DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required...

Full description

Saved in:
Bibliographic Details
Published inComputer physics communications Vol. 228; no. C; pp. 178 - 184
Main Authors Wang, Han, Zhang, Linfeng, Han, Jiequn, E, Weinan
Format Journal Article
LanguageEnglish
Published United States Elsevier B.V 01.07.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model. Program Title: DeePMD-kit Program Files doi:http://dx.doi.org/10.17632/hvfh9yvncf.1 Licensing provisions: LGPL Programming language: Python/C++ Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models. Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided. Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data.
AbstractList Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model. Program Title: DeePMD-kit Program Files doi:http://dx.doi.org/10.17632/hvfh9yvncf.1 Licensing provisions: LGPL Programming language: Python/C++ Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models. Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided. Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data.
Not provided.
Author Zhang, Linfeng
E, Weinan
Han, Jiequn
Wang, Han
Author_xml – sequence: 1
  givenname: Han
  surname: Wang
  fullname: Wang, Han
  email: wang_han@iapcm.ac.cn
  organization: Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, PR China
– sequence: 2
  givenname: Linfeng
  orcidid: 0000-0002-8470-5846
  surname: Zhang
  fullname: Zhang, Linfeng
  email: linfengz@princeton.edu
  organization: Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
– sequence: 3
  givenname: Jiequn
  surname: Han
  fullname: Han, Jiequn
  email: jiequnh@princeton.edu
  organization: Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
– sequence: 4
  givenname: Weinan
  surname: E
  fullname: E, Weinan
  email: weinan@math.princeton.edu
  organization: Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
BackLink https://www.osti.gov/biblio/1538211$$D View this record in Osti.gov
BookMark eNp9kM1OHDEQhK2ISFlIHiA3i_tM7PH8mZwQJAEJlBzC2fK024uXWXtkO0jz9vGynDhwaqlUX6uqTsmJDx4J-cpZzRnvv-1qWKBuGB9rJuqifCAbPg6yamTbnpANY5xVbd91n8hpSjvG2DBIsSGP14h_7q-rJ5cv6CU1iAudUUfv_JYuGp70FqkNke61X6spmJUuIaPPTs8UPcbtSiMuEVPRdHbBU-0N3YcZ4d-sIzWr13sH6TP5aPWc8MvrPSMPP3_8vbqp7n7_ur26vKugFSJXQ2ebHuxk5KRbYwEHzRthQNjJdp0Uk2gbLoex6SVveaelATlxKH1GaXstxRk5P_4NKTuVwGWERwjeI2TFOzE2nBfTcDRBDClFtKr4XtLnqN2sOFOHVdVOlVXVYVXFhCpKIfkbcolur-P6LvP9yGDp_ewwHmKhBzQuHlKZ4N6h_wMXyJLQ
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_109762
crossref_primary_10_1088_2053_1591_ac0734
crossref_primary_10_1016_j_cattod_2021_03_018
crossref_primary_10_1002_jcc_26494
crossref_primary_10_1103_PhysRevMaterials_7_093601
crossref_primary_10_1016_j_matlet_2024_136868
crossref_primary_10_1002_anie_202410802
crossref_primary_10_1007_s10853_023_08599_w
crossref_primary_10_1016_j_solmat_2025_113505
crossref_primary_10_1039_D4TA01373E
crossref_primary_10_1063_5_0147132
crossref_primary_10_1039_D3NR05966A
crossref_primary_10_1002_btpr_3096
crossref_primary_10_1007_s11661_020_06099_z
crossref_primary_10_1021_acs_jpclett_4c03474
crossref_primary_10_1073_pnas_2407295121
crossref_primary_10_1073_pnas_2015440117
crossref_primary_10_1002_apxr_202400125
crossref_primary_10_1063_5_0188905
crossref_primary_10_1088_1361_648X_ab5890
crossref_primary_10_1021_acs_jcim_2c01497
crossref_primary_10_1103_PhysRevB_110_165159
crossref_primary_10_1080_01932691_2024_2425950
crossref_primary_10_2139_ssrn_4185808
crossref_primary_10_3390_ma17020286
crossref_primary_10_1021_acsnano_4c16486
crossref_primary_10_1021_acs_chemrev_4c00628
crossref_primary_10_1002_adfm_202403948
crossref_primary_10_1063_5_0157188
crossref_primary_10_1016_j_pmatsci_2024_101250
crossref_primary_10_1016_j_jpowsour_2024_235855
crossref_primary_10_1021_acs_chemrev_1c00904
crossref_primary_10_1063_5_0207534
crossref_primary_10_1016_j_commatsci_2022_111843
crossref_primary_10_1016_j_egyai_2022_100210
crossref_primary_10_1063_5_0078007
crossref_primary_10_1016_j_jeurceramsoc_2023_09_079
crossref_primary_10_1039_D2CP00710J
crossref_primary_10_1007_s11665_023_08944_9
crossref_primary_10_1016_j_molliq_2021_118380
crossref_primary_10_1021_acs_jpclett_3c02940
crossref_primary_10_1088_2632_2153_ad8d30
crossref_primary_10_1103_PhysRevMaterials_8_033602
crossref_primary_10_1021_acs_jpclett_3c01618
crossref_primary_10_1016_j_xcrp_2024_102334
crossref_primary_10_1088_1361_648X_ac37dc
crossref_primary_10_1016_j_molliq_2022_120500
crossref_primary_10_1002_anie_202407892
crossref_primary_10_1007_s42514_021_00080_x
crossref_primary_10_1021_acs_jpcc_4c03892
crossref_primary_10_1039_D4NH00487F
crossref_primary_10_1063_5_0067157
crossref_primary_10_1088_2515_7639_ad4c06
crossref_primary_10_1103_PhysRevLett_129_255702
crossref_primary_10_3390_e24081134
crossref_primary_10_1016_j_sbi_2022_102502
crossref_primary_10_1063_5_0066061
crossref_primary_10_1088_2632_2153_ad79b5
crossref_primary_10_1007_s11581_021_03988_0
crossref_primary_10_1021_jacs_4c18769
crossref_primary_10_1039_D3FD00100H
crossref_primary_10_1002_adts_202401058
crossref_primary_10_1029_2024GC011951
crossref_primary_10_1039_D4CP00017J
crossref_primary_10_1021_acs_jctc_3c01203
crossref_primary_10_1021_acs_chemrev_0c01111
crossref_primary_10_1039_D1CP02963K
crossref_primary_10_1021_acs_jpclett_9b03664
crossref_primary_10_1063_5_0106617
crossref_primary_10_1039_D4TA05071A
crossref_primary_10_1016_j_jmst_2023_09_059
crossref_primary_10_1021_acs_jpclett_1c01357
crossref_primary_10_1103_PhysRevB_108_L180104
crossref_primary_10_1002_jcc_27353
crossref_primary_10_1103_PhysRevMaterials_8_103805
crossref_primary_10_3389_fchem_2021_641610
crossref_primary_10_1029_2024JH000434
crossref_primary_10_1088_1361_648X_ad5c31
crossref_primary_10_1021_acs_jctc_1c00041
crossref_primary_10_1016_j_cej_2024_151625
crossref_primary_10_1063_5_0166927
crossref_primary_10_1088_2632_2153_ace418
crossref_primary_10_1142_S1758825123500448
crossref_primary_10_1007_s10967_024_09757_3
crossref_primary_10_1007_s40843_023_2836_0
crossref_primary_10_1021_acs_jctc_3c01276
crossref_primary_10_1039_D2CP04105G
crossref_primary_10_1063_5_0044689
crossref_primary_10_1002_cjoc_202100352
crossref_primary_10_1103_PhysRevApplied_21_024043
crossref_primary_10_1039_D2MH01279K
crossref_primary_10_1016_j_gca_2021_03_031
crossref_primary_10_1016_j_cossms_2023_101057
crossref_primary_10_1016_j_mtcomm_2024_111437
crossref_primary_10_1073_pnas_2309952120
crossref_primary_10_1016_j_jmst_2024_11_021
crossref_primary_10_1063_5_0158075
crossref_primary_10_1070_RCR5023
crossref_primary_10_1103_PhysRevLett_134_076101
crossref_primary_10_1016_j_carbon_2024_119697
crossref_primary_10_1021_acs_jpcb_0c01370
crossref_primary_10_1103_PhysRevB_111_075434
crossref_primary_10_1016_j_fuel_2024_133316
crossref_primary_10_1039_D2RA08180F
crossref_primary_10_1088_1742_6596_2713_1_012071
crossref_primary_10_1016_j_compositesb_2024_111369
crossref_primary_10_1021_acs_jctc_2c00706
crossref_primary_10_1016_j_est_2024_110587
crossref_primary_10_1039_D0QI00921K
crossref_primary_10_1063_5_0067565
crossref_primary_10_1103_PhysRevB_102_041121
crossref_primary_10_1063_1674_0068_cjcp2203037
crossref_primary_10_1039_D4SC07253G
crossref_primary_10_7498_aps_71_20221002
crossref_primary_10_1016_j_jeurceramsoc_2024_01_007
crossref_primary_10_1039_D3CP00571B
crossref_primary_10_1021_acs_chemmater_4c01553
crossref_primary_10_1021_acsami_4c22462
crossref_primary_10_1038_s41524_024_01431_2
crossref_primary_10_1021_acs_jpca_2c05000
crossref_primary_10_1016_j_mtphys_2021_100463
crossref_primary_10_1021_acs_macromol_3c01377
crossref_primary_10_1103_PhysRevLett_121_265701
crossref_primary_10_1063_5_0080766
crossref_primary_10_1039_D2TA02610D
crossref_primary_10_1021_acs_jpcc_4c03444
crossref_primary_10_1103_PhysRevB_100_174101
crossref_primary_10_1103_PhysRevB_105_174109
crossref_primary_10_1039_D1CP01349A
crossref_primary_10_1016_j_jnucmat_2023_154824
crossref_primary_10_1016_j_biortech_2024_130590
crossref_primary_10_1016_j_mtphys_2020_100181
crossref_primary_10_1021_acscatal_3c00658
crossref_primary_10_1039_D4CS00844H
crossref_primary_10_1016_j_commatsci_2024_113154
crossref_primary_10_1016_j_commatsci_2024_113155
crossref_primary_10_1002_ijch_202100105
crossref_primary_10_1016_j_mtcomm_2025_111979
crossref_primary_10_1073_pnas_2203397119
crossref_primary_10_1073_pnas_2300565120
crossref_primary_10_1002_smll_202409092
crossref_primary_10_1063_1674_0068_cjcp2203055
crossref_primary_10_1063_5_0141616
crossref_primary_10_1103_PhysRevMaterials_7_034601
crossref_primary_10_1021_acs_jctc_3c01009
crossref_primary_10_1039_D2CP02820D
crossref_primary_10_1021_acs_jpclett_3c01649
crossref_primary_10_1021_acsnano_3c04602
crossref_primary_10_1016_j_proci_2024_105525
crossref_primary_10_1039_D2SC04815A
crossref_primary_10_1088_0256_307X_41_7_077103
crossref_primary_10_1063_5_0224282
crossref_primary_10_1039_D3CP03862A
crossref_primary_10_1016_j_actamat_2022_118217
crossref_primary_10_1016_j_apgeochem_2022_105273
crossref_primary_10_1016_j_commatsci_2024_113160
crossref_primary_10_1038_s41524_025_01561_1
crossref_primary_10_1016_j_jmst_2024_12_080
crossref_primary_10_1103_PhysRevMaterials_8_103601
crossref_primary_10_1016_j_jpcs_2024_112273
crossref_primary_10_1016_j_rser_2023_113353
crossref_primary_10_1039_D2CP02758E
crossref_primary_10_1016_j_ceramint_2024_01_288
crossref_primary_10_1016_j_pecs_2025_101220
crossref_primary_10_1063_5_0217720
crossref_primary_10_1021_acs_chemmater_3c03261
crossref_primary_10_1016_j_cpc_2019_04_014
crossref_primary_10_1080_08927022_2022_2156561
crossref_primary_10_1016_j_matlet_2024_137318
crossref_primary_10_1126_sciadv_adp9662
crossref_primary_10_1021_acsengineeringau_3c00021
crossref_primary_10_1103_PhysRevB_109_054117
crossref_primary_10_1039_D3TA06190F
crossref_primary_10_1016_j_commatsci_2023_112388
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125359
crossref_primary_10_1103_PhysRevB_107_014101
crossref_primary_10_3390_membranes9080098
crossref_primary_10_1103_PhysRevB_105_094116
crossref_primary_10_1002_qua_26870
crossref_primary_10_1016_j_ensm_2023_103069
crossref_primary_10_1063_5_0155600
crossref_primary_10_1038_s41563_024_01925_w
crossref_primary_10_1063_5_0138001
crossref_primary_10_1134_S0036029524701994
crossref_primary_10_1021_jacsau_1c00483
crossref_primary_10_1039_D4SC01422G
crossref_primary_10_1021_acsaenm_4c00280
crossref_primary_10_1063_5_0173250
crossref_primary_10_1021_acs_jpcc_3c04224
crossref_primary_10_1103_PhysRevB_104_104309
crossref_primary_10_1016_j_ceramint_2024_09_181
crossref_primary_10_1103_PhysRevB_108_184103
crossref_primary_10_1016_j_compchemeng_2024_108626
crossref_primary_10_1038_s42004_025_01471_9
crossref_primary_10_1103_PhysRevB_108_184105
crossref_primary_10_1002_adfm_202303936
crossref_primary_10_1002_advs_201900808
crossref_primary_10_1021_acs_jpclett_4c03080
crossref_primary_10_1038_s41467_024_47999_7
crossref_primary_10_1021_acs_jpca_2c06778
crossref_primary_10_1039_D3SC05612K
crossref_primary_10_1063_5_0247114
crossref_primary_10_1016_j_molliq_2024_125713
crossref_primary_10_1063_5_0182192
crossref_primary_10_1103_PhysRevMaterials_8_043806
crossref_primary_10_1021_acsnano_2c11102
crossref_primary_10_3367_UFNe_2021_11_039102
crossref_primary_10_1016_j_molliq_2024_125950
crossref_primary_10_1002_smll_202400083
crossref_primary_10_1021_acscatal_4c05338
crossref_primary_10_1088_2632_2153_ad86a1
crossref_primary_10_3389_fchem_2020_589795
crossref_primary_10_1002_advs_202205292
crossref_primary_10_1063_5_0041849
crossref_primary_10_1039_D3CP02317F
crossref_primary_10_1515_jnet_2021_0008
crossref_primary_10_1016_j_actbio_2025_02_036
crossref_primary_10_1038_s41524_024_01505_1
crossref_primary_10_3390_e26121119
crossref_primary_10_1002_adma_202408923
crossref_primary_10_1002_ange_202304205
crossref_primary_10_1021_acsnano_1c04715
crossref_primary_10_1016_j_epsl_2023_118368
crossref_primary_10_1007_s42864_023_00230_4
crossref_primary_10_1021_acs_jcim_4c01594
crossref_primary_10_1016_j_bpj_2022_12_022
crossref_primary_10_1080_27660400_2023_2269948
crossref_primary_10_1073_pnas_2408742121
crossref_primary_10_1021_acs_jpclett_3c00506
crossref_primary_10_1021_acsmaterialslett_3c01558
crossref_primary_10_1088_1361_648X_ad81a6
crossref_primary_10_1063_5_0149199
crossref_primary_10_1002_anie_202107369
crossref_primary_10_1016_j_gca_2023_03_032
crossref_primary_10_1029_2021GL093806
crossref_primary_10_1063_5_0144500
crossref_primary_10_1016_j_cossms_2025_101214
crossref_primary_10_1063_1_5042714
crossref_primary_10_1039_D4CP04020A
crossref_primary_10_1016_j_commatsci_2024_113331
crossref_primary_10_1021_acsaem_5c00529
crossref_primary_10_1016_j_ijplas_2023_103644
crossref_primary_10_1016_j_commatsci_2023_112187
crossref_primary_10_1021_acs_nanolett_3c03160
crossref_primary_10_1063_5_0083669
crossref_primary_10_1140_epjp_s13360_024_05348_z
crossref_primary_10_1021_acs_jcim_4c00273
crossref_primary_10_1021_acs_jpclett_4c00605
crossref_primary_10_1021_acs_chemmater_4c02454
crossref_primary_10_1038_s43588_023_00403_8
crossref_primary_10_1021_acs_jpcc_2c08429
crossref_primary_10_1103_PhysRevLett_132_176801
crossref_primary_10_1002_ange_202411849
crossref_primary_10_1016_j_gca_2023_02_004
crossref_primary_10_3367_UFNr_2021_11_039102
crossref_primary_10_1002_inf2_12425
crossref_primary_10_1002_wcms_1731
crossref_primary_10_1016_j_commatsci_2022_111802
crossref_primary_10_1016_j_solmat_2023_112275
crossref_primary_10_1557_mrc_2019_95
crossref_primary_10_1021_acs_jpcc_1c08569
crossref_primary_10_1016_j_commatsci_2024_113543
crossref_primary_10_1063_5_0222015
crossref_primary_10_1038_s41467_024_50418_6
crossref_primary_10_1038_s41524_021_00693_4
crossref_primary_10_1063_5_0247559
crossref_primary_10_1103_PhysRevB_110_064427
crossref_primary_10_1063_5_0236427
crossref_primary_10_20517_jmi_2024_22
crossref_primary_10_1002_ange_202405379
crossref_primary_10_1016_j_jmst_2020_09_040
crossref_primary_10_1039_D2FD00003B
crossref_primary_10_1103_PhysRevLett_126_185501
crossref_primary_10_1038_s41467_024_48511_x
crossref_primary_10_1021_acs_jpcb_3c05428
crossref_primary_10_1088_1674_1056_abf134
crossref_primary_10_20517_jmi_2024_15
crossref_primary_10_1016_j_mssp_2023_107594
crossref_primary_10_20517_jmi_2024_14
crossref_primary_10_1088_2515_7639_ab084b
crossref_primary_10_1021_acscatal_3c05275
crossref_primary_10_1021_acs_jpclett_4c02934
crossref_primary_10_1073_pnas_2207294119
crossref_primary_10_1021_acs_jctc_3c00944
crossref_primary_10_1039_D2CC05861H
crossref_primary_10_1016_j_jeurceramsoc_2020_06_007
crossref_primary_10_1021_acsami_3c16905
crossref_primary_10_1021_acs_jpclett_5c00168
crossref_primary_10_1016_j_jnucmat_2024_154897
crossref_primary_10_1021_acs_jctc_4c00594
crossref_primary_10_1016_j_sse_2022_108529
crossref_primary_10_1039_D4SC06467D
crossref_primary_10_1016_j_cpc_2020_107402
crossref_primary_10_1021_acs_jctc_4c01201
crossref_primary_10_1021_acs_jctc_4c01449
crossref_primary_10_1021_acs_chemmater_4c00921
crossref_primary_10_1021_jacs_3c06540
crossref_primary_10_1063_5_0083060
crossref_primary_10_1007_s00339_024_07277_1
crossref_primary_10_1021_acs_jpca_1c09786
crossref_primary_10_1021_acs_jctc_3c00936
crossref_primary_10_1016_j_commatsci_2023_112664
crossref_primary_10_1002_adma_201902765
crossref_primary_10_1016_j_commatsci_2024_112966
crossref_primary_10_1063_5_0152293
crossref_primary_10_1093_pnasnexus_pgaf038
crossref_primary_10_1021_acs_jpcc_4c06235
crossref_primary_10_1016_j_jpowsour_2022_232350
crossref_primary_10_1557_s43578_023_01141_3
crossref_primary_10_1002_smll_202404274
crossref_primary_10_1073_pnas_2313023120
crossref_primary_10_1038_s41524_023_01123_3
crossref_primary_10_1021_acs_jpclett_2c03827
crossref_primary_10_1021_acs_jctc_4c00124
crossref_primary_10_1088_2632_2153_abfe3f
crossref_primary_10_1016_j_jmst_2023_05_010
crossref_primary_10_1063_5_0256140
crossref_primary_10_1016_j_egyai_2024_100454
crossref_primary_10_1016_j_cpc_2019_107057
crossref_primary_10_1063_5_0202647
crossref_primary_10_1103_PhysRevApplied_18_054022
crossref_primary_10_1016_j_xcrp_2023_101760
crossref_primary_10_1021_acs_jcim_3c00472
crossref_primary_10_1016_j_commatsci_2023_112656
crossref_primary_10_1016_j_mtphys_2024_101638
crossref_primary_10_1016_j_combustflame_2025_114039
crossref_primary_10_1007_s00466_022_02253_z
crossref_primary_10_1021_acs_jpclett_0c02357
crossref_primary_10_1002_wcms_1685
crossref_primary_10_1007_s00466_025_02603_7
crossref_primary_10_1039_D4NR00606B
crossref_primary_10_1039_D4SC06530A
crossref_primary_10_1038_s41467_024_52868_4
crossref_primary_10_1038_s42004_022_00684_6
crossref_primary_10_3762_bjnano_13_3
crossref_primary_10_1038_s41524_024_01305_7
crossref_primary_10_1103_PhysRevApplied_18_064067
crossref_primary_10_1021_acs_jpcc_2c07597
crossref_primary_10_1038_s41467_023_39214_w
crossref_primary_10_1063_5_0201527
crossref_primary_10_1088_2752_5724_ac681d
crossref_primary_10_1016_j_actamat_2024_119784
crossref_primary_10_3389_fchem_2021_692200
crossref_primary_10_1007_s10462_024_10731_4
crossref_primary_10_1038_s41467_025_56055_x
crossref_primary_10_1063_5_0249920
crossref_primary_10_1021_acs_jpcb_3c00610
crossref_primary_10_1016_j_jeurceramsoc_2022_10_014
crossref_primary_10_1021_acs_jpcc_4c07342
crossref_primary_10_1038_s41467_023_42538_2
crossref_primary_10_1016_j_cplett_2025_141985
crossref_primary_10_1021_acs_langmuir_4c02888
crossref_primary_10_1016_j_mssp_2021_106146
crossref_primary_10_1016_j_jechem_2025_02_051
crossref_primary_10_1007_s43153_024_00465_9
crossref_primary_10_1016_j_ijplas_2023_103552
crossref_primary_10_1039_D4SC06422D
crossref_primary_10_1021_acs_jctc_4c00587
crossref_primary_10_1021_acs_jcim_2c00876
crossref_primary_10_1016_j_mtcomm_2024_110955
crossref_primary_10_1016_j_jcp_2021_110523
crossref_primary_10_1021_acs_jpclett_3c01054
crossref_primary_10_1038_s41598_023_46951_x
crossref_primary_10_1038_s41524_024_01264_z
crossref_primary_10_1088_2515_7655_acfe9b
crossref_primary_10_1021_acs_jpca_4c00750
crossref_primary_10_1021_acs_jpcc_4c07596
crossref_primary_10_1016_j_commatsci_2024_113608
crossref_primary_10_1038_s41524_024_01240_7
crossref_primary_10_1016_j_molliq_2024_126152
crossref_primary_10_1021_acs_jctc_4c01005
crossref_primary_10_1134_S0021364023600234
crossref_primary_10_3389_fmats_2024_1369034
crossref_primary_10_1039_D4SC00105B
crossref_primary_10_1039_D4TA06675H
crossref_primary_10_1103_PhysRevLett_132_146303
crossref_primary_10_1038_s41467_025_57688_8
crossref_primary_10_1007_s11426_023_1662_9
crossref_primary_10_1021_acs_macromol_4c00488
crossref_primary_10_1016_j_cpc_2020_107206
crossref_primary_10_1021_acs_jpcc_4c07365
crossref_primary_10_1103_PhysRevB_103_024108
crossref_primary_10_1038_s41524_022_00830_7
crossref_primary_10_1039_D2CP05590B
crossref_primary_10_3389_fmats_2024_1466793
crossref_primary_10_1021_acs_jctc_4c00173
crossref_primary_10_1103_PhysRevLett_130_116104
crossref_primary_10_1021_acs_jpcb_0c09898
crossref_primary_10_1021_acs_jpcc_2c09121
crossref_primary_10_1063_5_0016011
crossref_primary_10_1016_j_cpc_2023_108883
crossref_primary_10_1002_adfm_202311599
crossref_primary_10_1016_j_aichem_2023_100027
crossref_primary_10_1021_acs_jctc_2c00151
crossref_primary_10_3390_molecules28114477
crossref_primary_10_1016_j_commatsci_2023_112454
crossref_primary_10_1016_j_ceramint_2024_07_290
crossref_primary_10_1016_j_commatsci_2024_112979
crossref_primary_10_1021_acs_jpcb_4c02413
crossref_primary_10_1149_1945_7111_ad4ac9
crossref_primary_10_1016_j_applthermaleng_2024_123920
crossref_primary_10_1038_s41467_022_33783_y
crossref_primary_10_1088_1361_651X_ad801e
crossref_primary_10_1021_acs_chemrev_4c00380
crossref_primary_10_1021_acs_jpclett_0c02547
crossref_primary_10_1016_j_est_2024_114156
crossref_primary_10_1063_5_0036298
crossref_primary_10_1039_D3CP00999H
crossref_primary_10_1088_1361_648X_acba71
crossref_primary_10_1016_j_commatsci_2024_112983
crossref_primary_10_1039_D4CP02399D
crossref_primary_10_1039_D3TA03434H
crossref_primary_10_1016_j_matlet_2024_136114
crossref_primary_10_2139_ssrn_4177625
crossref_primary_10_1016_j_xcrp_2023_101713
crossref_primary_10_1021_jacs_1c08552
crossref_primary_10_1021_acs_jpcc_3c03229
crossref_primary_10_1039_D0TB00896F
crossref_primary_10_1021_acsami_4c04491
crossref_primary_10_1021_acsami_3c13412
crossref_primary_10_1103_PhysRevB_108_134112
crossref_primary_10_1021_acs_nanolett_2c02010
crossref_primary_10_1021_acsami_2c16254
crossref_primary_10_1063_5_0147720
crossref_primary_10_1016_j_commt_2024_100005
crossref_primary_10_1016_j_icheatmasstransfer_2024_108354
crossref_primary_10_1038_s41524_024_01227_4
crossref_primary_10_1063_5_0031215
crossref_primary_10_1021_jacs_4c01221
crossref_primary_10_1038_s41524_024_01205_w
crossref_primary_10_3390_biom12091246
crossref_primary_10_1002_smtd_202300534
crossref_primary_10_1007_s10822_020_00346_6
crossref_primary_10_1021_acs_jpclett_8b03026
crossref_primary_10_1021_acs_jpclett_4c00113
crossref_primary_10_1016_j_apsusc_2025_162836
crossref_primary_10_1039_D3DD00046J
crossref_primary_10_1063_5_0006498
crossref_primary_10_1016_j_ceramint_2024_04_011
crossref_primary_10_1016_j_icheatmasstransfer_2024_108361
crossref_primary_10_1140_epjb_s10051_021_00156_1
crossref_primary_10_1002_chem_202401148
crossref_primary_10_1007_s11433_021_1739_4
crossref_primary_10_1016_j_commatsci_2022_111699
crossref_primary_10_1038_s41567_024_02761_0
crossref_primary_10_1103_PhysRevE_108_055310
crossref_primary_10_1021_acs_jpcb_2c07477
crossref_primary_10_1002_adfm_202313188
crossref_primary_10_1016_j_ceramint_2024_05_296
crossref_primary_10_1063_5_0183610
crossref_primary_10_1063_5_0200833
crossref_primary_10_1088_1361_651X_ac5ebb
crossref_primary_10_1021_acs_jctc_2c00102
crossref_primary_10_1007_s10543_025_01052_1
crossref_primary_10_1080_21650373_2023_2219251
crossref_primary_10_1021_acs_jcim_3c00643
crossref_primary_10_1021_acs_jpcb_3c05928
crossref_primary_10_1103_PhysRevE_110_L033301
crossref_primary_10_1063_5_0089210
crossref_primary_10_1016_j_compositesb_2024_111452
crossref_primary_10_1021_acs_jpcc_3c01870
crossref_primary_10_1016_j_susc_2024_122595
crossref_primary_10_1021_acs_jpclett_3c01231
crossref_primary_10_1016_j_cpc_2022_108580
crossref_primary_10_1021_acs_jctc_0c01261
crossref_primary_10_1016_j_commatsci_2024_113189
crossref_primary_10_1038_s41524_023_00969_x
crossref_primary_10_1137_23M161937X
crossref_primary_10_1103_PhysRevB_109_094101
crossref_primary_10_1021_acs_jpclett_4c00575
crossref_primary_10_1063_5_0153196
crossref_primary_10_1088_0256_307X_39_11_116301
crossref_primary_10_1038_s41524_024_01456_7
crossref_primary_10_31857_S1234567823050099
crossref_primary_10_1016_j_cemconres_2023_107092
crossref_primary_10_1016_j_actamat_2023_119416
crossref_primary_10_1021_jacsau_4c00618
crossref_primary_10_1016_j_solmat_2024_113275
crossref_primary_10_1039_D4CP02223H
crossref_primary_10_1063_5_0040190
crossref_primary_10_1103_PhysRevB_99_184305
crossref_primary_10_1029_2023JB028333
crossref_primary_10_1103_PhysRevMaterials_9_033804
crossref_primary_10_7498_aps_72_20231258
crossref_primary_10_1039_D0CP01893G
crossref_primary_10_1021_acs_jctc_1c01223
crossref_primary_10_1021_acs_jpclett_3c01200
crossref_primary_10_1103_PhysRevB_111_024305
crossref_primary_10_1021_acs_jcim_3c01953
crossref_primary_10_1002_anie_202411849
crossref_primary_10_1063_5_0240030
crossref_primary_10_1021_acs_jpclett_4c02771
crossref_primary_10_1002_ange_202107369
crossref_primary_10_1021_acs_chemmater_3c02726
crossref_primary_10_1016_j_mtener_2021_100665
crossref_primary_10_2477_jccj_2024_0018
crossref_primary_10_1063_5_0179161
crossref_primary_10_1021_acs_jctc_1c00565
crossref_primary_10_1007_s40843_024_2851_9
crossref_primary_10_1021_acs_jctc_3c00344
crossref_primary_10_1021_acs_jctc_3c00587
crossref_primary_10_1016_j_molliq_2022_120689
crossref_primary_10_1016_j_jnucmat_2025_155660
crossref_primary_10_1021_jacs_4c03445
crossref_primary_10_1016_j_intermet_2022_107678
crossref_primary_10_1103_PhysRevE_102_052125
crossref_primary_10_1103_PhysRevB_109_045153
crossref_primary_10_1016_j_cpc_2024_109187
crossref_primary_10_1038_s41557_024_01593_y
crossref_primary_10_1016_j_commatsci_2022_111494
crossref_primary_10_1021_jacs_2c06785
crossref_primary_10_1039_D4FD00140K
crossref_primary_10_1007_s11227_020_03362_3
crossref_primary_10_1021_acs_jctc_3c00334
crossref_primary_10_1016_j_mser_2024_100825
crossref_primary_10_1021_acs_jctc_3c00571
crossref_primary_10_1103_PhysRevMaterials_7_025601
crossref_primary_10_1039_D2NR05918E
crossref_primary_10_1016_j_gsf_2023_101735
crossref_primary_10_1109_TCSI_2023_3255199
crossref_primary_10_1093_bib_bbab158
crossref_primary_10_1021_acs_chemmater_3c00524
crossref_primary_10_1038_s41467_021_27250_3
crossref_primary_10_1063_5_0099448
crossref_primary_10_1103_PhysRevB_110_235410
crossref_primary_10_1002_cplu_202400461
crossref_primary_10_1103_PhysRevResearch_6_013292
crossref_primary_10_1016_j_ijmecsci_2024_109852
crossref_primary_10_1063_5_0098330
crossref_primary_10_1103_PhysRevApplied_18_054066
crossref_primary_10_1063_5_0219401
crossref_primary_10_1016_j_cemconres_2021_106685
crossref_primary_10_1063_5_0259061
crossref_primary_10_1007_s00339_024_07348_3
crossref_primary_10_1039_C8CP06077K
crossref_primary_10_1063_5_0190372
crossref_primary_10_1038_s41467_023_38650_y
crossref_primary_10_1016_j_jechem_2022_01_018
crossref_primary_10_1021_acs_langmuir_4c03126
crossref_primary_10_1029_2022GL100337
crossref_primary_10_1063_5_0230440
crossref_primary_10_1021_acsphyschemau_3c00076
crossref_primary_10_1021_acs_jpclett_3c02112
crossref_primary_10_1063_5_0079602
crossref_primary_10_1088_1361_651X_acda50
crossref_primary_10_1103_PRXEnergy_3_013001
crossref_primary_10_1016_j_solmat_2024_113091
crossref_primary_10_1016_j_heliyon_2023_e17575
crossref_primary_10_1126_sciadv_ado9593
crossref_primary_10_1038_s41560_023_01356_y
crossref_primary_10_1103_PhysRevMaterials_6_063802
crossref_primary_10_1088_0256_307X_40_11_116301
crossref_primary_10_1039_D3TA03830K
crossref_primary_10_1016_j_cpc_2021_108218
crossref_primary_10_1021_acs_jpclett_5c00376
crossref_primary_10_1093_mam_ozae044_127
crossref_primary_10_1016_j_jallcom_2019_03_197
crossref_primary_10_1016_j_mtcomm_2024_111161
crossref_primary_10_1126_science_abd7716
crossref_primary_10_1016_j_jpowsour_2025_236591
crossref_primary_10_1002_anie_202405379
crossref_primary_10_1016_j_cjsc_2024_100266
crossref_primary_10_1021_acs_jpclett_4c01242
crossref_primary_10_1016_j_actamat_2020_116513
crossref_primary_10_1016_j_watres_2024_121580
crossref_primary_10_1021_acs_jpca_3c07598
crossref_primary_10_1103_PhysRevApplied_22_014036
crossref_primary_10_1103_PRXEnergy_3_013014
crossref_primary_10_1016_j_coche_2019_02_001
crossref_primary_10_1021_acs_jpclett_2c03445
crossref_primary_10_1063_5_0030123
crossref_primary_10_1080_27660400_2023_2292486
crossref_primary_10_1021_acsami_4c19397
crossref_primary_10_1021_acs_jcim_9b00994
crossref_primary_10_1016_j_commatsci_2024_113486
crossref_primary_10_1063_5_0164824
crossref_primary_10_1021_acs_jctc_3c01115
crossref_primary_10_1103_PhysRevLett_132_264101
crossref_primary_10_1021_acs_jctc_3c00271
crossref_primary_10_1021_acs_jpcb_4c08461
crossref_primary_10_1103_PhysRevLett_126_236001
crossref_primary_10_3390_ma15165606
crossref_primary_10_1116_6_0001408
crossref_primary_10_1002_aisy_202100014
crossref_primary_10_1021_acs_chemrev_2c00220
crossref_primary_10_1039_D2CP05530A
crossref_primary_10_3390_pr12112407
crossref_primary_10_1063_5_0197757
crossref_primary_10_1021_jacs_4c06641
crossref_primary_10_1016_j_chip_2022_100033
crossref_primary_10_1063_1_5098061
crossref_primary_10_1111_jace_19741
crossref_primary_10_1021_acs_jpcc_4c04604
crossref_primary_10_1080_00268976_2024_2365430
crossref_primary_10_1039_D3CP04657E
crossref_primary_10_1038_s41524_021_00510_y
crossref_primary_10_1016_j_ces_2024_119836
crossref_primary_10_1063_5_0149447
crossref_primary_10_1038_s41524_024_01332_4
crossref_primary_10_1016_j_molliq_2022_118787
crossref_primary_10_1063_5_0147025
crossref_primary_10_1103_PhysRevB_102_214113
crossref_primary_10_1103_PhysRevB_110_054301
crossref_primary_10_1016_j_apsusc_2023_156893
crossref_primary_10_1103_PhysRevB_105_174422
crossref_primary_10_1007_s10853_023_08672_4
crossref_primary_10_1021_acs_jpca_2c06252
crossref_primary_10_1021_acs_jpcc_1c10300
crossref_primary_10_1021_acs_jctc_3c00244
crossref_primary_10_1038_s41570_022_00416_3
crossref_primary_10_12677_MP_2019_96026
crossref_primary_10_1063_5_0126333
crossref_primary_10_1088_2632_2153_accd45
crossref_primary_10_1021_acsami_1c00604
crossref_primary_10_1021_acs_jced_4c00207
crossref_primary_10_1021_acs_jpclett_4c03332
crossref_primary_10_1038_s41467_023_42958_0
crossref_primary_10_1360_SSC_2022_0022
crossref_primary_10_1021_jacsau_1c00538
crossref_primary_10_1360_SSC_2022_0028
crossref_primary_10_21105_joss_05118
crossref_primary_10_5802_crchim_315
crossref_primary_10_1016_j_isci_2024_109673
crossref_primary_10_1021_acs_jctc_2c00400
crossref_primary_10_1063_5_0118952
crossref_primary_10_1002_adfm_202402993
crossref_primary_10_1016_j_chemphys_2024_112533
crossref_primary_10_1016_j_cpc_2025_109512
crossref_primary_10_1021_acs_jpcc_4c00028
crossref_primary_10_1039_D4DD00069B
crossref_primary_10_1016_j_commatsci_2022_111709
crossref_primary_10_1021_acs_jctc_3c01320
crossref_primary_10_1088_1741_4326_ac888b
crossref_primary_10_1103_PhysRevB_107_224301
crossref_primary_10_1021_acs_jpclett_1c02328
crossref_primary_10_1063_5_0069443
crossref_primary_10_1002_aenm_202200596
crossref_primary_10_1103_PhysRevB_110_064103
crossref_primary_10_1109_MCI_2024_3365234
crossref_primary_10_1029_2024GL109793
crossref_primary_10_1016_j_commatsci_2022_111941
crossref_primary_10_1103_PhysRevB_109_184108
crossref_primary_10_1103_PhysRevB_107_064103
crossref_primary_10_1073_pnas_2212250120
crossref_primary_10_1103_PhysRevB_108_014108
crossref_primary_10_1021_acs_jpcc_0c08873
crossref_primary_10_1103_PhysRevResearch_2_042034
crossref_primary_10_1063_5_0255515
crossref_primary_10_1021_acs_jctc_2c00816
crossref_primary_10_1088_1361_648X_acf6ea
crossref_primary_10_1021_acs_langmuir_4c05004
crossref_primary_10_1039_D3DD00078H
crossref_primary_10_1111_jace_19934
crossref_primary_10_1021_acsami_3c05376
crossref_primary_10_1002_jcc_27269
crossref_primary_10_31857_S0235010623040096
crossref_primary_10_1016_j_commatsci_2021_110567
crossref_primary_10_1038_s41598_024_78377_4
crossref_primary_10_1016_j_commatsci_2024_113293
crossref_primary_10_1016_j_commatsci_2024_113294
crossref_primary_10_3390_ma18030659
crossref_primary_10_1021_acs_jpcb_2c09059
crossref_primary_10_1038_s41524_024_01467_4
crossref_primary_10_1063_5_0159288
crossref_primary_10_1016_j_actamat_2025_120892
crossref_primary_10_1063_5_0142843
crossref_primary_10_1063_5_0165948
crossref_primary_10_1088_1367_2630_ab4535
crossref_primary_10_1021_acs_jctc_2c00827
crossref_primary_10_1103_PhysRevLett_129_226001
crossref_primary_10_1021_acs_jpcc_3c01941
crossref_primary_10_1103_PhysRevB_109_115129
crossref_primary_10_1002_jcc_27497
crossref_primary_10_1039_D4EE03944K
crossref_primary_10_1039_D4TC02618G
crossref_primary_10_1021_acs_jpcc_3c07010
crossref_primary_10_1103_PhysRevLett_131_076801
crossref_primary_10_31857_S2686953524010073
crossref_primary_10_1021_acs_jpcc_1c01411
crossref_primary_10_1063_5_0236394
crossref_primary_10_1021_acs_jpcb_3c04629
crossref_primary_10_1088_1367_2630_ac9cff
crossref_primary_10_1557_mrs_2020_231
crossref_primary_10_1016_j_mtcomm_2024_110243
crossref_primary_10_1088_2053_1583_ad4661
crossref_primary_10_1002_advs_202105574
crossref_primary_10_1021_acsami_3c04022
crossref_primary_10_1016_j_scib_2021_09_010
crossref_primary_10_1038_s41570_021_00278_1
crossref_primary_10_1093_bib_bbab590
crossref_primary_10_1016_j_jma_2024_11_009
crossref_primary_10_1021_acs_jpcc_3c08138
crossref_primary_10_1002_syst_201900031
crossref_primary_10_1038_s41467_025_57120_1
crossref_primary_10_1016_j_fuel_2023_129909
crossref_primary_10_1016_j_cjche_2020_10_044
crossref_primary_10_1029_2022GL101161
crossref_primary_10_1021_acs_jpca_2c06201
crossref_primary_10_1021_jacs_2c03099
crossref_primary_10_1039_D2DD00102K
crossref_primary_10_1103_PhysRevMaterials_4_113803
crossref_primary_10_1039_D3EE03536K
crossref_primary_10_1016_j_jmst_2023_04_074
crossref_primary_10_1021_acs_jpcc_1c08022
crossref_primary_10_1016_j_commatsci_2020_110055
crossref_primary_10_1088_1674_1056_ad362b
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124705
crossref_primary_10_1103_PhysRevB_110_054109
crossref_primary_10_1016_j_mtcomm_2025_111868
crossref_primary_10_1016_j_commatsci_2024_113641
crossref_primary_10_1126_sciadv_adr4145
crossref_primary_10_1063_5_0224137
crossref_primary_10_1021_jacs_4c18223
crossref_primary_10_1063_5_0143724
crossref_primary_10_1360_SSC_2023_0044
crossref_primary_10_3390_nano12213891
crossref_primary_10_1088_1361_648X_ad577b
crossref_primary_10_1007_s11581_023_05265_8
crossref_primary_10_1021_acsmaterialslett_4c01047
crossref_primary_10_1016_j_xcrp_2024_102042
crossref_primary_10_1063_5_0203682
crossref_primary_10_1016_j_molliq_2022_120803
crossref_primary_10_1063_5_0215663
crossref_primary_10_1038_s41529_024_00536_9
crossref_primary_10_1063_1674_0068_cjcp2110218
crossref_primary_10_1002_admi_202201346
crossref_primary_10_1038_s41524_022_00734_6
crossref_primary_10_1039_D2CP06073F
crossref_primary_10_1021_acs_chemmater_4c01049
crossref_primary_10_1038_s41598_023_50978_5
crossref_primary_10_1063_5_0001491
crossref_primary_10_1007_s40843_023_2733_7
crossref_primary_10_1103_PhysRevMaterials_5_015602
crossref_primary_10_1063_5_0023265
crossref_primary_10_3390_nano13091576
crossref_primary_10_1016_j_jnucmat_2022_154029
crossref_primary_10_1021_acs_inorgchem_4c00074
crossref_primary_10_1038_s43586_023_00263_6
crossref_primary_10_1016_j_jcp_2022_111857
crossref_primary_10_1021_acs_jctc_4c01176
crossref_primary_10_1021_acsami_4c01480
crossref_primary_10_1021_acs_jpcb_4c06450
crossref_primary_10_1063_5_0214588
crossref_primary_10_1038_s41467_023_37376_1
crossref_primary_10_1021_acscatal_3c05376
crossref_primary_10_1021_acs_jpcc_2c07423
crossref_primary_10_1021_acsanm_4c01803
crossref_primary_10_1021_acsami_4c02339
crossref_primary_10_1038_s41524_023_01104_6
crossref_primary_10_1145_3617327
crossref_primary_10_1016_j_jcis_2023_05_188
crossref_primary_10_1021_acs_jcim_3c00077
crossref_primary_10_1002_ange_202410802
crossref_primary_10_1021_acsami_2c16203
crossref_primary_10_1007_s41061_021_00339_5
crossref_primary_10_1093_nsr_nwae023
crossref_primary_10_1016_j_cpc_2024_109446
crossref_primary_10_1063_5_0201241
crossref_primary_10_1021_acs_jpcc_2c07877
crossref_primary_10_2139_ssrn_4185786
crossref_primary_10_1063_5_0163303
crossref_primary_10_1038_s41467_023_38855_1
crossref_primary_10_1038_s41524_021_00661_y
crossref_primary_10_1016_j_actamat_2024_120135
crossref_primary_10_1039_D3YA00057E
crossref_primary_10_1002_adts_202200206
crossref_primary_10_1063_5_0249882
crossref_primary_10_1002_ange_202407892
crossref_primary_10_1103_PhysRevB_108_024305
crossref_primary_10_1360_SST_2023_0408
crossref_primary_10_1021_acscatal_3c06201
crossref_primary_10_1080_00268976_2019_1652366
crossref_primary_10_1039_D3CP04833K
crossref_primary_10_1063_5_0160046
crossref_primary_10_1063_5_0205616
crossref_primary_10_1021_acs_jcim_4c01473
crossref_primary_10_1109_TCBB_2022_3141697
crossref_primary_10_6023_A22110446
crossref_primary_10_1039_D4NR04968C
crossref_primary_10_1002_adts_201900135
crossref_primary_10_1063_5_0215869
crossref_primary_10_1002_wcms_1621
crossref_primary_10_1021_acs_jpcc_4c05568
crossref_primary_10_1039_D3CP05709G
crossref_primary_10_1016_j_mtcomm_2024_109624
crossref_primary_10_1371_journal_pone_0256990
crossref_primary_10_1016_j_commatsci_2021_110963
crossref_primary_10_1016_j_intermet_2023_108121
crossref_primary_10_1126_sciadv_abq2900
crossref_primary_10_1080_00268976_2021_1916634
crossref_primary_10_1021_acs_jpclett_2c00647
crossref_primary_10_1039_D1DD00005E
crossref_primary_10_1016_j_commatsci_2024_113450
crossref_primary_10_3390_coatings14070815
crossref_primary_10_3390_nano13121853
crossref_primary_10_1038_s41467_025_56322_x
crossref_primary_10_1038_s41467_023_43625_0
crossref_primary_10_1088_2632_2153_ad1626
crossref_primary_10_1103_PhysRevLett_127_080603
crossref_primary_10_1002_qua_70036
crossref_primary_10_1021_acsmaterialslett_3c00119
crossref_primary_10_1029_2023GL107245
crossref_primary_10_1016_j_commatsci_2024_113459
crossref_primary_10_1021_acs_chemmater_4c02575
crossref_primary_10_1063_5_0146803
crossref_primary_10_1063_5_0139010
crossref_primary_10_1063_5_0244175
crossref_primary_10_1016_j_commatsci_2025_113719
crossref_primary_10_1016_j_carbon_2021_09_062
crossref_primary_10_1088_1361_651X_ac4002
crossref_primary_10_1088_1361_6528_adb8f3
crossref_primary_10_1016_j_ijmecsci_2022_107998
crossref_primary_10_1063_5_0211276
crossref_primary_10_1088_1361_6528_ac46d7
crossref_primary_10_1016_j_physrep_2021_08_002
crossref_primary_10_1039_D1MA01152A
crossref_primary_10_1063_1674_0068_cjcp2211173
crossref_primary_10_1103_PhysRevB_105_144106
crossref_primary_10_1016_j_jallcom_2025_179121
crossref_primary_10_1007_s00894_024_06084_y
crossref_primary_10_1002_adma_202413587
crossref_primary_10_1016_j_jcis_2024_05_189
crossref_primary_10_1021_acs_biomac_1c01436
crossref_primary_10_1038_s41467_023_39829_z
crossref_primary_10_1016_j_ensm_2024_103470
crossref_primary_10_1088_1361_6463_acd792
crossref_primary_10_1021_acs_jpclett_0c00527
crossref_primary_10_1063_5_0139281
crossref_primary_10_1007_s40843_024_2967_2
crossref_primary_10_1039_D4CP00997E
crossref_primary_10_1088_1361_648X_ac462b
crossref_primary_10_1103_PhysRevMaterials_7_033803
crossref_primary_10_1021_acs_jpcb_3c04473
crossref_primary_10_1021_prechem_4c00060
crossref_primary_10_1063_1674_0068_cjcp2108145
crossref_primary_10_1021_acs_jpclett_2c01710
crossref_primary_10_1088_2515_7639_ab8c2d
crossref_primary_10_1016_j_nocx_2022_100115
crossref_primary_10_3390_nano13081352
crossref_primary_10_1063_5_0166858
crossref_primary_10_1360_SSC_2023_0050
crossref_primary_10_1016_j_cpc_2020_107624
crossref_primary_10_1088_1361_648X_ada710
crossref_primary_10_1073_pnas_2403497121
crossref_primary_10_1021_acs_jpcb_1c04372
crossref_primary_10_1063_5_0198431
crossref_primary_10_1002_adts_202000180
crossref_primary_10_1016_j_commatsci_2021_110752
crossref_primary_10_1137_23M1574051
crossref_primary_10_1021_prechem_4c00056
crossref_primary_10_1016_j_jnoncrysol_2024_123379
crossref_primary_10_1021_prechem_4c00051
crossref_primary_10_1063_5_0201698
crossref_primary_10_1016_j_ijmecsci_2024_109911
crossref_primary_10_1063_5_0025051
crossref_primary_10_1021_acs_jctc_1c00647
crossref_primary_10_1360_SSC_2023_0205
crossref_primary_10_1021_acs_jpcb_4c06956
crossref_primary_10_1021_acs_jpcc_9b04207
crossref_primary_10_1021_acs_jpcc_2c08581
crossref_primary_10_1016_j_jmst_2020_07_014
crossref_primary_10_1103_PhysRevMaterials_5_083804
crossref_primary_10_1038_s41467_020_19497_z
crossref_primary_10_1021_acs_jpcc_2c08589
crossref_primary_10_1038_s41563_020_0777_6
crossref_primary_10_1038_s41467_020_16372_9
crossref_primary_10_1016_j_energy_2024_133799
crossref_primary_10_1016_j_commatsci_2024_112843
crossref_primary_10_1039_D4TA08860C
crossref_primary_10_1016_j_taml_2023_100481
crossref_primary_10_1021_jacs_3c07506
crossref_primary_10_1088_2632_2153_ad0fa5
crossref_primary_10_1021_acsami_1c17942
crossref_primary_10_1002_aenm_202403876
crossref_primary_10_1103_PhysRevB_102_115155
crossref_primary_10_1063_5_0131696
crossref_primary_10_1039_D4CP03014A
crossref_primary_10_1063_5_0157615
crossref_primary_10_1103_PhysRevMaterials_7_053603
crossref_primary_10_1021_acs_jctc_4c00248
crossref_primary_10_1038_s41467_023_39686_w
crossref_primary_10_1063_1_5027645
crossref_primary_10_1021_acs_chemrev_1c00021
crossref_primary_10_1103_PhysRevB_106_174101
crossref_primary_10_1103_PhysRevB_106_094107
crossref_primary_10_1016_j_commatsci_2023_112535
crossref_primary_10_1016_j_molliq_2023_123533
crossref_primary_10_1016_j_solmat_2024_112903
crossref_primary_10_1021_acsnano_3c13099
crossref_primary_10_1002_cphc_202400090
crossref_primary_10_1038_s41598_024_69873_8
crossref_primary_10_1063_5_0158918
crossref_primary_10_1002_adfm_202408870
crossref_primary_10_1039_D4DD00209A
crossref_primary_10_1063_5_0155887
crossref_primary_10_1039_D3NR04471H
crossref_primary_10_1039_D4CP01801J
crossref_primary_10_1103_PhysRevB_106_014311
crossref_primary_10_1103_PhysRevLett_132_167301
crossref_primary_10_1021_acs_jctc_2c01172
crossref_primary_10_1016_j_cej_2023_145355
crossref_primary_10_3390_nano13121832
crossref_primary_10_1021_acs_jpcb_1c03884
crossref_primary_10_1103_PhysRevLett_128_045301
crossref_primary_10_1063_5_0100505
crossref_primary_10_1029_2021GL093573
crossref_primary_10_1016_j_solmat_2024_112916
crossref_primary_10_1038_s41598_020_76770_3
crossref_primary_10_1021_acs_jced_3c00580
crossref_primary_10_1088_2632_2153_ab9c3e
crossref_primary_10_1021_acs_jpclett_4c01954
crossref_primary_10_1021_acs_jctc_4c00463
crossref_primary_10_1063_5_0230195
crossref_primary_10_1021_acs_jctc_4c00460
crossref_primary_10_1016_j_mtphys_2023_101282
crossref_primary_10_1002_adma_202413430
crossref_primary_10_1088_2632_2153_ad594a
crossref_primary_10_1021_acsami_1c24488
crossref_primary_10_1038_s41524_023_01168_4
crossref_primary_10_1021_acs_jctc_2c01183
crossref_primary_10_1016_j_actamat_2023_119364
crossref_primary_10_1016_j_commatsci_2022_111384
crossref_primary_10_1016_j_actamat_2024_120661
crossref_primary_10_1021_acs_jctc_2c00017
crossref_primary_10_1016_j_commatsci_2023_112111
crossref_primary_10_1021_acs_jpca_3c07859
crossref_primary_10_1002_advs_202302816
crossref_primary_10_1039_D4CP02584A
crossref_primary_10_7498_aps_72_20231169
crossref_primary_10_1016_j_cma_2023_116290
crossref_primary_10_1016_j_epsl_2023_118084
crossref_primary_10_1021_acs_jpcb_4c01466
crossref_primary_10_1039_D4CP02499K
crossref_primary_10_1016_j_coelec_2024_101605
crossref_primary_10_1134_S0031918X24602178
crossref_primary_10_1021_acs_jpcc_3c05522
crossref_primary_10_1016_j_jmst_2021_12_074
crossref_primary_10_1021_acsami_0c20665
crossref_primary_10_1021_acs_chemrev_0c00749
crossref_primary_10_1002_wcms_1581
crossref_primary_10_1039_D3TA03771A
crossref_primary_10_1038_s41467_024_46891_8
crossref_primary_10_1038_s41598_022_25682_5
crossref_primary_10_1103_PhysRevB_108_064104
crossref_primary_10_1016_j_jnucmat_2022_154183
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125673
crossref_primary_10_1002_aenm_202400564
crossref_primary_10_1038_s41929_023_01006_2
crossref_primary_10_1039_D4CP00079J
crossref_primary_10_1021_acs_jpcb_4c04750
crossref_primary_10_1021_jacs_4c14610
crossref_primary_10_1063_5_0156327
crossref_primary_10_1039_D0SM01019G
crossref_primary_10_1016_j_ceramint_2024_07_152
crossref_primary_10_1063_5_0202963
crossref_primary_10_1016_j_actamat_2024_120429
crossref_primary_10_1016_j_pecs_2023_101084
crossref_primary_10_1021_acs_jpclett_4c00657
crossref_primary_10_1038_s41467_024_54631_1
crossref_primary_10_1134_S0012501624600049
crossref_primary_10_1063_5_0190890
crossref_primary_10_1016_j_cemconres_2024_107690
crossref_primary_10_1016_j_jmst_2020_01_005
crossref_primary_10_1103_PhysRevMaterials_6_113603
crossref_primary_10_1021_acsmaterialslett_4c01982
crossref_primary_10_1039_D2CP01808J
crossref_primary_10_1002_adfm_202301663
crossref_primary_10_1039_D4TA00452C
crossref_primary_10_1111_jace_20356
crossref_primary_10_1007_s11467_023_1325_z
crossref_primary_10_1063_1674_0068_cjcp2402023
crossref_primary_10_1016_j_carbon_2024_119910
crossref_primary_10_1038_s41467_024_47695_6
crossref_primary_10_1063_5_0189696
crossref_primary_10_1016_j_jpowsour_2025_236632
crossref_primary_10_1016_j_mtelec_2025_100138
crossref_primary_10_1063_5_0095593
crossref_primary_10_1038_s41524_025_01547_z
crossref_primary_10_1116_6_0004027
crossref_primary_10_1039_D3CP06202C
crossref_primary_10_1039_D3SC06282A
crossref_primary_10_1063_5_0146753
crossref_primary_10_1063_5_0199240
crossref_primary_10_1016_j_jallcom_2024_177178
crossref_primary_10_1016_j_eml_2024_102151
crossref_primary_10_1021_acs_jctc_1c00245
crossref_primary_10_1103_PhysRevB_110_245305
crossref_primary_10_1016_j_jnucmat_2025_155749
crossref_primary_10_1039_D2SC02227C
crossref_primary_10_1016_j_jmst_2024_10_020
crossref_primary_10_1016_j_molliq_2024_124054
crossref_primary_10_1557_s43580_022_00289_0
crossref_primary_10_1016_j_cpc_2021_108171
crossref_primary_10_1016_j_commatsci_2022_111330
crossref_primary_10_1038_s41524_022_00773_z
crossref_primary_10_1103_PhysRevResearch_3_033116
crossref_primary_10_1016_j_carbon_2024_119498
crossref_primary_10_6023_A22010003
crossref_primary_10_1103_PhysRevLett_125_195503
crossref_primary_10_1088_1361_648X_ad44f9
crossref_primary_10_1039_D4CP02781G
crossref_primary_10_1016_j_ces_2024_120421
crossref_primary_10_1016_j_cpc_2023_108723
crossref_primary_10_1063_5_0213811
crossref_primary_10_1021_acs_jpclett_4c02430
crossref_primary_10_1088_0256_307X_42_1_017402
crossref_primary_10_1039_D0CP01689F
crossref_primary_10_1021_acs_jpclett_3c02424
crossref_primary_10_1021_acs_jpcc_4c01988
crossref_primary_10_1021_acsami_2c19272
crossref_primary_10_1103_PhysRevB_104_224202
crossref_primary_10_1039_D4NR03424D
crossref_primary_10_1016_j_commatsci_2020_109955
crossref_primary_10_1088_2632_2153_ad4a04
crossref_primary_10_1002_anie_202304205
crossref_primary_10_1088_1361_648X_ad7fb0
crossref_primary_10_1021_acsnano_4c12369
crossref_primary_10_1103_PhysRevMaterials_3_023804
crossref_primary_10_1063_5_0253847
crossref_primary_10_1063_1674_0068_cjcp2009163
crossref_primary_10_1016_j_ssi_2023_116298
crossref_primary_10_1039_C9SC05116C
crossref_primary_10_1038_s41567_024_02707_6
crossref_primary_10_1021_acs_jctc_2c00010
crossref_primary_10_1063_5_0167238
crossref_primary_10_1021_acs_jctc_4c00869
crossref_primary_10_1103_PhysRevMaterials_7_115001
crossref_primary_10_1021_acs_jctc_1c00201
crossref_primary_10_1039_D1SC03564A
crossref_primary_10_1039_D4FD00153B
crossref_primary_10_26599_JAC_2023_9220721
crossref_primary_10_1039_D1EE01509E
crossref_primary_10_1063_5_0134379
crossref_primary_10_1021_acsami_2c01768
crossref_primary_10_1103_PhysRevB_108_224114
crossref_primary_10_1021_jacsau_4c00957
crossref_primary_10_1002_smtd_202201138
crossref_primary_10_1063_5_0230101
crossref_primary_10_1063_5_0207567
crossref_primary_10_1021_acs_jpclett_1c02214
crossref_primary_10_1007_s10909_024_03061_w
crossref_primary_10_1016_j_commatsci_2021_111014
crossref_primary_10_1016_j_jpcs_2022_111143
crossref_primary_10_1021_acs_jpca_2c00601
crossref_primary_10_1021_jacsau_2c00526
crossref_primary_10_1038_s43246_025_00745_y
crossref_primary_10_1063_5_0147218
crossref_primary_10_1103_PhysRevB_111_104112
crossref_primary_10_1021_acs_chemrev_3c00070
crossref_primary_10_1021_acs_jpca_4c03074
crossref_primary_10_1016_j_matlet_2025_138336
crossref_primary_10_1103_PhysRevLett_120_143001
crossref_primary_10_1021_acs_jpcc_1c04895
crossref_primary_10_1038_s41524_024_01217_6
crossref_primary_10_1021_acs_jpcb_3c02972
crossref_primary_10_1063_5_0243641
crossref_primary_10_1021_acs_jpclett_4c02224
crossref_primary_10_1016_j_solmat_2021_111346
crossref_primary_10_1021_acs_jctc_3c00214
crossref_primary_10_1021_acs_jpca_0c03926
crossref_primary_10_1016_j_mtphys_2023_101066
crossref_primary_10_1021_acs_jpcc_0c03333
crossref_primary_10_1002_aenm_202400163
crossref_primary_10_1039_D4NR02114B
crossref_primary_10_1088_2515_7655_ab2060
crossref_primary_10_1557_s43577_024_00855_x
crossref_primary_10_1016_j_egyai_2022_100135
crossref_primary_10_1021_acscatal_4c01364
crossref_primary_10_1016_j_jnoncrysol_2023_122682
crossref_primary_10_1021_acs_jpclett_3c01392
crossref_primary_10_1038_s41524_024_01500_6
crossref_primary_10_1103_PhysRevB_107_144103
crossref_primary_10_1088_1361_648X_ad9657
crossref_primary_10_1021_acs_jpcc_1c04403
crossref_primary_10_1039_C9TA05453G
crossref_primary_10_1021_acs_jctc_0c00217
crossref_primary_10_1038_s41578_020_00255_y
crossref_primary_10_1088_0256_307X_41_6_066101
crossref_primary_10_1103_PhysRevB_109_174104
crossref_primary_10_1103_PhysRevB_109_174106
crossref_primary_10_1016_j_molliq_2021_118181
crossref_primary_10_1063_5_0219764
crossref_primary_10_1016_j_mssp_2022_106513
crossref_primary_10_1021_acs_jctc_3c00445
crossref_primary_10_1021_acs_energyfuels_0c03211
crossref_primary_10_1021_acs_jpcc_4c08188
crossref_primary_10_3390_ijms25031448
crossref_primary_10_1021_acs_jpcc_3c02426
crossref_primary_10_1021_acs_jpcb_3c07187
crossref_primary_10_1016_j_mtphys_2025_101670
crossref_primary_10_1039_D2TA08264K
crossref_primary_10_1103_PhysRevB_104_174107
crossref_primary_10_1364_OME_532462
crossref_primary_10_1103_PhysRevB_110_184115
crossref_primary_10_1039_D3CP05425J
crossref_primary_10_1103_PhysRevMaterials_4_103602
crossref_primary_10_1134_S0012501622010018
crossref_primary_10_3365_KJMM_2020_58_10_728
crossref_primary_10_1021_acs_jpcc_2c02423
crossref_primary_10_1002_adma_202306733
crossref_primary_10_1063_5_0138987
crossref_primary_10_1038_s41563_023_01560_x
crossref_primary_10_1063_5_0171528
crossref_primary_10_1063_5_0228003
crossref_primary_10_1016_j_gsf_2024_101935
crossref_primary_10_1007_s11664_023_10403_z
crossref_primary_10_1016_j_jechem_2023_03_013
crossref_primary_10_1021_acsami_4c00618
crossref_primary_10_1116_6_0003579
crossref_primary_10_1016_j_actamat_2024_120608
crossref_primary_10_1038_s41567_025_02804_0
crossref_primary_10_1002_adem_202302076
crossref_primary_10_1021_acsami_0c19270
Cites_doi 10.1103/PhysRev.140.A1133
10.1103/PhysRevLett.98.146401
10.1002/jcc.20035
10.1016/j.cpc.2013.10.027
10.1126/sciadv.1603015
10.1103/PhysRevLett.104.136403
10.1002/jcc.20289
10.1103/PhysRevB.87.184115
10.1038/nature16961
10.1006/jcph.1995.1039
10.1038/35053024
10.1021/ja9621760
10.1039/C7SC04934J
10.4208/cicp.OA-2017-0213
10.1021/ct700301q
10.1016/j.jcp.2014.12.018
10.1002/jcc.21367
10.1039/C6SC05720A
10.1038/nature14539
10.1103/PhysRevLett.55.2471
10.1038/s41524-017-0042-y
10.1103/PhysRevLett.108.058301
10.1038/ncomms13890
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
CorporateAuthor Princeton Univ., NJ (United States)
CorporateAuthor_xml – name: Princeton Univ., NJ (United States)
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.cpc.2018.03.016
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1879-2944
EndPage 184
ExternalDocumentID 1538211
10_1016_j_cpc_2018_03_016
S0010465518300882
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AALMO
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c433t-75f26cfbd9ba4dfce7a123dc3fbf5593b34219782691415a9dc9b1c00089f6a93
IEDL.DBID .~1
ISSN 0010-4655
IngestDate Fri May 19 02:19:09 EDT 2023
Tue Jul 01 02:40:29 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Fri Feb 23 02:30:57 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Molecular dynamics
Many-body potential energy
Deep neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-75f26cfbd9ba4dfce7a123dc3fbf5593b34219782691415a9dc9b1c00089f6a93
Notes SC0008626; SC0009248
USDOE Office of Science (SC)
ORCID 0000-0002-8470-5846
0000000284705846
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0010465518300882?via%3Dihub
PageCount 7
ParticipantIDs osti_scitechconnect_1538211
crossref_citationtrail_10_1016_j_cpc_2018_03_016
crossref_primary_10_1016_j_cpc_2018_03_016
elsevier_sciencedirect_doi_10_1016_j_cpc_2018_03_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computer physics communications
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Huan, Batra, Chapman, Krishnan, Chen, Ramprasad (b8) 2017; 3
Morawietz, Singraber, Dellago, Behler (b10) 2016
Jorgensen, Maxwell, Tirado-Rives (b5) 1996; 118
Plimpton (b26) 1995; 117
T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang, Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems, 2015, arXiv preprint
Bartók, Payne, Kondor, Csányi (b11) 2010; 104
K. Yao, J.E. Herr, D.W. Toth, R. Mcintyre, J. Parkhill, The tensormol-0.1 model chemistry: a neural network augmented with long-range physics, 2017, arXiv preprint
D. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint
Errington, Debenedetti (b32) 2001; 409
Thompson, Swiler, Trott, Foiles, Tucker (b7) 2015; 285
Kohn, Sham (b1) 1965; 140
Bartók, Kondor, Csányi (b30) 2013; 87
Behler, Parrinello (b9) 2007; 98
Ceriotti, More, Manolopoulos (b29) 2014; 185
Chmiela, Tkatchenko, Sauceda, Poltavsky, Schütt, Müller (b14) 2017; 3
Car, Parrinello (b2) 1985; 55
Han, Zhang, Car, E (b17) 2018; 23
Schütt, Arbabzadah, Chmiela, Müller, Tkatchenko (b13) 2017; 8
Smith, Isayev, Roitberg (b15) 2017; 8
.
LeCun, Bengio, Hinton (b19) 2015; 521
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., OSDI, vol. 16, 2016, pp. 265–283.
Wang, Wolf, Caldwell, Kollman, Case (b6) 2004; 25
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (b23) 2014
Hess, Kutzner, van der Spoel, Lindahl (b27) 2008; 4
Goodfellow, Bengio, Courville (b20) 2016
Marx, Hutter (b3) 2009
Vanommeslaeghe, Hatcher, Acharya, Kundu, Zhong, Shim, Darian, Guvench, Lopes, Vorobyov, Mackerell (b4) 2010; 31
Zhang, Han, Wang, Car, E (b18) 2017
Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (b21) 2016; 529
R. Collobert, K. Kavukcuoglu, C. Farabet, BigLearn, NIPS Workshop, no. EPFL-CONF-192376, 2011.
Rupp, Tkatchenko, Müller, VonLilienfeld (b12) 2012; 108
Phillips, Braun, Wang, Gumbart, Tajkhorshid, Villa, Chipot, Skeel, Kale, Schulten (b28) 2005; 26
Car (10.1016/j.cpc.2018.03.016_b2) 1985; 55
Kohn (10.1016/j.cpc.2018.03.016_b1) 1965; 140
Zhang (10.1016/j.cpc.2018.03.016_b18) 2017
Plimpton (10.1016/j.cpc.2018.03.016_b26) 1995; 117
Thompson (10.1016/j.cpc.2018.03.016_b7) 2015; 285
Rupp (10.1016/j.cpc.2018.03.016_b12) 2012; 108
Hess (10.1016/j.cpc.2018.03.016_b27) 2008; 4
10.1016/j.cpc.2018.03.016_b31
Bartók (10.1016/j.cpc.2018.03.016_b11) 2010; 104
Morawietz (10.1016/j.cpc.2018.03.016_b10) 2016
Han (10.1016/j.cpc.2018.03.016_b17) 2018; 23
10.1016/j.cpc.2018.03.016_b24
10.1016/j.cpc.2018.03.016_b25
Huan (10.1016/j.cpc.2018.03.016_b8) 2017; 3
Jia (10.1016/j.cpc.2018.03.016_b23) 2014
Errington (10.1016/j.cpc.2018.03.016_b32) 2001; 409
Vanommeslaeghe (10.1016/j.cpc.2018.03.016_b4) 2010; 31
Chmiela (10.1016/j.cpc.2018.03.016_b14) 2017; 3
Ceriotti (10.1016/j.cpc.2018.03.016_b29) 2014; 185
Smith (10.1016/j.cpc.2018.03.016_b15) 2017; 8
Silver (10.1016/j.cpc.2018.03.016_b21) 2016; 529
Jorgensen (10.1016/j.cpc.2018.03.016_b5) 1996; 118
Marx (10.1016/j.cpc.2018.03.016_b3) 2009
10.1016/j.cpc.2018.03.016_b22
LeCun (10.1016/j.cpc.2018.03.016_b19) 2015; 521
Phillips (10.1016/j.cpc.2018.03.016_b28) 2005; 26
Bartók (10.1016/j.cpc.2018.03.016_b30) 2013; 87
10.1016/j.cpc.2018.03.016_b16
Goodfellow (10.1016/j.cpc.2018.03.016_b20) 2016
Wang (10.1016/j.cpc.2018.03.016_b6) 2004; 25
Behler (10.1016/j.cpc.2018.03.016_b9) 2007; 98
Schütt (10.1016/j.cpc.2018.03.016_b13) 2017; 8
References_xml – volume: 140
  start-page: A1133
  year: 1965
  ident: b1
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
– year: 2016
  ident: b20
  article-title: Deep Learning
– volume: 3
  start-page: 1
  year: 2017
  ident: b8
  article-title: A universal strategy for the creation of machine learning-based atomistic force fields
  publication-title: NPJ Comput. Mater.
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  ident: b21
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
– volume: 4
  start-page: 435
  year: 2008
  end-page: 447
  ident: b27
  article-title: Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation
  publication-title: J. Chem. Theory Comput.
– volume: 3
  start-page: e1603015
  year: 2017
  ident: b14
  article-title: Machine learning of accurate energy-conserving molecular force fields
  publication-title: Sci. Adv.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b19
  article-title: Deep learning
  publication-title: Nature
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: b26
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
– volume: 108
  start-page: 058301
  year: 2012
  ident: b12
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys. Rev. Lett.
– reference: R. Collobert, K. Kavukcuoglu, C. Farabet, BigLearn, NIPS Workshop, no. EPFL-CONF-192376, 2011.
– volume: 285
  start-page: 316
  year: 2015
  end-page: 330
  ident: b7
  article-title: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
  publication-title: J. Comput. Phys.
– volume: 8
  start-page: 13890
  year: 2017
  ident: b13
  article-title: Quantum-chemical insights from deep tensor neural networks
  publication-title: Nature Commun.
– start-page: 201602375
  year: 2016
  ident: b10
  article-title: How van der waals interactions determine the unique properties of water
  publication-title: Proc. Natl. Acad. Sci.
– year: 2009
  ident: b3
  article-title: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
– volume: 98
  start-page: 146401
  year: 2007
  ident: b9
  article-title: Generalized neural-network representation of high-dimensional potential-energy surfaces
  publication-title: Phys. Rev. Lett.
– volume: 55
  start-page: 2471
  year: 1985
  ident: b2
  article-title: Unified approach for molecular dynamics and density-functional theory
  publication-title: Phys. Rev. Lett.
– reference: K. Yao, J.E. Herr, D.W. Toth, R. Mcintyre, J. Parkhill, The tensormol-0.1 model chemistry: a neural network augmented with long-range physics, 2017, arXiv preprint
– volume: 118
  start-page: 11225
  year: 1996
  end-page: 11236
  ident: b5
  article-title: Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids
  publication-title: J. Am. Chem. Soc.
– reference: .
– volume: 104
  start-page: 136403
  year: 2010
  ident: b11
  article-title: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons
  publication-title: Phys. Rev. Lett.
– volume: 409
  start-page: 318
  year: 2001
  ident: b32
  article-title: Relationship between structural order and the anomalies of liquid water
  publication-title: Nature
– volume: 185
  start-page: 1019
  year: 2014
  end-page: 1026
  ident: b29
  article-title: i-PI: A Python interface for ab initio path integral molecular dynamics simulations
  publication-title: Comput. Phys. Comm.
– reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., OSDI, vol. 16, 2016, pp. 265–283.
– volume: 31
  start-page: 671
  year: 2010
  end-page: 690
  ident: b4
  article-title: Charmm general force field: a force field for drug-like molecules compatible with the charmm all-atom additive biological force fields
  publication-title: J. Comput. Chem.
– volume: 87
  start-page: 184115
  year: 2013
  ident: b30
  article-title: On representing chemical environments
  publication-title: Phys. Rev. B
– reference: D. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint
– year: 2017
  ident: b18
  article-title: Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics
  publication-title: Phys. Rev. Lett.
– volume: 25
  start-page: 1157
  year: 2004
  end-page: 1174
  ident: b6
  article-title: Development and testing of a general amber force field
  publication-title: J. Comput. Chem.
– volume: 26
  start-page: 1781
  year: 2005
  end-page: 1802
  ident: b28
  article-title: Scalable molecular dynamics with namd
  publication-title: J. Comput. Chem.
– start-page: 675
  year: 2014
  end-page: 678
  ident: b23
  article-title: Caffe: convolutional architecture for fast feature embedding
  publication-title: Proceedings of the 22nd ACM International Conference on Multimedia
– volume: 23
  start-page: 629
  year: 2018
  end-page: 639
  ident: b17
  article-title: Deep potential: a general representation of a many-body potential energy surface
  publication-title: Commun. Comput. Phys.
– volume: 8
  start-page: 3192
  year: 2017
  end-page: 3203
  ident: b15
  article-title: Ani-1: an extensible neural network potential with dft accuracy at force field computational cost
  publication-title: Chem. Sci.
– reference: T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang, Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems, 2015, arXiv preprint
– volume: 140
  start-page: A1133
  issue: 4A
  year: 1965
  ident: 10.1016/j.cpc.2018.03.016_b1
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 98
  start-page: 146401
  issue: 14
  year: 2007
  ident: 10.1016/j.cpc.2018.03.016_b9
  article-title: Generalized neural-network representation of high-dimensional potential-energy surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.146401
– volume: 25
  start-page: 1157
  issue: 9
  year: 2004
  ident: 10.1016/j.cpc.2018.03.016_b6
  article-title: Development and testing of a general amber force field
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– volume: 185
  start-page: 1019
  issue: 3
  year: 2014
  ident: 10.1016/j.cpc.2018.03.016_b29
  article-title: i-PI: A Python interface for ab initio path integral molecular dynamics simulations
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2013.10.027
– volume: 3
  start-page: e1603015
  issue: 5
  year: 2017
  ident: 10.1016/j.cpc.2018.03.016_b14
  article-title: Machine learning of accurate energy-conserving molecular force fields
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603015
– ident: 10.1016/j.cpc.2018.03.016_b22
– year: 2009
  ident: 10.1016/j.cpc.2018.03.016_b3
– ident: 10.1016/j.cpc.2018.03.016_b24
– volume: 104
  start-page: 136403
  issue: 13
  year: 2010
  ident: 10.1016/j.cpc.2018.03.016_b11
  article-title: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.136403
– volume: 26
  start-page: 1781
  issue: 16
  year: 2005
  ident: 10.1016/j.cpc.2018.03.016_b28
  article-title: Scalable molecular dynamics with namd
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20289
– volume: 87
  start-page: 184115
  issue: 18
  year: 2013
  ident: 10.1016/j.cpc.2018.03.016_b30
  article-title: On representing chemical environments
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.184115
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  ident: 10.1016/j.cpc.2018.03.016_b21
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 117
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.cpc.2018.03.016_b26
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– year: 2017
  ident: 10.1016/j.cpc.2018.03.016_b18
  article-title: Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics
  publication-title: Phys. Rev. Lett.
– volume: 409
  start-page: 318
  issue: 6818
  year: 2001
  ident: 10.1016/j.cpc.2018.03.016_b32
  article-title: Relationship between structural order and the anomalies of liquid water
  publication-title: Nature
  doi: 10.1038/35053024
– volume: 118
  start-page: 11225
  issue: 45
  year: 1996
  ident: 10.1016/j.cpc.2018.03.016_b5
  article-title: Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9621760
– ident: 10.1016/j.cpc.2018.03.016_b16
  doi: 10.1039/C7SC04934J
– volume: 23
  start-page: 629
  issue: 3
  year: 2018
  ident: 10.1016/j.cpc.2018.03.016_b17
  article-title: Deep potential: a general representation of a many-body potential energy surface
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2017-0213
– volume: 4
  start-page: 435
  issue: 3
  year: 2008
  ident: 10.1016/j.cpc.2018.03.016_b27
  article-title: Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700301q
– volume: 285
  start-page: 316
  year: 2015
  ident: 10.1016/j.cpc.2018.03.016_b7
  article-title: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.12.018
– ident: 10.1016/j.cpc.2018.03.016_b31
– volume: 31
  start-page: 671
  issue: 4
  year: 2010
  ident: 10.1016/j.cpc.2018.03.016_b4
  article-title: Charmm general force field: a force field for drug-like molecules compatible with the charmm all-atom additive biological force fields
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21367
– volume: 8
  start-page: 3192
  issue: 4
  year: 2017
  ident: 10.1016/j.cpc.2018.03.016_b15
  article-title: Ani-1: an extensible neural network potential with dft accuracy at force field computational cost
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05720A
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.cpc.2018.03.016_b19
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 55
  start-page: 2471
  issue: 22
  year: 1985
  ident: 10.1016/j.cpc.2018.03.016_b2
  article-title: Unified approach for molecular dynamics and density-functional theory
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.2471
– volume: 3
  start-page: 1
  year: 2017
  ident: 10.1016/j.cpc.2018.03.016_b8
  article-title: A universal strategy for the creation of machine learning-based atomistic force fields
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-017-0042-y
– volume: 108
  start-page: 058301
  issue: 5
  year: 2012
  ident: 10.1016/j.cpc.2018.03.016_b12
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.058301
– year: 2016
  ident: 10.1016/j.cpc.2018.03.016_b20
– start-page: 201602375
  year: 2016
  ident: 10.1016/j.cpc.2018.03.016_b10
  article-title: How van der waals interactions determine the unique properties of water
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 675
  year: 2014
  ident: 10.1016/j.cpc.2018.03.016_b23
  article-title: Caffe: convolutional architecture for fast feature embedding
– ident: 10.1016/j.cpc.2018.03.016_b25
– volume: 8
  start-page: 13890
  year: 2017
  ident: 10.1016/j.cpc.2018.03.016_b13
  article-title: Quantum-chemical insights from deep tensor neural networks
  publication-title: Nature Commun.
  doi: 10.1038/ncomms13890
SSID ssj0007793
Score 2.699613
Snippet Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma...
Not provided.
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 178
SubjectTerms Computer Science
Deep neural networks
Many-body potential energy
Molecular dynamics
Physics
Title DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
URI https://dx.doi.org/10.1016/j.cpc.2018.03.016
https://www.osti.gov/biblio/1538211
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPlGrZQ-ehLVtss0m3kprqZYWEYu9hexL6yMJNh68-NudycMHiAdPIWFnCbO738ywM98Qctz1dKS62jLEPsYV1wzCiDazAuyZYwJH-VicPJl6oxm_nHfnNdKvamEwrbLE_gLTc7Quv7RKbbbSxQJrfPF-EhnF3DY6iljBzgXu8tP3rzQPIUriXcAbHF3dbOY5XipFFsOOn_OcYsvz321TPYHj9s3sDDfIeukv0l7xS5ukZuItsprnbarlNrkfGHM1GbDHRXZGe1Qbk9KyEcQdhXD4EeCCgl9Kn-HQM5noN5omGWYIwaQmr_ujOa9lVYMU0yjW9Llqmkt10bF-uUNmw_Ob_oiVzROY4q6bMdG1jqes1IGMuLbKiAiMlFaulRaiCFe6HMAK_AMv6IARjwKtAtlR6BME1osCd5fU4yQ2e4R6wnpKaOkL2-GOVj7M7EnDIRKx3Hf4PmlXagtVySyODS6ewiqF7CEETYeo6bDthvBln5x8iqQFrcZfg3m1FuGPvREC7P8l1sB1QxHkw1WYOAQyCPEQ9R78b9IGWcO3ImH3kNSzl1dzBG5JJpv5vmuSld7FeDTF5_j6dvwBHOniXw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF6kInoRn1ife9CLsNom2zwED8Uq9VHxoOBtzb60atNgI9KLf8o_6Ey68QHiQfCaZDdhdvPNDPvNN4RsNgKdqIa2DLGPccU1gzSixmwI_swzsaciLE7unAftK35y3bgeI29lLQzSKh32jzC9QGt3ZddZczfrdrHGF88nUVHMr2Gg6JiVp2b4AnnbYP-4BYu85XlHh5cHbeZaCzDFfT9nYcN6gbJSxzLh2ioTJgDhWvlWWoixfelz-JXBewZxHVxcEmsVy7pCjxnbIEEFJsD9cQ5wgW0Tdl4_eSVh6JR-AeDw88qj1IJUpjKUTaxHhbAq9lj_2RlW-vB_f_FzRzNk2gWotDmywSwZM-kcmSiIomowT-5axlx0Wuyhm-_RJtXGZNR1nrilkH8_AD5RCIRpD1CGyb4e0qyfIyUJJjVFoSEthDTLoqeUJqmmvbJLL9XDNOnBqxbI1b-YdJFU0n5qlggNQhuoUMsotHXuaRXBzIE0HFIfyyOPV0mtNJtQTsocO2o8ipKzdi_A0gItLWq-gCtVsv0xJBvpePz2MC_XQnzbjAL8zG_DVnDdcAgK8CpkKsEY9CmQZi__bdINMtm-7JyJs-Pz0xUyhXdGbOFVUsmfns0axES5XC_2ICU3_73p3wFZJRyf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeePMD-kit%3A+A+deep+learning+package+for+many-body+potential+energy+representation+and+molecular+dynamics&rft.jtitle=Computer+physics+communications&rft.au=Wang%2C+Han&rft.au=Zhang%2C+Linfeng&rft.au=Han%2C+Jiequn&rft.au=E%2C+Weinan&rft.date=2018-07-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=228&rft.spage=178&rft.epage=184&rft_id=info:doi/10.1016%2Fj.cpc.2018.03.016&rft.externalDocID=S0010465518300882
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon