Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation
Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), w...
Saved in:
Published in | Cancers Vol. 16; no. 7; p. 1387 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-6694 2072-6694 |
DOI | 10.3390/cancers16071387 |
Cover
Abstract | Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics. |
---|---|
AbstractList | Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics. Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics. Cancer is the second leading cause of death worldwide, accounting for nearly one in six deaths. One of the key underlying factors distinguishing a cancer cell from a normal cell is the pattern of expression of genes. Proteins that regulate gene expression, called transcription factors, are abnormally regulated in cancer cells, particularly a group of proteins called STATs. This causes cancer cells to survive, proliferate excessively, and escape killing by the immune system. Since normal cells can survive adequately without full STAT function, targeting these proteins is an attractive approach for a new generation of more effective and less toxic cancer therapies. In this review, we summarize the current knowledge of STAT function in cancer and the advances and challenges in developing drugs to target them. Simple SummaryCancer is the second leading cause of death worldwide, accounting for nearly one in six deaths. One of the key underlying factors distinguishing a cancer cell from a normal cell is the pattern of expression of genes. Proteins that regulate gene expression, called transcription factors, are abnormally regulated in cancer cells, particularly a group of proteins called STATs. This causes cancer cells to survive, proliferate excessively, and escape killing by the immune system. Since normal cells can survive adequately without full STAT function, targeting these proteins is an attractive approach for a new generation of more effective and less toxic cancer therapies. In this review, we summarize the current knowledge of STAT function in cancer and the advances and challenges in developing drugs to target them.AbstractDespite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics. Cancer is the second leading cause of death worldwide, accounting for nearly one in six deaths. One of the key underlying factors distinguishing a cancer cell from a normal cell is the pattern of expression of genes. Proteins that regulate gene expression, called transcription factors, are abnormally regulated in cancer cells, particularly a group of proteins called STATs. This causes cancer cells to survive, proliferate excessively, and escape killing by the immune system. Since normal cells can survive adequately without full STAT function, targeting these proteins is an attractive approach for a new generation of more effective and less toxic cancer therapies. In this review, we summarize the current knowledge of STAT function in cancer and the advances and challenges in developing drugs to target them. Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics. |
Audience | Academic |
Author | Frank, David A. Wang, Weiyuan Lopez McDonald, Melanie Cristina Hariprasad, Rajashree Hamilton, Tiara |
Author_xml | – sequence: 1 givenname: Weiyuan surname: Wang fullname: Wang, Weiyuan – sequence: 2 givenname: Melanie Cristina surname: Lopez McDonald fullname: Lopez McDonald, Melanie Cristina – sequence: 3 givenname: Rajashree surname: Hariprasad fullname: Hariprasad, Rajashree – sequence: 4 givenname: Tiara surname: Hamilton fullname: Hamilton, Tiara – sequence: 5 givenname: David A. orcidid: 0000-0002-7698-8364 surname: Frank fullname: Frank, David A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38611065$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktvGyEUhVGVqHk06-4qpGy6cQK-MzBkZ1lNEylSFpmuRwxzxyUagws4Uv59GTtPK4EFCH3n3AOXI7LnvENCvnN2BqDYudHOYIhcMMmhkl_I4ZTJ6UQIVey92R-QkxjvWR4AXAr5lRxAJThnojwk4dYZv0BnDb2rZzWtg3bRBLtK1jt6qU3yIVIdaa3DAlOkvQ90vilM678Y9Orxgl475x90sg9I71LQCRcWs8h1dD7YbK2Hre-gR9dvZL_XQ8STp_WY_Ln8Vc-vJje3v6_ns5uJKQDSRFZYToWSikELXG2il3wqVdXyFpVqTQms0lz3Vdt2Ek1fFR12UCIWRdcqOCY_t76r4P-tMaZmaaPBYdAO_To2wKAqClYWIqOnO-i9XweX042UzBxweKUWesDGut7ny5rRtJnlmCwnFKPX2QdUnh0urckd7G0-fyf48VR83S6xa1bBLnV4bJ6blIHzLWCCjzFg_4Jw1ow_odn5CVlR7iiMTZvHz1ns8KnuP5J0tw0 |
CitedBy_id | crossref_primary_10_1016_j_jhepr_2025_101365 crossref_primary_10_1016_j_neo_2025_101137 crossref_primary_10_3389_fimmu_2024_1388176 crossref_primary_10_1158_1078_0432_CCR_24_1692 |
Cites_doi | 10.1007/s10911-008-9062-z 10.1073/pnas.97.8.4227 10.1007/0-306-48158-8_11 10.1158/2326-6066.CIR-15-0014 10.1007/s00262-017-2057-0 10.1002/ajh.26084 10.1038/s41392-021-00791-1 10.1182/blood.V99.2.479 10.1038/nature06096 10.1073/pnas.1220098110 10.1097/00042560-199503010-00005 10.1038/sj.onc.1204349 10.1016/j.cyto.2022.156081 10.1096/fj.201700629R 10.1126/science.1132939 10.1038/sj.onc.1209281 10.1021/acs.jmedchem.1c00895 10.1182/blood.V91.2.641 10.1084/jem.20101947 10.1016/S1074-7613(00)80011-4 10.1002/emmm.201000062 10.1073/pnas.0404100101 10.1016/j.molmed.2020.01.004 10.1053/j.gastro.2006.10.037 10.1038/s41573-021-00195-4 10.1158/0008-5472.CAN-04-4281 10.1007/s10863-018-9755-y 10.1002/jcp.22238 10.1016/j.ccr.2009.02.015 10.1038/s41591-018-0044-4 10.1056/NEJMe078197 10.1073/pnas.92.16.7307 10.1158/0008-5472.CAN-07-0575 10.1371/journal.pone.0060902 10.1038/nri3814 10.4049/jimmunol.1000842 10.1016/j.ccr.2006.05.025 10.1126/science.8197455 10.1038/nchembio.775 10.1002/j.1460-2075.1991.tb07836.x 10.1038/leu.2012.350 10.1038/s41392-022-00966-4 10.1182/blood-2006-05-024430 10.1038/s41467-021-23396-2 10.1016/j.ygeno.2020.06.032 10.1038/s41375-018-0117-x 10.3892/or.2020.7667 10.1038/s41388-020-01626-z 10.1038/nrd.2017.267 10.1038/nm976 10.3390/ijms23084095 10.1038/onc.2014.51 10.1038/sj.onc.1207003 10.1038/nm.2819 10.1158/1078-0432.CCR-22-2483 10.1016/j.ccr.2009.01.001 10.1038/leu.2014.298 10.1038/sj.cr.7310029 10.3389/fimmu.2019.03095 10.1021/acs.biochem.2c00245 10.1016/j.biopha.2020.110009 10.1038/s41584-022-00767-7 10.1016/j.omtn.2022.06.012 10.1254/fpj.126.419 10.1016/j.xpro.2021.100781 10.4161/jkst.22662 10.1016/j.ccell.2019.10.002 10.1186/s12943-020-01258-7 10.1158/1078-0432.CCR-22-2540 10.1111/j.1365-2567.2005.02091.x 10.1182/blood-2016-01-643569 10.3892/etm.2023.11890 10.1158/0008-5472.CAN-10-4660 10.1038/onc.2016.487 10.1016/bs.acr.2018.02.003 10.3389/fphar.2021.692574 10.1371/journal.pone.0004783 10.1136/bmjopen-2021-055718 10.1038/nrc2044 10.1172/jci.insight.136176 10.1182/blood-2023-181130 10.1016/S1074-7613(01)00101-7 10.1016/S1074-7613(03)00232-2 10.1073/pnas.1003457107 10.3390/biomedicines8090316 10.1002/jcla.24315 10.1038/leu.2015.263 10.1016/j.immuni.2010.05.003 10.1002/ame2.12165 10.1016/j.semcancer.2019.10.002 10.1186/s43556-023-00151-1 10.1038/sj.onc.1208788 10.1007/BF03403538 10.1007/s00253-018-9352-3 10.18632/oncotarget.18711 10.1038/icb.2012.17 10.1186/s40425-018-0436-5 10.1182/blood-2009-11-255232 10.1172/JCI98619 10.1080/2162402X.2015.1093722 10.1038/s41375-022-01695-x 10.1007/s12026-011-8205-2 10.1128/MCB.01620-12 10.1073/pnas.1909879116 10.3389/fphar.2022.944455 10.1126/scitranslmed.aac5272 10.1182/blood-2015-07-660506 10.1155/2013/421821 10.1080/14756366.2020.1871336 10.1182/bloodadvances.2019000499 10.1111/jcmm.16754 10.1016/j.isci.2020.101822 10.1038/7445 10.1021/acs.jmedchem.9b01530 10.1093/carcin/bgs165 10.3390/molecules25102306 10.1182/blood-2009-10-230060 10.1056/NEJMoa1114885 10.1038/cr.2008.18 10.3892/ol.2020.11614 10.3390/ijms22020603 10.1080/21645515.2017.1316909 10.1172/JCI143296 10.1038/leu.2014.348 10.1172/JCI119869 10.1056/NEJMoa073687 10.1039/C9OB01998G 10.1016/j.lfs.2018.11.037 10.1158/1541-7786.MCR-08-0238 10.1016/j.phymed.2021.153712 10.1038/onc.2016.403 10.1172/JCI0215617 10.1038/nrclinonc.2018.8 10.1038/s41467-017-01477-5 10.1038/s41589-022-01248-4 10.1182/blood-2008-09-181107 10.3389/fcell.2021.685106 10.1016/S1074-7613(00)00077-7 10.1016/j.cbpa.2010.03.022 10.1186/s13045-018-0624-2 10.1126/science.278.5344.1803 10.1111/cas.13332 10.1126/science.1074900 10.3324/haematol.2021.280405 10.1177/1947601912466555 10.1016/j.tips.2015.10.001 10.1016/j.ejmech.2023.115971 10.1517/13543780802565791 10.3390/cancers6020897 10.1074/jbc.271.22.12999 10.3892/ijo.2023.5476 10.1038/s41589-020-0620-z 10.3389/fimmu.2023.1265818 10.4161/jkst.27159 10.1038/leu.2011.338 10.1021/acsmedchemlett.1c00155 10.1007/978-3-319-42949-6 10.3389/fimmu.2023.1171141 10.1016/j.immuni.2007.05.010 10.1186/1756-8722-6-90 10.1084/jem.183.3.811 10.4161/jkst.20006 10.3390/ijms232415944 10.1038/sj.onc.1207383 10.1016/S0092-8674(00)81959-5 10.1093/carcin/bgs362 10.18632/oncotarget.296 10.1158/1078-0432.CCR-20-4128 10.1182/blood-2022-167853 10.1002/ijc.10833 10.1371/journal.pone.0009152 10.1074/jbc.M408464200 10.1158/1078-0432.CCR-13-1610 10.1158/2159-8290.CD-22-0706 10.18632/oncotarget.8368 10.1002/ijc.11619 10.1242/dmm.000976 10.1016/j.immuni.2022.11.001 10.1038/nri2093 10.1200/EDBK_200689 10.18632/oncotarget.23208 10.5483/BMBRep.2019.52.7.152 10.1074/jbc.M001606200 10.1016/S0969-2126(00)00060-5 10.1093/hmg/ddr338 10.3390/cancers11121930 10.1182/blood-2016-08-692590 10.1182/blood-2009-12-259630 10.1016/S1074-7613(02)00336-9 10.1038/ni.1840 10.1016/j.trecan.2017.10.004 10.1158/0008-5472.CAN-05-3612 10.1039/9781782624011-00042 10.1002/pro.3519 10.4137/TOG.S1903 10.1038/s41388-022-02500-w 10.1038/s41467-023-38389-6 10.1371/journal.pone.0086790 10.1073/pnas.141230798 10.1158/0008-5472.CAN-06-2439 10.1111/bjh.14487 10.1038/sj.onc.1208719 10.1016/j.chembiol.2019.11.006 10.1016/j.neo.2017.04.006 10.1016/j.jbc.2021.101531 10.1038/nri3307 10.1038/sj.onc.1205260 10.1186/s12943-018-0804-2 10.1016/j.celrep.2017.05.013 10.1182/blood-2007-12-129718 10.2353/ajpath.2010.090863 10.1126/science.8397445 10.3390/jpm12020140 10.3390/cancers15041344 10.3389/fimmu.2023.1160719 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 7X8 |
DOI | 10.3390/cancers16071387 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Biological Science Collection ProQuest Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2072-6694 |
ExternalDocumentID | A790017666 38611065 10_3390_cancers16071387 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: T32 CA272392 |
GroupedDBID | --- 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GUQSH GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM TUS NPM PQGLB PMFND 3V. 7T5 7TO 7XB 8FK H94 MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c433t-78e52697903b31931767512798b1be99bc5308a1af8bbd7ecf84ded35ee44db93 |
IEDL.DBID | M48 |
ISSN | 2072-6694 |
IngestDate | Thu Sep 04 18:54:52 EDT 2025 Fri Jul 25 11:57:40 EDT 2025 Tue Jun 17 22:17:17 EDT 2025 Tue Jun 10 21:11:22 EDT 2025 Mon Jul 21 06:01:20 EDT 2025 Tue Jul 01 01:08:05 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | cancer therapy STAT5 cancer immunity STAT3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-78e52697903b31931767512798b1be99bc5308a1af8bbd7ecf84ded35ee44db93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7698-8364 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers16071387 |
PMID | 38611065 |
PQID | 3037384313 |
PQPubID | 2032421 |
ParticipantIDs | proquest_miscellaneous_3038440546 proquest_journals_3037384313 gale_infotracmisc_A790017666 gale_infotracacademiconefile_A790017666 pubmed_primary_38611065 crossref_primary_10_3390_cancers16071387 crossref_citationtrail_10_3390_cancers16071387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Cancers |
PublicationTitleAlternate | Cancers (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Kong (ref_170) 2021; 25 Carpenter (ref_36) 2014; 6 ref_138 Bai (ref_121) 2019; 36 Niu (ref_32) 2002; 21 Kentsis (ref_196) 2012; 18 Lee (ref_23) 2009; 15 Lin (ref_90) 2022; 41 Benedettini (ref_132) 2010; 177 ref_96 ref_135 Qi (ref_167) 2021; 12 Yoshimura (ref_8) 2007; 7 Kim (ref_199) 2015; 34 Dovhey (ref_97) 2000; 60 Zhao (ref_201) 2016; 37 Stevens (ref_153) 2019; 3 Lamb (ref_222) 2007; 7 ref_127 Bromberg (ref_22) 2002; 109 Wagner (ref_88) 2008; 13 Chen (ref_204) 2020; 26 Durant (ref_56) 2010; 32 Hand (ref_79) 2010; 107 (ref_185) 2021; 131 Holland (ref_122) 2007; 357 Bromberg (ref_15) 1999; 98 Khan (ref_211) 2018; 67 Kaech (ref_57) 2012; 12 Lin (ref_74) 2017; 8 Takakura (ref_210) 2011; 20 Ohsugi (ref_177) 2005; 126 Lin (ref_31) 2011; 71 ref_78 ref_154 Bunting (ref_71) 2002; 99 ref_73 Wegenka (ref_3) 1994; 14 Zhang (ref_149) 2020; 44 Yanagisawa (ref_190) 1998; 91 Alvarez (ref_221) 2005; 65 Nguyen (ref_107) 2002; 297 Melo (ref_187) 1996; 10 Ye (ref_148) 2023; 25 Brambilla (ref_151) 2020; 23 Isomoto (ref_27) 2007; 132 ref_82 Nelson (ref_209) 2012; 3 Hu (ref_181) 2021; 6 Chen (ref_139) 2021; 40 Zhou (ref_104) 2020; 112 Bharadwaj (ref_145) 2016; 7 ref_141 Darnell (ref_4) 1994; 264 ref_144 ref_86 Walker (ref_94) 2013; 33 Zhou (ref_171) 2021; 12 Lamb (ref_223) 2006; 313 Siddiquee (ref_228) 2008; 18 Cheng (ref_50) 2003; 19 Wang (ref_232) 2022; 140 Oleksak (ref_161) 2021; 36 Zhou (ref_105) 2022; 36 Wang (ref_6) 2023; 14 ref_214 Dong (ref_174) 2021; 64 Hemmann (ref_143) 1996; 271 Aftabizadeh (ref_160) 2021; 6 ref_217 Yue (ref_142) 2009; 18 Iovino (ref_115) 2010; 225 Hantschel (ref_192) 2012; 8 Jayakumar (ref_116) 2017; 19 Megha (ref_231) 2021; 91 Chou (ref_54) 2006; 108 ref_212 Diehl (ref_55) 2012; 90 Xie (ref_137) 2023; 8 Wang (ref_163) 2022; 17 Sasso (ref_173) 2022; 62 Lippitz (ref_180) 2016; 5 Hirschenberger (ref_207) 2021; 2 Swerdlow (ref_37) 2016; 127 Hoelbl (ref_191) 2010; 2 Yue (ref_63) 2015; 3 Koehler (ref_136) 2010; 14 Salgado (ref_179) 2003; 103 Rossari (ref_193) 2018; 11 Wingelhofer (ref_92) 2018; 32 Johnson (ref_176) 2018; 15 Xu (ref_59) 2005; 24 Priego (ref_33) 2018; 24 Li (ref_155) 2022; 13 Wang (ref_72) 2009; 113 Luo (ref_62) 2017; 9 Frank (ref_188) 1996; 10 Brown (ref_213) 2024; 264 Jin (ref_229) 2023; 62 Park (ref_81) 2010; 11 Lovly (ref_130) 2014; 20 Fu (ref_58) 2006; 16 Chen (ref_230) 2017; 9 ref_106 ref_227 Sadowski (ref_2) 1993; 261 Lee (ref_19) 2019; 52 Totten (ref_98) 2021; 12 ref_226 Walker (ref_91) 2009; 7 McGee (ref_198) 2015; 29 Nutt (ref_77) 2007; 26 Barash (ref_87) 2012; 33 Goenka (ref_113) 2011; 50 Heppler (ref_202) 2017; 3 Hong (ref_119) 2015; 7 Herbeuval (ref_65) 2004; 172 Rhodes (ref_125) 2020; 2020 Walker (ref_208) 2012; 1 Grivennikov (ref_48) 2009; 15 Xie (ref_66) 2004; 23 Basso (ref_93) 2015; 15 Schwartz (ref_183) 2017; 17 Landowski (ref_14) 1999; 10 Semenzato (ref_43) 2022; 36 Gu (ref_162) 2020; 19 Roschewski (ref_157) 2023; 29 Xiang (ref_206) 2016; 128 Boudny (ref_13) 2002; 49 Tripathi (ref_60) 2017; 19 Lipford (ref_175) 2020; 16 Lee (ref_53) 2002; 17 Heppler (ref_10) 2018; 128 Garcia (ref_34) 2001; 20 Chen (ref_200) 2023; 29 Levy (ref_124) 2007; 357 Demela (ref_134) 2023; 14 Shi (ref_147) 2019; 217 Hughes (ref_224) 1995; 8 Moignet (ref_38) 2018; 38 Canar (ref_102) 2023; 161 Frank (ref_12) 1999; 5 Wu (ref_69) 2004; 23 ref_29 Xia (ref_20) 2023; 14 Skwarski (ref_152) 2021; 27 Battle (ref_218) 2006; 66 Dechow (ref_67) 2004; 101 Zou (ref_133) 2020; 19 Willette (ref_75) 2011; 208 Frank (ref_219) 1999; 5 Lo (ref_68) 2007; 67 Carlesso (ref_189) 1996; 183 Kitamura (ref_49) 2017; 108 Chung (ref_9) 1997; 278 Rosenzweig (ref_131) 2018; 138 Iqbal (ref_118) 2018; 102 Teramo (ref_45) 2017; 8 Zhou (ref_169) 2019; 62 McLemore (ref_51) 2001; 14 Zhao (ref_110) 2017; 36 Niwa (ref_26) 2005; 24 Cohen (ref_129) 2021; 20 Verhoeven (ref_85) 2020; 60 Ogata (ref_28) 2006; 25 Furqan (ref_126) 2013; 6 Hsu (ref_25) 2012; 33 Berthenet (ref_24) 2017; 36 Nelson (ref_205) 2008; 112 Fasan (ref_40) 2013; 27 Cotarla (ref_89) 2004; 108 Burchill (ref_76) 2003; 171 Tripathi (ref_80) 2010; 185 Nishina (ref_158) 2022; 12 Nelson (ref_11) 2012; 1 Sajjad (ref_16) 2021; 4 ref_172 Harris (ref_216) 2010; 115 Bacon (ref_109) 1995; 92 Frank (ref_83) 2003; 115 Koskela (ref_41) 2012; 366 Lee (ref_103) 2020; 117 Dutta (ref_44) 2018; 180 Zhao (ref_164) 2022; 7 Sheppard (ref_178) 2017; 13 Grandis (ref_21) 2000; 97 Nelson (ref_84) 2004; 279 Nelson (ref_195) 2012; 26 Casas (ref_159) 2022; 29 Parham (ref_108) 2002; 168 Cerulli (ref_146) 2020; 18 ref_168 Winthrop (ref_184) 2022; 18 Mitchell (ref_7) 2005; 114 Kaneshige (ref_156) 2023; 19 Zhang (ref_52) 2010; 116 Bhullar (ref_128) 2018; 17 Morris (ref_182) 2018; 27 Bansal (ref_117) 2018; 32 Ribas (ref_186) 2022; 12 Jackson (ref_47) 2022; 55 Frank (ref_215) 1997; 100 Wang (ref_70) 2013; 2 Colly (ref_114) 2020; 20 Richmond (ref_18) 2008; 1 Nishi (ref_112) 2017; 37 Nelson (ref_140) 2011; 2 Brown (ref_150) 2021; 96 ref_30 Andersson (ref_42) 2016; 30 Hagelaar (ref_95) 2022; 108 Wang (ref_64) 2004; 10 Alvarez (ref_35) 2007; 2 Verlinde (ref_203) 1994; 2 Lv (ref_225) 2018; 50 Reilley (ref_120) 2018; 6 Sakamoto (ref_165) 2001; 98 Nelson (ref_194) 2011; 117 Odajima (ref_61) 2000; 275 Hambleton (ref_101) 2013; 110 Miserocchi (ref_17) 2023; 14 Potjewyd (ref_166) 2020; 27 Lynch (ref_220) 2007; 67 ref_1 Minegishi (ref_123) 2007; 448 Lamy (ref_39) 2017; 129 Loughran (ref_46) 2015; 29 Anderson (ref_111) 2020; 10 Naldini (ref_197) 1991; 10 Park (ref_100) 2000; 13 ref_5 Kovacic (ref_99) 2006; 10 |
References_xml | – volume: 13 start-page: 93 year: 2008 ident: ref_88 article-title: Jak2/Stat5 Signaling in Mammogenesis, Breast Cancer Initiation and Progression publication-title: J. Mammary Gland Biol. Neoplasia doi: 10.1007/s10911-008-9062-z – volume: 17 start-page: 1934578X221115528 year: 2022 ident: ref_163 article-title: Target Identification-Based Analysis of Mechanism of Betulinic Acid-Induced Cells Apoptosis of Cervical Cancer SiHa publication-title: Nat. Prod. Commun. – volume: 97 start-page: 4227 year: 2000 ident: ref_21 article-title: Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.8.4227 – volume: 115 start-page: 267 year: 2003 ident: ref_83 article-title: StAT signaling in cancer: Insights into pathogenesis and treatment strategies publication-title: Cancer Treat. Res. doi: 10.1007/0-306-48158-8_11 – volume: 3 start-page: 864 year: 2015 ident: ref_63 article-title: STAT3 in CD8+ T Cells Inhibits Their Tumor Accumulation by Downregulating CXCR3/CXCL10 Axis publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-15-0014 – volume: 67 start-page: 13 year: 2018 ident: ref_211 article-title: The STAT3 inhibitor pyrimethamine displays anti-cancer and immune stimulatory effects in murine models of breast cancer publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-017-2057-0 – volume: 96 start-page: E95 year: 2021 ident: ref_150 article-title: Targeting constitutively active STAT3 in chronic lymphocytic leukemia: A clinical trial of the STAT3 inhibitor pyrimethamine with pharmacodynamic analyses publication-title: Am. J. Hematol. doi: 10.1002/ajh.26084 – volume: 6 start-page: 402 year: 2021 ident: ref_181 article-title: The JAK/STAT signaling pathway: From bench to clinic publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-021-00791-1 – volume: 49 start-page: 349 year: 2002 ident: ref_13 article-title: JAK/STAT signaling pathways and cancer. Janus kinases/signal transducers and activators of transcription publication-title: Neoplasma – volume: 99 start-page: 479 year: 2002 ident: ref_71 article-title: Reduced lymphomyeloid repopulating activity from adult bone marrow and fetal liver of mice lacking expression of STAT5 publication-title: Blood doi: 10.1182/blood.V99.2.479 – volume: 448 start-page: 1058 year: 2007 ident: ref_123 article-title: Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome publication-title: Nature doi: 10.1038/nature06096 – volume: 60 start-page: 5789 year: 2000 ident: ref_97 article-title: Loss of interferon-gamma inducibility of TAP1 and LMP2 in a renal cell carcinoma cell line publication-title: Cancer Res. – volume: 110 start-page: 3053 year: 2013 ident: ref_101 article-title: STAT2 deficiency and susceptibility to viral illness in humans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1220098110 – volume: 8 start-page: 247 year: 1995 ident: ref_224 article-title: The Role of Atovaquone Tablets in Treating Pneumocystis carinii Pneumonia publication-title: JAIDS J. Acquir. Immune Defic. Syndr. doi: 10.1097/00042560-199503010-00005 – volume: 20 start-page: 2499 year: 2001 ident: ref_34 article-title: Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells publication-title: Oncogene doi: 10.1038/sj.onc.1204349 – volume: 161 start-page: 156081 year: 2023 ident: ref_102 article-title: The duality of STAT2 mediated type I interferon signaling in the tumor microenvironment and chemoresistance publication-title: Cytokine doi: 10.1016/j.cyto.2022.156081 – volume: 168 start-page: 5699 year: 2002 ident: ref_108 article-title: A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R publication-title: J. Immunol. Baltim. Md 1950 – volume: 32 start-page: 969 year: 2018 ident: ref_117 article-title: Targeting the Stat6 pathway in tumor-associated macrophages reduces tumor growth and metastatic niche formation in breast cancer publication-title: FASEB J. doi: 10.1096/fj.201700629R – volume: 313 start-page: 1929 year: 2006 ident: ref_223 article-title: The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease publication-title: Science doi: 10.1126/science.1132939 – volume: 25 start-page: 2520 year: 2006 ident: ref_28 article-title: Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-beta1 production publication-title: Oncogene doi: 10.1038/sj.onc.1209281 – volume: 64 start-page: 10606 year: 2021 ident: ref_174 article-title: Molecular Glues for Targeted Protein Degradation: From Serendipity to Rational Discovery publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.1c00895 – volume: 91 start-page: 641 year: 1998 ident: ref_190 article-title: Suppression of cell proliferation and the expression of a bcr-abl fusion gene and apoptotic cell death in a new human chronic myelogenous leukemia cell line, KT-1, by interferon-alpha publication-title: Blood doi: 10.1182/blood.V91.2.641 – volume: 208 start-page: 1135 year: 2011 ident: ref_75 article-title: Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia publication-title: J. Exp. Med. doi: 10.1084/jem.20101947 – volume: 10 start-page: 105 year: 1999 ident: ref_14 article-title: Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells publication-title: Immunity doi: 10.1016/S1074-7613(00)80011-4 – volume: 2 start-page: 98 year: 2010 ident: ref_191 article-title: Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201000062 – volume: 101 start-page: 10602 year: 2004 ident: ref_67 article-title: Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0404100101 – volume: 26 start-page: 508 year: 2020 ident: ref_204 article-title: Transcription Factor Inhibition: Lessons Learned and Emerging Targets publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2020.01.004 – volume: 132 start-page: 384 year: 2007 ident: ref_27 article-title: Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing publication-title: Gastroenterology doi: 10.1053/j.gastro.2006.10.037 – volume: 20 start-page: 551 year: 2021 ident: ref_129 article-title: Kinase drug discovery 20 years after imatinib: Progress and future directions publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-021-00195-4 – volume: 65 start-page: 5054 year: 2005 ident: ref_221 article-title: Identification of a genetic signature of activated signal transducer and activator of transcription 3 in human tumors publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-4281 – volume: 50 start-page: 263 year: 2018 ident: ref_225 article-title: Atovaquone enhances doxorubicin’s efficacy via inhibiting mitochondrial respiration and STAT3 in aggressive thyroid cancer publication-title: J. Bioenerg. Biomembr. doi: 10.1007/s10863-018-9755-y – volume: 225 start-page: 555 year: 2010 ident: ref_115 article-title: Survivin is regulated by interleukin-4 in colon cancer stem cells publication-title: J. Cell. Physiol. doi: 10.1002/jcp.22238 – volume: 15 start-page: 283 year: 2009 ident: ref_23 article-title: Persistently Activated Stat3 Maintains Constitutive NF-κB Activity in Tumors publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.02.015 – volume: 24 start-page: 1024 year: 2018 ident: ref_33 article-title: STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis publication-title: Nat. Med. doi: 10.1038/s41591-018-0044-4 – volume: 357 start-page: 1655 year: 2007 ident: ref_124 article-title: STAT3 Signaling and the Hyper-IgE Syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMe078197 – volume: 92 start-page: 7307 year: 1995 ident: ref_109 article-title: Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.16.7307 – volume: 67 start-page: 9066 year: 2007 ident: ref_68 article-title: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-0575 – ident: ref_86 doi: 10.1371/journal.pone.0060902 – volume: 15 start-page: 172 year: 2015 ident: ref_93 article-title: Germinal centres and B cell lymphomagenesis publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3814 – volume: 185 start-page: 2116 year: 2010 ident: ref_80 article-title: STAT5 Is Critical To Maintain Effector CD8+ T Cell Responses publication-title: J. Immunol. doi: 10.4049/jimmunol.1000842 – volume: 10 start-page: 77 year: 2006 ident: ref_99 article-title: STAT1 acts as a tumor promoter for leukemia development publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.05.025 – volume: 264 start-page: 1415 year: 1994 ident: ref_4 article-title: Jak-STAT Pathways and Transcriptional Activation in Response to IFNs and Other Extracellular Signaling Proteins publication-title: Science doi: 10.1126/science.8197455 – volume: 8 start-page: 285 year: 2012 ident: ref_192 article-title: BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.775 – volume: 2020 start-page: 34 year: 2020 ident: ref_125 article-title: Understanding Hyper IgE Syndrome publication-title: IG Living – volume: 10 start-page: 2867 year: 1991 ident: ref_197 article-title: Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb07836.x – volume: 27 start-page: 1598 year: 2013 ident: ref_40 article-title: STAT3 mutations are highly specific for large granular lymphocytic leukemia publication-title: Leukemia doi: 10.1038/leu.2012.350 – volume: 7 start-page: 113 year: 2022 ident: ref_164 article-title: Targeted protein degradation: Mechanisms, strategies and application publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-022-00966-4 – volume: 108 start-page: 3005 year: 2006 ident: ref_54 article-title: STAT3 positively regulates an early step in B-cell development publication-title: Blood doi: 10.1182/blood-2006-05-024430 – volume: 12 start-page: 3299 year: 2021 ident: ref_98 article-title: STAT1 potentiates oxidative stress revealing a targetable vulnerability that increases phenformin efficacy in breast cancer publication-title: Nat. Commun. doi: 10.1038/s41467-021-23396-2 – volume: 112 start-page: 4100 year: 2020 ident: ref_104 article-title: Mining therapeutic and prognostic significance of STATs in renal cell carcinoma with bioinformatics analysis publication-title: Genomics doi: 10.1016/j.ygeno.2020.06.032 – volume: 32 start-page: 1713 year: 2018 ident: ref_92 article-title: Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer publication-title: Leukemia doi: 10.1038/s41375-018-0117-x – volume: 44 start-page: 1224 year: 2020 ident: ref_149 article-title: A small molecule STAT3 inhibitor, LLL12, enhances cisplatin- and paclitaxel-mediated inhibition of cell growth and migration in human ovarian cancer cells publication-title: Oncol. Rep. doi: 10.3892/or.2020.7667 – volume: 40 start-page: 1440 year: 2021 ident: ref_139 article-title: Targeting STAT3 by a small molecule suppresses pancreatic cancer progression publication-title: Oncogene doi: 10.1038/s41388-020-01626-z – volume: 17 start-page: 78 year: 2017 ident: ref_183 article-title: JAK inhibition as a therapeutic strategy for immune and inflammatory diseases publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.267 – volume: 10 start-page: 48 year: 2004 ident: ref_64 article-title: Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells publication-title: Nat. Med. doi: 10.1038/nm976 – ident: ref_217 doi: 10.3390/ijms23084095 – volume: 34 start-page: 1083 year: 2015 ident: ref_199 article-title: Synthetic lethal screening reveals FGFR as one of the combinatorial targets to overcome resistance to Met-targeted therapy publication-title: Oncogene doi: 10.1038/onc.2014.51 – volume: 23 start-page: 168 year: 2004 ident: ref_69 article-title: Stat3 enhances vimentin gene expression by binding to the antisilencer element and interacting with the repressor protein, ZBP-89 publication-title: Oncogene doi: 10.1038/sj.onc.1207003 – volume: 18 start-page: 1118 year: 2012 ident: ref_196 article-title: Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia publication-title: Nat. Med. doi: 10.1038/nm.2819 – volume: 29 start-page: 3301 year: 2023 ident: ref_157 article-title: Phase I Study of Acalabrutinib Plus Danvatirsen (AZD9150) in Relapsed/Refractory Diffuse Large B-Cell Lymphoma Including Circulating Tumor DNA Biomarker Assessment publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-22-2483 – volume: 15 start-page: 103 year: 2009 ident: ref_48 article-title: IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.01.001 – volume: 29 start-page: 886 year: 2015 ident: ref_46 article-title: Immunosuppressive therapy of LGL leukemia: Prospective multicenter phase II study by the Eastern Cooperative Oncology Group (E5998) publication-title: Leukemia doi: 10.1038/leu.2014.298 – volume: 16 start-page: 214 year: 2006 ident: ref_58 article-title: STAT3 in immune responses and inflammatory bowel diseases publication-title: Cell Res. doi: 10.1038/sj.cr.7310029 – volume: 10 start-page: 3095 year: 2020 ident: ref_111 article-title: Immune Suppression Mediated by STAT4 Deficiency Promotes Lymphatic Metastasis in HNSCC publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.03095 – volume: 62 start-page: 601 year: 2022 ident: ref_173 article-title: Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic publication-title: Biochemistry doi: 10.1021/acs.biochem.2c00245 – ident: ref_227 doi: 10.1016/j.biopha.2020.110009 – volume: 18 start-page: 301 year: 2022 ident: ref_184 article-title: Oral surveillance and JAK inhibitor safety: The theory of relativity publication-title: Nat. Rev. Rheumatol. doi: 10.1038/s41584-022-00767-7 – volume: 29 start-page: 162 year: 2022 ident: ref_159 article-title: DNA minicircles as novel STAT3 decoy oligodeoxynucleotides endowed with anticancer activity in triple-negative breast cancer publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2022.06.012 – volume: 126 start-page: 419 year: 2005 ident: ref_177 article-title: [Pharmacological and clinical profile of anti-human IL-6 receptor antibody (tocilizumab, ACTEMRA), a novel therapeutic drug for Castleman’s disease] publication-title: Nihon Yakurigaku Zasshi doi: 10.1254/fpj.126.419 – volume: 2 start-page: 100781 year: 2021 ident: ref_207 article-title: Luciferase reporter assays to monitor interferon signaling modulation by SARS-CoV-2 proteins publication-title: STAR Protoc. doi: 10.1016/j.xpro.2021.100781 – volume: 1 start-page: 292 year: 2012 ident: ref_208 article-title: Screening approaches to generating STAT inhibitors publication-title: JAK-STAT doi: 10.4161/jkst.22662 – volume: 36 start-page: 498 year: 2019 ident: ref_121 article-title: A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.10.002 – volume: 19 start-page: 145 year: 2020 ident: ref_133 article-title: Targeting STAT3 in Cancer Immunotherapy publication-title: Mol. Cancer doi: 10.1186/s12943-020-01258-7 – volume: 29 start-page: 878 year: 2023 ident: ref_200 article-title: Targeting MET and FGFR in Relapsed or Refractory Acute Myeloid Leukemia: Preclinical and Clinical Findings, and Signal Transduction Correlates publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-22-2540 – volume: 114 start-page: 301 year: 2005 ident: ref_7 article-title: Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas publication-title: Immunology doi: 10.1111/j.1365-2567.2005.02091.x – volume: 127 start-page: 2375 year: 2016 ident: ref_37 article-title: The 2016 revision of the World Health Organization classification of lymphoid neoplasms publication-title: Blood doi: 10.1182/blood-2016-01-643569 – volume: 25 start-page: 191 year: 2023 ident: ref_148 article-title: BP-1-102 exerts antitumor effects on T-cell acute lymphoblastic leukemia cells by suppressing the JAK2/STAT3/c-Myc signaling pathway publication-title: Exp. Ther. Med. doi: 10.3892/etm.2023.11890 – volume: 71 start-page: 7226 year: 2011 ident: ref_31 article-title: STAT3 is necessary for proliferation and survival in colon cancer-initiating cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-4660 – volume: 36 start-page: 3384 year: 2017 ident: ref_110 article-title: An integrated analysis identifies STAT4 as a key regulator of ovarian cancer metastasis publication-title: Oncogene doi: 10.1038/onc.2016.487 – volume: 138 start-page: 71 year: 2018 ident: ref_131 article-title: Acquired Resistance to Drugs Targeting Tyrosine Kinases publication-title: Adv. Cancer Res. doi: 10.1016/bs.acr.2018.02.003 – volume: 12 start-page: 692574 year: 2021 ident: ref_167 article-title: PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy publication-title: Front. Pharmacol. doi: 10.3389/fphar.2021.692574 – volume: 172 start-page: 4630 year: 2004 ident: ref_65 article-title: Recruitment of STAT3 for production of IL-10 by colon carcinoma cells induced by macrophage-derived IL-6 publication-title: J. Immunol. Baltim. Md 1950 – ident: ref_138 doi: 10.1371/journal.pone.0004783 – volume: 12 start-page: e055718 year: 2022 ident: ref_158 article-title: Safety, tolerability, pharmacokinetics and preliminary antitumour activity of an antisense oligonucleotide targeting STAT3 (danvatirsen) as monotherapy and in combination with durvalumab in Japanese patients with advanced solid malignancies: A phase 1 study publication-title: BMJ Open doi: 10.1136/bmjopen-2021-055718 – volume: 7 start-page: 54 year: 2007 ident: ref_222 article-title: The Connectivity Map: A new tool for biomedical research publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2044 – volume: 6 start-page: e136176 year: 2021 ident: ref_160 article-title: Potent antitumor effects of cell-penetrating peptides targeting STAT3 axis publication-title: JCI Insight doi: 10.1172/jci.insight.136176 – ident: ref_172 doi: 10.1182/blood-2023-181130 – volume: 14 start-page: 193 year: 2001 ident: ref_51 article-title: STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation publication-title: Immunity doi: 10.1016/S1074-7613(01)00101-7 – volume: 19 start-page: 425 year: 2003 ident: ref_50 article-title: A critical role for Stat3 signaling in immune tolerance publication-title: Immunity doi: 10.1016/S1074-7613(03)00232-2 – volume: 107 start-page: 16601 year: 2010 ident: ref_79 article-title: Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1003457107 – ident: ref_82 doi: 10.3390/biomedicines8090316 – volume: 36 start-page: e24315 year: 2022 ident: ref_105 article-title: Signal transducer and activator of transcription family is a prognostic marker associated with immune infiltration in endometrial cancer publication-title: J. Clin. Lab. Anal. doi: 10.1002/jcla.24315 – volume: 30 start-page: 1204 year: 2016 ident: ref_42 article-title: Activating somatic mutations outside the SH2-domain of STAT3 in LGL-Leukemia publication-title: Leukemia doi: 10.1038/leu.2015.263 – volume: 32 start-page: 605 year: 2010 ident: ref_56 article-title: Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis publication-title: Immunity doi: 10.1016/j.immuni.2010.05.003 – volume: 4 start-page: 87 year: 2021 ident: ref_16 article-title: Cancer models in preclinical research: A chronicle review of advancement in effective cancer research publication-title: Anim. Models Exp. Med. doi: 10.1002/ame2.12165 – volume: 60 start-page: 41 year: 2020 ident: ref_85 article-title: The potential and controversy of targeting STAT family members in cancer publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.10.002 – ident: ref_135 doi: 10.1186/s43556-023-00151-1 – volume: 24 start-page: 6406 year: 2005 ident: ref_26 article-title: Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma publication-title: Oncogene doi: 10.1038/sj.onc.1208788 – volume: 5 start-page: 432 year: 1999 ident: ref_12 article-title: STAT signaling in the pathogenesis and treatment of cancer publication-title: Mol. Med. Camb. Mass doi: 10.1007/BF03403538 – volume: 102 start-page: 9449 year: 2018 ident: ref_118 article-title: Nanomedicines for developing cancer nanotherapeutics: From benchtop to bedside and beyond publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-9352-3 – volume: 8 start-page: 61876 year: 2017 ident: ref_45 article-title: STAT3 mutation impacts biological and clinical features of T-LGL leukemia publication-title: Oncotarget doi: 10.18632/oncotarget.18711 – volume: 90 start-page: 802 year: 2012 ident: ref_55 article-title: IL-6 triggers IL-21 production by human CD4+ T cells to drive STAT3-dependent plasma cell differentiation in B cells publication-title: Immunol. Cell Biol. doi: 10.1038/icb.2012.17 – volume: 6 start-page: 119 year: 2018 ident: ref_120 article-title: STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: Results of a phase 1b trial publication-title: J. Immunother. Cancer doi: 10.1186/s40425-018-0436-5 – volume: 117 start-page: 3421 year: 2011 ident: ref_194 article-title: The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors publication-title: Blood doi: 10.1182/blood-2009-11-255232 – volume: 128 start-page: 113 year: 2018 ident: ref_10 article-title: Rare mutations provide unique insight into oncogenic potential of STAT transcription factors publication-title: J. Clin. Investig. doi: 10.1172/JCI98619 – volume: 5 start-page: e1093722 year: 2016 ident: ref_180 article-title: Cytokine patterns in cancer patients: A review of the correlation between interleukin 6 and prognosis publication-title: Oncoimmunology doi: 10.1080/2162402X.2015.1093722 – volume: 36 start-page: 2551 year: 2022 ident: ref_43 article-title: All that glitters is not LGL Leukemia publication-title: Leukemia doi: 10.1038/s41375-022-01695-x – volume: 50 start-page: 87 year: 2011 ident: ref_113 article-title: Transcriptional regulation by STAT6 publication-title: Immunol. Res. doi: 10.1007/s12026-011-8205-2 – volume: 33 start-page: 2879 year: 2013 ident: ref_94 article-title: STAT5 Outcompetes STAT3 To Regulate the Expression of the Oncogenic Transcriptional Modulator BCL6 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01620-12 – volume: 117 start-page: 584 year: 2020 ident: ref_103 article-title: FBXW7-mediated stability regulation of signal transducer and activator of transcription 2 in melanoma formation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1909879116 – volume: 13 start-page: 944455 year: 2022 ident: ref_155 article-title: Design, synthesis, and biological characterization of a potent STAT3 degrader for the treatment of gastric cancer publication-title: Front. Pharmacol. doi: 10.3389/fphar.2022.944455 – volume: 7 start-page: 314ra185 year: 2015 ident: ref_119 article-title: AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aac5272 – volume: 128 start-page: 1845 year: 2016 ident: ref_206 article-title: Gene expression-based discovery of atovaquone as a STAT3 inhibitor and anticancer agent publication-title: Blood doi: 10.1182/blood-2015-07-660506 – ident: ref_29 doi: 10.1155/2013/421821 – volume: 36 start-page: 410 year: 2021 ident: ref_161 article-title: Design, synthesis, and in vitro evaluation of BP-1-102 analogs with modified hydrophobic fragments for STAT3 inhibition publication-title: J. Enzyme Inhib. Med. Chem. doi: 10.1080/14756366.2020.1871336 – volume: 3 start-page: 4215 year: 2019 ident: ref_153 article-title: Atovaquone is active against AML by upregulating the integrated stress pathway and suppressing oxidative phosphorylation publication-title: Blood Adv. doi: 10.1182/bloodadvances.2019000499 – volume: 25 start-page: 8261 year: 2021 ident: ref_170 article-title: SD-36 promotes growth inhibition and induces apoptosis via suppression of Mcl-1 in glioma publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.16754 – volume: 10 start-page: 1724 year: 1996 ident: ref_188 article-title: BCR/abl leads to the constitutive activation of Stat proteins, and shares an epitope with tyrosine phosphorylated Stats publication-title: Leukemia – volume: 23 start-page: 101822 year: 2020 ident: ref_151 article-title: STAT3 Inhibitor OPB-51602 Is Cytotoxic to Tumor Cells Through Inhibition of Complex I and ROS Induction publication-title: iScience doi: 10.1016/j.isci.2020.101822 – volume: 5 start-page: 444 year: 1999 ident: ref_219 article-title: Fludarabine-induced immunosuppression is associated with inhibition of STAT1 signaling publication-title: Nat. Med. doi: 10.1038/7445 – volume: 62 start-page: 11280 year: 2019 ident: ref_169 article-title: Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.9b01530 – volume: 33 start-page: 1459 year: 2012 ident: ref_25 article-title: Activation of the Notch1/STAT3/Twist signaling axis promotes gastric cancer progression publication-title: Carcinogenesis doi: 10.1093/carcin/bgs165 – ident: ref_154 doi: 10.3390/molecules25102306 – volume: 115 start-page: 2852 year: 2010 ident: ref_216 article-title: STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells publication-title: Blood doi: 10.1182/blood-2009-10-230060 – ident: ref_1 – volume: 366 start-page: 1905 year: 2012 ident: ref_41 article-title: Somatic STAT3 Mutations in Large Granular Lymphocytic Leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1114885 – volume: 18 start-page: 254 year: 2008 ident: ref_228 article-title: STAT3 as a target for inducing apoptosis in solid and hematological tumors publication-title: Cell Res. doi: 10.1038/cr.2008.18 – volume: 20 start-page: 455 year: 2020 ident: ref_114 article-title: Signal transducer and activator of transcription 6 as a target in colon cancer therapy publication-title: Oncol. Lett. doi: 10.3892/ol.2020.11614 – ident: ref_30 doi: 10.3390/ijms22020603 – volume: 13 start-page: 1972 year: 2017 ident: ref_178 article-title: Tocilizumab (Actemra) publication-title: Hum. Vaccines Immunother. doi: 10.1080/21645515.2017.1316909 – volume: 131 start-page: e143296 year: 2021 ident: ref_185 article-title: Interferons in cancer immunoediting: Sculpting metastasis and immunotherapy response publication-title: J. Clin. Investig. doi: 10.1172/JCI143296 – volume: 29 start-page: 1218 year: 2015 ident: ref_198 article-title: Biological properties of ligand-dependent activation of the MET receptor kinase in acute myeloid leukemia publication-title: Leukemia doi: 10.1038/leu.2014.348 – volume: 100 start-page: 3140 year: 1997 ident: ref_215 article-title: B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues publication-title: J. Clin. Investig. doi: 10.1172/JCI119869 – volume: 357 start-page: 1608 year: 2007 ident: ref_122 article-title: STAT3 mutations in the hyper-IgE syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa073687 – volume: 18 start-page: 583 year: 2020 ident: ref_146 article-title: Phosphotyrosine Isosteres: Past, Present and Future publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB01998G – volume: 217 start-page: 70 year: 2019 ident: ref_147 article-title: Silibinin inhibits endometrial carcinoma via blocking pathways of STAT3 activation and SREBP1-mediated lipid accumulation publication-title: Life Sci. doi: 10.1016/j.lfs.2018.11.037 – volume: 7 start-page: 966 year: 2009 ident: ref_91 article-title: Reciprocal Effects of STAT5 and STAT3 in Breast Cancer publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-08-0238 – volume: 91 start-page: 153712 year: 2021 ident: ref_231 article-title: Cascade of immune mechanism and consequences of inflammatory disorders publication-title: Phytomedicine doi: 10.1016/j.phymed.2021.153712 – volume: 36 start-page: 2328 year: 2017 ident: ref_24 article-title: HSP110 promotes colorectal cancer growth through STAT3 activation publication-title: Oncogene doi: 10.1038/onc.2016.403 – volume: 109 start-page: 1139 year: 2002 ident: ref_22 article-title: Stat proteins and oncogenesis publication-title: J. Clin. Investig. doi: 10.1172/JCI0215617 – volume: 15 start-page: 234 year: 2018 ident: ref_176 article-title: Targeting the IL-6/JAK/STAT3 signalling axis in cancer publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2018.8 – volume: 8 start-page: 1320 year: 2017 ident: ref_74 article-title: Critical functions for STAT5 tetramers in the maturation and survival of natural killer cells publication-title: Nat. Commun. doi: 10.1038/s41467-017-01477-5 – volume: 14 start-page: 3186 year: 1994 ident: ref_3 article-title: The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family publication-title: Mol. Cell. Biol. – volume: 9 start-page: 5671 year: 2017 ident: ref_62 article-title: Constitutive activation of STAT3 and cyclin D1 overexpression contribute to proliferation, migration and invasion in gastric cancer cells publication-title: Am. J. Transl. Res. – volume: 19 start-page: 703 year: 2023 ident: ref_156 article-title: A selective small-molecule STAT5 PROTAC degrader capable of achieving tumor regression in vivo publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-022-01248-4 – volume: 113 start-page: 4856 year: 2009 ident: ref_72 article-title: Conditional deletion of STAT5 in adult mouse hematopoietic stem cells causes loss of quiescence and permits efficient nonablative stem cell replacement publication-title: Blood doi: 10.1182/blood-2008-09-181107 – volume: 19 start-page: 2585 year: 2020 ident: ref_162 article-title: Overview of the STAT-3 signaling pathway in cancer and the development of specific inhibitors (Review) publication-title: Oncol. Lett. – ident: ref_168 doi: 10.3389/fcell.2021.685106 – volume: 13 start-page: 795 year: 2000 ident: ref_100 article-title: Immune Response in Stat2 Knockout Mice publication-title: Immunity doi: 10.1016/S1074-7613(00)00077-7 – volume: 14 start-page: 331 year: 2010 ident: ref_136 article-title: A complex task? Direct modulation of transcription factors with small molecules publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2010.03.022 – volume: 11 start-page: 84 year: 2018 ident: ref_193 article-title: Past, present, and future of Bcr-Abl inhibitors: From chemical development to clinical efficacy publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-018-0624-2 – volume: 278 start-page: 1803 year: 1997 ident: ref_9 article-title: Specific Inhibition of Stat3 Signal Transduction by PIAS3 publication-title: Science doi: 10.1126/science.278.5344.1803 – volume: 108 start-page: 1947 year: 2017 ident: ref_49 article-title: Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy publication-title: Cancer Sci. doi: 10.1111/cas.13332 – volume: 297 start-page: 2063 year: 2002 ident: ref_107 article-title: Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection publication-title: Science doi: 10.1126/science.1074900 – volume: 108 start-page: 732 year: 2022 ident: ref_95 article-title: STAT5 does not drive steroid resistance in T-cell acute lymphoblastic leukemia despite the activation of BCL and BCLXL following glucocorticoid treatment publication-title: Haematologica doi: 10.3324/haematol.2021.280405 – volume: 3 start-page: 503 year: 2012 ident: ref_209 article-title: The STAT5 Inhibitor Pimozide Displays Efficacy in Models of Acute Myelogenous Leukemia Driven by FLT3 Mutations publication-title: Genes Cancer doi: 10.1177/1947601912466555 – volume: 37 start-page: 47 year: 2016 ident: ref_201 article-title: Feedback Activation of STAT3 as a Cancer Drug-Resistance Mechanism publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2015.10.001 – volume: 264 start-page: 115971 year: 2024 ident: ref_213 article-title: Investigating the anti-cancer potential of pyrimethamine analogues through a modern chemical biology lens publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2023.115971 – volume: 8 start-page: 1 year: 2023 ident: ref_137 article-title: Recent advances in targeting the “undruggable” proteins: From drug discovery to clinical trials publication-title: Signal Transduct. Target. Ther. – volume: 18 start-page: 45 year: 2009 ident: ref_142 article-title: Targeting STAT3 in cancer: How successful are we? publication-title: Expert Opin. Investig. Drugs doi: 10.1517/13543780802565791 – volume: 6 start-page: 897 year: 2014 ident: ref_36 article-title: STAT3 Target Genes Relevant to Human Cancers publication-title: Cancers doi: 10.3390/cancers6020897 – volume: 271 start-page: 12999 year: 1996 ident: ref_143 article-title: Differential Activation of Acute Phase Response Factor/Stat3 and Stat1 via the Cytoplasmic Domain of the Interleukin 6 Signal Transducer gp130 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.22.12999 – volume: 62 start-page: 28 year: 2023 ident: ref_229 article-title: Combined PARP inhibitors and small molecular inhibitors in solid tumor treatment (Review) publication-title: Int. J. Oncol. doi: 10.3892/ijo.2023.5476 – volume: 16 start-page: 1157 year: 2020 ident: ref_175 article-title: Prospecting for molecular glues publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0620-z – volume: 14 start-page: 1265818 year: 2023 ident: ref_6 article-title: The complementary roles of STAT3 and STAT1 in cancer biology: Insights into tumor pathogenesis and therapeutic strategies publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1265818 – volume: 2 start-page: e27159 year: 2013 ident: ref_70 article-title: STAT5 in hematopoietic stem cell biology and transplantation publication-title: JAK-STAT doi: 10.4161/jkst.27159 – volume: 26 start-page: 1407 year: 2012 ident: ref_195 article-title: Dual inhibition of Jak2 and STAT5 enhances killing of myeloproliferative neoplasia cells publication-title: Leukemia doi: 10.1038/leu.2011.338 – volume: 12 start-page: 996 year: 2021 ident: ref_171 article-title: SD-91 as A Potent and Selective STAT3 Degrader Capable of Achieving Complete and Long-Lasting Tumor Regression publication-title: ACS Med. Chem. Lett. doi: 10.1021/acsmedchemlett.1c00155 – ident: ref_127 doi: 10.1007/978-3-319-42949-6 – ident: ref_214 – volume: 14 start-page: 1171141 year: 2023 ident: ref_17 article-title: Combining preclinical tools and models to unravel tumor complexity: Jump into the next dimension publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1171141 – volume: 26 start-page: 715 year: 2007 ident: ref_77 article-title: The Transcriptional Regulation of B Cell Lineage Commitment publication-title: Immunity doi: 10.1016/j.immuni.2007.05.010 – volume: 6 start-page: 90 year: 2013 ident: ref_126 article-title: STAT inhibitors for cancer therapy publication-title: J. Hematol. Oncol. doi: 10.1186/1756-8722-6-90 – volume: 183 start-page: 811 year: 1996 ident: ref_189 article-title: Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl publication-title: J. Exp. Med. doi: 10.1084/jem.183.3.811 – volume: 1 start-page: 55 year: 2012 ident: ref_11 article-title: STAT signaling in the pathogenesis and treatment of myeloid malignancies publication-title: JAK-STAT doi: 10.4161/jkst.20006 – ident: ref_144 doi: 10.3390/ijms232415944 – volume: 23 start-page: 3550 year: 2004 ident: ref_66 article-title: Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis publication-title: Oncogene doi: 10.1038/sj.onc.1207383 – volume: 98 start-page: 295 year: 1999 ident: ref_15 article-title: Stat3 as an Oncogene publication-title: Cell doi: 10.1016/S0092-8674(00)81959-5 – volume: 33 start-page: 2320 year: 2012 ident: ref_87 article-title: Stat5 in breast cancer: Potential oncogenic activity coincides with positive prognosis for the disease publication-title: Carcinogenesis doi: 10.1093/carcin/bgs362 – volume: 2 start-page: 518 year: 2011 ident: ref_140 article-title: A chemical biology approach to developing STAT inhibitors: Molecular strategies for accelerating clinical translation publication-title: Oncotarget doi: 10.18632/oncotarget.296 – volume: 27 start-page: 2459 year: 2021 ident: ref_152 article-title: Mitochondrial Inhibitor Atovaquone Increases Tumor Oxygenation and Inhibits Hypoxic Gene Expression in Patients with Non-Small Cell Lung Cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-20-4128 – volume: 140 start-page: 8835 year: 2022 ident: ref_232 article-title: Pharmacologic Inhibitors of STAT3 or BCL6 Transcriptional Function Sensitize Lymphoma Cells to the Novel PD-1 Cis-Targeted PD1-IL2v Immunocytokine in a Murine Model publication-title: Blood doi: 10.1182/blood-2022-167853 – volume: 103 start-page: 642 year: 2003 ident: ref_179 article-title: Circulating interleukin-6 predicts survival in patients with metastatic breast cancer publication-title: Int. J. Cancer doi: 10.1002/ijc.10833 – ident: ref_73 doi: 10.1371/journal.pone.0009152 – volume: 279 start-page: 54724 year: 2004 ident: ref_84 article-title: Isolation of Unique STAT5 Targets by Chromatin Immunoprecipitation-based Gene Identification publication-title: J. Biol. Chem. doi: 10.1074/jbc.M408464200 – volume: 20 start-page: 2249 year: 2014 ident: ref_130 article-title: Molecular Pathways: Resistance to Kinase Inhibitors and Implications for Therapeutic Strategies publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-1610 – volume: 12 start-page: 2244 year: 2022 ident: ref_186 article-title: When Cancer Cells Become the Enablers of an Antitumor Immune Response publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-22-0706 – volume: 7 start-page: 26307 year: 2016 ident: ref_145 article-title: Small-molecule inhibition of STAT3 in radioresistant head and neck squamous cell carcinoma publication-title: Oncotarget doi: 10.18632/oncotarget.8368 – volume: 10 start-page: 751 year: 1996 ident: ref_187 article-title: The molecular biology of chronic myeloid leukaemia publication-title: Leukemia – volume: 108 start-page: 665 year: 2004 ident: ref_89 article-title: Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers publication-title: Int. J. Cancer doi: 10.1002/ijc.11619 – volume: 171 start-page: 5853 year: 2003 ident: ref_76 article-title: Distinct effects of STAT5 activation on CD4+ and CD8+ T cell homeostasis: Development of CD4+CD25+ regulatory T cells versus CD8+ memory T cells publication-title: J. Immunol. Baltim. Md 1950 – volume: 1 start-page: 78 year: 2008 ident: ref_18 article-title: Mouse xenograft models vs. GEM models for human cancer therapeutics publication-title: Dis. Model. Mech. doi: 10.1242/dmm.000976 – volume: 55 start-page: 2386 year: 2022 ident: ref_47 article-title: STAT3 gain-of-function mutations connect leukemia with autoimmune disease by pathological NKG2Dhi CD8+ T cell dysregulation and accumulation publication-title: Immunity doi: 10.1016/j.immuni.2022.11.001 – volume: 7 start-page: 454 year: 2007 ident: ref_8 article-title: SOCS proteins, cytokine signalling and immune regulation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2093 – volume: 38 start-page: 616 year: 2018 ident: ref_38 article-title: Latest Advances in the Diagnosis and Treatment of Large Granular Lymphocytic Leukemia publication-title: Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Annu. Meet. doi: 10.1200/EDBK_200689 – volume: 9 start-page: 7204 year: 2017 ident: ref_230 article-title: Inflammatory responses and inflammation-associated diseases in organs publication-title: Oncotarget doi: 10.18632/oncotarget.23208 – volume: 37 start-page: 6723 year: 2017 ident: ref_112 article-title: High STAT4 Expression Indicates Better Disease-free Survival in Patients with Gastric Cancer publication-title: Anticancer Res. – volume: 52 start-page: 415 year: 2019 ident: ref_19 article-title: Highlighted STAT3 as a potential drug target for cancer therapy publication-title: BMB Rep. doi: 10.5483/BMBRep.2019.52.7.152 – volume: 275 start-page: 24096 year: 2000 ident: ref_61 article-title: Full oncogenic activities of v-Src are mediated by multiple signaling pathways. Ras as an essential mediator for cell survival publication-title: J. Biol. Chem. doi: 10.1074/jbc.M001606200 – volume: 2 start-page: 577 year: 1994 ident: ref_203 article-title: Structure-based drug design: Progress, results and challenges publication-title: Structure doi: 10.1016/S0969-2126(00)00060-5 – volume: 20 start-page: 4143 year: 2011 ident: ref_210 article-title: Pyrimethamine inhibits adult polycystic kidney disease by modulating STAT signaling pathways publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr338 – ident: ref_5 doi: 10.3390/cancers11121930 – volume: 129 start-page: 1082 year: 2017 ident: ref_39 article-title: LGL leukemia: From pathogenesis to treatment publication-title: Blood doi: 10.1182/blood-2016-08-692590 – volume: 116 start-page: 2462 year: 2010 ident: ref_52 article-title: STAT3 controls myeloid progenitor growth during emergency granulopoiesis publication-title: Blood doi: 10.1182/blood-2009-12-259630 – volume: 17 start-page: 63 year: 2002 ident: ref_53 article-title: STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation publication-title: Immunity doi: 10.1016/S1074-7613(02)00336-9 – volume: 11 start-page: 257 year: 2010 ident: ref_81 article-title: Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells publication-title: Nat. Immunol. doi: 10.1038/ni.1840 – volume: 3 start-page: 816 year: 2017 ident: ref_202 article-title: Targeting Oncogenic Transcription Factors: Therapeutic Implications of Endogenous STAT Inhibitors publication-title: Trends Cancer doi: 10.1016/j.trecan.2017.10.004 – volume: 66 start-page: 3649 year: 2006 ident: ref_218 article-title: Signal transducer and activator of transcription 1 activation in endothelial cells is a negative regulator of angiogenesis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-3612 – ident: ref_141 doi: 10.1039/9781782624011-00042 – volume: 27 start-page: 1984 year: 2018 ident: ref_182 article-title: The molecular details of cytokine signaling via the JAK/STAT pathway publication-title: Protein Sci. doi: 10.1002/pro.3519 – volume: 2 start-page: 99 year: 2007 ident: ref_35 article-title: A STAT3 Gene Expression Signature in Gliomas is Associated with a Poor Prognosis publication-title: Transl. Oncogenom. doi: 10.4137/TOG.S1903 – volume: 41 start-page: 5214 year: 2022 ident: ref_90 article-title: STAT5 confers lactogenic properties in breast tumorigenesis and restricts metastatic potential publication-title: Oncogene doi: 10.1038/s41388-022-02500-w – volume: 14 start-page: 2743 year: 2023 ident: ref_134 article-title: Cross-disorder genetic analysis of immune diseases reveals distinct gene associations that converge on common pathways publication-title: Nat. Commun. doi: 10.1038/s41467-023-38389-6 – ident: ref_78 doi: 10.1371/journal.pone.0086790 – ident: ref_96 – volume: 98 start-page: 8554 year: 2001 ident: ref_165 article-title: Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.141230798 – volume: 67 start-page: 1254 year: 2007 ident: ref_220 article-title: A small-molecule enhancer of signal transducer and activator of transcription 1 transcriptional activity accentuates the antiproliferative effects of IFN-gamma in human cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-2439 – volume: 180 start-page: 911 year: 2018 ident: ref_44 article-title: STAT3 mutations are not sufficient to induce large granular lymphocytic leukaemia in mice publication-title: Br. J. Haematol. doi: 10.1111/bjh.14487 – volume: 24 start-page: 5552 year: 2005 ident: ref_59 article-title: Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways publication-title: Oncogene doi: 10.1038/sj.onc.1208719 – volume: 27 start-page: 47 year: 2020 ident: ref_166 article-title: Degradation of Polycomb Repressive Complex 2 with an EED-Targeted Bivalent Chemical Degrader publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2019.11.006 – volume: 19 start-page: 595 year: 2017 ident: ref_116 article-title: Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response publication-title: Neoplasia doi: 10.1016/j.neo.2017.04.006 – ident: ref_212 doi: 10.1016/j.jbc.2021.101531 – volume: 12 start-page: 749 year: 2012 ident: ref_57 article-title: Transcriptional control of effector and memory CD8+ T cell differentiation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3307 – volume: 21 start-page: 2000 year: 2002 ident: ref_32 article-title: Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis publication-title: Oncogene doi: 10.1038/sj.onc.1205260 – volume: 17 start-page: 48 year: 2018 ident: ref_128 article-title: Kinase-targeted cancer therapies: Progress, challenges and future directions publication-title: Mol. Cancer doi: 10.1186/s12943-018-0804-2 – volume: 19 start-page: 1888 year: 2017 ident: ref_60 article-title: Genome-wide Analysis of STAT3-Mediated Transcription during Early Human Th17 Cell Differentiation publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.05.013 – volume: 112 start-page: 5095 year: 2008 ident: ref_205 article-title: Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3 publication-title: Blood doi: 10.1182/blood-2007-12-129718 – volume: 177 start-page: 415 year: 2010 ident: ref_132 article-title: Met activation in non-small cell lung cancer is associated with de novo resistance to EGFR inhibitors and the development of brain metastasis publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2010.090863 – volume: 261 start-page: 1739 year: 1993 ident: ref_2 article-title: A common nuclear signal transduction pathway activated by growth factor and cytokine receptors publication-title: Science doi: 10.1126/science.8397445 – ident: ref_106 doi: 10.3390/jpm12020140 – ident: ref_226 doi: 10.3390/cancers15041344 – volume: 14 start-page: 1160719 year: 2023 ident: ref_20 article-title: Advances in the role of STAT3 in macrophage polarization publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1160719 |
SSID | ssj0000331767 |
Score | 2.3746078 |
SecondaryResourceType | review_article |
Snippet | Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is... Cancer is the second leading cause of death worldwide, accounting for nearly one in six deaths. One of the key underlying factors distinguishing a cancer cell... Simple SummaryCancer is the second leading cause of death worldwide, accounting for nearly one in six deaths. One of the key underlying factors distinguishing... |
SourceID | proquest gale pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1387 |
SubjectTerms | Angiogenesis Antimitotic agents Antineoplastic agents Apoptosis B cells Cancer Cancer therapies Care and treatment Cytokines Cytoplasm Development and progression DNA binding proteins Gene expression Genes Genetic aspects Growth factors Health aspects Immune system Immunosuppressive agents Kinases Leukemia Localization Metastasis Mutation Phosphorylation Physiological aspects Proteins Stat protein Stat3 protein Stat5 protein Transcription activation Transcription factors Tumorigenesis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9-gPgifjudEkHQl2q7pE3qi0zZUMEPtIJvpUluIEin6_Tv99KkUwf63ORIL5e7X5LL7wg5AAQZcQQm6CB0CzjTnUChpwy0MgbDDytCbR8K39wml0_8-jl-9gdulU-rbHxi7ajNUNsz8hMUIJjEcMfO3t4DWzXK3q76EhqzZB5dsEQ7nz_v3d4_TE5ZQobxMRGO04fh_v5EW2WOqppXjdlEuh_haNopT0HNOuT0l8mSx4q06yZ3hcxAuUoWbvxt-BoZ3ZV6iAbwoulj1s1oHXcaL0D7rpIOLSqa1eneFUWASi_qkdHMsQmc0itfFvUTaMNUC9ipNNRThr46uS5nbp089XvZxWXgaygEmjM2DoQEW0NcpCFTuNpqbWCMF6lUkYI0VTpmoSyiYiCVMgL0QHIDhsUAnBuVsg0yVw5L2CJUSqMjASJBj8gFbtOMCcVAJlJyiICpFjluVJlrTzBu61y85rjRsLrPp3TfIkeTDm-OW-Pvpod2bnK76lCmLvzjARyZ5a_Ku_iDoeW6TFqk_aslrhb9-3Mzu7lfrVX-bVstsj_5bHvaDLQShh91G8kR3XIUsemsYjJoJhNEUUm8_b_wHbLYQUjk8n7aZG48-oBdhDRjteft9guLpfaf priority: 102 providerName: ProQuest |
Title | Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38611065 https://www.proquest.com/docview/3037384313 https://www.proquest.com/docview/3038440546 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxNBEB9sC-JLsVZttA0rCPXl6l12b3evUEosjbWQVvQCeTtuPwKFcNEkFf3vO_txkYQKPu_OMjc7O_Mbbvc3AO8tgow8sybpIXRLGNW9RGGkTLQyBtMPrVPtHgoPb_jViF2P8_HfdkDRgItHSzvXT2o0n578_vnnHA_8mas4sWT_qJ195gtPlUal2IIdTEvcVWLDiPV9WKaYKn1H2V6KanFesED189gaa1lqM1ZvIFCfiQbPYTdCSNIPe74HT2zzAp4O40_yfZjfNnqGfnGnyfeyXxKfjtrgQAahwQ6pF6T0t8AXBHErufCakTKQDJySL7Fb6i9LWgJbi0KNIZFJdBrWDVfpXsJocFleXCWxtUKiGaXLREjrWouLIqUKD6G3DKZ-UUiVKVsUSuc0lXVWT6RSRlg9kcxYQ3NrGTOqoK9gu5k19gCIlEZnwgqOgZIJrN6MScVEcimZzSxVHThpTVnpyDvu2l9MK6w_nO2rDdt34MNK4Eeg3Pj31GO3N5VzD1xT1_FNAWrmaK2qPn5g6igweQcO12biIdLrw-3uVq0PVuizgkpEWLQD71bDTtJdTGvs7N7PkQxBL8MlXgevWClNJUdwxfM3_yH9Fp71EC6FO0GHsL2c39sjhDtL1YWdT5c3X791YevzOOt6p34Ao-z_oQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnQS8IL4pDDASCF7CktiJnUkIlbGqZWtBkEl7y-KPSkhTOpqOaf_U_kbu4qSwSvC259gnx3e--9k-_w7glUOQkUTOBjFCt0BwEwcaPWVgtLUYfngZGnooPJmmo0Px-Sg52oDL7i0MpVV2PrFx1HZu6Ix8GwVIrjDc8Q-nPwOqGkW3q10JDW8W--7iHLds9fvxJ9Tv6zge7uW7o6CtKhAYwfkykMpRVW2ZhVyj_WH8RMwcxTJTOtIuy7RJeKjKqJwpra10ZqaEdZYnzglhNZEvocvfFPSitQebH_emX7-tTnVC3sjzHEKcZ-G2IeUt6obHjVPi3l_hbz0IrEHbJsQN78DtFpuygTemu7DhqntwY9Levt-HxZfKzNHgfhj2PR_krIlznddhQ1-5h5U1y5v08pohIGa7zchY7tkLdti4LcP6y7GOGddhp8qylqL0xMv1OXoP4PBaZvch9Kp55R4DU8qaSDqZogcWEreF1oZyplKlhIsc1314101lYVpCc6qrcVLgxobmvlib-z68XXU49Vwe_276hnRT0CpHmaZsHyvgyIgvqxjgD4bErZn2YetKS1yd5urnTrtF6x3q4o8t9-Hl6jP1pIy3ys3PmjZKIJoWKOKRt4rVoLlKEbWlyZP_C38BN0f55KA4GE_3n8KtGOGYzznagt5yceaeIZxa6uetDTM4vu5l8xvDbDM9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5NnTTxgvhN2QAjgeAlNImd2EFCqGyrVsbKBJm0txDbVwlpSre2A_Gv8ddxjp3CKsHbnmOfHN_57rN9_g7gORLIyBK0UUrQLRLcpJEmTxkZbS2FH17Hxj0UPprkByfiw2l2ugG_urcwLq2y84mto7Yz487IByRAckXhjg-mIS3ieG_07vwichWk3E1rV07Dm8gh_vxB27fF2_Ee6fpFmo72y92DKFQYiIzgfBlJha7CtixirskWKZYSfk5SWSidaCwKbTIeqzqpp0prK9FMlbBoeYYohNWOiInc_6akqCh6sPl-f3L8eXXCE_NWnucT4ryIB8Ypcr5oOd24S-L7KxSuB4Q1mNuGu9EtuBlwKht6w7oNG9jcga2jcBN_F-afGjMj4_tm2JdyWLI25nUeiI18FR9WL1jZppovGIFjttuOjJWeyeANG4eSrN-RdSy5SJ0aywJd6ZmX6_P17sHJtczufeg1swYfAlPKmkSizMkbC0lbRGtjOVW5UgIT5LoPr7uprEwgN3c1Ns4q2uS4ua_W5r4Pr1Ydzj2vx7-bvnS6qdyKJ5mmDg8XaGSOO6sa0g_Gjmcz78POlZa0Us3Vz512q-ApFtUfu-7Ds9Vn19NlvzU4u2zbKEHIWpCIB94qVoPmKicEl2eP_i_8KWzRcqk-jieH23AjJWTm0492oLecX-JjQlZL_SSYMIOv171qfgPPDTdp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oncogenic+STAT+Transcription+Factors+as+Targets+for+Cancer+Therapy%3A+Innovative+Strategies+and+Clinical+Translation&rft.jtitle=Cancers&rft.au=Wang%2C+Weiyuan&rft.au=Lopez+McDonald%2C+Melanie+Cristina&rft.au=Hariprasad%2C+Rajashree&rft.au=Hamilton%2C+Tiara&rft.date=2024-04-01&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=16&rft.issue=7&rft_id=info:doi/10.3390%2Fcancers16071387&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |