Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN
•Proposed a strawberry fruit detection algorithm based on Mask R-CNN (MRSD), which has overcome the difficulties of poor universality and robustness using traditional machine vision algorithms in non-structural environment.•ResNet-50, combined with the FPN architecture for feature extraction, had th...
Saved in:
Published in | Computers and electronics in agriculture Vol. 163; p. 104846 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.08.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Proposed a strawberry fruit detection algorithm based on Mask R-CNN (MRSD), which has overcome the difficulties of poor universality and robustness using traditional machine vision algorithms in non-structural environment.•ResNet-50, combined with the FPN architecture for feature extraction, had the best comprehensive performance of high speed and precision, and was thus chosen as the backbone network of the strawberry target detection model.•Instance segmentation image output from MRSD provides a powerful basis for locating the picking point of strawberry fruit, which is convenient for the precise operation of the harvesting robot.
Deep learning has demonstrated excellent capabilities for learning image features and is widely used in image object detection. In order to improve the performance of machine vision in fruit detection for a strawberry harvesting robot, Mask Region Convolutional Neural Network (Mask-RCNN) was introduced. Resnet50 was adopted as backbone network, combined with the Feature Pyramid Network (FPN) architecture for feature extraction. The Region Proposal Network (RPN) was trained end-to-end to create region proposals for each feature map. After generating mask images of ripe fruits from Mask R-CNN, a visual localization method for strawberry picking points was performed. Fruit detection results of 100 test images showed that the average detection precision rate was 95.78%, the recall rate was 95.41% and the mean intersection over union (MIoU) rate for instance segmentation was 89.85%. The prediction results of 573 ripe fruit picking points showed that the average error was ±1.2 mm. Compared with four traditional methods, the method proposed demonstrates improved universality and robustness in a non-structural environment, particularly for overlapping and hidden fruits, and those under varying illumination. |
---|---|
AbstractList | Deep learning has demonstrated excellent capabilities for learning image features and is widely used in image object detection. In order to improve the performance of machine vision in fruit detection for a strawberry harvesting robot, Mask Region Convolutional Neural Network (Mask-RCNN) was introduced. Resnet50 was adopted as backbone network, combined with the Feature Pyramid Network (FPN) architecture for feature extraction. The Region Proposal Network (RPN) was trained end-to-end to create region proposals for each feature map. After generating mask images of ripe fruits from Mask R-CNN, a visual localization method for strawberry picking points was performed. Fruit detection results of 100 test images showed that the average detection precision rate was 95.78%, the recall rate was 95.41% and the mean intersection over union (MIoU) rate for instance segmentation was 89.85%. The prediction results of 573 ripe fruit picking points showed that the average error was ±1.2 mm. Compared with four traditional methods, the method proposed demonstrates improved universality and robustness in a non-structural environment, particularly for overlapping and hidden fruits, and those under varying illumination. •Proposed a strawberry fruit detection algorithm based on Mask R-CNN (MRSD), which has overcome the difficulties of poor universality and robustness using traditional machine vision algorithms in non-structural environment.•ResNet-50, combined with the FPN architecture for feature extraction, had the best comprehensive performance of high speed and precision, and was thus chosen as the backbone network of the strawberry target detection model.•Instance segmentation image output from MRSD provides a powerful basis for locating the picking point of strawberry fruit, which is convenient for the precise operation of the harvesting robot. Deep learning has demonstrated excellent capabilities for learning image features and is widely used in image object detection. In order to improve the performance of machine vision in fruit detection for a strawberry harvesting robot, Mask Region Convolutional Neural Network (Mask-RCNN) was introduced. Resnet50 was adopted as backbone network, combined with the Feature Pyramid Network (FPN) architecture for feature extraction. The Region Proposal Network (RPN) was trained end-to-end to create region proposals for each feature map. After generating mask images of ripe fruits from Mask R-CNN, a visual localization method for strawberry picking points was performed. Fruit detection results of 100 test images showed that the average detection precision rate was 95.78%, the recall rate was 95.41% and the mean intersection over union (MIoU) rate for instance segmentation was 89.85%. The prediction results of 573 ripe fruit picking points showed that the average error was ±1.2 mm. Compared with four traditional methods, the method proposed demonstrates improved universality and robustness in a non-structural environment, particularly for overlapping and hidden fruits, and those under varying illumination. |
ArticleNumber | 104846 |
Author | Yang, Li Yu, Yang Zhang, Dongxing Zhang, Kailiang |
Author_xml | – sequence: 1 givenname: Yang surname: Yu fullname: Yu, Yang – sequence: 2 givenname: Kailiang surname: Zhang fullname: Zhang, Kailiang email: zhang_kailiang@cau.edu.cn – sequence: 3 givenname: Li surname: Yang fullname: Yang, Li – sequence: 4 givenname: Dongxing surname: Zhang fullname: Zhang, Dongxing |
BookMark | eNqFkcFO3DAQhi1EpS60b9CDpV56SWonXsfmgIRWpVSiICE4u44zAW-z9jJ2tuLt8Wp74tCe5vL9v2c-n5DjEAMQ8omzmjMuv65rFzdb-1g3jOuayZoxfkQWXHVN1XHWHZNFwVTFpdbvyUlK6wJIrboF-XWJs890gAwu-xjoGJGmjPZPD4gv9MniDlL24ZFi7GOmPtDyelWQ2eUZ7UQh7DzGsIGQaW8TDLTU_LTpd3W3urn5QN6Ndkrw8e88JQ-X3-5XV9X17fcfq4vryom2zZVa9m6AvlGDBGub5aiB6a4VjpUrmBZi6eTARwGqHTUTTkjRinEYJee2BSXbU_Ll0LvF-DyXlc3GJwfTZAPEOZmmUVItddvpgn5-g67jjKFsV6hOKd1wwQp1dqAcxpQQRuN8tntHxY6fDGdmL9-szUG-2cs3TJritoTFm_AW_cbiy_9i54cYFFM7D2iS8xAcDB7L_5gh-n8XvAKGeKMa |
CitedBy_id | crossref_primary_10_1007_s00530_022_00990_y crossref_primary_10_1016_j_compag_2024_108727 crossref_primary_10_3390_app13116751 crossref_primary_10_1111_jfr3_12718 crossref_primary_10_1109_JSEN_2024_3362996 crossref_primary_10_1111_tpj_15553 crossref_primary_10_1109_ACCESS_2020_3039345 crossref_primary_10_3390_agronomy12061336 crossref_primary_10_3390_agronomy13010196 crossref_primary_10_3390_agronomy14081808 crossref_primary_10_3390_s19204599 crossref_primary_10_1016_j_compag_2022_107197 crossref_primary_10_1016_j_atech_2024_100454 crossref_primary_10_1016_j_compag_2021_106140 crossref_primary_10_1109_ACCESS_2020_3003034 crossref_primary_10_3389_fpls_2024_1298791 crossref_primary_10_1002_rse2_382 crossref_primary_10_1016_j_measurement_2025_116807 crossref_primary_10_1016_j_biosystemseng_2020_03_008 crossref_primary_10_1016_j_scienta_2024_113091 crossref_primary_10_1016_j_tifs_2024_104730 crossref_primary_10_1016_j_engappai_2023_107580 crossref_primary_10_1016_j_compag_2024_109492 crossref_primary_10_3390_agronomy11112353 crossref_primary_10_1016_j_compag_2024_109013 crossref_primary_10_3390_app14167195 crossref_primary_10_3390_agriculture14050751 crossref_primary_10_1016_j_mlwa_2021_100233 crossref_primary_10_3390_f13122032 crossref_primary_10_1016_j_compag_2021_106149 crossref_primary_10_1016_j_compag_2023_108447 crossref_primary_10_1088_1742_6596_1748_4_042011 crossref_primary_10_3389_fpls_2023_1211830 crossref_primary_10_3389_fpls_2024_1423338 crossref_primary_10_1016_j_compag_2022_106789 crossref_primary_10_1016_j_compag_2021_106398 crossref_primary_10_1007_s11694_024_03001_y crossref_primary_10_3390_agriculture11111059 crossref_primary_10_3390_f16010167 crossref_primary_10_3390_agronomy12081875 crossref_primary_10_1111_exsy_13543 crossref_primary_10_3389_fpls_2024_1491706 crossref_primary_10_1155_2021_9934250 crossref_primary_10_1088_1361_6463_ad11bb crossref_primary_10_1016_j_biosystemseng_2020_07_007 crossref_primary_10_1016_j_mtcomm_2023_106269 crossref_primary_10_3390_agronomy14010034 crossref_primary_10_3390_s20195670 crossref_primary_10_1007_s10015_024_00971_6 crossref_primary_10_1016_j_biosystemseng_2023_09_014 crossref_primary_10_1016_j_aiia_2020_04_003 crossref_primary_10_3390_rs13030531 crossref_primary_10_3390_agronomy15040809 crossref_primary_10_1016_j_compag_2024_108833 crossref_primary_10_1016_j_compag_2024_108832 crossref_primary_10_1007_s10044_024_01222_x crossref_primary_10_1016_j_compag_2024_108748 crossref_primary_10_1016_j_scienta_2023_111893 crossref_primary_10_3390_app10041250 crossref_primary_10_3389_fpls_2024_1415006 crossref_primary_10_1016_j_compag_2022_107057 crossref_primary_10_1007_s11694_024_02466_1 crossref_primary_10_3390_agriculture13020473 crossref_primary_10_1007_s11042_023_14962_5 crossref_primary_10_1142_S0218001424570076 crossref_primary_10_3390_app13106296 crossref_primary_10_1016_j_biosystemseng_2022_07_009 crossref_primary_10_3390_plants12142647 crossref_primary_10_1038_s41598_022_05455_w crossref_primary_10_3390_agriculture14050774 crossref_primary_10_1145_3587466 crossref_primary_10_1016_j_compeleceng_2022_107871 crossref_primary_10_4081_jae_2023_1301 crossref_primary_10_1016_j_jobe_2020_101637 crossref_primary_10_1080_03772063_2023_2176367 crossref_primary_10_1155_2022_9210947 crossref_primary_10_1002_rob_22230 crossref_primary_10_1016_j_ifacol_2022_11_110 crossref_primary_10_1002_rob_22472 crossref_primary_10_1007_s11119_020_09754_y crossref_primary_10_1007_s11119_022_09981_5 crossref_primary_10_1016_j_atech_2022_100129 crossref_primary_10_1177_0887302X211004299 crossref_primary_10_1016_j_ifacol_2022_11_109 crossref_primary_10_1002_rob_22229 crossref_primary_10_1016_j_atech_2024_100687 crossref_primary_10_1007_s11042_022_11905_4 crossref_primary_10_1016_j_compag_2023_107909 crossref_primary_10_3389_fmtec_2023_1282843 crossref_primary_10_3390_agriengineering4030043 crossref_primary_10_1016_j_asoc_2025_112971 crossref_primary_10_1109_ACCESS_2024_3356118 crossref_primary_10_1016_j_atech_2024_100448 crossref_primary_10_3389_fsufs_2021_642786 crossref_primary_10_1016_j_compag_2020_105905 crossref_primary_10_1016_j_ecoinf_2022_101886 crossref_primary_10_1088_2631_8695_adb00f crossref_primary_10_1007_s00542_020_05123_x crossref_primary_10_3390_app11052238 crossref_primary_10_1016_j_compag_2020_105345 crossref_primary_10_1016_j_compag_2023_108313 crossref_primary_10_1016_j_postharvbio_2023_112587 crossref_primary_10_1016_j_heliyon_2023_e13213 crossref_primary_10_1016_j_compag_2022_106984 crossref_primary_10_3390_agronomy13061625 crossref_primary_10_3390_agriengineering6020055 crossref_primary_10_48084_etasr_7945 crossref_primary_10_1016_j_compag_2021_106066 crossref_primary_10_1016_j_compag_2022_107034 crossref_primary_10_1016_j_ecoinf_2021_101516 crossref_primary_10_3389_fcomp_2024_1480481 crossref_primary_10_1080_10298436_2021_1877704 crossref_primary_10_3390_s23083810 crossref_primary_10_3390_s20010275 crossref_primary_10_3390_agronomy12020391 crossref_primary_10_1016_j_energy_2024_132559 crossref_primary_10_3390_su12219138 crossref_primary_10_1007_s12393_023_09353_3 crossref_primary_10_1109_ACCESS_2021_3113509 crossref_primary_10_3390_plants13223253 crossref_primary_10_1016_j_jksuci_2023_101749 crossref_primary_10_3389_fpls_2022_868745 crossref_primary_10_7717_peerj_cs_1995 crossref_primary_10_1016_j_eswa_2021_116205 crossref_primary_10_1109_ACCESS_2019_2933062 crossref_primary_10_1007_s11760_020_01841_x crossref_primary_10_1016_j_aiia_2025_01_008 crossref_primary_10_1109_JPHOTOV_2020_2992339 crossref_primary_10_3390_agriculture13102040 crossref_primary_10_3390_s24072283 crossref_primary_10_1016_j_compag_2020_105933 crossref_primary_10_3233_JIFS_222954 crossref_primary_10_1109_ACCESS_2019_2962513 crossref_primary_10_3390_agriculture14040624 crossref_primary_10_1016_j_compag_2022_107389 crossref_primary_10_1109_TMECH_2023_3313693 crossref_primary_10_3390_s22020414 crossref_primary_10_1016_j_measurement_2023_113467 crossref_primary_10_1016_j_inpa_2021_12_004 crossref_primary_10_3390_app122211318 crossref_primary_10_3390_agronomy10070972 crossref_primary_10_1002_rob_22207 crossref_primary_10_3390_agronomy13092237 crossref_primary_10_3390_agronomy12112812 crossref_primary_10_3390_agriculture14111985 crossref_primary_10_1016_j_compag_2025_110177 crossref_primary_10_3390_systems11060267 crossref_primary_10_1016_j_compag_2023_107682 crossref_primary_10_1016_j_compag_2025_110173 crossref_primary_10_1007_s00521_021_06131_2 crossref_primary_10_1016_j_compag_2022_106738 crossref_primary_10_3390_agronomy14102233 crossref_primary_10_2166_hydro_2021_156 crossref_primary_10_3390_app13074160 crossref_primary_10_3390_s21237842 crossref_primary_10_34133_plantphenomics_0088 crossref_primary_10_1016_j_aiia_2023_08_004 crossref_primary_10_1016_j_compag_2024_108911 crossref_primary_10_1016_j_scitotenv_2024_170375 crossref_primary_10_1016_j_isprsjprs_2020_07_011 crossref_primary_10_3389_fpls_2021_791256 crossref_primary_10_1016_j_compag_2020_105277 crossref_primary_10_3390_agriculture14091646 crossref_primary_10_3390_agronomy10071016 crossref_primary_10_1016_j_cja_2020_09_024 crossref_primary_10_1186_s40648_022_00230_y crossref_primary_10_3390_agriculture13020392 crossref_primary_10_1016_j_ifacol_2019_12_500 crossref_primary_10_1109_ACCESS_2020_3008943 crossref_primary_10_3390_app122211441 crossref_primary_10_3390_sym16040451 crossref_primary_10_34133_plantphenomics_0194 crossref_primary_10_3389_fpls_2021_740936 crossref_primary_10_3390_f14112261 crossref_primary_10_1007_s11119_021_09806_x crossref_primary_10_1007_s00521_021_06029_z crossref_primary_10_1007_s11119_023_10009_9 crossref_primary_10_1016_j_compag_2024_109118 crossref_primary_10_1109_ACCESS_2019_2946369 crossref_primary_10_3390_agriculture14060903 crossref_primary_10_1007_s11760_024_03346_3 crossref_primary_10_1515_ijfe_2022_0302 crossref_primary_10_3390_agriculture14081390 crossref_primary_10_3390_agronomy10111648 crossref_primary_10_1007_s00371_024_03593_y crossref_primary_10_1007_s10846_022_01595_3 crossref_primary_10_3390_agriculture14101725 crossref_primary_10_1016_j_biosystemseng_2022_08_013 crossref_primary_10_1016_j_compag_2020_105380 crossref_primary_10_1016_j_powtec_2024_119608 crossref_primary_10_17341_gazimmfd_774200 crossref_primary_10_3390_electronics13163103 crossref_primary_10_3390_s22114187 crossref_primary_10_1016_j_compag_2020_105827 crossref_primary_10_3390_agriculture14060918 crossref_primary_10_3390_agronomy12112836 crossref_primary_10_1016_j_eswa_2022_118837 crossref_primary_10_1016_j_biosystemseng_2021_06_001 crossref_primary_10_3390_agronomy12102482 crossref_primary_10_1016_j_compag_2024_109468 crossref_primary_10_1145_3626186 crossref_primary_10_1109_ACCESS_2023_3341928 crossref_primary_10_1016_j_compag_2022_106716 crossref_primary_10_3389_fpls_2024_1407839 crossref_primary_10_3390_app13137405 crossref_primary_10_1109_ACCESS_2024_3479748 crossref_primary_10_3390_su15054329 crossref_primary_10_1049_ipr2_12331 crossref_primary_10_3390_agronomy11122440 crossref_primary_10_1016_j_compag_2023_107759 crossref_primary_10_3390_app10103443 crossref_primary_10_1109_ACCESS_2019_2942144 crossref_primary_10_1016_j_compag_2022_107233 crossref_primary_10_1016_j_compind_2024_104231 crossref_primary_10_1109_ACCESS_2025_3537664 crossref_primary_10_1007_s12541_023_00911_7 crossref_primary_10_1016_j_ecoinf_2023_102409 crossref_primary_10_3390_foods13071060 crossref_primary_10_1007_s11119_023_10000_4 crossref_primary_10_3390_ani10101762 crossref_primary_10_1007_s11119_023_10085_x crossref_primary_10_1007_s11760_024_03691_3 crossref_primary_10_3390_app12105004 crossref_primary_10_3389_fpls_2024_1455687 crossref_primary_10_3390_app13137731 crossref_primary_10_1016_j_procs_2023_10_641 crossref_primary_10_3390_agriculture13091814 crossref_primary_10_1016_j_compag_2024_109654 crossref_primary_10_1016_j_compag_2020_105736 crossref_primary_10_1016_j_compag_2023_107635 crossref_primary_10_3390_s22228918 crossref_primary_10_1007_s10278_021_00452_3 crossref_primary_10_1016_j_aiia_2023_12_002 crossref_primary_10_3390_electronics12143145 crossref_primary_10_1109_ACCESS_2020_2984556 crossref_primary_10_3390_agronomy13092435 crossref_primary_10_1002_arp_1806 crossref_primary_10_1007_s11119_024_10169_2 crossref_primary_10_3390_diagnostics14212346 crossref_primary_10_32604_cmc_2023_046876 crossref_primary_10_3390_agronomy12071520 crossref_primary_10_1016_j_compag_2024_109880 crossref_primary_10_1016_j_compag_2023_108298 crossref_primary_10_1016_j_compag_2020_105964 crossref_primary_10_37882_2223_2966_2021_04_03 crossref_primary_10_3390_rs14143362 crossref_primary_10_1016_j_engappai_2022_105810 crossref_primary_10_1109_ACCESS_2020_2987932 crossref_primary_10_1038_s41438_021_00560_9 crossref_primary_10_3390_agriculture14091569 crossref_primary_10_3389_frobt_2021_626989 crossref_primary_10_1016_j_compag_2025_110269 crossref_primary_10_1109_ACCESS_2020_3006843 crossref_primary_10_34133_plantphenomics_0030 crossref_primary_10_1109_ACCESS_2022_3149297 crossref_primary_10_7717_peerj_cs_646 crossref_primary_10_1002_rob_22074 crossref_primary_10_1016_j_surfcoat_2021_127571 crossref_primary_10_1109_ACCESS_2024_3485490 crossref_primary_10_1002_jsfa_13684 crossref_primary_10_1007_s40747_023_01291_1 crossref_primary_10_1016_j_compag_2022_107217 crossref_primary_10_3390_agriculture12070931 crossref_primary_10_1016_j_compag_2021_106451 crossref_primary_10_3389_fpls_2023_1260808 crossref_primary_10_1007_s00521_022_07744_x crossref_primary_10_1002_stc_2742 crossref_primary_10_1007_s00371_022_02666_0 crossref_primary_10_1080_19392699_2022_2122453 crossref_primary_10_1109_ACCESS_2020_2972562 crossref_primary_10_1016_j_compag_2020_105508 crossref_primary_10_1080_10942912_2022_2158863 crossref_primary_10_1007_s11119_023_10095_9 crossref_primary_10_1109_ACCESS_2020_2973658 crossref_primary_10_3390_agronomy14061325 crossref_primary_10_1007_s12065_021_00595_w crossref_primary_10_3390_s21082689 crossref_primary_10_1007_s11119_022_09974_4 crossref_primary_10_3390_s21103389 crossref_primary_10_1002_ppj2_20065 crossref_primary_10_3389_fpls_2022_1074360 crossref_primary_10_1016_j_isprsjprs_2022_11_006 crossref_primary_10_1109_TCBB_2021_3138304 crossref_primary_10_1016_j_jobe_2020_101921 crossref_primary_10_1016_j_compag_2023_107834 crossref_primary_10_1016_j_procs_2023_01_113 crossref_primary_10_1155_2021_5541665 crossref_primary_10_1109_JSEN_2021_3100636 crossref_primary_10_3390_s22176473 crossref_primary_10_1002_ppp3_10275 crossref_primary_10_1109_TRO_2024_3372778 crossref_primary_10_1016_j_compag_2021_106220 crossref_primary_10_3390_app14093716 crossref_primary_10_1016_j_atech_2024_100538 crossref_primary_10_1016_j_compag_2024_109175 crossref_primary_10_32604_phyton_2024_046331 crossref_primary_10_3389_fpls_2021_591333 crossref_primary_10_1109_ACCESS_2020_3029215 crossref_primary_10_3390_agriengineering5040136 crossref_primary_10_1016_j_compag_2023_108362 crossref_primary_10_3390_machines9030066 crossref_primary_10_1016_j_jia_2022_09_004 crossref_primary_10_1016_j_marenvres_2022_105829 crossref_primary_10_3390_agronomy12020425 crossref_primary_10_1016_j_compag_2023_108369 crossref_primary_10_1016_j_compag_2024_109736 crossref_primary_10_1177_14759217211010238 crossref_primary_10_3390_rs13214486 crossref_primary_10_1016_j_compag_2024_109614 crossref_primary_10_3390_data7100135 crossref_primary_10_3390_rs13010039 crossref_primary_10_3390_agriculture14010036 crossref_primary_10_3390_s23125425 crossref_primary_10_1016_j_compag_2022_106694 crossref_primary_10_1016_j_eswa_2024_125426 crossref_primary_10_3389_fpls_2022_1038000 crossref_primary_10_3390_info11050259 crossref_primary_10_3390_rs14236137 crossref_primary_10_1038_s41438_021_00553_8 crossref_primary_10_3389_fpls_2023_1108560 crossref_primary_10_1016_j_jag_2022_102764 crossref_primary_10_1016_j_eswa_2022_118573 crossref_primary_10_1016_j_compag_2024_109164 crossref_primary_10_3390_jimaging10080197 crossref_primary_10_1111_1750_3841_17593 crossref_primary_10_22314_2658_4859_2020_67_2_107_114 crossref_primary_10_1007_s00521_022_07475_z crossref_primary_10_1016_j_compag_2023_108132 crossref_primary_10_1080_22797254_2023_2186955 crossref_primary_10_1016_j_conbuildmat_2021_125987 crossref_primary_10_1016_j_chemolab_2024_105066 crossref_primary_10_1016_j_compag_2023_107961 crossref_primary_10_1016_j_compag_2021_106479 crossref_primary_10_3390_rs13010026 crossref_primary_10_1007_s11042_022_12940_x crossref_primary_10_3389_fpls_2022_889853 crossref_primary_10_1109_ACCESS_2022_3220234 crossref_primary_10_3390_su141811729 crossref_primary_10_1016_j_compag_2021_106123 crossref_primary_10_3390_rs12071074 crossref_primary_10_1016_j_sciaf_2023_e01798 crossref_primary_10_3389_fpls_2022_955256 crossref_primary_10_3390_su15086898 crossref_primary_10_1016_j_aiia_2024_07_001 crossref_primary_10_3390_agronomy12071638 crossref_primary_10_1108_IR_01_2024_0009 crossref_primary_10_1038_s41598_023_50129_w crossref_primary_10_1109_ACCESS_2020_2964055 crossref_primary_10_1109_ACCESS_2020_3000175 crossref_primary_10_3390_app14156403 crossref_primary_10_3390_rs11212546 crossref_primary_10_35633_inmateh_66_03 crossref_primary_10_1016_j_artmed_2020_101792 crossref_primary_10_1016_j_ejrs_2022_03_017 crossref_primary_10_1016_j_jag_2023_103457 crossref_primary_10_1016_j_engappai_2022_105325 crossref_primary_10_1038_s41598_022_06181_z crossref_primary_10_1109_TAFE_2024_3405179 crossref_primary_10_1177_09544062221128443 crossref_primary_10_3390_horticulturae9040498 crossref_primary_10_1002_rob_21975 crossref_primary_10_1016_j_atech_2024_100643 crossref_primary_10_1016_j_engappai_2021_104615 crossref_primary_10_3390_plants12152883 crossref_primary_10_1109_ACCESS_2020_3038184 crossref_primary_10_1007_s11119_021_09846_3 crossref_primary_10_3389_fpls_2024_1460060 crossref_primary_10_34133_2022_9850486 crossref_primary_10_3390_agriculture14122126 crossref_primary_10_1186_s13007_021_00787_6 crossref_primary_10_1007_s11694_021_01074_7 crossref_primary_10_3390_app14104213 crossref_primary_10_1016_j_compag_2024_108895 crossref_primary_10_1016_j_compag_2019_105108 crossref_primary_10_1016_j_compag_2020_105302 crossref_primary_10_3390_agriculture12122039 crossref_primary_10_1016_j_heliyon_2024_e35167 crossref_primary_10_1016_j_compag_2023_108116 crossref_primary_10_3389_fpls_2024_1389961 crossref_primary_10_1155_2022_2845320 |
Cites_doi | 10.1002/rob.21525 10.3182/20101206-3-JP-3009.00016 10.1016/j.compag.2011.11.007 10.6090/jarq.48.307 10.1117/12.2228511 10.1016/j.compag.2018.02.016 10.1016/j.compind.2018.03.010 10.1016/j.compag.2018.11.002 10.1007/s11119-010-9198-x 10.1016/S1881-8366(13)80015-8 10.1016/j.compag.2019.01.012 10.3390/s16081222 10.1016/j.compag.2016.06.022 10.1016/j.ijleo.2014.07.001 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Aug 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Aug 2019 |
DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
DOI | 10.1016/j.compag.2019.06.001 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-7107 |
ExternalDocumentID | 10_1016_j_compag_2019_06_001 S0168169919301103 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7SC 7SP 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-85bcdeb28d6eaa25f9e09734c018709445c6d1f4e83f904c46434fdf611a3e863 |
IEDL.DBID | .~1 |
ISSN | 0168-1699 |
IngestDate | Mon Jul 21 11:27:21 EDT 2025 Mon Jul 14 06:58:57 EDT 2025 Tue Jul 01 01:58:15 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Fri Feb 23 02:17:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Instance segmentation Mask-RCNN Fruit detection Picking point Non-structural environment |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-85bcdeb28d6eaa25f9e09734c018709445c6d1f4e83f904c46434fdf611a3e863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2278892140 |
PQPubID | 2045491 |
ParticipantIDs | proquest_miscellaneous_2286859379 proquest_journals_2278892140 crossref_citationtrail_10_1016_j_compag_2019_06_001 crossref_primary_10_1016_j_compag_2019_06_001 elsevier_sciencedirect_doi_10_1016_j_compag_2019_06_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 2019-08-00 20190801 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Jiang, Zhao (b0060) 2012 Lu (b0085) 2015 Inkyu, Zongyuan, Feras (b0055) 2016; 16 Linker, Cohen, Naor (b0075) 2012; 81 Garcia-Garcia, Orts-Escolano, Oprea (b0035) 2017 Hayashi, Yamamoto, Saito (b0050) 2013; 6 Wang, Zhang, Duan (b9005) 2015; 31 Wei, Jia, Lan (b0125) 2014; 125 Yamamoto, Hayashi, Saito (b0130) 2010; 43 Fu, Feng, Elkamil (b0030) 2018 Qingchun F, Xiu W, Wengang Z, et al. A new strawberry harvesting robot for elevated-trough culture[J]. International Journal of Agricultural and Biological Engineering, 2012 Vol. 5 No. 2 pp. 1-8, 2012:1-8. Zhou, Xu, Zheng (b0145) 2017; 33 Kailiang (b9000) 2012; 43 Lin, Maire, Belongie, Microsoft (b0080) 2014 Kamilaris, Prenafeta-Boldu (b0070) 2018 Rizon M, Yusri N A N, Kadir M F A, et al. Determination of mango fruit from binary image using randomized Hough transform[C]// Eighth International Conference on Machine Vision (ICMV 2015). International Society for Optics and Photonics, 2015. Zhang, Yang, Zhang (b9010) 2011; 42 Qingchun, Wengang, Quan (b0095) 2012 Arefi, Motlagh (b0015) 2013; 7 Tian, Yang, Wang (b0110) 2019; 157 Ouyang, Li, Wang (b0090) 2012 Dias, Tabb, Medeiros (b0025) 2018; 99 Bac, Van Henten, Hemming (b0020) 2014; 31 Hayashi, Yamamoto, Saito (b0045) 2014; 48 Wachs, Stern, Burks (b0120) 2010; 11 AGROBOT, http://www.agrobot.com/products.html, 10.03.2017. Kaiming, Georgia, Piotr (b0065) 2018 Yang, Xiao, Lin (b0135) 2018; 155 Arefi, Motlagh, Mollazade (b0010) 2011; 5 Zhao, Gong, Huang (b0140) 2016; 127 Hayashi (10.1016/j.compag.2019.06.001_b0045) 2014; 48 Bac (10.1016/j.compag.2019.06.001_b0020) 2014; 31 Zhao (10.1016/j.compag.2019.06.001_b0140) 2016; 127 Arefi (10.1016/j.compag.2019.06.001_b0010) 2011; 5 Ouyang (10.1016/j.compag.2019.06.001_b0090) 2012 Zhou (10.1016/j.compag.2019.06.001_b0145) 2017; 33 Wachs (10.1016/j.compag.2019.06.001_b0120) 2010; 11 Zhang (10.1016/j.compag.2019.06.001_b9010) 2011; 42 10.1016/j.compag.2019.06.001_b0100 Tian (10.1016/j.compag.2019.06.001_b0110) 2019; 157 Yamamoto (10.1016/j.compag.2019.06.001_b0130) 2010; 43 Dias (10.1016/j.compag.2019.06.001_b0025) 2018; 99 Fu (10.1016/j.compag.2019.06.001_b0030) 2018 Kamilaris (10.1016/j.compag.2019.06.001_b0070) 2018 10.1016/j.compag.2019.06.001_b0105 10.1016/j.compag.2019.06.001_b0005 Arefi (10.1016/j.compag.2019.06.001_b0015) 2013; 7 Wang (10.1016/j.compag.2019.06.001_b9005) 2015; 31 Linker (10.1016/j.compag.2019.06.001_b0075) 2012; 81 Kailiang (10.1016/j.compag.2019.06.001_b9000) 2012; 43 Garcia-Garcia (10.1016/j.compag.2019.06.001_b0035) 2017 Kaiming (10.1016/j.compag.2019.06.001_b0065) 2018 Lin (10.1016/j.compag.2019.06.001_b0080) 2014 Hayashi (10.1016/j.compag.2019.06.001_b0050) 2013; 6 Inkyu (10.1016/j.compag.2019.06.001_b0055) 2016; 16 Qingchun (10.1016/j.compag.2019.06.001_b0095) 2012 Wei (10.1016/j.compag.2019.06.001_b0125) 2014; 125 Lu (10.1016/j.compag.2019.06.001_b0085) 2015 Jiang (10.1016/j.compag.2019.06.001_b0060) 2012 Yang (10.1016/j.compag.2019.06.001_b0135) 2018; 155 |
References_xml | – volume: 48 start-page: 307 year: 2014 end-page: 316 ident: b0045 article-title: Field Operation of a Movable Strawberry-harvesting Robot using a Travel Platform[J] publication-title: Japan Agricultural Research Quarterly: JARQ – reference: Qingchun F, Xiu W, Wengang Z, et al. A new strawberry harvesting robot for elevated-trough culture[J]. International Journal of Agricultural and Biological Engineering, 2012 Vol. 5 No. 2 pp. 1-8, 2012:1-8. – volume: 11 start-page: 717 year: 2010 end-page: 735 ident: b0120 article-title: Low and high-level visual feature-based apple detection from multi-modal images[J] publication-title: Precision Agriculture – year: 2018 ident: b0070 article-title: Deep learning in agriculture: A survey[J] publication-title: Computers and Electronics in Agriculture – volume: 7 start-page: 699 year: 2013 end-page: 705 ident: b0015 article-title: Development of an expert system based on wavelet transform and artificial neural networks for the ripe tomato harvesting robot[J] publication-title: Australian Journal of Crop Science – volume: 31 start-page: 25 year: 2015 end-page: 31 ident: b9005 article-title: Fruit localization for strawberry harvesting robot based on visual servoing publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 155 start-page: 453 year: 2018 end-page: 460 ident: b0135 article-title: Feeding behavior recognition for group-housed pigs with the Faster R-CNN[J] publication-title: Computers and Electronics in Agriculture – reference: Rizon M, Yusri N A N, Kadir M F A, et al. Determination of mango fruit from binary image using randomized Hough transform[C]// Eighth International Conference on Machine Vision (ICMV 2015). International Society for Optics and Photonics, 2015. – volume: 157 start-page: 417 year: 2019 end-page: 426 ident: b0110 article-title: Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J] publication-title: Computers and Electronics in Agriculture – volume: 5 start-page: 1144 year: 2011 end-page: 1149 ident: b0010 article-title: Recognition and localization of ripen tomato based on machine vision[J] publication-title: Australian Journal of Crop Science – volume: 31 start-page: 888 year: 2014 end-page: 911 ident: b0020 article-title: Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead[J] publication-title: Journal of Field Robotics – volume: 125 start-page: 5684 year: 2014 end-page: 5689 ident: b0125 article-title: Automatic method of fruit object extraction under complex agricultural background for vision system of fruit picking robot[J] publication-title: Optik - International Journal for Light and Electron Optics – volume: 127 start-page: 311 year: 2016 end-page: 323 ident: b0140 article-title: A review of key techniques of vision-based control for harvesting robot[J] publication-title: Computers and Electronics in Agriculture – volume: 99 start-page: 17 year: 2018 end-page: 28 ident: b0025 article-title: Apple flower detection using deep convolutional networks[J] publication-title: Computers in Industry – year: 2014 ident: b0080 article-title: Common Objects in publication-title: Context[J]. – volume: 43 start-page: 95 year: 2010 end-page: 100 ident: b0130 article-title: Development of Robotic Strawberry Harvester to Approach Target Fruit from Hanging Bench Side[J] publication-title: IFAC Proceedings Volumes – volume: 43 start-page: 165 year: 2012 end-page: 172 ident: b9000 article-title: Design and experiment of elevated substrate culture strawberry picking robot publication-title: Trans. Chin. Soc. Agric. Mach. – year: 2017 ident: b0035 article-title: A Review on Deep Learning Techniques Applied to Semantic publication-title: Segmentation[J]. – volume: 81 start-page: 45 year: 2012 end-page: 57 ident: b0075 article-title: Determination of the number of green apples in RGB images recorded in orchards[J] publication-title: Computers and Electronics in Agriculture – year: 2015 ident: b0085 article-title: Detecting citrus fruits and occlusion recovery under natural illumination conditions[M] publication-title: Elsevier Science Publishers B. – year: 2018 ident: b0065 article-title: Mask R-CNN[J] publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 6 start-page: 34 year: 2013 end-page: 40 ident: b0050 article-title: Structural Environment Suited to the Operation of a Strawberry-harvesting Robot Mounted on a Travelling Platform[J] publication-title: Engineering in Agriculture, Environment and Food – volume: 42 start-page: 155 year: 2011 end-page: 161 ident: b9010 article-title: Design and experiment of picking mechanism for strawberry harvesting robot publication-title: Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. – year: 2018 ident: b0030 article-title: Image recognition method of multi-cluster kiwifruit in field based on convolutional neural networks[J]. Transactions of the Chinese Society of publication-title: Agricultural Engineering – year: 2012 ident: b0090 article-title: The research of the strawberry disease identification based on image processing and pattern recognition[C]// International Conference on Computer & Computing Technologies in Agriculture – year: 2012 ident: b0095 article-title: Study on strawberry robotic harvesting system[C]// – volume: 16 start-page: 1222- year: 2016 ident: b0055 article-title: DeepFruits: A Fruit Detection System Using Deep Neural Networks[J] publication-title: Sensors – year: 2012 ident: b0060 article-title: Apple recognition based on machine – reference: AGROBOT, http://www.agrobot.com/products.html, 10.03.2017. – volume: 33 start-page: 219 year: 2017 end-page: 226 ident: b0145 article-title: Classification and recognition approaches of tomato main organs based on DCNN[J] publication-title: Transactions of the Chinese Society of Agricultural Engineering – volume: 31 start-page: 888 issue: 6 year: 2014 ident: 10.1016/j.compag.2019.06.001_b0020 article-title: Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead[J] publication-title: Journal of Field Robotics doi: 10.1002/rob.21525 – volume: 43 start-page: 95 issue: 26 year: 2010 ident: 10.1016/j.compag.2019.06.001_b0130 article-title: Development of Robotic Strawberry Harvester to Approach Target Fruit from Hanging Bench Side[J] publication-title: IFAC Proceedings Volumes doi: 10.3182/20101206-3-JP-3009.00016 – year: 2014 ident: 10.1016/j.compag.2019.06.001_b0080 article-title: Common Objects in publication-title: Context[J]. – volume: 81 start-page: 45 issue: 1 year: 2012 ident: 10.1016/j.compag.2019.06.001_b0075 article-title: Determination of the number of green apples in RGB images recorded in orchards[J] publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2011.11.007 – volume: 43 start-page: 165 issue: 9 year: 2012 ident: 10.1016/j.compag.2019.06.001_b9000 article-title: Design and experiment of elevated substrate culture strawberry picking robot publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 48 start-page: 307 issue: 3 year: 2014 ident: 10.1016/j.compag.2019.06.001_b0045 article-title: Field Operation of a Movable Strawberry-harvesting Robot using a Travel Platform[J] publication-title: Japan Agricultural Research Quarterly: JARQ doi: 10.6090/jarq.48.307 – ident: 10.1016/j.compag.2019.06.001_b0105 doi: 10.1117/12.2228511 – year: 2018 ident: 10.1016/j.compag.2019.06.001_b0070 article-title: Deep learning in agriculture: A survey[J] publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.02.016 – volume: 5 start-page: 1144 issue: 10 year: 2011 ident: 10.1016/j.compag.2019.06.001_b0010 article-title: Recognition and localization of ripen tomato based on machine vision[J] publication-title: Australian Journal of Crop Science – volume: 99 start-page: 17 year: 2018 ident: 10.1016/j.compag.2019.06.001_b0025 article-title: Apple flower detection using deep convolutional networks[J] publication-title: Computers in Industry doi: 10.1016/j.compind.2018.03.010 – year: 2012 ident: 10.1016/j.compag.2019.06.001_b0090 – volume: 155 start-page: 453 year: 2018 ident: 10.1016/j.compag.2019.06.001_b0135 article-title: Feeding behavior recognition for group-housed pigs with the Faster R-CNN[J] publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.11.002 – volume: 11 start-page: 717 issue: 6 year: 2010 ident: 10.1016/j.compag.2019.06.001_b0120 article-title: Low and high-level visual feature-based apple detection from multi-modal images[J] publication-title: Precision Agriculture doi: 10.1007/s11119-010-9198-x – year: 2012 ident: 10.1016/j.compag.2019.06.001_b0060 – volume: 6 start-page: 34 issue: 1 year: 2013 ident: 10.1016/j.compag.2019.06.001_b0050 article-title: Structural Environment Suited to the Operation of a Strawberry-harvesting Robot Mounted on a Travelling Platform[J] publication-title: Engineering in Agriculture, Environment and Food doi: 10.1016/S1881-8366(13)80015-8 – volume: 33 start-page: 219 issue: 15 year: 2017 ident: 10.1016/j.compag.2019.06.001_b0145 article-title: Classification and recognition approaches of tomato main organs based on DCNN[J] publication-title: Transactions of the Chinese Society of Agricultural Engineering – year: 2015 ident: 10.1016/j.compag.2019.06.001_b0085 article-title: Detecting citrus fruits and occlusion recovery under natural illumination conditions[M] publication-title: Elsevier Science Publishers B. – volume: 42 start-page: 155 issue: 9 year: 2011 ident: 10.1016/j.compag.2019.06.001_b9010 article-title: Design and experiment of picking mechanism for strawberry harvesting robot publication-title: Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. – year: 2017 ident: 10.1016/j.compag.2019.06.001_b0035 article-title: A Review on Deep Learning Techniques Applied to Semantic publication-title: Segmentation[J]. – volume: 7 start-page: 699 issue: 5 year: 2013 ident: 10.1016/j.compag.2019.06.001_b0015 article-title: Development of an expert system based on wavelet transform and artificial neural networks for the ripe tomato harvesting robot[J] publication-title: Australian Journal of Crop Science – volume: 31 start-page: 25 issue: 22 year: 2015 ident: 10.1016/j.compag.2019.06.001_b9005 article-title: Fruit localization for strawberry harvesting robot based on visual servoing publication-title: Trans. Chin. Soc. Agric. Eng. – year: 2018 ident: 10.1016/j.compag.2019.06.001_b0065 article-title: Mask R-CNN[J] publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2012 ident: 10.1016/j.compag.2019.06.001_b0095 – year: 2018 ident: 10.1016/j.compag.2019.06.001_b0030 article-title: Image recognition method of multi-cluster kiwifruit in field based on convolutional neural networks[J]. Transactions of the Chinese Society of publication-title: Agricultural Engineering – volume: 157 start-page: 417 year: 2019 ident: 10.1016/j.compag.2019.06.001_b0110 article-title: Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J] publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.01.012 – volume: 16 start-page: 1222- issue: 8 year: 2016 ident: 10.1016/j.compag.2019.06.001_b0055 article-title: DeepFruits: A Fruit Detection System Using Deep Neural Networks[J] publication-title: Sensors doi: 10.3390/s16081222 – ident: 10.1016/j.compag.2019.06.001_b0005 – volume: 127 start-page: 311 year: 2016 ident: 10.1016/j.compag.2019.06.001_b0140 article-title: A review of key techniques of vision-based control for harvesting robot[J] publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2016.06.022 – ident: 10.1016/j.compag.2019.06.001_b0100 – volume: 125 start-page: 5684 issue: 19 year: 2014 ident: 10.1016/j.compag.2019.06.001_b0125 article-title: Automatic method of fruit object extraction under complex agricultural background for vision system of fruit picking robot[J] publication-title: Optik - International Journal for Light and Electron Optics doi: 10.1016/j.ijleo.2014.07.001 |
SSID | ssj0016987 |
Score | 2.6801925 |
Snippet | •Proposed a strawberry fruit detection algorithm based on Mask R-CNN (MRSD), which has overcome the difficulties of poor universality and robustness using... Deep learning has demonstrated excellent capabilities for learning image features and is widely used in image object detection. In order to improve the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104846 |
SubjectTerms | Artificial neural networks computer vision Feature extraction Feature maps Fruit detection Fruits harvesting Image detection Image segmentation Instance segmentation lighting Localization method Machine learning Machine vision Mask-RCNN Non-structural environment Object recognition Performance enhancement Picking point prediction Robots Strawberries |
Title | Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN |
URI | https://dx.doi.org/10.1016/j.compag.2019.06.001 https://www.proquest.com/docview/2278892140 https://www.proquest.com/docview/2286859379 |
Volume | 163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1xfRPBa127SbHJcFpdVcQ8-wFtM02Rdla7UinjxtzvTtIsKInhsO2lDMp3MJN98Q8ghlq7iHYvgVtytyngWGevjSPiYxT5hKk0wUfhiJIY3_Ow2uZ0j_SYXBmGVte0PNr2y1vWddj2a7efJpH0FzoqMBfg3CpW0YvzkvItafvQxg3mAgAwp0wKiJZBu0ucqjFeF8x4jwEsdhVOJ35anH4a6Wn0GK2S5dhtpL_Rslcy5fI0s9cZFTZ3h1sndoHidlDRzZYWuyim4oxQ3Mt5SVxTv9N4UFaVGPqbFNJ2WdJJTiP2jwCCL7Bv0S9YbxeUto_CaC_PyGF32R6MNcjM4ue4Po7p-QmQ5Y2Ukk9RmEDnLTDhjOolXDsl5uMVCfBDW8cSKLPbcSebVMbccvBPuMy_i2DAnBdsk89APt0Vox0M7bzwEj4wfO6aMMtxwy2RXGeFVi7Bm2LStycWxxsWTblBkDzoMtsbB1gFM1yLRrNVzINf4Q77bzIj-piQa7P8fLXebCdT1T_qiMQtYqg6EmC1yMHsMvxeemZjcTV9RRgqkhOuq7X9_fIcs4lWADe6SeZhWtweuTJnuV7q6TxZ6p-fD0ScGJfO_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoAeEE81UMBIcNwmu_Y69oFD1TZKaZMDtFJvrtdrh1C0qTZbVb30T_UPMrOPCJBQJaRe14-1Zux52N_MAHyk0lUicQRupduqXOSRdSGOZIh5HFKus5QChSdTOT4RX07T0zW47WJhCFbZyv5GptfSuv3Sb6nZv5jP-9_QWFGxRPtG0yYddBWsD_31Ffpty88He8jkT0ky2j_eHUdtaYHICc6rSKWZy9GpVLn01iZp0J7y1ghHNerQ4xGpk3kchFc86IFwAhW3CHmQcWy5V5LjvA_goUBxQWUTtm9WuBJckWpitCW6Z7i8Ll6vBpXVwPIZIcr0dvMM8i99-JdmqNXd6Ck8ae1UttOQ4hms-eI5bOzMyjZXh38BZ6Pycl6x3Fc1nKtgaP8yujm5ynxZXrPvtqxzeBQzVi6yRcXmBSsWRdSkrKV0H-y3MDtG-jRnOM3ELs-jr7vT6Us4uReqvoJ1XIffBJYEHBdsQG-Vi4Hn2morrHBcDbWVQfeAd2Qzrs1mTkU1fpoOtvbDNMQ2RGzToPd6EK1GXTTZPO7oP-w4Yv7YlQYVzh0jtzoGmlYqLA2FHSudoE_bgw-rZjzP9EhjC7-4pD5KUg66oX793z9_D4_Gx5Mjc3QwPXwDj6mlwSxuwTqy2L9FO6rK3tX7lsHZfR-UXy3SLvA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fruit+detection+for+strawberry+harvesting+robot+in+non-structural+environment+based+on+Mask-RCNN&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Yu%2C+Yang&rft.au=Zhang%2C+Kailiang&rft.au=Yang%2C+Li&rft.au=Zhang%2C+Dongxing&rft.date=2019-08-01&rft.pub=Elsevier+BV&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=163&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compag.2019.06.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |