Monitoring and Forecasting Green Tide in the Yellow Sea Using Satellite Imagery

This paper proposes a semi-automatic green tide extraction method based on the NDVI to extract Yellow Sea green tides from 2008 to 2022 using remote sensing (RS) images from multiple satellites: GF-1, Landsat 5 TM, Landsat 8 OLI_TIRS, HJ-1A/B, HY-1C, and MODIS. The results of the accuracy assessment...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 8; p. 2196
Main Authors Xu, Shuwen, Yu, Tan, Xu, Jinmeng, Pan, Xishan, Shao, Weizeng, Zuo, Juncheng, Yu, Yang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2023
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs15082196

Cover

Loading…
Abstract This paper proposes a semi-automatic green tide extraction method based on the NDVI to extract Yellow Sea green tides from 2008 to 2022 using remote sensing (RS) images from multiple satellites: GF-1, Landsat 5 TM, Landsat 8 OLI_TIRS, HJ-1A/B, HY-1C, and MODIS. The results of the accuracy assessment based on three indicators: Precision, Recall, and F1-score, showed that our extraction method can be applied to the images of most satellites and different environments. We traced the source of the Yellow Sea green tide to Jiangsu Subei shoal and the southeastern Yellow Sea and earliest advanced the tracing time to early April. The Gompertz and Logistic growth curve models were selected to predict and monitor the extent and duration of the Yellow Sea green tide, and uncertainty for the predicted growth curve was estimated. The prediction for 2022 was that its start and dissipation dates were expected to be June 1 and August 15, respectively, and the accumulative cover area was expected to be approximately 1190.90–1191.21 km2.
AbstractList This paper proposes a semi-automatic green tide extraction method based on the NDVI to extract Yellow Sea green tides from 2008 to 2022 using remote sensing (RS) images from multiple satellites: GF-1, Landsat 5 TM, Landsat 8 OLI_TIRS, HJ-1A/B, HY-1C, and MODIS. The results of the accuracy assessment based on three indicators: Precision, Recall, and F1-score, showed that our extraction method can be applied to the images of most satellites and different environments. We traced the source of the Yellow Sea green tide to Jiangsu Subei shoal and the southeastern Yellow Sea and earliest advanced the tracing time to early April. The Gompertz and Logistic growth curve models were selected to predict and monitor the extent and duration of the Yellow Sea green tide, and uncertainty for the predicted growth curve was estimated. The prediction for 2022 was that its start and dissipation dates were expected to be June 1 and August 15, respectively, and the accumulative cover area was expected to be approximately 1190.90–1191.21 km[sup.2] .
This paper proposes a semi-automatic green tide extraction method based on the NDVI to extract Yellow Sea green tides from 2008 to 2022 using remote sensing (RS) images from multiple satellites: GF-1, Landsat 5 TM, Landsat 8 OLI_TIRS, HJ-1A/B, HY-1C, and MODIS. The results of the accuracy assessment based on three indicators: Precision, Recall, and F1-score, showed that our extraction method can be applied to the images of most satellites and different environments. We traced the source of the Yellow Sea green tide to Jiangsu Subei shoal and the southeastern Yellow Sea and earliest advanced the tracing time to early April. The Gompertz and Logistic growth curve models were selected to predict and monitor the extent and duration of the Yellow Sea green tide, and uncertainty for the predicted growth curve was estimated. The prediction for 2022 was that its start and dissipation dates were expected to be June 1 and August 15, respectively, and the accumulative cover area was expected to be approximately 1190.90–1191.21 km2.
This paper proposes a semi-automatic green tide extraction method based on the NDVI to extract Yellow Sea green tides from 2008 to 2022 using remote sensing (RS) images from multiple satellites: GF-1, Landsat 5 TM, Landsat 8 OLI_TIRS, HJ-1A/B, HY-1C, and MODIS. The results of the accuracy assessment based on three indicators: Precision, Recall, and F1-score, showed that our extraction method can be applied to the images of most satellites and different environments. We traced the source of the Yellow Sea green tide to Jiangsu Subei shoal and the southeastern Yellow Sea and earliest advanced the tracing time to early April. The Gompertz and Logistic growth curve models were selected to predict and monitor the extent and duration of the Yellow Sea green tide, and uncertainty for the predicted growth curve was estimated. The prediction for 2022 was that its start and dissipation dates were expected to be June 1 and August 15, respectively, and the accumulative cover area was expected to be approximately 1190.90–1191.21 km².
Audience Academic
Author Xu, Shuwen
Pan, Xishan
Yu, Yang
Yu, Tan
Xu, Jinmeng
Shao, Weizeng
Zuo, Juncheng
Author_xml – sequence: 1
  givenname: Shuwen
  surname: Xu
  fullname: Xu, Shuwen
– sequence: 2
  givenname: Tan
  orcidid: 0000-0003-3746-0361
  surname: Yu
  fullname: Yu, Tan
– sequence: 3
  givenname: Jinmeng
  surname: Xu
  fullname: Xu, Jinmeng
– sequence: 4
  givenname: Xishan
  surname: Pan
  fullname: Pan, Xishan
– sequence: 5
  givenname: Weizeng
  orcidid: 0000-0003-3693-6217
  surname: Shao
  fullname: Shao, Weizeng
– sequence: 6
  givenname: Juncheng
  surname: Zuo
  fullname: Zuo, Juncheng
– sequence: 7
  givenname: Yang
  surname: Yu
  fullname: Yu, Yang
BookMark eNptkU9LXDEUxR_Fglbd-AkedFMKY_P3vWQpUu2AxYW66CrcJPdNM7xJbJKh-O2b6UgtYrLIzeF3z-VyPnQHMUXsujNKzjnX5EsuVBLFqB7edUeMjGwhmGYH_9WH3Wkpa9IO51QTcdTdfk8x1JRDXPUQfX-VMjoodfe_zoixvw8e-xD7-hP7HzjP6Xd_h9A_lB1yB7VJoWK_3MAK89NJ936CueDp83vcPVx9vb_8tri5vV5eXtwsnOC8LkY_McUmtEp7SYQWFlA7JxDAUs4GJsQgmaIc7cC1tzgiTgKEY6hHqYEfd8u9r0-wNo85bCA_mQTB_BVSXhnINbgZjROE8TaPcEGFVVxPdvRssGAFeEuH5vVp7_WY068tlmo2obi2F0RM22I4EUQoQpVs6MdX6Dptc2ybGqbIIJXgWjfqfE-toM0PcUo1g2vX4ya4FtoUmn4xSiIpl3Rn-3nf4HIqJeP0byNKzC5b85Jtg8kr2IUKNaTYpoT5rZY_tBamGw
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3492533
crossref_primary_10_3390_rs16183520
crossref_primary_10_3389_fmars_2025_1546289
crossref_primary_10_3390_rs16162934
crossref_primary_10_5194_essd_16_4189_2024
crossref_primary_10_3390_rs17020326
crossref_primary_10_3390_land13091541
crossref_primary_10_1016_j_ecz_2024_100009
Cites_doi 10.1016/j.ecolind.2022.108988
10.23953/cloud.ijaese.204
10.1016/j.ecss.2019.106335
10.1016/j.ecss.2020.106943
10.1016/j.ecss.2015.06.023
10.3390/rs71215819
10.1016/j.marpolbul.2021.112801
10.1093/nsr/nwz026
10.3390/rs13163240
10.1016/j.marpolbul.2020.111845
10.1109/TGRS.1995.8746029
10.1016/j.ecss.2014.09.014
10.1073/pnas.18.1.1
10.1016/j.ecoinf.2020.101156
10.1016/j.asr.2022.04.030
10.1080/01431161.2012.663112
10.1016/j.rse.2017.01.037
10.1029/2009JC005561
10.1016/j.rse.2009.05.012
10.1016/j.marpolbul.2021.113253
10.1016/j.enzmictec.2003.07.010
10.1016/j.marpolbul.2015.10.033
10.1029/2009JC005513
10.5194/gmd-14-6049-2021
10.1007/s11284-011-0821-8
10.1016/j.marpolbul.2010.05.015
10.1016/j.hal.2016.07.004
10.1016/j.hal.2021.102001
10.2307/2527498
10.1016/j.ecss.2013.05.021
10.1016/j.hal.2014.05.013
10.4319/lo.2013.58.6.2206
10.1016/j.compag.2015.03.019
10.1016/j.protcy.2012.10.074
10.1016/j.aml.2016.09.006
10.1016/j.ecss.2021.107504
10.1016/j.marenvres.2022.105756
10.1109/JSTARS.2016.2580000
10.3390/rs11040445
10.1109/LGRS.2017.2737079
10.1016/j.rse.2016.02.065
10.1007/s11434-011-4551-7
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15082196
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Collection (ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (subscription)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_c4023df203414b839fb7d26bab4adb16
A750513515
10_3390_rs15082196
GeographicLocations China
Yellow Sea
GeographicLocations_xml – name: China
– name: Yellow Sea
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-7df282feb89d50494bae9cc4eaab1326244652813eb639dbe7eef4a4c2e9759a3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:30:36 EDT 2025
Fri Jul 11 09:49:59 EDT 2025
Fri Jul 25 09:32:35 EDT 2025
Tue Jun 10 21:02:02 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Tue Jul 01 03:11:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-7df282feb89d50494bae9cc4eaab1326244652813eb639dbe7eef4a4c2e9759a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3693-6217
0000-0003-3746-0361
OpenAccessLink https://doaj.org/article/c4023df203414b839fb7d26bab4adb16
PQID 2806584399
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_c4023df203414b839fb7d26bab4adb16
proquest_miscellaneous_3040480185
proquest_journals_2806584399
gale_infotracacademiconefile_A750513515
crossref_primary_10_3390_rs15082196
crossref_citationtrail_10_3390_rs15082196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shi (ref_12) 2009; 114
Winsor (ref_37) 1932; 18
Hu (ref_14) 2009; 113
Sun (ref_34) 2021; 98
Zhang (ref_41) 2008; 5
Hu (ref_10) 2017; 192
Xu (ref_13) 2016; 9
ref_31
Hartigan (ref_40) 1979; 28
Qiao (ref_3) 2011; 56
Xing (ref_43) 2017; 14
Romera (ref_21) 2004; 34
Huang (ref_32) 2015; 7
Bhandari (ref_30) 2012; 6
Jiang (ref_16) 2020; 245
Liu (ref_39) 2015; 163
Xing (ref_15) 2016; 178
Qi (ref_35) 2021; 103
Huo (ref_36) 2013; 58
Wang (ref_20) 2022; 181
Rouse (ref_11) 1974; 351
Ye (ref_2) 2011; 26
Yu (ref_26) 2022; 70
Liu (ref_1) 2013; 129
ref_25
Cui (ref_24) 2012; 33
Zhuang (ref_42) 2021; 162
Li (ref_44) 2021; 172
Hu (ref_9) 2010; 115
Li (ref_4) 2014; 39
Pena (ref_28) 2015; 114
Liu (ref_17) 2010; 60
Zheng (ref_46) 2022; 140
Li (ref_33) 2019; 227
Li (ref_23) 2021; 260
Banks (ref_22) 2017; 64
Zhou (ref_19) 2021; 14
Cao (ref_7) 2020; 60
Qi (ref_45) 2016; 58
Anbazhagan (ref_27) 2016; 5
Zhou (ref_5) 2015; 163
Cui (ref_8) 2015; 101
Zhang (ref_6) 2019; 6
Yuan (ref_18) 2022; 174
Myneni (ref_29) 1995; 33
Nelder (ref_38) 1961; 17
References_xml – volume: 140
  start-page: 108988
  year: 2022
  ident: ref_46
  article-title: What causes the great green tide disaster in the South Yellow Sea of China in 2021?
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2022.108988
– volume: 5
  start-page: 333
  year: 2016
  ident: ref_27
  article-title: Statistical correlation between land surface temperature (LST) and vegetation index (NDVI) using multi-temporal landsat TM data
  publication-title: Int. J. Adv. Earth Sci. Eng.
  doi: 10.23953/cloud.ijaese.204
– volume: 227
  start-page: 106335
  year: 2019
  ident: ref_33
  article-title: Characteristics and influence of green tide drift and dissipation in Shandong Rongcheng coastal water based on remote sensing
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2019.106335
– volume: 245
  start-page: 106943
  year: 2020
  ident: ref_16
  article-title: A novel index to detect green-tide using UAV-based RGB imagery
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2020.106943
– volume: 163
  start-page: 3
  year: 2015
  ident: ref_5
  article-title: Introduction to the Special Issue on green tides in the Yellow Sea
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2015.06.023
– volume: 7
  start-page: 16024
  year: 2015
  ident: ref_32
  article-title: Automatic labelling and selection of training samples for high-resolution remote sensing image classification over urban areas
  publication-title: Remote Sens.
  doi: 10.3390/rs71215819
– volume: 172
  start-page: 112801
  year: 2021
  ident: ref_44
  article-title: Research on the dissipation of green tide and its influencing factors in the Yellow Sea based on Google Earth Engine
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2021.112801
– volume: 6
  start-page: 825
  year: 2019
  ident: ref_6
  article-title: Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwz026
– ident: ref_31
  doi: 10.3390/rs13163240
– volume: 162
  start-page: 111845
  year: 2021
  ident: ref_42
  article-title: Sargassum blooms in the East China Sea and Yellow Sea: Formation and management
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2020.111845
– volume: 33
  start-page: 481
  year: 1995
  ident: ref_29
  article-title: The interpretation of spectral vegetation indexes
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.1995.8746029
– volume: 163
  start-page: 17
  year: 2015
  ident: ref_39
  article-title: Cruise observation of Ulva prolifera bloom in the southern Yellow Sea, China
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2014.09.014
– volume: 351
  start-page: 309
  year: 1974
  ident: ref_11
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: NASA Spec. Publ.
– volume: 18
  start-page: 1
  year: 1932
  ident: ref_37
  article-title: The Gompertz curve as a growth curve
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.18.1.1
– volume: 60
  start-page: 101156
  year: 2020
  ident: ref_7
  article-title: Drift path of green tide and the impact of typhoon “Chan-hom” in the Chinese Yellow Sea based on GOCI images in 2015
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101156
– volume: 70
  start-page: 70
  year: 2022
  ident: ref_26
  article-title: Coastline detection using optical and synthetic aperture radar images
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2022.04.030
– volume: 33
  start-page: 5513
  year: 2012
  ident: ref_24
  article-title: Satellite monitoring of massive green macroalgae bloom (GMB): Imaging ability comparison of multi-source data and drifting velocity estimation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.663112
– volume: 192
  start-page: 217
  year: 2017
  ident: ref_10
  article-title: Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.037
– volume: 115
  start-page: C05017
  year: 2010
  ident: ref_9
  article-title: On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea
  publication-title: J. Geophys. Res. Ocean.
  doi: 10.1029/2009JC005561
– volume: 113
  start-page: 2118
  year: 2009
  ident: ref_14
  article-title: A novel ocean color index to detect floating algae in the global oceans
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.05.012
– volume: 174
  start-page: 113253
  year: 2022
  ident: ref_18
  article-title: A new assessment of the algal biomass of green tide in the Yellow Sea
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2021.113253
– volume: 34
  start-page: 392
  year: 2004
  ident: ref_21
  article-title: Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2003.07.010
– volume: 101
  start-page: 660
  year: 2015
  ident: ref_8
  article-title: Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2015.10.033
– volume: 114
  start-page: C12010
  year: 2009
  ident: ref_12
  article-title: Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008
  publication-title: J. Geophys. Res. Ocean.
  doi: 10.1029/2009JC005513
– volume: 14
  start-page: 6049
  year: 2021
  ident: ref_19
  article-title: The Lagrangian-based floating macroalgal growth and drift model (FMGDM v1. 0): Application to the Yellow Sea green tide
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-14-6049-2021
– volume: 26
  start-page: 477
  year: 2011
  ident: ref_2
  article-title: ‘Green tides’ are overwhelming the coastline of our blue planet: Taking the world’s largest example
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-011-0821-8
– volume: 60
  start-page: 1423
  year: 2010
  ident: ref_17
  article-title: Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2010.05.015
– volume: 58
  start-page: 35
  year: 2016
  ident: ref_45
  article-title: Long-term trend of Ulva prolifera blooms in the western Yellow Sea
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2016.07.004
– volume: 5
  start-page: 169
  year: 2008
  ident: ref_41
  article-title: Improved K-means clustering algorithm
  publication-title: Image Signal Process.
– volume: 28
  start-page: 100
  year: 1979
  ident: ref_40
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.)
– volume: 98
  start-page: 102302
  year: 2021
  ident: ref_34
  article-title: Using Landsat 8 OLI data to differentiate Sargassum and Ulva prolifera blooms in the South Yellow Sea
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 103
  start-page: 102001
  year: 2021
  ident: ref_35
  article-title: To what extent can Ulva and Sargassum be detected and separated in satellite imagery?
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2021.102001
– volume: 17
  start-page: 89
  year: 1961
  ident: ref_38
  article-title: The fitting of a generalization of the logistic curve
  publication-title: Biometrics
  doi: 10.2307/2527498
– volume: 129
  start-page: 2
  year: 2013
  ident: ref_1
  article-title: The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2013.05.021
– volume: 39
  start-page: 40
  year: 2014
  ident: ref_4
  article-title: Tempo-spatial distribution and species diversity of green algae micro-propagules in the Yellow Sea during the large-scale green tide development
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2014.05.013
– volume: 58
  start-page: 2206
  year: 2013
  ident: ref_36
  article-title: Green algae blooms caused by Ulva prolifera in the southern Yellow Sea: Identification of the original bloom location and evaluation of biological processes occurring during the early northward floating period
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2013.58.6.2206
– volume: 114
  start-page: 43
  year: 2015
  ident: ref_28
  article-title: An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.03.019
– volume: 6
  start-page: 612
  year: 2012
  ident: ref_30
  article-title: Feature extraction using Normalized Difference Vegetation Index (NDVI): A case study of Jabalpur city
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2012.10.074
– volume: 64
  start-page: 213
  year: 2017
  ident: ref_22
  article-title: Statistical error model comparison for logistic growth of green algae (Raphidocelis subcapitata)
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2016.09.006
– volume: 260
  start-page: 107504
  year: 2021
  ident: ref_23
  article-title: Analysis of environmental factors affecting the large-scale long-term sequence of green tide outbreaks in the Yellow Sea
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2021.107504
– volume: 181
  start-page: 105756
  year: 2022
  ident: ref_20
  article-title: Distribution characteristics of green tides and its impact on environment in the Yellow Sea
  publication-title: Mar. Environ. Res.
  doi: 10.1016/j.marenvres.2022.105756
– volume: 9
  start-page: 5172
  year: 2016
  ident: ref_13
  article-title: Monitoring and tracking the green tide in the Yellow Sea with satellite imagery and trajectory model
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2580000
– ident: ref_25
  doi: 10.3390/rs11040445
– volume: 14
  start-page: 1815
  year: 2017
  ident: ref_43
  article-title: High-resolution satellite observations of a new hazard of golden tides caused by floating Sargassum in winter in the Yellow Sea
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2737079
– volume: 178
  start-page: 113
  year: 2016
  ident: ref_15
  article-title: Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.065
– volume: 56
  start-page: 2236
  year: 2011
  ident: ref_3
  article-title: Drift characteristics of green macroalgae in the Yellow Sea in 2008 and 2010
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-011-4551-7
SSID ssj0000331904
Score 2.3924053
Snippet This paper proposes a semi-automatic green tide extraction method based on the NDVI to extract Yellow Sea green tides from 2008 to 2022 using remote sensing...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2196
SubjectTerms Accuracy
Algae
algal blooms
Artificial satellites in remote sensing
China
Coasts
Datasets
Environmental monitoring
Green tides
growth curve
growth curves
Landsat
Landsat satellites
Methods
multi-source RS
NDVI
prediction
Predictions
Prevention
Remote sensing
Satellite imagery
Satellites
Sensors
source tracing
Trends
uncertainty
Vegetation
Weather forecasting
Yellow Sea
Yellow Sea green tide
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gAXxFMsFGQEEuIQNRvbeZxQi1oVDgXRViona2xPoFKbLZutUP89M4l3q0qFa2JZ8dgznle-D-Bd1ZQW-VrOEEORmbo1GQZfZIGjLW2CEbhA6bY4KPePzZcTe5ISbn1qq1zZxMFQx3mQHPnWUAGsxXv-ePE7E9Yoqa4mCo27sMEmuLYT2NjZPfj2fZ1lyTUfsdyMuKSa4_utRS8I6Kyn5Y2baADs_5dZHu6avYfwIDmJanvc1Udwh7rHcC_xlf-6egJfR1WUnJzCLioh2AzYSwuzGjpp1NFpJHXaKfbv1A8psPxRh4Rq6BBQhzjgcC5JfT4XDIurp3C8t3v0aT9L1AhZMFovsyq2HCu15OsmWoF48UhNCIYQPceXZSE4aEU90-TZBYmeKqLWoAkFNZVtUD-DSTfv6DmoGaEphZgvtrkJlNfe8qzEVrIiE3yYwoeVmFxIuOFCX3HmOH4QkbprkU7h7XrsxYiWceuoHZH2eoQgXA8P5oufLimM42NSaF5lztes8ezGtb6KRenRG4x-xpO8l71yoof8OQHT7wS8KEG0ctvsClmhH7RT2Fxtp0sK2rvr4zSFN-vXrFpSL8GO5pe902zgBF2nti_-P8VLuC8s9GNDzyZMlotLesW-ytK_TgfyLw8P6MU
  priority: 102
  providerName: ProQuest
Title Monitoring and Forecasting Green Tide in the Yellow Sea Using Satellite Imagery
URI https://www.proquest.com/docview/2806584399
https://www.proquest.com/docview/3040480185
https://doaj.org/article/c4023df203414b839fb7d26bab4adb16
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9RAEJ8oPugLUZFYxcsaSQwPDXe726_HQznQCBgOEnzazG6nkUQL4Y4Y_ntntuWABOMLT03aSbOd6Xx1p78fwHpR5RlyWk4Rg05t2dgUg9dp4G7L2GAFLlCmLfbz3WP79SQ7uUX1JTNhHTxwp7hNFtembvSQw631nM4bX9Q69-gt1n4UwbY5591qpmIMNvxqDW2HR2q4r9-8mAnyOftnficDRaD-f4XjmGMmz2G5Lw7VuFvUC3hE7Ut42vOU_7xagYPOBeVbnMK2VkKsGXAmo8sqTtCoo9Oa1GmruK5TP2Rj5Y-aEqo4GaCmGPE356S-_BbsiqtXcDzZPvq0m_aUCGmwxszTgjVR6oZ8WdWZQLt4pCoES4ie-8pcC_6ZLkeGPJcetaeCqLFog6aqyCo0q7DUnrX0GtSI0OZCyFc3QxtoWPqM70ocHQuywYcENq7V5EKPFy60Fb8c9w2iUnej0gQ-LGTPO5SMe6W2RNsLCUG2jifY3q63t_ufvRP4KLZy4n-8nID9bwT8UIJk5cZcAmVCO5glsHZtTtc75szFjeRSmrAE3i8us0vJPgm2dHY5c4YDm6DqlNmbh1jxW3gmHPXduM8aLM0vLukdVzJzP4DH5WRnAE_Gn_e-Tfm4tb3__XAQX-W_96f0Kg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gHPBifMYVkDZqjIcJs909rwMxoJBdwdXIksCp7e6pERKdxZ0lZP-Uv5GqeSwxUW9cZzqdmep6dld_H8CrJIsjS2E5sNbLQKeFDqx3MvBUbSntNcMFcrfFKB4c648n0ckS_O7uwnBbZecTa0edTzzvkW_VJ4ApZ8_vLn4FzBrFp6sdhUajFgc4v6KSrdoefqD1fS3l_t74_SBoWQUCr5WaBUleUJlRoEuzPGJ0FGcx816jtY5Ks1gyhJhM-wodRe_cYYJYaKu9xCyJMqto3juwQmlGRla0srs3-vJ1sasTKlLpUDc4qEpl4da0YsR18gvxH5GvJgj4VxioY9v-fbjXJqVip9GiB7CE5UNYbfnRz-aP4HNj-rwHKGyZCyb09LbilmlRd-6I8XmO4rwUlE-KUz7QuRJHaEXdkSCObI37OUMx_MmYGfPHcHwrQnsCy-WkxKcg-mh1zESAeRFqj2HqIpoVySsnqL3zPXjbicn4Fqec6TJ-GKpXWKTmRqQ9eLkYe9Ggc_x11C5LezGCEbXrB5Ppd9MaqCG1lIr-MqSwrh2ljYVLchk767TNXZ8mecNrZdju6XO8ba8v0E8xgpbZodQrYrrDqAfr3XKa1iFU5kZ9e_Bi8ZpMmc9nbImTy8oocqiM5pNGz_4_xSasDsafDs3hcHSwBnclfXnTTLQOy7PpJW5QnjRzz1vlFPDttu3hGvnRJsU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiKcIlGIECHFYZWN7X4eqammjhqJQ0VZqT8b2zkIl2LTZVFX-Gr-OmX2kQgJuve5alj0ez8Mefx_AmySLI0tuObDWy0CnhQ6sdzLwlG0p7TXDBXK1xSTeO9YfT6KTFfjVvYXhssrOJtaGOp96PiMf1DeAKUfPg6ItizjYGW2eXwTMIMU3rR2dRqMi-7i4ovSt2hjv0Fq_lXK0e_RhL2gZBgKvlZoHSV5QylGgS7M8YqQUZzHzXqO1jtK0WDKcmEyHCh158txhglhoq73ELIkyq6jfW7CakFdMe7C6vTs5-LI84QkVqXeoG0xUpbJwMKsYfZ1sRPyHF6zJAv7lEmo_N7oP99oAVWw1GvUAVrB8CHdarvTvi0fwuTEDfB4obJkLJvf0tuLyaVFX8YijsxzFWSkothSnfLlzJQ7Riro6QRzaGgN0jmL8k_EzFo_h-EaE9gR65bTEpyCGaHXMpIB5EWqPYeoi6hXJQieovfN9eN-JyfgWs5ypM34Yyl1YpOZapH14vWx73iB1_LXVNkt72YLRtesP09k3025WQyoqFc0yJBevHYWQhUtyGTvrtM3dkDp5x2tl2AbQcLxtnzLQpBhNy2xRGBYx9WHUh7VuOU1rHCpzrcp9eLX8Tdua72psidPLyigyrozsk0bP_t_FS7hN-8B8Gk_2n8NdSQNv6orWoDefXeILCpnmbr3VTQFfb3o7_AZfQSrx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+and+Forecasting+Green+Tide+in+the+Yellow+Sea+Using+Satellite+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Shuwen+Xu&rft.au=Tan+Yu&rft.au=Jinmeng+Xu&rft.au=Xishan+Pan&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=8&rft.spage=2196&rft_id=info:doi/10.3390%2Frs15082196&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c4023df203414b839fb7d26bab4adb16
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon