Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN

•Proposed a strawberry fruit detection algorithm based on Mask R-CNN (MRSD), which has overcome the difficulties of poor universality and robustness using traditional machine vision algorithms in non-structural environment.•ResNet-50, combined with the FPN architecture for feature extraction, had th...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 163; p. 104846
Main Authors Yu, Yang, Zhang, Kailiang, Yang, Li, Zhang, Dongxing
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.08.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Proposed a strawberry fruit detection algorithm based on Mask R-CNN (MRSD), which has overcome the difficulties of poor universality and robustness using traditional machine vision algorithms in non-structural environment.•ResNet-50, combined with the FPN architecture for feature extraction, had the best comprehensive performance of high speed and precision, and was thus chosen as the backbone network of the strawberry target detection model.•Instance segmentation image output from MRSD provides a powerful basis for locating the picking point of strawberry fruit, which is convenient for the precise operation of the harvesting robot. Deep learning has demonstrated excellent capabilities for learning image features and is widely used in image object detection. In order to improve the performance of machine vision in fruit detection for a strawberry harvesting robot, Mask Region Convolutional Neural Network (Mask-RCNN) was introduced. Resnet50 was adopted as backbone network, combined with the Feature Pyramid Network (FPN) architecture for feature extraction. The Region Proposal Network (RPN) was trained end-to-end to create region proposals for each feature map. After generating mask images of ripe fruits from Mask R-CNN, a visual localization method for strawberry picking points was performed. Fruit detection results of 100 test images showed that the average detection precision rate was 95.78%, the recall rate was 95.41% and the mean intersection over union (MIoU) rate for instance segmentation was 89.85%. The prediction results of 573 ripe fruit picking points showed that the average error was ±1.2 mm. Compared with four traditional methods, the method proposed demonstrates improved universality and robustness in a non-structural environment, particularly for overlapping and hidden fruits, and those under varying illumination.
AbstractList Deep learning has demonstrated excellent capabilities for learning image features and is widely used in image object detection. In order to improve the performance of machine vision in fruit detection for a strawberry harvesting robot, Mask Region Convolutional Neural Network (Mask-RCNN) was introduced. Resnet50 was adopted as backbone network, combined with the Feature Pyramid Network (FPN) architecture for feature extraction. The Region Proposal Network (RPN) was trained end-to-end to create region proposals for each feature map. After generating mask images of ripe fruits from Mask R-CNN, a visual localization method for strawberry picking points was performed. Fruit detection results of 100 test images showed that the average detection precision rate was 95.78%, the recall rate was 95.41% and the mean intersection over union (MIoU) rate for instance segmentation was 89.85%. The prediction results of 573 ripe fruit picking points showed that the average error was ±1.2 mm. Compared with four traditional methods, the method proposed demonstrates improved universality and robustness in a non-structural environment, particularly for overlapping and hidden fruits, and those under varying illumination.
•Proposed a strawberry fruit detection algorithm based on Mask R-CNN (MRSD), which has overcome the difficulties of poor universality and robustness using traditional machine vision algorithms in non-structural environment.•ResNet-50, combined with the FPN architecture for feature extraction, had the best comprehensive performance of high speed and precision, and was thus chosen as the backbone network of the strawberry target detection model.•Instance segmentation image output from MRSD provides a powerful basis for locating the picking point of strawberry fruit, which is convenient for the precise operation of the harvesting robot. Deep learning has demonstrated excellent capabilities for learning image features and is widely used in image object detection. In order to improve the performance of machine vision in fruit detection for a strawberry harvesting robot, Mask Region Convolutional Neural Network (Mask-RCNN) was introduced. Resnet50 was adopted as backbone network, combined with the Feature Pyramid Network (FPN) architecture for feature extraction. The Region Proposal Network (RPN) was trained end-to-end to create region proposals for each feature map. After generating mask images of ripe fruits from Mask R-CNN, a visual localization method for strawberry picking points was performed. Fruit detection results of 100 test images showed that the average detection precision rate was 95.78%, the recall rate was 95.41% and the mean intersection over union (MIoU) rate for instance segmentation was 89.85%. The prediction results of 573 ripe fruit picking points showed that the average error was ±1.2 mm. Compared with four traditional methods, the method proposed demonstrates improved universality and robustness in a non-structural environment, particularly for overlapping and hidden fruits, and those under varying illumination.
ArticleNumber 104846
Author Yang, Li
Yu, Yang
Zhang, Dongxing
Zhang, Kailiang
Author_xml – sequence: 1
  givenname: Yang
  surname: Yu
  fullname: Yu, Yang
– sequence: 2
  givenname: Kailiang
  surname: Zhang
  fullname: Zhang, Kailiang
  email: zhang_kailiang@cau.edu.cn
– sequence: 3
  givenname: Li
  surname: Yang
  fullname: Yang, Li
– sequence: 4
  givenname: Dongxing
  surname: Zhang
  fullname: Zhang, Dongxing
BookMark eNqFkcFO3DAQhi1EpS60b9CDpV56SWonXsfmgIRWpVSiICE4u44zAW-z9jJ2tuLt8Wp74tCe5vL9v2c-n5DjEAMQ8omzmjMuv65rFzdb-1g3jOuayZoxfkQWXHVN1XHWHZNFwVTFpdbvyUlK6wJIrboF-XWJs890gAwu-xjoGJGmjPZPD4gv9MniDlL24ZFi7GOmPtDyelWQ2eUZ7UQh7DzGsIGQaW8TDLTU_LTpd3W3urn5QN6Ndkrw8e88JQ-X3-5XV9X17fcfq4vryom2zZVa9m6AvlGDBGub5aiB6a4VjpUrmBZi6eTARwGqHTUTTkjRinEYJee2BSXbU_Ll0LvF-DyXlc3GJwfTZAPEOZmmUVItddvpgn5-g67jjKFsV6hOKd1wwQp1dqAcxpQQRuN8tntHxY6fDGdmL9-szUG-2cs3TJritoTFm_AW_cbiy_9i54cYFFM7D2iS8xAcDB7L_5gh-n8XvAKGeKMa
CitedBy_id crossref_primary_10_1007_s00530_022_00990_y
crossref_primary_10_1016_j_compag_2024_108727
crossref_primary_10_3390_app13116751
crossref_primary_10_1111_jfr3_12718
crossref_primary_10_1109_JSEN_2024_3362996
crossref_primary_10_1111_tpj_15553
crossref_primary_10_1109_ACCESS_2020_3039345
crossref_primary_10_3390_agronomy12061336
crossref_primary_10_3390_agronomy13010196
crossref_primary_10_3390_agronomy14081808
crossref_primary_10_3390_s19204599
crossref_primary_10_1016_j_compag_2022_107197
crossref_primary_10_1016_j_atech_2024_100454
crossref_primary_10_1016_j_compag_2021_106140
crossref_primary_10_1109_ACCESS_2020_3003034
crossref_primary_10_3389_fpls_2024_1298791
crossref_primary_10_1002_rse2_382
crossref_primary_10_1016_j_measurement_2025_116807
crossref_primary_10_1016_j_biosystemseng_2020_03_008
crossref_primary_10_1016_j_scienta_2024_113091
crossref_primary_10_1016_j_tifs_2024_104730
crossref_primary_10_1016_j_engappai_2023_107580
crossref_primary_10_1016_j_compag_2024_109492
crossref_primary_10_3390_agronomy11112353
crossref_primary_10_1016_j_compag_2024_109013
crossref_primary_10_3390_app14167195
crossref_primary_10_3390_agriculture14050751
crossref_primary_10_1016_j_mlwa_2021_100233
crossref_primary_10_3390_f13122032
crossref_primary_10_1016_j_compag_2021_106149
crossref_primary_10_1016_j_compag_2023_108447
crossref_primary_10_1088_1742_6596_1748_4_042011
crossref_primary_10_3389_fpls_2023_1211830
crossref_primary_10_3389_fpls_2024_1423338
crossref_primary_10_1016_j_compag_2022_106789
crossref_primary_10_1016_j_compag_2021_106398
crossref_primary_10_1007_s11694_024_03001_y
crossref_primary_10_3390_agriculture11111059
crossref_primary_10_3390_f16010167
crossref_primary_10_3390_agronomy12081875
crossref_primary_10_1111_exsy_13543
crossref_primary_10_3389_fpls_2024_1491706
crossref_primary_10_1155_2021_9934250
crossref_primary_10_1088_1361_6463_ad11bb
crossref_primary_10_1016_j_biosystemseng_2020_07_007
crossref_primary_10_1016_j_mtcomm_2023_106269
crossref_primary_10_3390_agronomy14010034
crossref_primary_10_3390_s20195670
crossref_primary_10_1007_s10015_024_00971_6
crossref_primary_10_1016_j_biosystemseng_2023_09_014
crossref_primary_10_1016_j_aiia_2020_04_003
crossref_primary_10_3390_rs13030531
crossref_primary_10_3390_agronomy15040809
crossref_primary_10_1016_j_compag_2024_108833
crossref_primary_10_1016_j_compag_2024_108832
crossref_primary_10_1007_s10044_024_01222_x
crossref_primary_10_1016_j_compag_2024_108748
crossref_primary_10_1016_j_scienta_2023_111893
crossref_primary_10_3390_app10041250
crossref_primary_10_3389_fpls_2024_1415006
crossref_primary_10_1016_j_compag_2022_107057
crossref_primary_10_1007_s11694_024_02466_1
crossref_primary_10_3390_agriculture13020473
crossref_primary_10_1007_s11042_023_14962_5
crossref_primary_10_1142_S0218001424570076
crossref_primary_10_3390_app13106296
crossref_primary_10_1016_j_biosystemseng_2022_07_009
crossref_primary_10_3390_plants12142647
crossref_primary_10_1038_s41598_022_05455_w
crossref_primary_10_3390_agriculture14050774
crossref_primary_10_1145_3587466
crossref_primary_10_1016_j_compeleceng_2022_107871
crossref_primary_10_4081_jae_2023_1301
crossref_primary_10_1016_j_jobe_2020_101637
crossref_primary_10_1080_03772063_2023_2176367
crossref_primary_10_1155_2022_9210947
crossref_primary_10_1002_rob_22230
crossref_primary_10_1016_j_ifacol_2022_11_110
crossref_primary_10_1002_rob_22472
crossref_primary_10_1007_s11119_020_09754_y
crossref_primary_10_1007_s11119_022_09981_5
crossref_primary_10_1016_j_atech_2022_100129
crossref_primary_10_1177_0887302X211004299
crossref_primary_10_1016_j_ifacol_2022_11_109
crossref_primary_10_1002_rob_22229
crossref_primary_10_1016_j_atech_2024_100687
crossref_primary_10_1007_s11042_022_11905_4
crossref_primary_10_1016_j_compag_2023_107909
crossref_primary_10_3389_fmtec_2023_1282843
crossref_primary_10_3390_agriengineering4030043
crossref_primary_10_1016_j_asoc_2025_112971
crossref_primary_10_1109_ACCESS_2024_3356118
crossref_primary_10_1016_j_atech_2024_100448
crossref_primary_10_3389_fsufs_2021_642786
crossref_primary_10_1016_j_compag_2020_105905
crossref_primary_10_1016_j_ecoinf_2022_101886
crossref_primary_10_1088_2631_8695_adb00f
crossref_primary_10_1007_s00542_020_05123_x
crossref_primary_10_3390_app11052238
crossref_primary_10_1016_j_compag_2020_105345
crossref_primary_10_1016_j_compag_2023_108313
crossref_primary_10_1016_j_postharvbio_2023_112587
crossref_primary_10_1016_j_heliyon_2023_e13213
crossref_primary_10_1016_j_compag_2022_106984
crossref_primary_10_3390_agronomy13061625
crossref_primary_10_3390_agriengineering6020055
crossref_primary_10_48084_etasr_7945
crossref_primary_10_1016_j_compag_2021_106066
crossref_primary_10_1016_j_compag_2022_107034
crossref_primary_10_1016_j_ecoinf_2021_101516
crossref_primary_10_3389_fcomp_2024_1480481
crossref_primary_10_1080_10298436_2021_1877704
crossref_primary_10_3390_s23083810
crossref_primary_10_3390_s20010275
crossref_primary_10_3390_agronomy12020391
crossref_primary_10_1016_j_energy_2024_132559
crossref_primary_10_3390_su12219138
crossref_primary_10_1007_s12393_023_09353_3
crossref_primary_10_1109_ACCESS_2021_3113509
crossref_primary_10_3390_plants13223253
crossref_primary_10_1016_j_jksuci_2023_101749
crossref_primary_10_3389_fpls_2022_868745
crossref_primary_10_7717_peerj_cs_1995
crossref_primary_10_1016_j_eswa_2021_116205
crossref_primary_10_1109_ACCESS_2019_2933062
crossref_primary_10_1007_s11760_020_01841_x
crossref_primary_10_1016_j_aiia_2025_01_008
crossref_primary_10_1109_JPHOTOV_2020_2992339
crossref_primary_10_3390_agriculture13102040
crossref_primary_10_3390_s24072283
crossref_primary_10_1016_j_compag_2020_105933
crossref_primary_10_3233_JIFS_222954
crossref_primary_10_1109_ACCESS_2019_2962513
crossref_primary_10_3390_agriculture14040624
crossref_primary_10_1016_j_compag_2022_107389
crossref_primary_10_1109_TMECH_2023_3313693
crossref_primary_10_3390_s22020414
crossref_primary_10_1016_j_measurement_2023_113467
crossref_primary_10_1016_j_inpa_2021_12_004
crossref_primary_10_3390_app122211318
crossref_primary_10_3390_agronomy10070972
crossref_primary_10_1002_rob_22207
crossref_primary_10_3390_agronomy13092237
crossref_primary_10_3390_agronomy12112812
crossref_primary_10_3390_agriculture14111985
crossref_primary_10_1016_j_compag_2025_110177
crossref_primary_10_3390_systems11060267
crossref_primary_10_1016_j_compag_2023_107682
crossref_primary_10_1016_j_compag_2025_110173
crossref_primary_10_1007_s00521_021_06131_2
crossref_primary_10_1016_j_compag_2022_106738
crossref_primary_10_3390_agronomy14102233
crossref_primary_10_2166_hydro_2021_156
crossref_primary_10_3390_app13074160
crossref_primary_10_3390_s21237842
crossref_primary_10_34133_plantphenomics_0088
crossref_primary_10_1016_j_aiia_2023_08_004
crossref_primary_10_1016_j_compag_2024_108911
crossref_primary_10_1016_j_scitotenv_2024_170375
crossref_primary_10_1016_j_isprsjprs_2020_07_011
crossref_primary_10_3389_fpls_2021_791256
crossref_primary_10_1016_j_compag_2020_105277
crossref_primary_10_3390_agriculture14091646
crossref_primary_10_3390_agronomy10071016
crossref_primary_10_1016_j_cja_2020_09_024
crossref_primary_10_1186_s40648_022_00230_y
crossref_primary_10_3390_agriculture13020392
crossref_primary_10_1016_j_ifacol_2019_12_500
crossref_primary_10_1109_ACCESS_2020_3008943
crossref_primary_10_3390_app122211441
crossref_primary_10_3390_sym16040451
crossref_primary_10_34133_plantphenomics_0194
crossref_primary_10_3389_fpls_2021_740936
crossref_primary_10_3390_f14112261
crossref_primary_10_1007_s11119_021_09806_x
crossref_primary_10_1007_s00521_021_06029_z
crossref_primary_10_1007_s11119_023_10009_9
crossref_primary_10_1016_j_compag_2024_109118
crossref_primary_10_1109_ACCESS_2019_2946369
crossref_primary_10_3390_agriculture14060903
crossref_primary_10_1007_s11760_024_03346_3
crossref_primary_10_1515_ijfe_2022_0302
crossref_primary_10_3390_agriculture14081390
crossref_primary_10_3390_agronomy10111648
crossref_primary_10_1007_s00371_024_03593_y
crossref_primary_10_1007_s10846_022_01595_3
crossref_primary_10_3390_agriculture14101725
crossref_primary_10_1016_j_biosystemseng_2022_08_013
crossref_primary_10_1016_j_compag_2020_105380
crossref_primary_10_1016_j_powtec_2024_119608
crossref_primary_10_17341_gazimmfd_774200
crossref_primary_10_3390_electronics13163103
crossref_primary_10_3390_s22114187
crossref_primary_10_1016_j_compag_2020_105827
crossref_primary_10_3390_agriculture14060918
crossref_primary_10_3390_agronomy12112836
crossref_primary_10_1016_j_eswa_2022_118837
crossref_primary_10_1016_j_biosystemseng_2021_06_001
crossref_primary_10_3390_agronomy12102482
crossref_primary_10_1016_j_compag_2024_109468
crossref_primary_10_1145_3626186
crossref_primary_10_1109_ACCESS_2023_3341928
crossref_primary_10_1016_j_compag_2022_106716
crossref_primary_10_3389_fpls_2024_1407839
crossref_primary_10_3390_app13137405
crossref_primary_10_1109_ACCESS_2024_3479748
crossref_primary_10_3390_su15054329
crossref_primary_10_1049_ipr2_12331
crossref_primary_10_3390_agronomy11122440
crossref_primary_10_1016_j_compag_2023_107759
crossref_primary_10_3390_app10103443
crossref_primary_10_1109_ACCESS_2019_2942144
crossref_primary_10_1016_j_compag_2022_107233
crossref_primary_10_1016_j_compind_2024_104231
crossref_primary_10_1109_ACCESS_2025_3537664
crossref_primary_10_1007_s12541_023_00911_7
crossref_primary_10_1016_j_ecoinf_2023_102409
crossref_primary_10_3390_foods13071060
crossref_primary_10_1007_s11119_023_10000_4
crossref_primary_10_3390_ani10101762
crossref_primary_10_1007_s11119_023_10085_x
crossref_primary_10_1007_s11760_024_03691_3
crossref_primary_10_3390_app12105004
crossref_primary_10_3389_fpls_2024_1455687
crossref_primary_10_3390_app13137731
crossref_primary_10_1016_j_procs_2023_10_641
crossref_primary_10_3390_agriculture13091814
crossref_primary_10_1016_j_compag_2024_109654
crossref_primary_10_1016_j_compag_2020_105736
crossref_primary_10_1016_j_compag_2023_107635
crossref_primary_10_3390_s22228918
crossref_primary_10_1007_s10278_021_00452_3
crossref_primary_10_1016_j_aiia_2023_12_002
crossref_primary_10_3390_electronics12143145
crossref_primary_10_1109_ACCESS_2020_2984556
crossref_primary_10_3390_agronomy13092435
crossref_primary_10_1002_arp_1806
crossref_primary_10_1007_s11119_024_10169_2
crossref_primary_10_3390_diagnostics14212346
crossref_primary_10_32604_cmc_2023_046876
crossref_primary_10_3390_agronomy12071520
crossref_primary_10_1016_j_compag_2024_109880
crossref_primary_10_1016_j_compag_2023_108298
crossref_primary_10_1016_j_compag_2020_105964
crossref_primary_10_37882_2223_2966_2021_04_03
crossref_primary_10_3390_rs14143362
crossref_primary_10_1016_j_engappai_2022_105810
crossref_primary_10_1109_ACCESS_2020_2987932
crossref_primary_10_1038_s41438_021_00560_9
crossref_primary_10_3390_agriculture14091569
crossref_primary_10_3389_frobt_2021_626989
crossref_primary_10_1016_j_compag_2025_110269
crossref_primary_10_1109_ACCESS_2020_3006843
crossref_primary_10_34133_plantphenomics_0030
crossref_primary_10_1109_ACCESS_2022_3149297
crossref_primary_10_7717_peerj_cs_646
crossref_primary_10_1002_rob_22074
crossref_primary_10_1016_j_surfcoat_2021_127571
crossref_primary_10_1109_ACCESS_2024_3485490
crossref_primary_10_1002_jsfa_13684
crossref_primary_10_1007_s40747_023_01291_1
crossref_primary_10_1016_j_compag_2022_107217
crossref_primary_10_3390_agriculture12070931
crossref_primary_10_1016_j_compag_2021_106451
crossref_primary_10_3389_fpls_2023_1260808
crossref_primary_10_1007_s00521_022_07744_x
crossref_primary_10_1002_stc_2742
crossref_primary_10_1007_s00371_022_02666_0
crossref_primary_10_1080_19392699_2022_2122453
crossref_primary_10_1109_ACCESS_2020_2972562
crossref_primary_10_1016_j_compag_2020_105508
crossref_primary_10_1080_10942912_2022_2158863
crossref_primary_10_1007_s11119_023_10095_9
crossref_primary_10_1109_ACCESS_2020_2973658
crossref_primary_10_3390_agronomy14061325
crossref_primary_10_1007_s12065_021_00595_w
crossref_primary_10_3390_s21082689
crossref_primary_10_1007_s11119_022_09974_4
crossref_primary_10_3390_s21103389
crossref_primary_10_1002_ppj2_20065
crossref_primary_10_3389_fpls_2022_1074360
crossref_primary_10_1016_j_isprsjprs_2022_11_006
crossref_primary_10_1109_TCBB_2021_3138304
crossref_primary_10_1016_j_jobe_2020_101921
crossref_primary_10_1016_j_compag_2023_107834
crossref_primary_10_1016_j_procs_2023_01_113
crossref_primary_10_1155_2021_5541665
crossref_primary_10_1109_JSEN_2021_3100636
crossref_primary_10_3390_s22176473
crossref_primary_10_1002_ppp3_10275
crossref_primary_10_1109_TRO_2024_3372778
crossref_primary_10_1016_j_compag_2021_106220
crossref_primary_10_3390_app14093716
crossref_primary_10_1016_j_atech_2024_100538
crossref_primary_10_1016_j_compag_2024_109175
crossref_primary_10_32604_phyton_2024_046331
crossref_primary_10_3389_fpls_2021_591333
crossref_primary_10_1109_ACCESS_2020_3029215
crossref_primary_10_3390_agriengineering5040136
crossref_primary_10_1016_j_compag_2023_108362
crossref_primary_10_3390_machines9030066
crossref_primary_10_1016_j_jia_2022_09_004
crossref_primary_10_1016_j_marenvres_2022_105829
crossref_primary_10_3390_agronomy12020425
crossref_primary_10_1016_j_compag_2023_108369
crossref_primary_10_1016_j_compag_2024_109736
crossref_primary_10_1177_14759217211010238
crossref_primary_10_3390_rs13214486
crossref_primary_10_1016_j_compag_2024_109614
crossref_primary_10_3390_data7100135
crossref_primary_10_3390_rs13010039
crossref_primary_10_3390_agriculture14010036
crossref_primary_10_3390_s23125425
crossref_primary_10_1016_j_compag_2022_106694
crossref_primary_10_1016_j_eswa_2024_125426
crossref_primary_10_3389_fpls_2022_1038000
crossref_primary_10_3390_info11050259
crossref_primary_10_3390_rs14236137
crossref_primary_10_1038_s41438_021_00553_8
crossref_primary_10_3389_fpls_2023_1108560
crossref_primary_10_1016_j_jag_2022_102764
crossref_primary_10_1016_j_eswa_2022_118573
crossref_primary_10_1016_j_compag_2024_109164
crossref_primary_10_3390_jimaging10080197
crossref_primary_10_1111_1750_3841_17593
crossref_primary_10_22314_2658_4859_2020_67_2_107_114
crossref_primary_10_1007_s00521_022_07475_z
crossref_primary_10_1016_j_compag_2023_108132
crossref_primary_10_1080_22797254_2023_2186955
crossref_primary_10_1016_j_conbuildmat_2021_125987
crossref_primary_10_1016_j_chemolab_2024_105066
crossref_primary_10_1016_j_compag_2023_107961
crossref_primary_10_1016_j_compag_2021_106479
crossref_primary_10_3390_rs13010026
crossref_primary_10_1007_s11042_022_12940_x
crossref_primary_10_3389_fpls_2022_889853
crossref_primary_10_1109_ACCESS_2022_3220234
crossref_primary_10_3390_su141811729
crossref_primary_10_1016_j_compag_2021_106123
crossref_primary_10_3390_rs12071074
crossref_primary_10_1016_j_sciaf_2023_e01798
crossref_primary_10_3389_fpls_2022_955256
crossref_primary_10_3390_su15086898
crossref_primary_10_1016_j_aiia_2024_07_001
crossref_primary_10_3390_agronomy12071638
crossref_primary_10_1108_IR_01_2024_0009
crossref_primary_10_1038_s41598_023_50129_w
crossref_primary_10_1109_ACCESS_2020_2964055
crossref_primary_10_1109_ACCESS_2020_3000175
crossref_primary_10_3390_app14156403
crossref_primary_10_3390_rs11212546
crossref_primary_10_35633_inmateh_66_03
crossref_primary_10_1016_j_artmed_2020_101792
crossref_primary_10_1016_j_ejrs_2022_03_017
crossref_primary_10_1016_j_jag_2023_103457
crossref_primary_10_1016_j_engappai_2022_105325
crossref_primary_10_1038_s41598_022_06181_z
crossref_primary_10_1109_TAFE_2024_3405179
crossref_primary_10_1177_09544062221128443
crossref_primary_10_3390_horticulturae9040498
crossref_primary_10_1002_rob_21975
crossref_primary_10_1016_j_atech_2024_100643
crossref_primary_10_1016_j_engappai_2021_104615
crossref_primary_10_3390_plants12152883
crossref_primary_10_1109_ACCESS_2020_3038184
crossref_primary_10_1007_s11119_021_09846_3
crossref_primary_10_3389_fpls_2024_1460060
crossref_primary_10_34133_2022_9850486
crossref_primary_10_3390_agriculture14122126
crossref_primary_10_1186_s13007_021_00787_6
crossref_primary_10_1007_s11694_021_01074_7
crossref_primary_10_3390_app14104213
crossref_primary_10_1016_j_compag_2024_108895
crossref_primary_10_1016_j_compag_2019_105108
crossref_primary_10_1016_j_compag_2020_105302
crossref_primary_10_3390_agriculture12122039
crossref_primary_10_1016_j_heliyon_2024_e35167
crossref_primary_10_1016_j_compag_2023_108116
crossref_primary_10_3389_fpls_2024_1389961
crossref_primary_10_1155_2022_2845320
Cites_doi 10.1002/rob.21525
10.3182/20101206-3-JP-3009.00016
10.1016/j.compag.2011.11.007
10.6090/jarq.48.307
10.1117/12.2228511
10.1016/j.compag.2018.02.016
10.1016/j.compind.2018.03.010
10.1016/j.compag.2018.11.002
10.1007/s11119-010-9198-x
10.1016/S1881-8366(13)80015-8
10.1016/j.compag.2019.01.012
10.3390/s16081222
10.1016/j.compag.2016.06.022
10.1016/j.ijleo.2014.07.001
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Aug 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 2019
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2019.06.001
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2019_06_001
S0168169919301103
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7SC
7SP
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c433t-85bcdeb28d6eaa25f9e09734c018709445c6d1f4e83f904c46434fdf611a3e863
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Mon Jul 21 11:27:21 EDT 2025
Mon Jul 14 06:58:57 EDT 2025
Tue Jul 01 01:58:15 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Fri Feb 23 02:17:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Instance segmentation
Mask-RCNN
Fruit detection
Picking point
Non-structural environment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-85bcdeb28d6eaa25f9e09734c018709445c6d1f4e83f904c46434fdf611a3e863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2278892140
PQPubID 2045491
ParticipantIDs proquest_miscellaneous_2286859379
proquest_journals_2278892140
crossref_citationtrail_10_1016_j_compag_2019_06_001
crossref_primary_10_1016_j_compag_2019_06_001
elsevier_sciencedirect_doi_10_1016_j_compag_2019_06_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Jiang, Zhao (b0060) 2012
Lu (b0085) 2015
Inkyu, Zongyuan, Feras (b0055) 2016; 16
Linker, Cohen, Naor (b0075) 2012; 81
Garcia-Garcia, Orts-Escolano, Oprea (b0035) 2017
Hayashi, Yamamoto, Saito (b0050) 2013; 6
Wang, Zhang, Duan (b9005) 2015; 31
Wei, Jia, Lan (b0125) 2014; 125
Yamamoto, Hayashi, Saito (b0130) 2010; 43
Fu, Feng, Elkamil (b0030) 2018
Qingchun F, Xiu W, Wengang Z, et al. A new strawberry harvesting robot for elevated-trough culture[J]. International Journal of Agricultural and Biological Engineering, 2012 Vol. 5 No. 2 pp. 1-8, 2012:1-8.
Zhou, Xu, Zheng (b0145) 2017; 33
Kailiang (b9000) 2012; 43
Lin, Maire, Belongie, Microsoft (b0080) 2014
Kamilaris, Prenafeta-Boldu (b0070) 2018
Rizon M, Yusri N A N, Kadir M F A, et al. Determination of mango fruit from binary image using randomized Hough transform[C]// Eighth International Conference on Machine Vision (ICMV 2015). International Society for Optics and Photonics, 2015.
Zhang, Yang, Zhang (b9010) 2011; 42
Qingchun, Wengang, Quan (b0095) 2012
Arefi, Motlagh (b0015) 2013; 7
Tian, Yang, Wang (b0110) 2019; 157
Ouyang, Li, Wang (b0090) 2012
Dias, Tabb, Medeiros (b0025) 2018; 99
Bac, Van Henten, Hemming (b0020) 2014; 31
Hayashi, Yamamoto, Saito (b0045) 2014; 48
Wachs, Stern, Burks (b0120) 2010; 11
AGROBOT, http://www.agrobot.com/products.html, 10.03.2017.
Kaiming, Georgia, Piotr (b0065) 2018
Yang, Xiao, Lin (b0135) 2018; 155
Arefi, Motlagh, Mollazade (b0010) 2011; 5
Zhao, Gong, Huang (b0140) 2016; 127
Hayashi (10.1016/j.compag.2019.06.001_b0045) 2014; 48
Bac (10.1016/j.compag.2019.06.001_b0020) 2014; 31
Zhao (10.1016/j.compag.2019.06.001_b0140) 2016; 127
Arefi (10.1016/j.compag.2019.06.001_b0010) 2011; 5
Ouyang (10.1016/j.compag.2019.06.001_b0090) 2012
Zhou (10.1016/j.compag.2019.06.001_b0145) 2017; 33
Wachs (10.1016/j.compag.2019.06.001_b0120) 2010; 11
Zhang (10.1016/j.compag.2019.06.001_b9010) 2011; 42
10.1016/j.compag.2019.06.001_b0100
Tian (10.1016/j.compag.2019.06.001_b0110) 2019; 157
Yamamoto (10.1016/j.compag.2019.06.001_b0130) 2010; 43
Dias (10.1016/j.compag.2019.06.001_b0025) 2018; 99
Fu (10.1016/j.compag.2019.06.001_b0030) 2018
Kamilaris (10.1016/j.compag.2019.06.001_b0070) 2018
10.1016/j.compag.2019.06.001_b0105
10.1016/j.compag.2019.06.001_b0005
Arefi (10.1016/j.compag.2019.06.001_b0015) 2013; 7
Wang (10.1016/j.compag.2019.06.001_b9005) 2015; 31
Linker (10.1016/j.compag.2019.06.001_b0075) 2012; 81
Kailiang (10.1016/j.compag.2019.06.001_b9000) 2012; 43
Garcia-Garcia (10.1016/j.compag.2019.06.001_b0035) 2017
Kaiming (10.1016/j.compag.2019.06.001_b0065) 2018
Lin (10.1016/j.compag.2019.06.001_b0080) 2014
Hayashi (10.1016/j.compag.2019.06.001_b0050) 2013; 6
Inkyu (10.1016/j.compag.2019.06.001_b0055) 2016; 16
Qingchun (10.1016/j.compag.2019.06.001_b0095) 2012
Wei (10.1016/j.compag.2019.06.001_b0125) 2014; 125
Lu (10.1016/j.compag.2019.06.001_b0085) 2015
Jiang (10.1016/j.compag.2019.06.001_b0060) 2012
Yang (10.1016/j.compag.2019.06.001_b0135) 2018; 155
References_xml – volume: 48
  start-page: 307
  year: 2014
  end-page: 316
  ident: b0045
  article-title: Field Operation of a Movable Strawberry-harvesting Robot using a Travel Platform[J]
  publication-title: Japan Agricultural Research Quarterly: JARQ
– reference: Qingchun F, Xiu W, Wengang Z, et al. A new strawberry harvesting robot for elevated-trough culture[J]. International Journal of Agricultural and Biological Engineering, 2012 Vol. 5 No. 2 pp. 1-8, 2012:1-8.
– volume: 11
  start-page: 717
  year: 2010
  end-page: 735
  ident: b0120
  article-title: Low and high-level visual feature-based apple detection from multi-modal images[J]
  publication-title: Precision Agriculture
– year: 2018
  ident: b0070
  article-title: Deep learning in agriculture: A survey[J]
  publication-title: Computers and Electronics in Agriculture
– volume: 7
  start-page: 699
  year: 2013
  end-page: 705
  ident: b0015
  article-title: Development of an expert system based on wavelet transform and artificial neural networks for the ripe tomato harvesting robot[J]
  publication-title: Australian Journal of Crop Science
– volume: 31
  start-page: 25
  year: 2015
  end-page: 31
  ident: b9005
  article-title: Fruit localization for strawberry harvesting robot based on visual servoing
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 155
  start-page: 453
  year: 2018
  end-page: 460
  ident: b0135
  article-title: Feeding behavior recognition for group-housed pigs with the Faster R-CNN[J]
  publication-title: Computers and Electronics in Agriculture
– reference: Rizon M, Yusri N A N, Kadir M F A, et al. Determination of mango fruit from binary image using randomized Hough transform[C]// Eighth International Conference on Machine Vision (ICMV 2015). International Society for Optics and Photonics, 2015.
– volume: 157
  start-page: 417
  year: 2019
  end-page: 426
  ident: b0110
  article-title: Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]
  publication-title: Computers and Electronics in Agriculture
– volume: 5
  start-page: 1144
  year: 2011
  end-page: 1149
  ident: b0010
  article-title: Recognition and localization of ripen tomato based on machine vision[J]
  publication-title: Australian Journal of Crop Science
– volume: 31
  start-page: 888
  year: 2014
  end-page: 911
  ident: b0020
  article-title: Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead[J]
  publication-title: Journal of Field Robotics
– volume: 125
  start-page: 5684
  year: 2014
  end-page: 5689
  ident: b0125
  article-title: Automatic method of fruit object extraction under complex agricultural background for vision system of fruit picking robot[J]
  publication-title: Optik - International Journal for Light and Electron Optics
– volume: 127
  start-page: 311
  year: 2016
  end-page: 323
  ident: b0140
  article-title: A review of key techniques of vision-based control for harvesting robot[J]
  publication-title: Computers and Electronics in Agriculture
– volume: 99
  start-page: 17
  year: 2018
  end-page: 28
  ident: b0025
  article-title: Apple flower detection using deep convolutional networks[J]
  publication-title: Computers in Industry
– year: 2014
  ident: b0080
  article-title: Common Objects in
  publication-title: Context[J].
– volume: 43
  start-page: 95
  year: 2010
  end-page: 100
  ident: b0130
  article-title: Development of Robotic Strawberry Harvester to Approach Target Fruit from Hanging Bench Side[J]
  publication-title: IFAC Proceedings Volumes
– volume: 43
  start-page: 165
  year: 2012
  end-page: 172
  ident: b9000
  article-title: Design and experiment of elevated substrate culture strawberry picking robot
  publication-title: Trans. Chin. Soc. Agric. Mach.
– year: 2017
  ident: b0035
  article-title: A Review on Deep Learning Techniques Applied to Semantic
  publication-title: Segmentation[J].
– volume: 81
  start-page: 45
  year: 2012
  end-page: 57
  ident: b0075
  article-title: Determination of the number of green apples in RGB images recorded in orchards[J]
  publication-title: Computers and Electronics in Agriculture
– year: 2015
  ident: b0085
  article-title: Detecting citrus fruits and occlusion recovery under natural illumination conditions[M]
  publication-title: Elsevier Science Publishers B.
– year: 2018
  ident: b0065
  article-title: Mask R-CNN[J]
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 6
  start-page: 34
  year: 2013
  end-page: 40
  ident: b0050
  article-title: Structural Environment Suited to the Operation of a Strawberry-harvesting Robot Mounted on a Travelling Platform[J]
  publication-title: Engineering in Agriculture, Environment and Food
– volume: 42
  start-page: 155
  year: 2011
  end-page: 161
  ident: b9010
  article-title: Design and experiment of picking mechanism for strawberry harvesting robot
  publication-title: Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach.
– year: 2018
  ident: b0030
  article-title: Image recognition method of multi-cluster kiwifruit in field based on convolutional neural networks[J]. Transactions of the Chinese Society of
  publication-title: Agricultural Engineering
– year: 2012
  ident: b0090
  article-title: The research of the strawberry disease identification based on image processing and pattern recognition[C]// International Conference on Computer & Computing Technologies in Agriculture
– year: 2012
  ident: b0095
  article-title: Study on strawberry robotic harvesting system[C]//
– volume: 16
  start-page: 1222-
  year: 2016
  ident: b0055
  article-title: DeepFruits: A Fruit Detection System Using Deep Neural Networks[J]
  publication-title: Sensors
– year: 2012
  ident: b0060
  article-title: Apple recognition based on machine
– reference: AGROBOT, http://www.agrobot.com/products.html, 10.03.2017.
– volume: 33
  start-page: 219
  year: 2017
  end-page: 226
  ident: b0145
  article-title: Classification and recognition approaches of tomato main organs based on DCNN[J]
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 31
  start-page: 888
  issue: 6
  year: 2014
  ident: 10.1016/j.compag.2019.06.001_b0020
  article-title: Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead[J]
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21525
– volume: 43
  start-page: 95
  issue: 26
  year: 2010
  ident: 10.1016/j.compag.2019.06.001_b0130
  article-title: Development of Robotic Strawberry Harvester to Approach Target Fruit from Hanging Bench Side[J]
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20101206-3-JP-3009.00016
– year: 2014
  ident: 10.1016/j.compag.2019.06.001_b0080
  article-title: Common Objects in
  publication-title: Context[J].
– volume: 81
  start-page: 45
  issue: 1
  year: 2012
  ident: 10.1016/j.compag.2019.06.001_b0075
  article-title: Determination of the number of green apples in RGB images recorded in orchards[J]
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2011.11.007
– volume: 43
  start-page: 165
  issue: 9
  year: 2012
  ident: 10.1016/j.compag.2019.06.001_b9000
  article-title: Design and experiment of elevated substrate culture strawberry picking robot
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 48
  start-page: 307
  issue: 3
  year: 2014
  ident: 10.1016/j.compag.2019.06.001_b0045
  article-title: Field Operation of a Movable Strawberry-harvesting Robot using a Travel Platform[J]
  publication-title: Japan Agricultural Research Quarterly: JARQ
  doi: 10.6090/jarq.48.307
– ident: 10.1016/j.compag.2019.06.001_b0105
  doi: 10.1117/12.2228511
– year: 2018
  ident: 10.1016/j.compag.2019.06.001_b0070
  article-title: Deep learning in agriculture: A survey[J]
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.02.016
– volume: 5
  start-page: 1144
  issue: 10
  year: 2011
  ident: 10.1016/j.compag.2019.06.001_b0010
  article-title: Recognition and localization of ripen tomato based on machine vision[J]
  publication-title: Australian Journal of Crop Science
– volume: 99
  start-page: 17
  year: 2018
  ident: 10.1016/j.compag.2019.06.001_b0025
  article-title: Apple flower detection using deep convolutional networks[J]
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2018.03.010
– year: 2012
  ident: 10.1016/j.compag.2019.06.001_b0090
– volume: 155
  start-page: 453
  year: 2018
  ident: 10.1016/j.compag.2019.06.001_b0135
  article-title: Feeding behavior recognition for group-housed pigs with the Faster R-CNN[J]
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.11.002
– volume: 11
  start-page: 717
  issue: 6
  year: 2010
  ident: 10.1016/j.compag.2019.06.001_b0120
  article-title: Low and high-level visual feature-based apple detection from multi-modal images[J]
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-010-9198-x
– year: 2012
  ident: 10.1016/j.compag.2019.06.001_b0060
– volume: 6
  start-page: 34
  issue: 1
  year: 2013
  ident: 10.1016/j.compag.2019.06.001_b0050
  article-title: Structural Environment Suited to the Operation of a Strawberry-harvesting Robot Mounted on a Travelling Platform[J]
  publication-title: Engineering in Agriculture, Environment and Food
  doi: 10.1016/S1881-8366(13)80015-8
– volume: 33
  start-page: 219
  issue: 15
  year: 2017
  ident: 10.1016/j.compag.2019.06.001_b0145
  article-title: Classification and recognition approaches of tomato main organs based on DCNN[J]
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– year: 2015
  ident: 10.1016/j.compag.2019.06.001_b0085
  article-title: Detecting citrus fruits and occlusion recovery under natural illumination conditions[M]
  publication-title: Elsevier Science Publishers B.
– volume: 42
  start-page: 155
  issue: 9
  year: 2011
  ident: 10.1016/j.compag.2019.06.001_b9010
  article-title: Design and experiment of picking mechanism for strawberry harvesting robot
  publication-title: Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach.
– year: 2017
  ident: 10.1016/j.compag.2019.06.001_b0035
  article-title: A Review on Deep Learning Techniques Applied to Semantic
  publication-title: Segmentation[J].
– volume: 7
  start-page: 699
  issue: 5
  year: 2013
  ident: 10.1016/j.compag.2019.06.001_b0015
  article-title: Development of an expert system based on wavelet transform and artificial neural networks for the ripe tomato harvesting robot[J]
  publication-title: Australian Journal of Crop Science
– volume: 31
  start-page: 25
  issue: 22
  year: 2015
  ident: 10.1016/j.compag.2019.06.001_b9005
  article-title: Fruit localization for strawberry harvesting robot based on visual servoing
  publication-title: Trans. Chin. Soc. Agric. Eng.
– year: 2018
  ident: 10.1016/j.compag.2019.06.001_b0065
  article-title: Mask R-CNN[J]
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2012
  ident: 10.1016/j.compag.2019.06.001_b0095
– year: 2018
  ident: 10.1016/j.compag.2019.06.001_b0030
  article-title: Image recognition method of multi-cluster kiwifruit in field based on convolutional neural networks[J]. Transactions of the Chinese Society of
  publication-title: Agricultural Engineering
– volume: 157
  start-page: 417
  year: 2019
  ident: 10.1016/j.compag.2019.06.001_b0110
  article-title: Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.01.012
– volume: 16
  start-page: 1222-
  issue: 8
  year: 2016
  ident: 10.1016/j.compag.2019.06.001_b0055
  article-title: DeepFruits: A Fruit Detection System Using Deep Neural Networks[J]
  publication-title: Sensors
  doi: 10.3390/s16081222
– ident: 10.1016/j.compag.2019.06.001_b0005
– volume: 127
  start-page: 311
  year: 2016
  ident: 10.1016/j.compag.2019.06.001_b0140
  article-title: A review of key techniques of vision-based control for harvesting robot[J]
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.06.022
– ident: 10.1016/j.compag.2019.06.001_b0100
– volume: 125
  start-page: 5684
  issue: 19
  year: 2014
  ident: 10.1016/j.compag.2019.06.001_b0125
  article-title: Automatic method of fruit object extraction under complex agricultural background for vision system of fruit picking robot[J]
  publication-title: Optik - International Journal for Light and Electron Optics
  doi: 10.1016/j.ijleo.2014.07.001
SSID ssj0016987
Score 2.6801925
Snippet •Proposed a strawberry fruit detection algorithm based on Mask R-CNN (MRSD), which has overcome the difficulties of poor universality and robustness using...
Deep learning has demonstrated excellent capabilities for learning image features and is widely used in image object detection. In order to improve the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104846
SubjectTerms Artificial neural networks
computer vision
Feature extraction
Feature maps
Fruit detection
Fruits
harvesting
Image detection
Image segmentation
Instance segmentation
lighting
Localization method
Machine learning
Machine vision
Mask-RCNN
Non-structural environment
Object recognition
Performance enhancement
Picking point
prediction
Robots
Strawberries
Title Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN
URI https://dx.doi.org/10.1016/j.compag.2019.06.001
https://www.proquest.com/docview/2278892140
https://www.proquest.com/docview/2286859379
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1xfRPBa127SbHJcFpdVcQ8-wFtM02Rdla7UinjxtzvTtIsKInhsO2lDMp3MJN98Q8ghlq7iHYvgVtytyngWGevjSPiYxT5hKk0wUfhiJIY3_Ow2uZ0j_SYXBmGVte0PNr2y1vWddj2a7efJpH0FzoqMBfg3CpW0YvzkvItafvQxg3mAgAwp0wKiJZBu0ucqjFeF8x4jwEsdhVOJ35anH4a6Wn0GK2S5dhtpL_Rslcy5fI0s9cZFTZ3h1sndoHidlDRzZYWuyim4oxQ3Mt5SVxTv9N4UFaVGPqbFNJ2WdJJTiP2jwCCL7Bv0S9YbxeUto_CaC_PyGF32R6MNcjM4ue4Po7p-QmQ5Y2Ukk9RmEDnLTDhjOolXDsl5uMVCfBDW8cSKLPbcSebVMbccvBPuMy_i2DAnBdsk89APt0Vox0M7bzwEj4wfO6aMMtxwy2RXGeFVi7Bm2LStycWxxsWTblBkDzoMtsbB1gFM1yLRrNVzINf4Q77bzIj-piQa7P8fLXebCdT1T_qiMQtYqg6EmC1yMHsMvxeemZjcTV9RRgqkhOuq7X9_fIcs4lWADe6SeZhWtweuTJnuV7q6TxZ6p-fD0ScGJfO_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoAeEE81UMBIcNwmu_Y69oFD1TZKaZMDtFJvrtdrh1C0qTZbVb30T_UPMrOPCJBQJaRe14-1Zux52N_MAHyk0lUicQRupduqXOSRdSGOZIh5HFKus5QChSdTOT4RX07T0zW47WJhCFbZyv5GptfSuv3Sb6nZv5jP-9_QWFGxRPtG0yYddBWsD_31Ffpty88He8jkT0ky2j_eHUdtaYHICc6rSKWZy9GpVLn01iZp0J7y1ghHNerQ4xGpk3kchFc86IFwAhW3CHmQcWy5V5LjvA_goUBxQWUTtm9WuBJckWpitCW6Z7i8Ll6vBpXVwPIZIcr0dvMM8i99-JdmqNXd6Ck8ae1UttOQ4hms-eI5bOzMyjZXh38BZ6Pycl6x3Fc1nKtgaP8yujm5ynxZXrPvtqxzeBQzVi6yRcXmBSsWRdSkrKV0H-y3MDtG-jRnOM3ELs-jr7vT6Us4uReqvoJ1XIffBJYEHBdsQG-Vi4Hn2morrHBcDbWVQfeAd2Qzrs1mTkU1fpoOtvbDNMQ2RGzToPd6EK1GXTTZPO7oP-w4Yv7YlQYVzh0jtzoGmlYqLA2FHSudoE_bgw-rZjzP9EhjC7-4pD5KUg66oX793z9_D4_Gx5Mjc3QwPXwDj6mlwSxuwTqy2L9FO6rK3tX7lsHZfR-UXy3SLvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fruit+detection+for+strawberry+harvesting+robot+in+non-structural+environment+based+on+Mask-RCNN&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Yu%2C+Yang&rft.au=Zhang%2C+Kailiang&rft.au=Yang%2C+Li&rft.au=Zhang%2C+Dongxing&rft.date=2019-08-01&rft.pub=Elsevier+BV&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=163&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compag.2019.06.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon