Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation

Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), w...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 16; no. 7; p. 1387
Main Authors Wang, Weiyuan, Lopez McDonald, Melanie Cristina, Hariprasad, Rajashree, Hamilton, Tiara, Frank, David A.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2024
Subjects
Online AccessGet full text
ISSN2072-6694
2072-6694
DOI10.3390/cancers16071387

Cover

Abstract Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
AbstractList Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
Cancer is the second leading cause of death worldwide, accounting for nearly one in six deaths. One of the key underlying factors distinguishing a cancer cell from a normal cell is the pattern of expression of genes. Proteins that regulate gene expression, called transcription factors, are abnormally regulated in cancer cells, particularly a group of proteins called STATs. This causes cancer cells to survive, proliferate excessively, and escape killing by the immune system. Since normal cells can survive adequately without full STAT function, targeting these proteins is an attractive approach for a new generation of more effective and less toxic cancer therapies. In this review, we summarize the current knowledge of STAT function in cancer and the advances and challenges in developing drugs to target them.
Simple SummaryCancer is the second leading cause of death worldwide, accounting for nearly one in six deaths. One of the key underlying factors distinguishing a cancer cell from a normal cell is the pattern of expression of genes. Proteins that regulate gene expression, called transcription factors, are abnormally regulated in cancer cells, particularly a group of proteins called STATs. This causes cancer cells to survive, proliferate excessively, and escape killing by the immune system. Since normal cells can survive adequately without full STAT function, targeting these proteins is an attractive approach for a new generation of more effective and less toxic cancer therapies. In this review, we summarize the current knowledge of STAT function in cancer and the advances and challenges in developing drugs to target them.AbstractDespite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
Cancer is the second leading cause of death worldwide, accounting for nearly one in six deaths. One of the key underlying factors distinguishing a cancer cell from a normal cell is the pattern of expression of genes. Proteins that regulate gene expression, called transcription factors, are abnormally regulated in cancer cells, particularly a group of proteins called STATs. This causes cancer cells to survive, proliferate excessively, and escape killing by the immune system. Since normal cells can survive adequately without full STAT function, targeting these proteins is an attractive approach for a new generation of more effective and less toxic cancer therapies. In this review, we summarize the current knowledge of STAT function in cancer and the advances and challenges in developing drugs to target them. Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
Audience Academic
Author Frank, David A.
Wang, Weiyuan
Lopez McDonald, Melanie Cristina
Hariprasad, Rajashree
Hamilton, Tiara
Author_xml – sequence: 1
  givenname: Weiyuan
  surname: Wang
  fullname: Wang, Weiyuan
– sequence: 2
  givenname: Melanie Cristina
  surname: Lopez McDonald
  fullname: Lopez McDonald, Melanie Cristina
– sequence: 3
  givenname: Rajashree
  surname: Hariprasad
  fullname: Hariprasad, Rajashree
– sequence: 4
  givenname: Tiara
  surname: Hamilton
  fullname: Hamilton, Tiara
– sequence: 5
  givenname: David A.
  orcidid: 0000-0002-7698-8364
  surname: Frank
  fullname: Frank, David A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38611065$$D View this record in MEDLINE/PubMed
BookMark eNp1kktvGyEUhVGVqHk06-4qpGy6cQK-MzBkZ1lNEylSFpmuRwxzxyUagws4Uv59GTtPK4EFCH3n3AOXI7LnvENCvnN2BqDYudHOYIhcMMmhkl_I4ZTJ6UQIVey92R-QkxjvWR4AXAr5lRxAJThnojwk4dYZv0BnDb2rZzWtg3bRBLtK1jt6qU3yIVIdaa3DAlOkvQ90vilM678Y9Orxgl475x90sg9I71LQCRcWs8h1dD7YbK2Hre-gR9dvZL_XQ8STp_WY_Ln8Vc-vJje3v6_ns5uJKQDSRFZYToWSikELXG2il3wqVdXyFpVqTQms0lz3Vdt2Ek1fFR12UCIWRdcqOCY_t76r4P-tMaZmaaPBYdAO_To2wKAqClYWIqOnO-i9XweX042UzBxweKUWesDGut7ny5rRtJnlmCwnFKPX2QdUnh0urckd7G0-fyf48VR83S6xa1bBLnV4bJ6blIHzLWCCjzFg_4Jw1ow_odn5CVlR7iiMTZvHz1ns8KnuP5J0tw0
CitedBy_id crossref_primary_10_1016_j_jhepr_2025_101365
crossref_primary_10_1016_j_neo_2025_101137
crossref_primary_10_3389_fimmu_2024_1388176
crossref_primary_10_1158_1078_0432_CCR_24_1692
Cites_doi 10.1007/s10911-008-9062-z
10.1073/pnas.97.8.4227
10.1007/0-306-48158-8_11
10.1158/2326-6066.CIR-15-0014
10.1007/s00262-017-2057-0
10.1002/ajh.26084
10.1038/s41392-021-00791-1
10.1182/blood.V99.2.479
10.1038/nature06096
10.1073/pnas.1220098110
10.1097/00042560-199503010-00005
10.1038/sj.onc.1204349
10.1016/j.cyto.2022.156081
10.1096/fj.201700629R
10.1126/science.1132939
10.1038/sj.onc.1209281
10.1021/acs.jmedchem.1c00895
10.1182/blood.V91.2.641
10.1084/jem.20101947
10.1016/S1074-7613(00)80011-4
10.1002/emmm.201000062
10.1073/pnas.0404100101
10.1016/j.molmed.2020.01.004
10.1053/j.gastro.2006.10.037
10.1038/s41573-021-00195-4
10.1158/0008-5472.CAN-04-4281
10.1007/s10863-018-9755-y
10.1002/jcp.22238
10.1016/j.ccr.2009.02.015
10.1038/s41591-018-0044-4
10.1056/NEJMe078197
10.1073/pnas.92.16.7307
10.1158/0008-5472.CAN-07-0575
10.1371/journal.pone.0060902
10.1038/nri3814
10.4049/jimmunol.1000842
10.1016/j.ccr.2006.05.025
10.1126/science.8197455
10.1038/nchembio.775
10.1002/j.1460-2075.1991.tb07836.x
10.1038/leu.2012.350
10.1038/s41392-022-00966-4
10.1182/blood-2006-05-024430
10.1038/s41467-021-23396-2
10.1016/j.ygeno.2020.06.032
10.1038/s41375-018-0117-x
10.3892/or.2020.7667
10.1038/s41388-020-01626-z
10.1038/nrd.2017.267
10.1038/nm976
10.3390/ijms23084095
10.1038/onc.2014.51
10.1038/sj.onc.1207003
10.1038/nm.2819
10.1158/1078-0432.CCR-22-2483
10.1016/j.ccr.2009.01.001
10.1038/leu.2014.298
10.1038/sj.cr.7310029
10.3389/fimmu.2019.03095
10.1021/acs.biochem.2c00245
10.1016/j.biopha.2020.110009
10.1038/s41584-022-00767-7
10.1016/j.omtn.2022.06.012
10.1254/fpj.126.419
10.1016/j.xpro.2021.100781
10.4161/jkst.22662
10.1016/j.ccell.2019.10.002
10.1186/s12943-020-01258-7
10.1158/1078-0432.CCR-22-2540
10.1111/j.1365-2567.2005.02091.x
10.1182/blood-2016-01-643569
10.3892/etm.2023.11890
10.1158/0008-5472.CAN-10-4660
10.1038/onc.2016.487
10.1016/bs.acr.2018.02.003
10.3389/fphar.2021.692574
10.1371/journal.pone.0004783
10.1136/bmjopen-2021-055718
10.1038/nrc2044
10.1172/jci.insight.136176
10.1182/blood-2023-181130
10.1016/S1074-7613(01)00101-7
10.1016/S1074-7613(03)00232-2
10.1073/pnas.1003457107
10.3390/biomedicines8090316
10.1002/jcla.24315
10.1038/leu.2015.263
10.1016/j.immuni.2010.05.003
10.1002/ame2.12165
10.1016/j.semcancer.2019.10.002
10.1186/s43556-023-00151-1
10.1038/sj.onc.1208788
10.1007/BF03403538
10.1007/s00253-018-9352-3
10.18632/oncotarget.18711
10.1038/icb.2012.17
10.1186/s40425-018-0436-5
10.1182/blood-2009-11-255232
10.1172/JCI98619
10.1080/2162402X.2015.1093722
10.1038/s41375-022-01695-x
10.1007/s12026-011-8205-2
10.1128/MCB.01620-12
10.1073/pnas.1909879116
10.3389/fphar.2022.944455
10.1126/scitranslmed.aac5272
10.1182/blood-2015-07-660506
10.1155/2013/421821
10.1080/14756366.2020.1871336
10.1182/bloodadvances.2019000499
10.1111/jcmm.16754
10.1016/j.isci.2020.101822
10.1038/7445
10.1021/acs.jmedchem.9b01530
10.1093/carcin/bgs165
10.3390/molecules25102306
10.1182/blood-2009-10-230060
10.1056/NEJMoa1114885
10.1038/cr.2008.18
10.3892/ol.2020.11614
10.3390/ijms22020603
10.1080/21645515.2017.1316909
10.1172/JCI143296
10.1038/leu.2014.348
10.1172/JCI119869
10.1056/NEJMoa073687
10.1039/C9OB01998G
10.1016/j.lfs.2018.11.037
10.1158/1541-7786.MCR-08-0238
10.1016/j.phymed.2021.153712
10.1038/onc.2016.403
10.1172/JCI0215617
10.1038/nrclinonc.2018.8
10.1038/s41467-017-01477-5
10.1038/s41589-022-01248-4
10.1182/blood-2008-09-181107
10.3389/fcell.2021.685106
10.1016/S1074-7613(00)00077-7
10.1016/j.cbpa.2010.03.022
10.1186/s13045-018-0624-2
10.1126/science.278.5344.1803
10.1111/cas.13332
10.1126/science.1074900
10.3324/haematol.2021.280405
10.1177/1947601912466555
10.1016/j.tips.2015.10.001
10.1016/j.ejmech.2023.115971
10.1517/13543780802565791
10.3390/cancers6020897
10.1074/jbc.271.22.12999
10.3892/ijo.2023.5476
10.1038/s41589-020-0620-z
10.3389/fimmu.2023.1265818
10.4161/jkst.27159
10.1038/leu.2011.338
10.1021/acsmedchemlett.1c00155
10.1007/978-3-319-42949-6
10.3389/fimmu.2023.1171141
10.1016/j.immuni.2007.05.010
10.1186/1756-8722-6-90
10.1084/jem.183.3.811
10.4161/jkst.20006
10.3390/ijms232415944
10.1038/sj.onc.1207383
10.1016/S0092-8674(00)81959-5
10.1093/carcin/bgs362
10.18632/oncotarget.296
10.1158/1078-0432.CCR-20-4128
10.1182/blood-2022-167853
10.1002/ijc.10833
10.1371/journal.pone.0009152
10.1074/jbc.M408464200
10.1158/1078-0432.CCR-13-1610
10.1158/2159-8290.CD-22-0706
10.18632/oncotarget.8368
10.1002/ijc.11619
10.1242/dmm.000976
10.1016/j.immuni.2022.11.001
10.1038/nri2093
10.1200/EDBK_200689
10.18632/oncotarget.23208
10.5483/BMBRep.2019.52.7.152
10.1074/jbc.M001606200
10.1016/S0969-2126(00)00060-5
10.1093/hmg/ddr338
10.3390/cancers11121930
10.1182/blood-2016-08-692590
10.1182/blood-2009-12-259630
10.1016/S1074-7613(02)00336-9
10.1038/ni.1840
10.1016/j.trecan.2017.10.004
10.1158/0008-5472.CAN-05-3612
10.1039/9781782624011-00042
10.1002/pro.3519
10.4137/TOG.S1903
10.1038/s41388-022-02500-w
10.1038/s41467-023-38389-6
10.1371/journal.pone.0086790
10.1073/pnas.141230798
10.1158/0008-5472.CAN-06-2439
10.1111/bjh.14487
10.1038/sj.onc.1208719
10.1016/j.chembiol.2019.11.006
10.1016/j.neo.2017.04.006
10.1016/j.jbc.2021.101531
10.1038/nri3307
10.1038/sj.onc.1205260
10.1186/s12943-018-0804-2
10.1016/j.celrep.2017.05.013
10.1182/blood-2007-12-129718
10.2353/ajpath.2010.090863
10.1126/science.8397445
10.3390/jpm12020140
10.3390/cancers15041344
10.3389/fimmu.2023.1160719
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOI 10.3390/cancers16071387
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Biological Science Collection
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2072-6694
ExternalDocumentID A790017666
38611065
10_3390_cancers16071387
Genre Journal Article
Review
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: T32 CA272392
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
TUS
NPM
PQGLB
PMFND
3V.
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c433t-78e52697903b31931767512798b1be99bc5308a1af8bbd7ecf84ded35ee44db93
IEDL.DBID M48
ISSN 2072-6694
IngestDate Thu Sep 04 18:54:52 EDT 2025
Fri Jul 25 11:57:40 EDT 2025
Tue Jun 17 22:17:17 EDT 2025
Tue Jun 10 21:11:22 EDT 2025
Mon Jul 21 06:01:20 EDT 2025
Tue Jul 01 01:08:05 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords cancer therapy
STAT5
cancer
immunity
STAT3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-78e52697903b31931767512798b1be99bc5308a1af8bbd7ecf84ded35ee44db93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7698-8364
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers16071387
PMID 38611065
PQID 3037384313
PQPubID 2032421
ParticipantIDs proquest_miscellaneous_3038440546
proquest_journals_3037384313
gale_infotracmisc_A790017666
gale_infotracacademiconefile_A790017666
pubmed_primary_38611065
crossref_primary_10_3390_cancers16071387
crossref_citationtrail_10_3390_cancers16071387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cancers
PublicationTitleAlternate Cancers (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kong (ref_170) 2021; 25
Carpenter (ref_36) 2014; 6
ref_138
Bai (ref_121) 2019; 36
Niu (ref_32) 2002; 21
Kentsis (ref_196) 2012; 18
Lee (ref_23) 2009; 15
Lin (ref_90) 2022; 41
Benedettini (ref_132) 2010; 177
ref_96
ref_135
Qi (ref_167) 2021; 12
Yoshimura (ref_8) 2007; 7
Kim (ref_199) 2015; 34
Dovhey (ref_97) 2000; 60
Zhao (ref_201) 2016; 37
Stevens (ref_153) 2019; 3
Lamb (ref_222) 2007; 7
ref_127
Bromberg (ref_22) 2002; 109
Wagner (ref_88) 2008; 13
Chen (ref_204) 2020; 26
Durant (ref_56) 2010; 32
Hand (ref_79) 2010; 107
(ref_185) 2021; 131
Holland (ref_122) 2007; 357
Bromberg (ref_15) 1999; 98
Khan (ref_211) 2018; 67
Kaech (ref_57) 2012; 12
Lin (ref_74) 2017; 8
Takakura (ref_210) 2011; 20
Ohsugi (ref_177) 2005; 126
Lin (ref_31) 2011; 71
ref_78
ref_154
Bunting (ref_71) 2002; 99
ref_73
Wegenka (ref_3) 1994; 14
Zhang (ref_149) 2020; 44
Yanagisawa (ref_190) 1998; 91
Alvarez (ref_221) 2005; 65
Nguyen (ref_107) 2002; 297
Melo (ref_187) 1996; 10
Ye (ref_148) 2023; 25
Brambilla (ref_151) 2020; 23
Isomoto (ref_27) 2007; 132
ref_82
Nelson (ref_209) 2012; 3
Hu (ref_181) 2021; 6
Chen (ref_139) 2021; 40
Zhou (ref_104) 2020; 112
Bharadwaj (ref_145) 2016; 7
ref_141
Darnell (ref_4) 1994; 264
ref_144
ref_86
Walker (ref_94) 2013; 33
Zhou (ref_171) 2021; 12
Lamb (ref_223) 2006; 313
Siddiquee (ref_228) 2008; 18
Cheng (ref_50) 2003; 19
Wang (ref_232) 2022; 140
Oleksak (ref_161) 2021; 36
Zhou (ref_105) 2022; 36
Wang (ref_6) 2023; 14
ref_214
Dong (ref_174) 2021; 64
Hemmann (ref_143) 1996; 271
Aftabizadeh (ref_160) 2021; 6
ref_217
Yue (ref_142) 2009; 18
Iovino (ref_115) 2010; 225
Hantschel (ref_192) 2012; 8
Jayakumar (ref_116) 2017; 19
Megha (ref_231) 2021; 91
Chou (ref_54) 2006; 108
ref_212
Diehl (ref_55) 2012; 90
Xie (ref_137) 2023; 8
Wang (ref_163) 2022; 17
Sasso (ref_173) 2022; 62
Lippitz (ref_180) 2016; 5
Hirschenberger (ref_207) 2021; 2
Swerdlow (ref_37) 2016; 127
Hoelbl (ref_191) 2010; 2
Yue (ref_63) 2015; 3
Koehler (ref_136) 2010; 14
Salgado (ref_179) 2003; 103
Rossari (ref_193) 2018; 11
Wingelhofer (ref_92) 2018; 32
Johnson (ref_176) 2018; 15
Xu (ref_59) 2005; 24
Priego (ref_33) 2018; 24
Li (ref_155) 2022; 13
Wang (ref_72) 2009; 113
Luo (ref_62) 2017; 9
Frank (ref_188) 1996; 10
Brown (ref_213) 2024; 264
Jin (ref_229) 2023; 62
Park (ref_81) 2010; 11
Lovly (ref_130) 2014; 20
Fu (ref_58) 2006; 16
Chen (ref_230) 2017; 9
ref_106
ref_227
Sadowski (ref_2) 1993; 261
Lee (ref_19) 2019; 52
Totten (ref_98) 2021; 12
ref_226
Walker (ref_91) 2009; 7
McGee (ref_198) 2015; 29
Nutt (ref_77) 2007; 26
Barash (ref_87) 2012; 33
Goenka (ref_113) 2011; 50
Heppler (ref_202) 2017; 3
Hong (ref_119) 2015; 7
Herbeuval (ref_65) 2004; 172
Rhodes (ref_125) 2020; 2020
Walker (ref_208) 2012; 1
Grivennikov (ref_48) 2009; 15
Xie (ref_66) 2004; 23
Basso (ref_93) 2015; 15
Schwartz (ref_183) 2017; 17
Landowski (ref_14) 1999; 10
Semenzato (ref_43) 2022; 36
Gu (ref_162) 2020; 19
Roschewski (ref_157) 2023; 29
Xiang (ref_206) 2016; 128
Boudny (ref_13) 2002; 49
Tripathi (ref_60) 2017; 19
Lipford (ref_175) 2020; 16
Lee (ref_53) 2002; 17
Heppler (ref_10) 2018; 128
Garcia (ref_34) 2001; 20
Chen (ref_200) 2023; 29
Levy (ref_124) 2007; 357
Demela (ref_134) 2023; 14
Shi (ref_147) 2019; 217
Hughes (ref_224) 1995; 8
Moignet (ref_38) 2018; 38
Canar (ref_102) 2023; 161
Frank (ref_12) 1999; 5
Wu (ref_69) 2004; 23
ref_29
Xia (ref_20) 2023; 14
Skwarski (ref_152) 2021; 27
Battle (ref_218) 2006; 66
Dechow (ref_67) 2004; 101
Zou (ref_133) 2020; 19
Willette (ref_75) 2011; 208
Frank (ref_219) 1999; 5
Lo (ref_68) 2007; 67
Carlesso (ref_189) 1996; 183
Kitamura (ref_49) 2017; 108
Chung (ref_9) 1997; 278
Rosenzweig (ref_131) 2018; 138
Iqbal (ref_118) 2018; 102
Teramo (ref_45) 2017; 8
Zhou (ref_169) 2019; 62
McLemore (ref_51) 2001; 14
Zhao (ref_110) 2017; 36
Niwa (ref_26) 2005; 24
Cohen (ref_129) 2021; 20
Verhoeven (ref_85) 2020; 60
Ogata (ref_28) 2006; 25
Furqan (ref_126) 2013; 6
Hsu (ref_25) 2012; 33
Berthenet (ref_24) 2017; 36
Nelson (ref_205) 2008; 112
Fasan (ref_40) 2013; 27
Cotarla (ref_89) 2004; 108
Burchill (ref_76) 2003; 171
Tripathi (ref_80) 2010; 185
Nishina (ref_158) 2022; 12
Nelson (ref_11) 2012; 1
Sajjad (ref_16) 2021; 4
ref_172
Harris (ref_216) 2010; 115
Bacon (ref_109) 1995; 92
Frank (ref_83) 2003; 115
Koskela (ref_41) 2012; 366
Lee (ref_103) 2020; 117
Dutta (ref_44) 2018; 180
Zhao (ref_164) 2022; 7
Sheppard (ref_178) 2017; 13
Grandis (ref_21) 2000; 97
Nelson (ref_84) 2004; 279
Nelson (ref_195) 2012; 26
Casas (ref_159) 2022; 29
Parham (ref_108) 2002; 168
Cerulli (ref_146) 2020; 18
ref_168
Winthrop (ref_184) 2022; 18
Mitchell (ref_7) 2005; 114
Kaneshige (ref_156) 2023; 19
Zhang (ref_52) 2010; 116
Bhullar (ref_128) 2018; 17
Morris (ref_182) 2018; 27
Bansal (ref_117) 2018; 32
Ribas (ref_186) 2022; 12
Jackson (ref_47) 2022; 55
Frank (ref_215) 1997; 100
Wang (ref_70) 2013; 2
Colly (ref_114) 2020; 20
Richmond (ref_18) 2008; 1
Nishi (ref_112) 2017; 37
Nelson (ref_140) 2011; 2
Brown (ref_150) 2021; 96
ref_30
Andersson (ref_42) 2016; 30
Hagelaar (ref_95) 2022; 108
Wang (ref_64) 2004; 10
Alvarez (ref_35) 2007; 2
Verlinde (ref_203) 1994; 2
Lv (ref_225) 2018; 50
Reilley (ref_120) 2018; 6
Sakamoto (ref_165) 2001; 98
Nelson (ref_194) 2011; 117
Odajima (ref_61) 2000; 275
Hambleton (ref_101) 2013; 110
Miserocchi (ref_17) 2023; 14
Potjewyd (ref_166) 2020; 27
Lynch (ref_220) 2007; 67
ref_1
Minegishi (ref_123) 2007; 448
Lamy (ref_39) 2017; 129
Loughran (ref_46) 2015; 29
Anderson (ref_111) 2020; 10
Naldini (ref_197) 1991; 10
Park (ref_100) 2000; 13
ref_5
Kovacic (ref_99) 2006; 10
References_xml – volume: 13
  start-page: 93
  year: 2008
  ident: ref_88
  article-title: Jak2/Stat5 Signaling in Mammogenesis, Breast Cancer Initiation and Progression
  publication-title: J. Mammary Gland Biol. Neoplasia
  doi: 10.1007/s10911-008-9062-z
– volume: 17
  start-page: 1934578X221115528
  year: 2022
  ident: ref_163
  article-title: Target Identification-Based Analysis of Mechanism of Betulinic Acid-Induced Cells Apoptosis of Cervical Cancer SiHa
  publication-title: Nat. Prod. Commun.
– volume: 97
  start-page: 4227
  year: 2000
  ident: ref_21
  article-title: Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.8.4227
– volume: 115
  start-page: 267
  year: 2003
  ident: ref_83
  article-title: StAT signaling in cancer: Insights into pathogenesis and treatment strategies
  publication-title: Cancer Treat. Res.
  doi: 10.1007/0-306-48158-8_11
– volume: 3
  start-page: 864
  year: 2015
  ident: ref_63
  article-title: STAT3 in CD8+ T Cells Inhibits Their Tumor Accumulation by Downregulating CXCR3/CXCL10 Axis
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-15-0014
– volume: 67
  start-page: 13
  year: 2018
  ident: ref_211
  article-title: The STAT3 inhibitor pyrimethamine displays anti-cancer and immune stimulatory effects in murine models of breast cancer
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-017-2057-0
– volume: 96
  start-page: E95
  year: 2021
  ident: ref_150
  article-title: Targeting constitutively active STAT3 in chronic lymphocytic leukemia: A clinical trial of the STAT3 inhibitor pyrimethamine with pharmacodynamic analyses
  publication-title: Am. J. Hematol.
  doi: 10.1002/ajh.26084
– volume: 6
  start-page: 402
  year: 2021
  ident: ref_181
  article-title: The JAK/STAT signaling pathway: From bench to clinic
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-021-00791-1
– volume: 49
  start-page: 349
  year: 2002
  ident: ref_13
  article-title: JAK/STAT signaling pathways and cancer. Janus kinases/signal transducers and activators of transcription
  publication-title: Neoplasma
– volume: 99
  start-page: 479
  year: 2002
  ident: ref_71
  article-title: Reduced lymphomyeloid repopulating activity from adult bone marrow and fetal liver of mice lacking expression of STAT5
  publication-title: Blood
  doi: 10.1182/blood.V99.2.479
– volume: 448
  start-page: 1058
  year: 2007
  ident: ref_123
  article-title: Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome
  publication-title: Nature
  doi: 10.1038/nature06096
– volume: 60
  start-page: 5789
  year: 2000
  ident: ref_97
  article-title: Loss of interferon-gamma inducibility of TAP1 and LMP2 in a renal cell carcinoma cell line
  publication-title: Cancer Res.
– volume: 110
  start-page: 3053
  year: 2013
  ident: ref_101
  article-title: STAT2 deficiency and susceptibility to viral illness in humans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1220098110
– volume: 8
  start-page: 247
  year: 1995
  ident: ref_224
  article-title: The Role of Atovaquone Tablets in Treating Pneumocystis carinii Pneumonia
  publication-title: JAIDS J. Acquir. Immune Defic. Syndr.
  doi: 10.1097/00042560-199503010-00005
– volume: 20
  start-page: 2499
  year: 2001
  ident: ref_34
  article-title: Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1204349
– volume: 161
  start-page: 156081
  year: 2023
  ident: ref_102
  article-title: The duality of STAT2 mediated type I interferon signaling in the tumor microenvironment and chemoresistance
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2022.156081
– volume: 168
  start-page: 5699
  year: 2002
  ident: ref_108
  article-title: A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R
  publication-title: J. Immunol. Baltim. Md 1950
– volume: 32
  start-page: 969
  year: 2018
  ident: ref_117
  article-title: Targeting the Stat6 pathway in tumor-associated macrophages reduces tumor growth and metastatic niche formation in breast cancer
  publication-title: FASEB J.
  doi: 10.1096/fj.201700629R
– volume: 313
  start-page: 1929
  year: 2006
  ident: ref_223
  article-title: The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease
  publication-title: Science
  doi: 10.1126/science.1132939
– volume: 25
  start-page: 2520
  year: 2006
  ident: ref_28
  article-title: Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-beta1 production
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209281
– volume: 64
  start-page: 10606
  year: 2021
  ident: ref_174
  article-title: Molecular Glues for Targeted Protein Degradation: From Serendipity to Rational Discovery
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.1c00895
– volume: 91
  start-page: 641
  year: 1998
  ident: ref_190
  article-title: Suppression of cell proliferation and the expression of a bcr-abl fusion gene and apoptotic cell death in a new human chronic myelogenous leukemia cell line, KT-1, by interferon-alpha
  publication-title: Blood
  doi: 10.1182/blood.V91.2.641
– volume: 208
  start-page: 1135
  year: 2011
  ident: ref_75
  article-title: Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101947
– volume: 10
  start-page: 105
  year: 1999
  ident: ref_14
  article-title: Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80011-4
– volume: 2
  start-page: 98
  year: 2010
  ident: ref_191
  article-title: Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia
  publication-title: EMBO Mol. Med.
  doi: 10.1002/emmm.201000062
– volume: 101
  start-page: 10602
  year: 2004
  ident: ref_67
  article-title: Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0404100101
– volume: 26
  start-page: 508
  year: 2020
  ident: ref_204
  article-title: Transcription Factor Inhibition: Lessons Learned and Emerging Targets
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2020.01.004
– volume: 132
  start-page: 384
  year: 2007
  ident: ref_27
  article-title: Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.10.037
– volume: 20
  start-page: 551
  year: 2021
  ident: ref_129
  article-title: Kinase drug discovery 20 years after imatinib: Progress and future directions
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-021-00195-4
– volume: 65
  start-page: 5054
  year: 2005
  ident: ref_221
  article-title: Identification of a genetic signature of activated signal transducer and activator of transcription 3 in human tumors
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-4281
– volume: 50
  start-page: 263
  year: 2018
  ident: ref_225
  article-title: Atovaquone enhances doxorubicin’s efficacy via inhibiting mitochondrial respiration and STAT3 in aggressive thyroid cancer
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1007/s10863-018-9755-y
– volume: 225
  start-page: 555
  year: 2010
  ident: ref_115
  article-title: Survivin is regulated by interleukin-4 in colon cancer stem cells
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.22238
– volume: 15
  start-page: 283
  year: 2009
  ident: ref_23
  article-title: Persistently Activated Stat3 Maintains Constitutive NF-κB Activity in Tumors
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.02.015
– volume: 24
  start-page: 1024
  year: 2018
  ident: ref_33
  article-title: STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0044-4
– volume: 357
  start-page: 1655
  year: 2007
  ident: ref_124
  article-title: STAT3 Signaling and the Hyper-IgE Syndrome
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMe078197
– volume: 92
  start-page: 7307
  year: 1995
  ident: ref_109
  article-title: Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.16.7307
– volume: 67
  start-page: 9066
  year: 2007
  ident: ref_68
  article-title: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0575
– ident: ref_86
  doi: 10.1371/journal.pone.0060902
– volume: 15
  start-page: 172
  year: 2015
  ident: ref_93
  article-title: Germinal centres and B cell lymphomagenesis
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3814
– volume: 185
  start-page: 2116
  year: 2010
  ident: ref_80
  article-title: STAT5 Is Critical To Maintain Effector CD8+ T Cell Responses
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1000842
– volume: 10
  start-page: 77
  year: 2006
  ident: ref_99
  article-title: STAT1 acts as a tumor promoter for leukemia development
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2006.05.025
– volume: 264
  start-page: 1415
  year: 1994
  ident: ref_4
  article-title: Jak-STAT Pathways and Transcriptional Activation in Response to IFNs and Other Extracellular Signaling Proteins
  publication-title: Science
  doi: 10.1126/science.8197455
– volume: 8
  start-page: 285
  year: 2012
  ident: ref_192
  article-title: BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.775
– volume: 2020
  start-page: 34
  year: 2020
  ident: ref_125
  article-title: Understanding Hyper IgE Syndrome
  publication-title: IG Living
– volume: 10
  start-page: 2867
  year: 1991
  ident: ref_197
  article-title: Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1991.tb07836.x
– volume: 27
  start-page: 1598
  year: 2013
  ident: ref_40
  article-title: STAT3 mutations are highly specific for large granular lymphocytic leukemia
  publication-title: Leukemia
  doi: 10.1038/leu.2012.350
– volume: 7
  start-page: 113
  year: 2022
  ident: ref_164
  article-title: Targeted protein degradation: Mechanisms, strategies and application
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-022-00966-4
– volume: 108
  start-page: 3005
  year: 2006
  ident: ref_54
  article-title: STAT3 positively regulates an early step in B-cell development
  publication-title: Blood
  doi: 10.1182/blood-2006-05-024430
– volume: 12
  start-page: 3299
  year: 2021
  ident: ref_98
  article-title: STAT1 potentiates oxidative stress revealing a targetable vulnerability that increases phenformin efficacy in breast cancer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23396-2
– volume: 112
  start-page: 4100
  year: 2020
  ident: ref_104
  article-title: Mining therapeutic and prognostic significance of STATs in renal cell carcinoma with bioinformatics analysis
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.06.032
– volume: 32
  start-page: 1713
  year: 2018
  ident: ref_92
  article-title: Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer
  publication-title: Leukemia
  doi: 10.1038/s41375-018-0117-x
– volume: 44
  start-page: 1224
  year: 2020
  ident: ref_149
  article-title: A small molecule STAT3 inhibitor, LLL12, enhances cisplatin- and paclitaxel-mediated inhibition of cell growth and migration in human ovarian cancer cells
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2020.7667
– volume: 40
  start-page: 1440
  year: 2021
  ident: ref_139
  article-title: Targeting STAT3 by a small molecule suppresses pancreatic cancer progression
  publication-title: Oncogene
  doi: 10.1038/s41388-020-01626-z
– volume: 17
  start-page: 78
  year: 2017
  ident: ref_183
  article-title: JAK inhibition as a therapeutic strategy for immune and inflammatory diseases
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2017.267
– volume: 10
  start-page: 48
  year: 2004
  ident: ref_64
  article-title: Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells
  publication-title: Nat. Med.
  doi: 10.1038/nm976
– ident: ref_217
  doi: 10.3390/ijms23084095
– volume: 34
  start-page: 1083
  year: 2015
  ident: ref_199
  article-title: Synthetic lethal screening reveals FGFR as one of the combinatorial targets to overcome resistance to Met-targeted therapy
  publication-title: Oncogene
  doi: 10.1038/onc.2014.51
– volume: 23
  start-page: 168
  year: 2004
  ident: ref_69
  article-title: Stat3 enhances vimentin gene expression by binding to the antisilencer element and interacting with the repressor protein, ZBP-89
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207003
– volume: 18
  start-page: 1118
  year: 2012
  ident: ref_196
  article-title: Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia
  publication-title: Nat. Med.
  doi: 10.1038/nm.2819
– volume: 29
  start-page: 3301
  year: 2023
  ident: ref_157
  article-title: Phase I Study of Acalabrutinib Plus Danvatirsen (AZD9150) in Relapsed/Refractory Diffuse Large B-Cell Lymphoma Including Circulating Tumor DNA Biomarker Assessment
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-22-2483
– volume: 15
  start-page: 103
  year: 2009
  ident: ref_48
  article-title: IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.01.001
– volume: 29
  start-page: 886
  year: 2015
  ident: ref_46
  article-title: Immunosuppressive therapy of LGL leukemia: Prospective multicenter phase II study by the Eastern Cooperative Oncology Group (E5998)
  publication-title: Leukemia
  doi: 10.1038/leu.2014.298
– volume: 16
  start-page: 214
  year: 2006
  ident: ref_58
  article-title: STAT3 in immune responses and inflammatory bowel diseases
  publication-title: Cell Res.
  doi: 10.1038/sj.cr.7310029
– volume: 10
  start-page: 3095
  year: 2020
  ident: ref_111
  article-title: Immune Suppression Mediated by STAT4 Deficiency Promotes Lymphatic Metastasis in HNSCC
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.03095
– volume: 62
  start-page: 601
  year: 2022
  ident: ref_173
  article-title: Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.2c00245
– ident: ref_227
  doi: 10.1016/j.biopha.2020.110009
– volume: 18
  start-page: 301
  year: 2022
  ident: ref_184
  article-title: Oral surveillance and JAK inhibitor safety: The theory of relativity
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/s41584-022-00767-7
– volume: 29
  start-page: 162
  year: 2022
  ident: ref_159
  article-title: DNA minicircles as novel STAT3 decoy oligodeoxynucleotides endowed with anticancer activity in triple-negative breast cancer
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2022.06.012
– volume: 126
  start-page: 419
  year: 2005
  ident: ref_177
  article-title: [Pharmacological and clinical profile of anti-human IL-6 receptor antibody (tocilizumab, ACTEMRA), a novel therapeutic drug for Castleman’s disease]
  publication-title: Nihon Yakurigaku Zasshi
  doi: 10.1254/fpj.126.419
– volume: 2
  start-page: 100781
  year: 2021
  ident: ref_207
  article-title: Luciferase reporter assays to monitor interferon signaling modulation by SARS-CoV-2 proteins
  publication-title: STAR Protoc.
  doi: 10.1016/j.xpro.2021.100781
– volume: 1
  start-page: 292
  year: 2012
  ident: ref_208
  article-title: Screening approaches to generating STAT inhibitors
  publication-title: JAK-STAT
  doi: 10.4161/jkst.22662
– volume: 36
  start-page: 498
  year: 2019
  ident: ref_121
  article-title: A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.10.002
– volume: 19
  start-page: 145
  year: 2020
  ident: ref_133
  article-title: Targeting STAT3 in Cancer Immunotherapy
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-020-01258-7
– volume: 29
  start-page: 878
  year: 2023
  ident: ref_200
  article-title: Targeting MET and FGFR in Relapsed or Refractory Acute Myeloid Leukemia: Preclinical and Clinical Findings, and Signal Transduction Correlates
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-22-2540
– volume: 114
  start-page: 301
  year: 2005
  ident: ref_7
  article-title: Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2005.02091.x
– volume: 127
  start-page: 2375
  year: 2016
  ident: ref_37
  article-title: The 2016 revision of the World Health Organization classification of lymphoid neoplasms
  publication-title: Blood
  doi: 10.1182/blood-2016-01-643569
– volume: 25
  start-page: 191
  year: 2023
  ident: ref_148
  article-title: BP-1-102 exerts antitumor effects on T-cell acute lymphoblastic leukemia cells by suppressing the JAK2/STAT3/c-Myc signaling pathway
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2023.11890
– volume: 71
  start-page: 7226
  year: 2011
  ident: ref_31
  article-title: STAT3 is necessary for proliferation and survival in colon cancer-initiating cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-4660
– volume: 36
  start-page: 3384
  year: 2017
  ident: ref_110
  article-title: An integrated analysis identifies STAT4 as a key regulator of ovarian cancer metastasis
  publication-title: Oncogene
  doi: 10.1038/onc.2016.487
– volume: 138
  start-page: 71
  year: 2018
  ident: ref_131
  article-title: Acquired Resistance to Drugs Targeting Tyrosine Kinases
  publication-title: Adv. Cancer Res.
  doi: 10.1016/bs.acr.2018.02.003
– volume: 12
  start-page: 692574
  year: 2021
  ident: ref_167
  article-title: PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2021.692574
– volume: 172
  start-page: 4630
  year: 2004
  ident: ref_65
  article-title: Recruitment of STAT3 for production of IL-10 by colon carcinoma cells induced by macrophage-derived IL-6
  publication-title: J. Immunol. Baltim. Md 1950
– ident: ref_138
  doi: 10.1371/journal.pone.0004783
– volume: 12
  start-page: e055718
  year: 2022
  ident: ref_158
  article-title: Safety, tolerability, pharmacokinetics and preliminary antitumour activity of an antisense oligonucleotide targeting STAT3 (danvatirsen) as monotherapy and in combination with durvalumab in Japanese patients with advanced solid malignancies: A phase 1 study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2021-055718
– volume: 7
  start-page: 54
  year: 2007
  ident: ref_222
  article-title: The Connectivity Map: A new tool for biomedical research
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2044
– volume: 6
  start-page: e136176
  year: 2021
  ident: ref_160
  article-title: Potent antitumor effects of cell-penetrating peptides targeting STAT3 axis
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.136176
– ident: ref_172
  doi: 10.1182/blood-2023-181130
– volume: 14
  start-page: 193
  year: 2001
  ident: ref_51
  article-title: STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation
  publication-title: Immunity
  doi: 10.1016/S1074-7613(01)00101-7
– volume: 19
  start-page: 425
  year: 2003
  ident: ref_50
  article-title: A critical role for Stat3 signaling in immune tolerance
  publication-title: Immunity
  doi: 10.1016/S1074-7613(03)00232-2
– volume: 107
  start-page: 16601
  year: 2010
  ident: ref_79
  article-title: Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1003457107
– ident: ref_82
  doi: 10.3390/biomedicines8090316
– volume: 36
  start-page: e24315
  year: 2022
  ident: ref_105
  article-title: Signal transducer and activator of transcription family is a prognostic marker associated with immune infiltration in endometrial cancer
  publication-title: J. Clin. Lab. Anal.
  doi: 10.1002/jcla.24315
– volume: 30
  start-page: 1204
  year: 2016
  ident: ref_42
  article-title: Activating somatic mutations outside the SH2-domain of STAT3 in LGL-Leukemia
  publication-title: Leukemia
  doi: 10.1038/leu.2015.263
– volume: 32
  start-page: 605
  year: 2010
  ident: ref_56
  article-title: Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.05.003
– volume: 4
  start-page: 87
  year: 2021
  ident: ref_16
  article-title: Cancer models in preclinical research: A chronicle review of advancement in effective cancer research
  publication-title: Anim. Models Exp. Med.
  doi: 10.1002/ame2.12165
– volume: 60
  start-page: 41
  year: 2020
  ident: ref_85
  article-title: The potential and controversy of targeting STAT family members in cancer
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2019.10.002
– ident: ref_135
  doi: 10.1186/s43556-023-00151-1
– volume: 24
  start-page: 6406
  year: 2005
  ident: ref_26
  article-title: Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208788
– volume: 5
  start-page: 432
  year: 1999
  ident: ref_12
  article-title: STAT signaling in the pathogenesis and treatment of cancer
  publication-title: Mol. Med. Camb. Mass
  doi: 10.1007/BF03403538
– volume: 102
  start-page: 9449
  year: 2018
  ident: ref_118
  article-title: Nanomedicines for developing cancer nanotherapeutics: From benchtop to bedside and beyond
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-018-9352-3
– volume: 8
  start-page: 61876
  year: 2017
  ident: ref_45
  article-title: STAT3 mutation impacts biological and clinical features of T-LGL leukemia
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.18711
– volume: 90
  start-page: 802
  year: 2012
  ident: ref_55
  article-title: IL-6 triggers IL-21 production by human CD4+ T cells to drive STAT3-dependent plasma cell differentiation in B cells
  publication-title: Immunol. Cell Biol.
  doi: 10.1038/icb.2012.17
– volume: 6
  start-page: 119
  year: 2018
  ident: ref_120
  article-title: STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: Results of a phase 1b trial
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-018-0436-5
– volume: 117
  start-page: 3421
  year: 2011
  ident: ref_194
  article-title: The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors
  publication-title: Blood
  doi: 10.1182/blood-2009-11-255232
– volume: 128
  start-page: 113
  year: 2018
  ident: ref_10
  article-title: Rare mutations provide unique insight into oncogenic potential of STAT transcription factors
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI98619
– volume: 5
  start-page: e1093722
  year: 2016
  ident: ref_180
  article-title: Cytokine patterns in cancer patients: A review of the correlation between interleukin 6 and prognosis
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2015.1093722
– volume: 36
  start-page: 2551
  year: 2022
  ident: ref_43
  article-title: All that glitters is not LGL Leukemia
  publication-title: Leukemia
  doi: 10.1038/s41375-022-01695-x
– volume: 50
  start-page: 87
  year: 2011
  ident: ref_113
  article-title: Transcriptional regulation by STAT6
  publication-title: Immunol. Res.
  doi: 10.1007/s12026-011-8205-2
– volume: 33
  start-page: 2879
  year: 2013
  ident: ref_94
  article-title: STAT5 Outcompetes STAT3 To Regulate the Expression of the Oncogenic Transcriptional Modulator BCL6
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01620-12
– volume: 117
  start-page: 584
  year: 2020
  ident: ref_103
  article-title: FBXW7-mediated stability regulation of signal transducer and activator of transcription 2 in melanoma formation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1909879116
– volume: 13
  start-page: 944455
  year: 2022
  ident: ref_155
  article-title: Design, synthesis, and biological characterization of a potent STAT3 degrader for the treatment of gastric cancer
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2022.944455
– volume: 7
  start-page: 314ra185
  year: 2015
  ident: ref_119
  article-title: AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aac5272
– volume: 128
  start-page: 1845
  year: 2016
  ident: ref_206
  article-title: Gene expression-based discovery of atovaquone as a STAT3 inhibitor and anticancer agent
  publication-title: Blood
  doi: 10.1182/blood-2015-07-660506
– ident: ref_29
  doi: 10.1155/2013/421821
– volume: 36
  start-page: 410
  year: 2021
  ident: ref_161
  article-title: Design, synthesis, and in vitro evaluation of BP-1-102 analogs with modified hydrophobic fragments for STAT3 inhibition
  publication-title: J. Enzyme Inhib. Med. Chem.
  doi: 10.1080/14756366.2020.1871336
– volume: 3
  start-page: 4215
  year: 2019
  ident: ref_153
  article-title: Atovaquone is active against AML by upregulating the integrated stress pathway and suppressing oxidative phosphorylation
  publication-title: Blood Adv.
  doi: 10.1182/bloodadvances.2019000499
– volume: 25
  start-page: 8261
  year: 2021
  ident: ref_170
  article-title: SD-36 promotes growth inhibition and induces apoptosis via suppression of Mcl-1 in glioma
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.16754
– volume: 10
  start-page: 1724
  year: 1996
  ident: ref_188
  article-title: BCR/abl leads to the constitutive activation of Stat proteins, and shares an epitope with tyrosine phosphorylated Stats
  publication-title: Leukemia
– volume: 23
  start-page: 101822
  year: 2020
  ident: ref_151
  article-title: STAT3 Inhibitor OPB-51602 Is Cytotoxic to Tumor Cells Through Inhibition of Complex I and ROS Induction
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101822
– volume: 5
  start-page: 444
  year: 1999
  ident: ref_219
  article-title: Fludarabine-induced immunosuppression is associated with inhibition of STAT1 signaling
  publication-title: Nat. Med.
  doi: 10.1038/7445
– volume: 62
  start-page: 11280
  year: 2019
  ident: ref_169
  article-title: Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.9b01530
– volume: 33
  start-page: 1459
  year: 2012
  ident: ref_25
  article-title: Activation of the Notch1/STAT3/Twist signaling axis promotes gastric cancer progression
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs165
– ident: ref_154
  doi: 10.3390/molecules25102306
– volume: 115
  start-page: 2852
  year: 2010
  ident: ref_216
  article-title: STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells
  publication-title: Blood
  doi: 10.1182/blood-2009-10-230060
– ident: ref_1
– volume: 366
  start-page: 1905
  year: 2012
  ident: ref_41
  article-title: Somatic STAT3 Mutations in Large Granular Lymphocytic Leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1114885
– volume: 18
  start-page: 254
  year: 2008
  ident: ref_228
  article-title: STAT3 as a target for inducing apoptosis in solid and hematological tumors
  publication-title: Cell Res.
  doi: 10.1038/cr.2008.18
– volume: 20
  start-page: 455
  year: 2020
  ident: ref_114
  article-title: Signal transducer and activator of transcription 6 as a target in colon cancer therapy
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2020.11614
– ident: ref_30
  doi: 10.3390/ijms22020603
– volume: 13
  start-page: 1972
  year: 2017
  ident: ref_178
  article-title: Tocilizumab (Actemra)
  publication-title: Hum. Vaccines Immunother.
  doi: 10.1080/21645515.2017.1316909
– volume: 131
  start-page: e143296
  year: 2021
  ident: ref_185
  article-title: Interferons in cancer immunoediting: Sculpting metastasis and immunotherapy response
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI143296
– volume: 29
  start-page: 1218
  year: 2015
  ident: ref_198
  article-title: Biological properties of ligand-dependent activation of the MET receptor kinase in acute myeloid leukemia
  publication-title: Leukemia
  doi: 10.1038/leu.2014.348
– volume: 100
  start-page: 3140
  year: 1997
  ident: ref_215
  article-title: B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI119869
– volume: 357
  start-page: 1608
  year: 2007
  ident: ref_122
  article-title: STAT3 mutations in the hyper-IgE syndrome
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa073687
– volume: 18
  start-page: 583
  year: 2020
  ident: ref_146
  article-title: Phosphotyrosine Isosteres: Past, Present and Future
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB01998G
– volume: 217
  start-page: 70
  year: 2019
  ident: ref_147
  article-title: Silibinin inhibits endometrial carcinoma via blocking pathways of STAT3 activation and SREBP1-mediated lipid accumulation
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2018.11.037
– volume: 7
  start-page: 966
  year: 2009
  ident: ref_91
  article-title: Reciprocal Effects of STAT5 and STAT3 in Breast Cancer
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-08-0238
– volume: 91
  start-page: 153712
  year: 2021
  ident: ref_231
  article-title: Cascade of immune mechanism and consequences of inflammatory disorders
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2021.153712
– volume: 36
  start-page: 2328
  year: 2017
  ident: ref_24
  article-title: HSP110 promotes colorectal cancer growth through STAT3 activation
  publication-title: Oncogene
  doi: 10.1038/onc.2016.403
– volume: 109
  start-page: 1139
  year: 2002
  ident: ref_22
  article-title: Stat proteins and oncogenesis
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI0215617
– volume: 15
  start-page: 234
  year: 2018
  ident: ref_176
  article-title: Targeting the IL-6/JAK/STAT3 signalling axis in cancer
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2018.8
– volume: 8
  start-page: 1320
  year: 2017
  ident: ref_74
  article-title: Critical functions for STAT5 tetramers in the maturation and survival of natural killer cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01477-5
– volume: 14
  start-page: 3186
  year: 1994
  ident: ref_3
  article-title: The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family
  publication-title: Mol. Cell. Biol.
– volume: 9
  start-page: 5671
  year: 2017
  ident: ref_62
  article-title: Constitutive activation of STAT3 and cyclin D1 overexpression contribute to proliferation, migration and invasion in gastric cancer cells
  publication-title: Am. J. Transl. Res.
– volume: 19
  start-page: 703
  year: 2023
  ident: ref_156
  article-title: A selective small-molecule STAT5 PROTAC degrader capable of achieving tumor regression in vivo
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-022-01248-4
– volume: 113
  start-page: 4856
  year: 2009
  ident: ref_72
  article-title: Conditional deletion of STAT5 in adult mouse hematopoietic stem cells causes loss of quiescence and permits efficient nonablative stem cell replacement
  publication-title: Blood
  doi: 10.1182/blood-2008-09-181107
– volume: 19
  start-page: 2585
  year: 2020
  ident: ref_162
  article-title: Overview of the STAT-3 signaling pathway in cancer and the development of specific inhibitors (Review)
  publication-title: Oncol. Lett.
– ident: ref_168
  doi: 10.3389/fcell.2021.685106
– volume: 13
  start-page: 795
  year: 2000
  ident: ref_100
  article-title: Immune Response in Stat2 Knockout Mice
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)00077-7
– volume: 14
  start-page: 331
  year: 2010
  ident: ref_136
  article-title: A complex task? Direct modulation of transcription factors with small molecules
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2010.03.022
– volume: 11
  start-page: 84
  year: 2018
  ident: ref_193
  article-title: Past, present, and future of Bcr-Abl inhibitors: From chemical development to clinical efficacy
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-018-0624-2
– volume: 278
  start-page: 1803
  year: 1997
  ident: ref_9
  article-title: Specific Inhibition of Stat3 Signal Transduction by PIAS3
  publication-title: Science
  doi: 10.1126/science.278.5344.1803
– volume: 108
  start-page: 1947
  year: 2017
  ident: ref_49
  article-title: Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy
  publication-title: Cancer Sci.
  doi: 10.1111/cas.13332
– volume: 297
  start-page: 2063
  year: 2002
  ident: ref_107
  article-title: Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection
  publication-title: Science
  doi: 10.1126/science.1074900
– volume: 108
  start-page: 732
  year: 2022
  ident: ref_95
  article-title: STAT5 does not drive steroid resistance in T-cell acute lymphoblastic leukemia despite the activation of BCL and BCLXL following glucocorticoid treatment
  publication-title: Haematologica
  doi: 10.3324/haematol.2021.280405
– volume: 3
  start-page: 503
  year: 2012
  ident: ref_209
  article-title: The STAT5 Inhibitor Pimozide Displays Efficacy in Models of Acute Myelogenous Leukemia Driven by FLT3 Mutations
  publication-title: Genes Cancer
  doi: 10.1177/1947601912466555
– volume: 37
  start-page: 47
  year: 2016
  ident: ref_201
  article-title: Feedback Activation of STAT3 as a Cancer Drug-Resistance Mechanism
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2015.10.001
– volume: 264
  start-page: 115971
  year: 2024
  ident: ref_213
  article-title: Investigating the anti-cancer potential of pyrimethamine analogues through a modern chemical biology lens
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2023.115971
– volume: 8
  start-page: 1
  year: 2023
  ident: ref_137
  article-title: Recent advances in targeting the “undruggable” proteins: From drug discovery to clinical trials
  publication-title: Signal Transduct. Target. Ther.
– volume: 18
  start-page: 45
  year: 2009
  ident: ref_142
  article-title: Targeting STAT3 in cancer: How successful are we?
  publication-title: Expert Opin. Investig. Drugs
  doi: 10.1517/13543780802565791
– volume: 6
  start-page: 897
  year: 2014
  ident: ref_36
  article-title: STAT3 Target Genes Relevant to Human Cancers
  publication-title: Cancers
  doi: 10.3390/cancers6020897
– volume: 271
  start-page: 12999
  year: 1996
  ident: ref_143
  article-title: Differential Activation of Acute Phase Response Factor/Stat3 and Stat1 via the Cytoplasmic Domain of the Interleukin 6 Signal Transducer gp130
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.22.12999
– volume: 62
  start-page: 28
  year: 2023
  ident: ref_229
  article-title: Combined PARP inhibitors and small molecular inhibitors in solid tumor treatment (Review)
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2023.5476
– volume: 16
  start-page: 1157
  year: 2020
  ident: ref_175
  article-title: Prospecting for molecular glues
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0620-z
– volume: 14
  start-page: 1265818
  year: 2023
  ident: ref_6
  article-title: The complementary roles of STAT3 and STAT1 in cancer biology: Insights into tumor pathogenesis and therapeutic strategies
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2023.1265818
– volume: 2
  start-page: e27159
  year: 2013
  ident: ref_70
  article-title: STAT5 in hematopoietic stem cell biology and transplantation
  publication-title: JAK-STAT
  doi: 10.4161/jkst.27159
– volume: 26
  start-page: 1407
  year: 2012
  ident: ref_195
  article-title: Dual inhibition of Jak2 and STAT5 enhances killing of myeloproliferative neoplasia cells
  publication-title: Leukemia
  doi: 10.1038/leu.2011.338
– volume: 12
  start-page: 996
  year: 2021
  ident: ref_171
  article-title: SD-91 as A Potent and Selective STAT3 Degrader Capable of Achieving Complete and Long-Lasting Tumor Regression
  publication-title: ACS Med. Chem. Lett.
  doi: 10.1021/acsmedchemlett.1c00155
– ident: ref_127
  doi: 10.1007/978-3-319-42949-6
– ident: ref_214
– volume: 14
  start-page: 1171141
  year: 2023
  ident: ref_17
  article-title: Combining preclinical tools and models to unravel tumor complexity: Jump into the next dimension
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2023.1171141
– volume: 26
  start-page: 715
  year: 2007
  ident: ref_77
  article-title: The Transcriptional Regulation of B Cell Lineage Commitment
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.05.010
– volume: 6
  start-page: 90
  year: 2013
  ident: ref_126
  article-title: STAT inhibitors for cancer therapy
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/1756-8722-6-90
– volume: 183
  start-page: 811
  year: 1996
  ident: ref_189
  article-title: Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.183.3.811
– volume: 1
  start-page: 55
  year: 2012
  ident: ref_11
  article-title: STAT signaling in the pathogenesis and treatment of myeloid malignancies
  publication-title: JAK-STAT
  doi: 10.4161/jkst.20006
– ident: ref_144
  doi: 10.3390/ijms232415944
– volume: 23
  start-page: 3550
  year: 2004
  ident: ref_66
  article-title: Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207383
– volume: 98
  start-page: 295
  year: 1999
  ident: ref_15
  article-title: Stat3 as an Oncogene
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81959-5
– volume: 33
  start-page: 2320
  year: 2012
  ident: ref_87
  article-title: Stat5 in breast cancer: Potential oncogenic activity coincides with positive prognosis for the disease
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs362
– volume: 2
  start-page: 518
  year: 2011
  ident: ref_140
  article-title: A chemical biology approach to developing STAT inhibitors: Molecular strategies for accelerating clinical translation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.296
– volume: 27
  start-page: 2459
  year: 2021
  ident: ref_152
  article-title: Mitochondrial Inhibitor Atovaquone Increases Tumor Oxygenation and Inhibits Hypoxic Gene Expression in Patients with Non-Small Cell Lung Cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-20-4128
– volume: 140
  start-page: 8835
  year: 2022
  ident: ref_232
  article-title: Pharmacologic Inhibitors of STAT3 or BCL6 Transcriptional Function Sensitize Lymphoma Cells to the Novel PD-1 Cis-Targeted PD1-IL2v Immunocytokine in a Murine Model
  publication-title: Blood
  doi: 10.1182/blood-2022-167853
– volume: 103
  start-page: 642
  year: 2003
  ident: ref_179
  article-title: Circulating interleukin-6 predicts survival in patients with metastatic breast cancer
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.10833
– ident: ref_73
  doi: 10.1371/journal.pone.0009152
– volume: 279
  start-page: 54724
  year: 2004
  ident: ref_84
  article-title: Isolation of Unique STAT5 Targets by Chromatin Immunoprecipitation-based Gene Identification
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M408464200
– volume: 20
  start-page: 2249
  year: 2014
  ident: ref_130
  article-title: Molecular Pathways: Resistance to Kinase Inhibitors and Implications for Therapeutic Strategies
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-1610
– volume: 12
  start-page: 2244
  year: 2022
  ident: ref_186
  article-title: When Cancer Cells Become the Enablers of an Antitumor Immune Response
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-22-0706
– volume: 7
  start-page: 26307
  year: 2016
  ident: ref_145
  article-title: Small-molecule inhibition of STAT3 in radioresistant head and neck squamous cell carcinoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8368
– volume: 10
  start-page: 751
  year: 1996
  ident: ref_187
  article-title: The molecular biology of chronic myeloid leukaemia
  publication-title: Leukemia
– volume: 108
  start-page: 665
  year: 2004
  ident: ref_89
  article-title: Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.11619
– volume: 171
  start-page: 5853
  year: 2003
  ident: ref_76
  article-title: Distinct effects of STAT5 activation on CD4+ and CD8+ T cell homeostasis: Development of CD4+CD25+ regulatory T cells versus CD8+ memory T cells
  publication-title: J. Immunol. Baltim. Md 1950
– volume: 1
  start-page: 78
  year: 2008
  ident: ref_18
  article-title: Mouse xenograft models vs. GEM models for human cancer therapeutics
  publication-title: Dis. Model. Mech.
  doi: 10.1242/dmm.000976
– volume: 55
  start-page: 2386
  year: 2022
  ident: ref_47
  article-title: STAT3 gain-of-function mutations connect leukemia with autoimmune disease by pathological NKG2Dhi CD8+ T cell dysregulation and accumulation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.11.001
– volume: 7
  start-page: 454
  year: 2007
  ident: ref_8
  article-title: SOCS proteins, cytokine signalling and immune regulation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2093
– volume: 38
  start-page: 616
  year: 2018
  ident: ref_38
  article-title: Latest Advances in the Diagnosis and Treatment of Large Granular Lymphocytic Leukemia
  publication-title: Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Annu. Meet.
  doi: 10.1200/EDBK_200689
– volume: 9
  start-page: 7204
  year: 2017
  ident: ref_230
  article-title: Inflammatory responses and inflammation-associated diseases in organs
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.23208
– volume: 37
  start-page: 6723
  year: 2017
  ident: ref_112
  article-title: High STAT4 Expression Indicates Better Disease-free Survival in Patients with Gastric Cancer
  publication-title: Anticancer Res.
– volume: 52
  start-page: 415
  year: 2019
  ident: ref_19
  article-title: Highlighted STAT3 as a potential drug target for cancer therapy
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2019.52.7.152
– volume: 275
  start-page: 24096
  year: 2000
  ident: ref_61
  article-title: Full oncogenic activities of v-Src are mediated by multiple signaling pathways. Ras as an essential mediator for cell survival
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M001606200
– volume: 2
  start-page: 577
  year: 1994
  ident: ref_203
  article-title: Structure-based drug design: Progress, results and challenges
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00060-5
– volume: 20
  start-page: 4143
  year: 2011
  ident: ref_210
  article-title: Pyrimethamine inhibits adult polycystic kidney disease by modulating STAT signaling pathways
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddr338
– ident: ref_5
  doi: 10.3390/cancers11121930
– volume: 129
  start-page: 1082
  year: 2017
  ident: ref_39
  article-title: LGL leukemia: From pathogenesis to treatment
  publication-title: Blood
  doi: 10.1182/blood-2016-08-692590
– volume: 116
  start-page: 2462
  year: 2010
  ident: ref_52
  article-title: STAT3 controls myeloid progenitor growth during emergency granulopoiesis
  publication-title: Blood
  doi: 10.1182/blood-2009-12-259630
– volume: 17
  start-page: 63
  year: 2002
  ident: ref_53
  article-title: STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation
  publication-title: Immunity
  doi: 10.1016/S1074-7613(02)00336-9
– volume: 11
  start-page: 257
  year: 2010
  ident: ref_81
  article-title: Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1840
– volume: 3
  start-page: 816
  year: 2017
  ident: ref_202
  article-title: Targeting Oncogenic Transcription Factors: Therapeutic Implications of Endogenous STAT Inhibitors
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2017.10.004
– volume: 66
  start-page: 3649
  year: 2006
  ident: ref_218
  article-title: Signal transducer and activator of transcription 1 activation in endothelial cells is a negative regulator of angiogenesis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-3612
– ident: ref_141
  doi: 10.1039/9781782624011-00042
– volume: 27
  start-page: 1984
  year: 2018
  ident: ref_182
  article-title: The molecular details of cytokine signaling via the JAK/STAT pathway
  publication-title: Protein Sci.
  doi: 10.1002/pro.3519
– volume: 2
  start-page: 99
  year: 2007
  ident: ref_35
  article-title: A STAT3 Gene Expression Signature in Gliomas is Associated with a Poor Prognosis
  publication-title: Transl. Oncogenom.
  doi: 10.4137/TOG.S1903
– volume: 41
  start-page: 5214
  year: 2022
  ident: ref_90
  article-title: STAT5 confers lactogenic properties in breast tumorigenesis and restricts metastatic potential
  publication-title: Oncogene
  doi: 10.1038/s41388-022-02500-w
– volume: 14
  start-page: 2743
  year: 2023
  ident: ref_134
  article-title: Cross-disorder genetic analysis of immune diseases reveals distinct gene associations that converge on common pathways
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38389-6
– ident: ref_78
  doi: 10.1371/journal.pone.0086790
– ident: ref_96
– volume: 98
  start-page: 8554
  year: 2001
  ident: ref_165
  article-title: Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.141230798
– volume: 67
  start-page: 1254
  year: 2007
  ident: ref_220
  article-title: A small-molecule enhancer of signal transducer and activator of transcription 1 transcriptional activity accentuates the antiproliferative effects of IFN-gamma in human cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-2439
– volume: 180
  start-page: 911
  year: 2018
  ident: ref_44
  article-title: STAT3 mutations are not sufficient to induce large granular lymphocytic leukaemia in mice
  publication-title: Br. J. Haematol.
  doi: 10.1111/bjh.14487
– volume: 24
  start-page: 5552
  year: 2005
  ident: ref_59
  article-title: Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208719
– volume: 27
  start-page: 47
  year: 2020
  ident: ref_166
  article-title: Degradation of Polycomb Repressive Complex 2 with an EED-Targeted Bivalent Chemical Degrader
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2019.11.006
– volume: 19
  start-page: 595
  year: 2017
  ident: ref_116
  article-title: Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2017.04.006
– ident: ref_212
  doi: 10.1016/j.jbc.2021.101531
– volume: 12
  start-page: 749
  year: 2012
  ident: ref_57
  article-title: Transcriptional control of effector and memory CD8+ T cell differentiation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3307
– volume: 21
  start-page: 2000
  year: 2002
  ident: ref_32
  article-title: Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1205260
– volume: 17
  start-page: 48
  year: 2018
  ident: ref_128
  article-title: Kinase-targeted cancer therapies: Progress, challenges and future directions
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-018-0804-2
– volume: 19
  start-page: 1888
  year: 2017
  ident: ref_60
  article-title: Genome-wide Analysis of STAT3-Mediated Transcription during Early Human Th17 Cell Differentiation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.05.013
– volume: 112
  start-page: 5095
  year: 2008
  ident: ref_205
  article-title: Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3
  publication-title: Blood
  doi: 10.1182/blood-2007-12-129718
– volume: 177
  start-page: 415
  year: 2010
  ident: ref_132
  article-title: Met activation in non-small cell lung cancer is associated with de novo resistance to EGFR inhibitors and the development of brain metastasis
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2010.090863
– volume: 261
  start-page: 1739
  year: 1993
  ident: ref_2
  article-title: A common nuclear signal transduction pathway activated by growth factor and cytokine receptors
  publication-title: Science
  doi: 10.1126/science.8397445
– ident: ref_106
  doi: 10.3390/jpm12020140
– ident: ref_226
  doi: 10.3390/cancers15041344
– volume: 14
  start-page: 1160719
  year: 2023
  ident: ref_20
  article-title: Advances in the role of STAT3 in macrophage polarization
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2023.1160719
SSID ssj0000331767
Score 2.3746078
SecondaryResourceType review_article
Snippet Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is...
Cancer is the second leading cause of death worldwide, accounting for nearly one in six deaths. One of the key underlying factors distinguishing a cancer cell...
Simple SummaryCancer is the second leading cause of death worldwide, accounting for nearly one in six deaths. One of the key underlying factors distinguishing...
SourceID proquest
gale
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1387
SubjectTerms Angiogenesis
Antimitotic agents
Antineoplastic agents
Apoptosis
B cells
Cancer
Cancer therapies
Care and treatment
Cytokines
Cytoplasm
Development and progression
DNA binding proteins
Gene expression
Genes
Genetic aspects
Growth factors
Health aspects
Immune system
Immunosuppressive agents
Kinases
Leukemia
Localization
Metastasis
Mutation
Phosphorylation
Physiological aspects
Proteins
Stat protein
Stat3 protein
Stat5 protein
Transcription activation
Transcription factors
Tumorigenesis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9-gPgifjudEkHQl2q7pE3qi0zZUMEPtIJvpUluIEin6_Tv99KkUwf63ORIL5e7X5LL7wg5AAQZcQQm6CB0CzjTnUChpwy0MgbDDytCbR8K39wml0_8-jl-9gdulU-rbHxi7ajNUNsz8hMUIJjEcMfO3t4DWzXK3q76EhqzZB5dsEQ7nz_v3d4_TE5ZQobxMRGO04fh_v5EW2WOqppXjdlEuh_haNopT0HNOuT0l8mSx4q06yZ3hcxAuUoWbvxt-BoZ3ZV6iAbwoulj1s1oHXcaL0D7rpIOLSqa1eneFUWASi_qkdHMsQmc0itfFvUTaMNUC9ipNNRThr46uS5nbp089XvZxWXgaygEmjM2DoQEW0NcpCFTuNpqbWCMF6lUkYI0VTpmoSyiYiCVMgL0QHIDhsUAnBuVsg0yVw5L2CJUSqMjASJBj8gFbtOMCcVAJlJyiICpFjluVJlrTzBu61y85rjRsLrPp3TfIkeTDm-OW-Pvpod2bnK76lCmLvzjARyZ5a_Ku_iDoeW6TFqk_aslrhb9-3Mzu7lfrVX-bVstsj_5bHvaDLQShh91G8kR3XIUsemsYjJoJhNEUUm8_b_wHbLYQUjk8n7aZG48-oBdhDRjteft9guLpfaf
  priority: 102
  providerName: ProQuest
Title Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation
URI https://www.ncbi.nlm.nih.gov/pubmed/38611065
https://www.proquest.com/docview/3037384313
https://www.proquest.com/docview/3038440546
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxNBEB9sC-JLsVZttA0rCPXl6l12b3evUEosjbWQVvQCeTtuPwKFcNEkFf3vO_txkYQKPu_OMjc7O_Mbbvc3AO8tgow8sybpIXRLGNW9RGGkTLQyBtMPrVPtHgoPb_jViF2P8_HfdkDRgItHSzvXT2o0n578_vnnHA_8mas4sWT_qJ195gtPlUal2IIdTEvcVWLDiPV9WKaYKn1H2V6KanFesED189gaa1lqM1ZvIFCfiQbPYTdCSNIPe74HT2zzAp4O40_yfZjfNnqGfnGnyfeyXxKfjtrgQAahwQ6pF6T0t8AXBHErufCakTKQDJySL7Fb6i9LWgJbi0KNIZFJdBrWDVfpXsJocFleXCWxtUKiGaXLREjrWouLIqUKD6G3DKZ-UUiVKVsUSuc0lXVWT6RSRlg9kcxYQ3NrGTOqoK9gu5k19gCIlEZnwgqOgZIJrN6MScVEcimZzSxVHThpTVnpyDvu2l9MK6w_nO2rDdt34MNK4Eeg3Pj31GO3N5VzD1xT1_FNAWrmaK2qPn5g6igweQcO12biIdLrw-3uVq0PVuizgkpEWLQD71bDTtJdTGvs7N7PkQxBL8MlXgevWClNJUdwxfM3_yH9Fp71EC6FO0GHsL2c39sjhDtL1YWdT5c3X791YevzOOt6p34Ao-z_oQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnQS8IL4pDDASCF7CktiJnUkIlbGqZWtBkEl7y-KPSkhTOpqOaf_U_kbu4qSwSvC259gnx3e--9k-_w7glUOQkUTOBjFCt0BwEwcaPWVgtLUYfngZGnooPJmmo0Px-Sg52oDL7i0MpVV2PrFx1HZu6Ix8GwVIrjDc8Q-nPwOqGkW3q10JDW8W--7iHLds9fvxJ9Tv6zge7uW7o6CtKhAYwfkykMpRVW2ZhVyj_WH8RMwcxTJTOtIuy7RJeKjKqJwpra10ZqaEdZYnzglhNZEvocvfFPSitQebH_emX7-tTnVC3sjzHEKcZ-G2IeUt6obHjVPi3l_hbz0IrEHbJsQN78DtFpuygTemu7DhqntwY9Levt-HxZfKzNHgfhj2PR_krIlznddhQ1-5h5U1y5v08pohIGa7zchY7tkLdti4LcP6y7GOGddhp8qylqL0xMv1OXoP4PBaZvch9Kp55R4DU8qaSDqZogcWEreF1oZyplKlhIsc1314101lYVpCc6qrcVLgxobmvlib-z68XXU49Vwe_276hnRT0CpHmaZsHyvgyIgvqxjgD4bErZn2YetKS1yd5urnTrtF6x3q4o8t9-Hl6jP1pIy3ys3PmjZKIJoWKOKRt4rVoLlKEbWlyZP_C38BN0f55KA4GE_3n8KtGOGYzznagt5yceaeIZxa6uetDTM4vu5l8xvDbDM9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5NnTTxgvhN2QAjgeAlNImd2EFCqGyrVsbKBJm0txDbVwlpSre2A_Gv8ddxjp3CKsHbnmOfHN_57rN9_g7gORLIyBK0UUrQLRLcpJEmTxkZbS2FH17Hxj0UPprkByfiw2l2ugG_urcwLq2y84mto7Yz487IByRAckXhjg-mIS3ieG_07vwichWk3E1rV07Dm8gh_vxB27fF2_Ee6fpFmo72y92DKFQYiIzgfBlJha7CtixirskWKZYSfk5SWSidaCwKbTIeqzqpp0prK9FMlbBoeYYohNWOiInc_6akqCh6sPl-f3L8eXXCE_NWnucT4ryIB8Ypcr5oOd24S-L7KxSuB4Q1mNuGu9EtuBlwKht6w7oNG9jcga2jcBN_F-afGjMj4_tm2JdyWLI25nUeiI18FR9WL1jZppovGIFjttuOjJWeyeANG4eSrN-RdSy5SJ0aywJd6ZmX6_P17sHJtczufeg1swYfAlPKmkSizMkbC0lbRGtjOVW5UgIT5LoPr7uprEwgN3c1Ns4q2uS4ua_W5r4Pr1Ydzj2vx7-bvnS6qdyKJ5mmDg8XaGSOO6sa0g_Gjmcz78POlZa0Us3Vz512q-ApFtUfu-7Ds9Vn19NlvzU4u2zbKEHIWpCIB94qVoPmKicEl2eP_i_8KWzRcqk-jieH23AjJWTm0492oLecX-JjQlZL_SSYMIOv171qfgPPDTdp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oncogenic+STAT+Transcription+Factors+as+Targets+for+Cancer+Therapy%3A+Innovative+Strategies+and+Clinical+Translation&rft.jtitle=Cancers&rft.au=Wang%2C+Weiyuan&rft.au=Lopez+McDonald%2C+Melanie+Cristina&rft.au=Hariprasad%2C+Rajashree&rft.au=Hamilton%2C+Tiara&rft.date=2024-04-01&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=16&rft.issue=7&rft_id=info:doi/10.3390%2Fcancers16071387&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon