSe8ls5zkFwJoLVW-keyK07ZVaeiyldUAUFtIzr5bUaXaIrna-fbJrM-awsfnOJBvMA5Dyytg8BTeAoVCTWDWvaZxxsRRLgqUXDmYYz17vd15jTr-3UCazCcXBMNgIaVsMwxxzrqRmlXr8grpO2xzrSw3tmORKCM4r62THWtmaH6JPU7auzh42wdWmfKj4mRKdUErrWYB3ApdTKRm8cWGyU0ixCsNgCDZzreZfrVXy4YXk6RP-Q74HMnKgPA |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_131508 crossref_primary_10_1007_s00477_024_02712_4 crossref_primary_10_1016_j_isprsjprs_2023_12_009 crossref_primary_10_3390_su162411041 crossref_primary_10_1007_s11269_025_04171_0 crossref_primary_10_1109_JSTARS_2024_3460531 crossref_primary_10_1007_s12145_023_01155_9 crossref_primary_10_1108_JAL_08_2024_0202 crossref_primary_10_3390_w17050707 |
Cites_doi | 10.1109/SNPD.2012.26 10.1016/j.isprsjprs.2016.01.011 10.1109/IGARSS47720.2021.9554302 10.1080/01431169608948714 10.1007/s11707-020-0818-0 10.1038/nature14539 10.1007/s10462-018-9641-3 10.1109/CVPR.2015.7298965 10.3390/rs10071036 10.1007/978-3-319-24574-4_28 10.1016/j.ecss.2011.10.009 10.1007/s11269-017-1568-y 10.3390/rs70303372 10.1109/CVPRW50498.2020.00113 10.1016/j.geoderma.2022.115802 10.1016/j.scitotenv.2023.161757 10.3390/rs9060617 10.1080/01431160600589179 10.1016/j.rse.2019.05.022 10.3390/rs14030613 10.1016/j.rse.2013.08.029 10.1109/CIBCB48159.2020.9277638 10.1007/s11269-005-3281-5 10.3390/ijgi6070203 10.1002/inst.12434 10.3390/rs10050780 10.1109/ECTI-CON47248.2019.8955273 10.3390/s19071486 10.1109/JSTARS.2020.3047677 10.3390/rs15092359 10.1016/j.scitotenv.2018.12.217 10.1145/3219819.3220053 10.1080/01431160500309934 10.20944/preprints201811.0157.v1 10.1038/s41598-020-70816-2 10.3390/rs71114853 10.3390/w7041437 10.1016/j.procs.2015.06.090 10.1007/s11069-017-2755-0 10.1109/JSTARS.2011.2179638 10.1016/j.catena.2014.10.017 10.1109/CVPR42600.2020.00975 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15133263 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_2e6f83f429924345b5b106f5cef83f09 A758577994 10_3390_rs15133263 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-91546f899268c664f63a8f42ee094573199d159ad77bf066ace17056f3f7b2c93 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:27:53 EDT 2025 Fri Jul 11 18:42:32 EDT 2025 Fri Jul 25 11:41:44 EDT 2025 Tue Jun 10 20:53:40 EDT 2025 Thu Apr 24 22:53:57 EDT 2025 Tue Jul 01 03:11:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-91546f899268c664f63a8f42ee094573199d159ad77bf066ace17056f3f7b2c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1514-6881 0000-0003-3499-7294 |
OpenAccessLink | https://doaj.org/article/2e6f83f429924345b5b106f5cef83f09 |
PQID | 2836475544 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2e6f83f429924345b5b106f5cef83f09 proquest_miscellaneous_3040447693 proquest_journals_2836475544 gale_infotracacademiconefile_A758577994 crossref_citationtrail_10_3390_rs15133263 crossref_primary_10_3390_rs15133263 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Feng (ref_7) 2015; 7 Jain (ref_33) 2005; 19 Zhao (ref_38) 2019; 659 Tehrany (ref_41) 2015; 125 ref_14 ref_36 ref_12 ref_11 Ouma (ref_22) 2006; 27 ref_32 Sivanpillai (ref_24) 2021; 15 Peng (ref_17) 2020; 14 Raman (ref_48) 2023; 26 ref_18 Xu (ref_26) 2006; 27 ref_39 LeCun (ref_10) 2015; 521 ref_16 ref_15 Rosser (ref_23) 2017; 87 McFeeters (ref_25) 1996; 17 Liu (ref_43) 2022; 416 Malinowski (ref_6) 2015; 7 Tabari (ref_1) 2020; 10 ref_47 ref_46 ref_45 Belgiu (ref_34) 2016; 114 ref_44 ref_21 Nandi (ref_35) 2017; 31 ref_42 Li (ref_37) 2023; 869 ref_40 Longbotham (ref_19) 2012; 5 Feyisa (ref_27) 2014; 140 ref_3 ref_2 Billa (ref_30) 2011; 95 ref_29 Dhanachandra (ref_31) 2015; 54 ref_28 ref_9 ref_8 Wieland (ref_20) 2019; 230 Ireland (ref_5) 2015; 7 Liu (ref_13) 2019; 52 ref_4 |
References_xml | – ident: ref_32 doi: 10.1109/SNPD.2012.26 – volume: 114 start-page: 24 year: 2016 ident: ref_34 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – ident: ref_16 doi: 10.1109/IGARSS47720.2021.9554302 – volume: 17 start-page: 1425 year: 1996 ident: ref_25 article-title: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608948714 – volume: 15 start-page: 1 year: 2021 ident: ref_24 article-title: Rapid flood inundation mapping by differencing water indices from pre-and post-flood Landsat images publication-title: Front. Earth Sci. doi: 10.1007/s11707-020-0818-0 – volume: 521 start-page: 436 year: 2015 ident: ref_10 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 52 start-page: 1089 year: 2019 ident: ref_13 article-title: Recent progress in semantic image segmentation publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-9641-3 – ident: ref_36 doi: 10.1109/CVPR.2015.7298965 – ident: ref_47 – ident: ref_9 doi: 10.3390/rs10071036 – ident: ref_12 doi: 10.1007/978-3-319-24574-4_28 – volume: 95 start-page: 395 year: 2011 ident: ref_30 article-title: Semi-automated procedures for shoreline extraction using single RADARSAT-1 SAR image publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2011.10.009 – ident: ref_40 – ident: ref_14 – volume: 31 start-page: 1157 year: 2017 ident: ref_35 article-title: Floodplain mapping through support vector machine and optical/infrared images from Landsat 8 OLI/TIRS sensors: Case study from Varanasi publication-title: Water Resour. Manag. doi: 10.1007/s11269-017-1568-y – volume: 7 start-page: 3372 year: 2015 ident: ref_5 article-title: Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: A case study from a Mediterranean flood publication-title: Remote Sens. doi: 10.3390/rs70303372 – ident: ref_39 doi: 10.1109/CVPRW50498.2020.00113 – volume: 416 start-page: 115802 year: 2022 ident: ref_43 article-title: Influence of legacy soil map accuracy on soil map updating with data mining methods publication-title: Geoderma doi: 10.1016/j.geoderma.2022.115802 – volume: 869 start-page: 161757 year: 2023 ident: ref_37 article-title: U-net-based semantic classification for flood extent extraction using SAR imagery and GEE platform: A case study for 2019 central US flooding publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.161757 – ident: ref_18 doi: 10.3390/rs9060617 – volume: 27 start-page: 3025 year: 2006 ident: ref_26 article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600589179 – volume: 230 start-page: 111203 year: 2019 ident: ref_20 article-title: Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.05.022 – ident: ref_29 doi: 10.3390/rs14030613 – volume: 140 start-page: 23 year: 2014 ident: ref_27 article-title: Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.029 – ident: ref_44 doi: 10.1109/CIBCB48159.2020.9277638 – volume: 19 start-page: 333 year: 2005 ident: ref_33 article-title: Delineation of flood-prone areas using remote sensing techniques publication-title: Water Resour. Manag. doi: 10.1007/s11269-005-3281-5 – ident: ref_2 – ident: ref_21 doi: 10.3390/ijgi6070203 – volume: 26 start-page: 91 year: 2023 ident: ref_48 article-title: Framework for Formal Verification of Machine Learning Based Complex System-of-Systems publication-title: Insight doi: 10.1002/inst.12434 – ident: ref_4 doi: 10.3390/rs10050780 – ident: ref_46 – ident: ref_28 doi: 10.1109/ECTI-CON47248.2019.8955273 – ident: ref_11 doi: 10.3390/s19071486 – volume: 14 start-page: 2001 year: 2020 ident: ref_17 article-title: Urban Flood Mapping With Bitemporal Multispectral Imagery Via a Self-Supervised Learning Framework publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3047677 – ident: ref_42 doi: 10.3390/rs15092359 – volume: 659 start-page: 940 year: 2019 ident: ref_38 article-title: Assessment of urban flood susceptibility using semi-supervised machine learning model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.217 – ident: ref_8 doi: 10.1145/3219819.3220053 – volume: 27 start-page: 3153 year: 2006 ident: ref_22 article-title: A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: An empirical analysis using Landsat TM and ETM+ data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500309934 – ident: ref_3 doi: 10.20944/preprints201811.0157.v1 – volume: 10 start-page: 13768 year: 2020 ident: ref_1 article-title: Climate change impact on flood and extreme precipitation increases with water availability publication-title: Sci. Rep. doi: 10.1038/s41598-020-70816-2 – volume: 7 start-page: 14853 year: 2015 ident: ref_6 article-title: Detection and delineation of localized flooding from WorldView-2 multispectral data publication-title: Remote Sens. doi: 10.3390/rs71114853 – volume: 7 start-page: 1437 year: 2015 ident: ref_7 article-title: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—A case of Yuyao, China publication-title: Water doi: 10.3390/w7041437 – volume: 54 start-page: 764 year: 2015 ident: ref_31 article-title: Image segmentation using K-means clustering algorithm and subtractive clustering algorithm publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.06.090 – ident: ref_45 – volume: 87 start-page: 103 year: 2017 ident: ref_23 article-title: Rapid flood inundation mapping using social media, remote sensing and topographic data publication-title: Nat. Hazards doi: 10.1007/s11069-017-2755-0 – volume: 5 start-page: 331 year: 2012 ident: ref_19 article-title: Multi-modal change detection, application to the detection of flooded areas: Outcome of the 2009–2010 data fusion contest publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2011.2179638 – volume: 125 start-page: 91 year: 2015 ident: ref_41 article-title: Flood susceptibility assessment using GIS-based support vector machine model with different kernel types publication-title: Catena doi: 10.1016/j.catena.2014.10.017 – ident: ref_15 doi: 10.1109/CVPR42600.2020.00975 |
SSID | ssj0000331904 |
Score | 2.4099085 |
Snippet | Advances in deep learning and computer vision are making significant contributions to flood mapping, particularly when integrated with remotely sensed data.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3263 |
SubjectTerms | Algorithms Annotations Artificial neural networks Classification Climate change Computer vision Data mining decision support systems Decision trees Deep learning Edge detection Emergency preparedness flood detection flood extent mapping Flood mapping Floods humans Hurricanes Image processing Labeling Learning algorithms Machine learning Machine vision Mapping Methods Multilayers Neural networks Pixels Real time Remote sensing Supervised learning United States Urban areas Urbanization weakly supervised |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BeoALKi-xtCAjkBCHVTdrrx-nqqWNKqRGqFDRm2V77VSiSkI2OfTfd2bjpEKCXtde73rseXr8DcCnqFrtnNClixwdFLomY7RvyhS8HkYdA--x9M7H8uxSfLtqrnLArctplRuZ2AvqdhYoRn6AalAKhcpPHM7_lFQ1ik5XcwmNx7CDIljrAewcn46_X2yjLBXHr1dijUvK0b8_WHRDKmlSS_6XJuoB-_8nlntdM9qFZ9lIZEfrVX0Oj-L0BTzJ9cqvb1_CyRg3KLtAI6-kOxxsROnn7NwR2MKEUWyV_Yru980t-7GakzToIjVT3mRkGVJ18gouR6c_v56VuR5CGQTnS5RLjZAJHaRa6iClSJI7nUQdI_pojcKZmhatE9cq5ROaEi5EAsuRiSfl62D4axhMZ9P4BljVtspULXozOuKr2B-HNr5Kxteta4cFfNnQxoYMFk41K24sOg1ER3tPxwI-bvvO1xAZ_-x1TCTe9iBY6_7BbDGxmUtsHXF-PJGOrAUXjW88uqypCZEeV6aAz7RAlpgPfye4fIcAJ0UwVvaIvB-ljBEF7G_W0Gau7Oz9Hirgw7YZ-YkOSdw0zlad5SjVhKAKkW8fHmIPnlLp-XXq7j4MlotVfIcGytK_z7vwDrOW41k priority: 102 providerName: ProQuest |
Title | Near Real-Time Flood Mapping with Weakly Supervised Machine Learning |
URI | https://www.proquest.com/docview/2836475544 https://www.proquest.com/docview/3040447693 https://doaj.org/article/2e6f83f429924345b5b106f5cef83f09 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9wwDLc29sBepm2Adhs7ZQIJ8VBx16RJ-ngMbmjanRAfgrcoSR2Qhg50Hw_3389uyw2kTXvZU6XEbRM7cezW_hlgF01lvVc28yjJQeE0mdKGIksx2D5ajLLG0huN9cml-n5dXD8p9cUxYQ08cMO4gxx1sjKx2syVVEUoAnkxqYjIzU3qHp15T5ypWgdLemtPNXikkvz6g-msz6VMci2fnUA1UP_f1HF9xgzfwpvWOBSDZlDv4AVO3sN6W6f8drkBR2NamOKMjLuMczfEkMPOxcgzyMKN4G-q4gr9z7ulOF88sBaYIXdzvCSKFkr1ZhMuh8cXX0-ytg5CFpWUc9JHhSImEAO0jVqrpKW3xBFE8s0KQzMtK7JKfGVMSGRC-IgMkqOTTCbksZRbsDa5n-AHEL2qMmWvIi_GIt1K9PToMvRSGfLKV_0O7D_yxsUWJJxrVdw5chaYj-43Hzuws6J9aKAx_kh1yCxeUTCcdd1AQnatkN2_hNyBPRaQ401Hw4m-zR2gSTF8lRuw12NMWaoObD_K0LW7cebIhNLKkOFE3V9W3bSP-OeIn-D9YuYkaTOluDLkx_8x4k_wmgvTN4G927A2ny7wM5kv89CFl3b4rQuvBkejH-d0PTwen5516_X7C1br7fE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V5VAuqHyJ0AJGgBCHqNnYSexDhQpl2dLuHqAVvRnbsbdSq91ls6tq_xS_kZl8bIUE3HqNHSsee2b8HPs9gNe-KKUxQsbGcwQodE1GSZvFwVnZ89I7XnPpDUf54Ex8Oc_ON-BXdxeGjlV2MbEO1OXU0R75HqbBXBSY_MT72c-YVKPo72onodFMi2O_ukbIVu0fHeL4vknT_qfTj4O4VRWIneB8gd6diTwgzEhz6fJchJwbGUTqPSKdrMCvVSXmeFMWhQ2YkI3zRDmTBx4KmzoiX8KQfwfbUgT2ZP_zek8n4fh2IhoWVCxP9uZVjwRU0pz_kfdqeYB_JYE6s_W34V67JGUHzRy6Dxt-8gC2WnX0i9VDOBxhv9lXXFLGdGOE9emwOxsaonYYM9rJZd-9ubxasW_LGcWeylMxndL0rCVwHT-Cs1ux02PYnEwn_gmwpCwLlZSInaTHV7E-Nq1sEpRNS1P2InjX2Ua7lpqcFDKuNEIUsqO-sWMEr9Z1Zw0hx19rfSATr2sQiXb9YDof69YndeqxfzxQRk4FF5nNLALkkDlPjxMVwVsaIE2ujp_jTHtjATtFpFn6gLBWUSglItjtxlC3MaDSNzM2gpfrYvRe-iVjJn66rDTHGCoE6VE-_X8TL2BrcDo80SdHo-MduEui982h4V3YXMyX_hkujRb2eT0fGfy4bQf4DXDIHSo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnQS8ID5FYIARIMRD1NR24uQBoY2u2hirpsHE3jzHsYvE1JamFeq_xl_HXeJ0QgLe9ho7Vny-D_-c8-8AXjlV5cbIPDZOIEChazJFXqaxt2U-cLmzouHSOx5nB2fy43l6vgW_urswlFbZ-cTGUVczS2fkfQyDmVQY_GTfh7SIk-Ho_fxHTBWk6E9rV06jVZEjt_6J8K1-dzjEtX7N-Wj_y4eDOFQYiK0UYomWnsrMI-TgWW6zTPpMmNxL7hyinlThlxcVxntTKVV6DM7GOqKfybzwquSWiJjQ_W8rQkU92N7bH5-cbk54EoHvJ7LlRBWiSPqLekDlVHgm_oiCTbGAf4WEJs6N7sDtsEFlu61G3YUtN70HN0Ot9G_r-zAc48zZKW4wY7o_wkaU-s6ODRE9TBid67Kvzny_XLPPqzl5otpRM-VsOhboXCcP4OxaJPUQetPZ1D0CllSVKpIKkVTu8FXsj0MXZeKLklemGkTwtpONtoGonOplXGoELCRHfSXHCF5u-s5beo6_9tojEW96EKV282C2mOhgoZo7nJ_wFJ-5FDIt0xLhsk-to8dJEcEbWiBNho-fY024v4CTIgotvUvIS6mikBHsdGuog0eo9ZX-RvBi04y2TD9ozNTNVrUW6FGlpOqUj_8_xHO4gcqvPx2Oj57ALY77rjaDeAd6y8XKPcV90rJ8FhSSwcV128BvmikivA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near+Real-Time+Flood+Mapping+with+Weakly+Supervised+Machine+Learning&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Vongkusolkit%2C+Jirapa&rft.au=Peng%2C+Bo&rft.au=Wu%2C+Meiliu&rft.au=Huang%2C+Qunying&rft.date=2023-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=13&rft.spage=3263&rft_id=info:doi/10.3390%2Frs15133263&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15133263 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |