DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required...
Saved in:
Published in | Computer physics communications Vol. 228; no. C; pp. 178 - 184 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
01.07.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model.
Program Title: DeePMD-kit
Program Files doi:http://dx.doi.org/10.17632/hvfh9yvncf.1
Licensing provisions: LGPL
Programming language: Python/C++
Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models.
Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided.
Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data. |
---|---|
AbstractList | Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model.
Program Title: DeePMD-kit
Program Files doi:http://dx.doi.org/10.17632/hvfh9yvncf.1
Licensing provisions: LGPL
Programming language: Python/C++
Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models.
Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided.
Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data. Not provided. |
Author | Zhang, Linfeng E, Weinan Han, Jiequn Wang, Han |
Author_xml | – sequence: 1 givenname: Han surname: Wang fullname: Wang, Han email: wang_han@iapcm.ac.cn organization: Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, PR China – sequence: 2 givenname: Linfeng orcidid: 0000-0002-8470-5846 surname: Zhang fullname: Zhang, Linfeng email: linfengz@princeton.edu organization: Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA – sequence: 3 givenname: Jiequn surname: Han fullname: Han, Jiequn email: jiequnh@princeton.edu organization: Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA – sequence: 4 givenname: Weinan surname: E fullname: E, Weinan email: weinan@math.princeton.edu organization: Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA |
BackLink | https://www.osti.gov/biblio/1538211$$D View this record in Osti.gov |
BookMark | eNp9kM1OHDEQhK2ISFlIHiA3i_tM7PH8mZwQJAEJlBzC2fK024uXWXtkO0jz9vGynDhwaqlUX6uqTsmJDx4J-cpZzRnvv-1qWKBuGB9rJuqifCAbPg6yamTbnpANY5xVbd91n8hpSjvG2DBIsSGP14h_7q-rJ5cv6CU1iAudUUfv_JYuGp70FqkNke61X6spmJUuIaPPTs8UPcbtSiMuEVPRdHbBU-0N3YcZ4d-sIzWr13sH6TP5aPWc8MvrPSMPP3_8vbqp7n7_ur26vKugFSJXQ2ebHuxk5KRbYwEHzRthQNjJdp0Uk2gbLoex6SVveaelATlxKH1GaXstxRk5P_4NKTuVwGWERwjeI2TFOzE2nBfTcDRBDClFtKr4XtLnqN2sOFOHVdVOlVXVYVXFhCpKIfkbcolur-P6LvP9yGDp_ewwHmKhBzQuHlKZ4N6h_wMXyJLQ |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_109762 crossref_primary_10_1088_2053_1591_ac0734 crossref_primary_10_1016_j_cattod_2021_03_018 crossref_primary_10_1002_jcc_26494 crossref_primary_10_1103_PhysRevMaterials_7_093601 crossref_primary_10_1016_j_matlet_2024_136868 crossref_primary_10_1002_anie_202410802 crossref_primary_10_1007_s10853_023_08599_w crossref_primary_10_1016_j_solmat_2025_113505 crossref_primary_10_1039_D4TA01373E crossref_primary_10_1063_5_0147132 crossref_primary_10_1039_D3NR05966A crossref_primary_10_1002_btpr_3096 crossref_primary_10_1007_s11661_020_06099_z crossref_primary_10_1021_acs_jpclett_4c03474 crossref_primary_10_1073_pnas_2407295121 crossref_primary_10_1073_pnas_2015440117 crossref_primary_10_1002_apxr_202400125 crossref_primary_10_1063_5_0188905 crossref_primary_10_1088_1361_648X_ab5890 crossref_primary_10_1021_acs_jcim_2c01497 crossref_primary_10_1103_PhysRevB_110_165159 crossref_primary_10_1080_01932691_2024_2425950 crossref_primary_10_2139_ssrn_4185808 crossref_primary_10_3390_ma17020286 crossref_primary_10_1021_acsnano_4c16486 crossref_primary_10_1021_acs_chemrev_4c00628 crossref_primary_10_1002_adfm_202403948 crossref_primary_10_1063_5_0157188 crossref_primary_10_1016_j_pmatsci_2024_101250 crossref_primary_10_1016_j_jpowsour_2024_235855 crossref_primary_10_1021_acs_chemrev_1c00904 crossref_primary_10_1063_5_0207534 crossref_primary_10_1016_j_commatsci_2022_111843 crossref_primary_10_1016_j_egyai_2022_100210 crossref_primary_10_1063_5_0078007 crossref_primary_10_1016_j_jeurceramsoc_2023_09_079 crossref_primary_10_1039_D2CP00710J crossref_primary_10_1007_s11665_023_08944_9 crossref_primary_10_1016_j_molliq_2021_118380 crossref_primary_10_1021_acs_jpclett_3c02940 crossref_primary_10_1088_2632_2153_ad8d30 crossref_primary_10_1103_PhysRevMaterials_8_033602 crossref_primary_10_1021_acs_jpclett_3c01618 crossref_primary_10_1016_j_xcrp_2024_102334 crossref_primary_10_1088_1361_648X_ac37dc crossref_primary_10_1016_j_molliq_2022_120500 crossref_primary_10_1002_anie_202407892 crossref_primary_10_1007_s42514_021_00080_x crossref_primary_10_1021_acs_jpcc_4c03892 crossref_primary_10_1039_D4NH00487F crossref_primary_10_1063_5_0067157 crossref_primary_10_1088_2515_7639_ad4c06 crossref_primary_10_1103_PhysRevLett_129_255702 crossref_primary_10_3390_e24081134 crossref_primary_10_1016_j_sbi_2022_102502 crossref_primary_10_1063_5_0066061 crossref_primary_10_1088_2632_2153_ad79b5 crossref_primary_10_1007_s11581_021_03988_0 crossref_primary_10_1021_jacs_4c18769 crossref_primary_10_1039_D3FD00100H crossref_primary_10_1002_adts_202401058 crossref_primary_10_1029_2024GC011951 crossref_primary_10_1039_D4CP00017J crossref_primary_10_1021_acs_jctc_3c01203 crossref_primary_10_1021_acs_chemrev_0c01111 crossref_primary_10_1039_D1CP02963K crossref_primary_10_1021_acs_jpclett_9b03664 crossref_primary_10_1063_5_0106617 crossref_primary_10_1039_D4TA05071A crossref_primary_10_1016_j_jmst_2023_09_059 crossref_primary_10_1021_acs_jpclett_1c01357 crossref_primary_10_1103_PhysRevB_108_L180104 crossref_primary_10_1002_jcc_27353 crossref_primary_10_1103_PhysRevMaterials_8_103805 crossref_primary_10_3389_fchem_2021_641610 crossref_primary_10_1029_2024JH000434 crossref_primary_10_1088_1361_648X_ad5c31 crossref_primary_10_1021_acs_jctc_1c00041 crossref_primary_10_1016_j_cej_2024_151625 crossref_primary_10_1063_5_0166927 crossref_primary_10_1088_2632_2153_ace418 crossref_primary_10_1142_S1758825123500448 crossref_primary_10_1007_s10967_024_09757_3 crossref_primary_10_1007_s40843_023_2836_0 crossref_primary_10_1021_acs_jctc_3c01276 crossref_primary_10_1039_D2CP04105G crossref_primary_10_1063_5_0044689 crossref_primary_10_1002_cjoc_202100352 crossref_primary_10_1103_PhysRevApplied_21_024043 crossref_primary_10_1039_D2MH01279K crossref_primary_10_1016_j_gca_2021_03_031 crossref_primary_10_1016_j_cossms_2023_101057 crossref_primary_10_1016_j_mtcomm_2024_111437 crossref_primary_10_1073_pnas_2309952120 crossref_primary_10_1016_j_jmst_2024_11_021 crossref_primary_10_1063_5_0158075 crossref_primary_10_1070_RCR5023 crossref_primary_10_1103_PhysRevLett_134_076101 crossref_primary_10_1016_j_carbon_2024_119697 crossref_primary_10_1021_acs_jpcb_0c01370 crossref_primary_10_1103_PhysRevB_111_075434 crossref_primary_10_1016_j_fuel_2024_133316 crossref_primary_10_1039_D2RA08180F crossref_primary_10_1088_1742_6596_2713_1_012071 crossref_primary_10_1016_j_compositesb_2024_111369 crossref_primary_10_1021_acs_jctc_2c00706 crossref_primary_10_1016_j_est_2024_110587 crossref_primary_10_1039_D0QI00921K crossref_primary_10_1063_5_0067565 crossref_primary_10_1103_PhysRevB_102_041121 crossref_primary_10_1063_1674_0068_cjcp2203037 crossref_primary_10_1039_D4SC07253G crossref_primary_10_7498_aps_71_20221002 crossref_primary_10_1016_j_jeurceramsoc_2024_01_007 crossref_primary_10_1039_D3CP00571B crossref_primary_10_1021_acs_chemmater_4c01553 crossref_primary_10_1021_acsami_4c22462 crossref_primary_10_1038_s41524_024_01431_2 crossref_primary_10_1021_acs_jpca_2c05000 crossref_primary_10_1016_j_mtphys_2021_100463 crossref_primary_10_1021_acs_macromol_3c01377 crossref_primary_10_1103_PhysRevLett_121_265701 crossref_primary_10_1063_5_0080766 crossref_primary_10_1039_D2TA02610D crossref_primary_10_1021_acs_jpcc_4c03444 crossref_primary_10_1103_PhysRevB_100_174101 crossref_primary_10_1103_PhysRevB_105_174109 crossref_primary_10_1039_D1CP01349A crossref_primary_10_1016_j_jnucmat_2023_154824 crossref_primary_10_1016_j_biortech_2024_130590 crossref_primary_10_1016_j_mtphys_2020_100181 crossref_primary_10_1021_acscatal_3c00658 crossref_primary_10_1039_D4CS00844H crossref_primary_10_1016_j_commatsci_2024_113154 crossref_primary_10_1016_j_commatsci_2024_113155 crossref_primary_10_1002_ijch_202100105 crossref_primary_10_1016_j_mtcomm_2025_111979 crossref_primary_10_1073_pnas_2203397119 crossref_primary_10_1073_pnas_2300565120 crossref_primary_10_1002_smll_202409092 crossref_primary_10_1063_1674_0068_cjcp2203055 crossref_primary_10_1063_5_0141616 crossref_primary_10_1103_PhysRevMaterials_7_034601 crossref_primary_10_1021_acs_jctc_3c01009 crossref_primary_10_1039_D2CP02820D crossref_primary_10_1021_acs_jpclett_3c01649 crossref_primary_10_1021_acsnano_3c04602 crossref_primary_10_1016_j_proci_2024_105525 crossref_primary_10_1039_D2SC04815A crossref_primary_10_1088_0256_307X_41_7_077103 crossref_primary_10_1063_5_0224282 crossref_primary_10_1039_D3CP03862A crossref_primary_10_1016_j_actamat_2022_118217 crossref_primary_10_1016_j_apgeochem_2022_105273 crossref_primary_10_1016_j_commatsci_2024_113160 crossref_primary_10_1038_s41524_025_01561_1 crossref_primary_10_1016_j_jmst_2024_12_080 crossref_primary_10_1103_PhysRevMaterials_8_103601 crossref_primary_10_1016_j_jpcs_2024_112273 crossref_primary_10_1016_j_rser_2023_113353 crossref_primary_10_1039_D2CP02758E crossref_primary_10_1016_j_ceramint_2024_01_288 crossref_primary_10_1016_j_pecs_2025_101220 crossref_primary_10_1063_5_0217720 crossref_primary_10_1021_acs_chemmater_3c03261 crossref_primary_10_1016_j_cpc_2019_04_014 crossref_primary_10_1080_08927022_2022_2156561 crossref_primary_10_1016_j_matlet_2024_137318 crossref_primary_10_1126_sciadv_adp9662 crossref_primary_10_1021_acsengineeringau_3c00021 crossref_primary_10_1103_PhysRevB_109_054117 crossref_primary_10_1039_D3TA06190F crossref_primary_10_1016_j_commatsci_2023_112388 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125359 crossref_primary_10_1103_PhysRevB_107_014101 crossref_primary_10_3390_membranes9080098 crossref_primary_10_1103_PhysRevB_105_094116 crossref_primary_10_1002_qua_26870 crossref_primary_10_1016_j_ensm_2023_103069 crossref_primary_10_1063_5_0155600 crossref_primary_10_1038_s41563_024_01925_w crossref_primary_10_1063_5_0138001 crossref_primary_10_1134_S0036029524701994 crossref_primary_10_1021_jacsau_1c00483 crossref_primary_10_1039_D4SC01422G crossref_primary_10_1021_acsaenm_4c00280 crossref_primary_10_1063_5_0173250 crossref_primary_10_1021_acs_jpcc_3c04224 crossref_primary_10_1103_PhysRevB_104_104309 crossref_primary_10_1016_j_ceramint_2024_09_181 crossref_primary_10_1103_PhysRevB_108_184103 crossref_primary_10_1016_j_compchemeng_2024_108626 crossref_primary_10_1038_s42004_025_01471_9 crossref_primary_10_1103_PhysRevB_108_184105 crossref_primary_10_1002_adfm_202303936 crossref_primary_10_1002_advs_201900808 crossref_primary_10_1021_acs_jpclett_4c03080 crossref_primary_10_1038_s41467_024_47999_7 crossref_primary_10_1021_acs_jpca_2c06778 crossref_primary_10_1039_D3SC05612K crossref_primary_10_1063_5_0247114 crossref_primary_10_1016_j_molliq_2024_125713 crossref_primary_10_1063_5_0182192 crossref_primary_10_1103_PhysRevMaterials_8_043806 crossref_primary_10_1021_acsnano_2c11102 crossref_primary_10_3367_UFNe_2021_11_039102 crossref_primary_10_1016_j_molliq_2024_125950 crossref_primary_10_1002_smll_202400083 crossref_primary_10_1021_acscatal_4c05338 crossref_primary_10_1088_2632_2153_ad86a1 crossref_primary_10_3389_fchem_2020_589795 crossref_primary_10_1002_advs_202205292 crossref_primary_10_1063_5_0041849 crossref_primary_10_1039_D3CP02317F crossref_primary_10_1515_jnet_2021_0008 crossref_primary_10_1016_j_actbio_2025_02_036 crossref_primary_10_1038_s41524_024_01505_1 crossref_primary_10_3390_e26121119 crossref_primary_10_1002_adma_202408923 crossref_primary_10_1002_ange_202304205 crossref_primary_10_1021_acsnano_1c04715 crossref_primary_10_1016_j_epsl_2023_118368 crossref_primary_10_1007_s42864_023_00230_4 crossref_primary_10_1021_acs_jcim_4c01594 crossref_primary_10_1016_j_bpj_2022_12_022 crossref_primary_10_1080_27660400_2023_2269948 crossref_primary_10_1073_pnas_2408742121 crossref_primary_10_1021_acs_jpclett_3c00506 crossref_primary_10_1021_acsmaterialslett_3c01558 crossref_primary_10_1088_1361_648X_ad81a6 crossref_primary_10_1063_5_0149199 crossref_primary_10_1002_anie_202107369 crossref_primary_10_1016_j_gca_2023_03_032 crossref_primary_10_1029_2021GL093806 crossref_primary_10_1063_5_0144500 crossref_primary_10_1016_j_cossms_2025_101214 crossref_primary_10_1063_1_5042714 crossref_primary_10_1039_D4CP04020A crossref_primary_10_1016_j_commatsci_2024_113331 crossref_primary_10_1021_acsaem_5c00529 crossref_primary_10_1016_j_ijplas_2023_103644 crossref_primary_10_1016_j_commatsci_2023_112187 crossref_primary_10_1021_acs_nanolett_3c03160 crossref_primary_10_1063_5_0083669 crossref_primary_10_1140_epjp_s13360_024_05348_z crossref_primary_10_1021_acs_jcim_4c00273 crossref_primary_10_1021_acs_jpclett_4c00605 crossref_primary_10_1021_acs_chemmater_4c02454 crossref_primary_10_1038_s43588_023_00403_8 crossref_primary_10_1021_acs_jpcc_2c08429 crossref_primary_10_1103_PhysRevLett_132_176801 crossref_primary_10_1002_ange_202411849 crossref_primary_10_1016_j_gca_2023_02_004 crossref_primary_10_3367_UFNr_2021_11_039102 crossref_primary_10_1002_inf2_12425 crossref_primary_10_1002_wcms_1731 crossref_primary_10_1016_j_commatsci_2022_111802 crossref_primary_10_1016_j_solmat_2023_112275 crossref_primary_10_1557_mrc_2019_95 crossref_primary_10_1021_acs_jpcc_1c08569 crossref_primary_10_1016_j_commatsci_2024_113543 crossref_primary_10_1063_5_0222015 crossref_primary_10_1038_s41467_024_50418_6 crossref_primary_10_1038_s41524_021_00693_4 crossref_primary_10_1063_5_0247559 crossref_primary_10_1103_PhysRevB_110_064427 crossref_primary_10_1063_5_0236427 crossref_primary_10_20517_jmi_2024_22 crossref_primary_10_1002_ange_202405379 crossref_primary_10_1016_j_jmst_2020_09_040 crossref_primary_10_1039_D2FD00003B crossref_primary_10_1103_PhysRevLett_126_185501 crossref_primary_10_1038_s41467_024_48511_x crossref_primary_10_1021_acs_jpcb_3c05428 crossref_primary_10_1088_1674_1056_abf134 crossref_primary_10_20517_jmi_2024_15 crossref_primary_10_1016_j_mssp_2023_107594 crossref_primary_10_20517_jmi_2024_14 crossref_primary_10_1088_2515_7639_ab084b crossref_primary_10_1021_acscatal_3c05275 crossref_primary_10_1021_acs_jpclett_4c02934 crossref_primary_10_1073_pnas_2207294119 crossref_primary_10_1021_acs_jctc_3c00944 crossref_primary_10_1039_D2CC05861H crossref_primary_10_1016_j_jeurceramsoc_2020_06_007 crossref_primary_10_1021_acsami_3c16905 crossref_primary_10_1021_acs_jpclett_5c00168 crossref_primary_10_1016_j_jnucmat_2024_154897 crossref_primary_10_1021_acs_jctc_4c00594 crossref_primary_10_1016_j_sse_2022_108529 crossref_primary_10_1039_D4SC06467D crossref_primary_10_1016_j_cpc_2020_107402 crossref_primary_10_1021_acs_jctc_4c01201 crossref_primary_10_1021_acs_jctc_4c01449 crossref_primary_10_1021_acs_chemmater_4c00921 crossref_primary_10_1021_jacs_3c06540 crossref_primary_10_1063_5_0083060 crossref_primary_10_1007_s00339_024_07277_1 crossref_primary_10_1021_acs_jpca_1c09786 crossref_primary_10_1021_acs_jctc_3c00936 crossref_primary_10_1016_j_commatsci_2023_112664 crossref_primary_10_1002_adma_201902765 crossref_primary_10_1016_j_commatsci_2024_112966 crossref_primary_10_1063_5_0152293 crossref_primary_10_1093_pnasnexus_pgaf038 crossref_primary_10_1021_acs_jpcc_4c06235 crossref_primary_10_1016_j_jpowsour_2022_232350 crossref_primary_10_1557_s43578_023_01141_3 crossref_primary_10_1002_smll_202404274 crossref_primary_10_1073_pnas_2313023120 crossref_primary_10_1038_s41524_023_01123_3 crossref_primary_10_1021_acs_jpclett_2c03827 crossref_primary_10_1021_acs_jctc_4c00124 crossref_primary_10_1088_2632_2153_abfe3f crossref_primary_10_1016_j_jmst_2023_05_010 crossref_primary_10_1063_5_0256140 crossref_primary_10_1016_j_egyai_2024_100454 crossref_primary_10_1016_j_cpc_2019_107057 crossref_primary_10_1063_5_0202647 crossref_primary_10_1103_PhysRevApplied_18_054022 crossref_primary_10_1016_j_xcrp_2023_101760 crossref_primary_10_1021_acs_jcim_3c00472 crossref_primary_10_1016_j_commatsci_2023_112656 crossref_primary_10_1016_j_mtphys_2024_101638 crossref_primary_10_1016_j_combustflame_2025_114039 crossref_primary_10_1007_s00466_022_02253_z crossref_primary_10_1021_acs_jpclett_0c02357 crossref_primary_10_1002_wcms_1685 crossref_primary_10_1007_s00466_025_02603_7 crossref_primary_10_1039_D4NR00606B crossref_primary_10_1039_D4SC06530A crossref_primary_10_1038_s41467_024_52868_4 crossref_primary_10_1038_s42004_022_00684_6 crossref_primary_10_3762_bjnano_13_3 crossref_primary_10_1038_s41524_024_01305_7 crossref_primary_10_1103_PhysRevApplied_18_064067 crossref_primary_10_1021_acs_jpcc_2c07597 crossref_primary_10_1038_s41467_023_39214_w crossref_primary_10_1063_5_0201527 crossref_primary_10_1088_2752_5724_ac681d crossref_primary_10_1016_j_actamat_2024_119784 crossref_primary_10_3389_fchem_2021_692200 crossref_primary_10_1007_s10462_024_10731_4 crossref_primary_10_1038_s41467_025_56055_x crossref_primary_10_1063_5_0249920 crossref_primary_10_1021_acs_jpcb_3c00610 crossref_primary_10_1016_j_jeurceramsoc_2022_10_014 crossref_primary_10_1021_acs_jpcc_4c07342 crossref_primary_10_1038_s41467_023_42538_2 crossref_primary_10_1016_j_cplett_2025_141985 crossref_primary_10_1021_acs_langmuir_4c02888 crossref_primary_10_1016_j_mssp_2021_106146 crossref_primary_10_1016_j_jechem_2025_02_051 crossref_primary_10_1007_s43153_024_00465_9 crossref_primary_10_1016_j_ijplas_2023_103552 crossref_primary_10_1039_D4SC06422D crossref_primary_10_1021_acs_jctc_4c00587 crossref_primary_10_1021_acs_jcim_2c00876 crossref_primary_10_1016_j_mtcomm_2024_110955 crossref_primary_10_1016_j_jcp_2021_110523 crossref_primary_10_1021_acs_jpclett_3c01054 crossref_primary_10_1038_s41598_023_46951_x crossref_primary_10_1038_s41524_024_01264_z crossref_primary_10_1088_2515_7655_acfe9b crossref_primary_10_1021_acs_jpca_4c00750 crossref_primary_10_1021_acs_jpcc_4c07596 crossref_primary_10_1016_j_commatsci_2024_113608 crossref_primary_10_1038_s41524_024_01240_7 crossref_primary_10_1016_j_molliq_2024_126152 crossref_primary_10_1021_acs_jctc_4c01005 crossref_primary_10_1134_S0021364023600234 crossref_primary_10_3389_fmats_2024_1369034 crossref_primary_10_1039_D4SC00105B crossref_primary_10_1039_D4TA06675H crossref_primary_10_1103_PhysRevLett_132_146303 crossref_primary_10_1038_s41467_025_57688_8 crossref_primary_10_1007_s11426_023_1662_9 crossref_primary_10_1021_acs_macromol_4c00488 crossref_primary_10_1016_j_cpc_2020_107206 crossref_primary_10_1021_acs_jpcc_4c07365 crossref_primary_10_1103_PhysRevB_103_024108 crossref_primary_10_1038_s41524_022_00830_7 crossref_primary_10_1039_D2CP05590B crossref_primary_10_3389_fmats_2024_1466793 crossref_primary_10_1021_acs_jctc_4c00173 crossref_primary_10_1103_PhysRevLett_130_116104 crossref_primary_10_1021_acs_jpcb_0c09898 crossref_primary_10_1021_acs_jpcc_2c09121 crossref_primary_10_1063_5_0016011 crossref_primary_10_1016_j_cpc_2023_108883 crossref_primary_10_1002_adfm_202311599 crossref_primary_10_1016_j_aichem_2023_100027 crossref_primary_10_1021_acs_jctc_2c00151 crossref_primary_10_3390_molecules28114477 crossref_primary_10_1016_j_commatsci_2023_112454 crossref_primary_10_1016_j_ceramint_2024_07_290 crossref_primary_10_1016_j_commatsci_2024_112979 crossref_primary_10_1021_acs_jpcb_4c02413 crossref_primary_10_1149_1945_7111_ad4ac9 crossref_primary_10_1016_j_applthermaleng_2024_123920 crossref_primary_10_1038_s41467_022_33783_y crossref_primary_10_1088_1361_651X_ad801e crossref_primary_10_1021_acs_chemrev_4c00380 crossref_primary_10_1021_acs_jpclett_0c02547 crossref_primary_10_1016_j_est_2024_114156 crossref_primary_10_1063_5_0036298 crossref_primary_10_1039_D3CP00999H crossref_primary_10_1088_1361_648X_acba71 crossref_primary_10_1016_j_commatsci_2024_112983 crossref_primary_10_1039_D4CP02399D crossref_primary_10_1039_D3TA03434H crossref_primary_10_1016_j_matlet_2024_136114 crossref_primary_10_2139_ssrn_4177625 crossref_primary_10_1016_j_xcrp_2023_101713 crossref_primary_10_1021_jacs_1c08552 crossref_primary_10_1021_acs_jpcc_3c03229 crossref_primary_10_1039_D0TB00896F crossref_primary_10_1021_acsami_4c04491 crossref_primary_10_1021_acsami_3c13412 crossref_primary_10_1103_PhysRevB_108_134112 crossref_primary_10_1021_acs_nanolett_2c02010 crossref_primary_10_1021_acsami_2c16254 crossref_primary_10_1063_5_0147720 crossref_primary_10_1016_j_commt_2024_100005 crossref_primary_10_1016_j_icheatmasstransfer_2024_108354 crossref_primary_10_1038_s41524_024_01227_4 crossref_primary_10_1063_5_0031215 crossref_primary_10_1021_jacs_4c01221 crossref_primary_10_1038_s41524_024_01205_w crossref_primary_10_3390_biom12091246 crossref_primary_10_1002_smtd_202300534 crossref_primary_10_1007_s10822_020_00346_6 crossref_primary_10_1021_acs_jpclett_8b03026 crossref_primary_10_1021_acs_jpclett_4c00113 crossref_primary_10_1016_j_apsusc_2025_162836 crossref_primary_10_1039_D3DD00046J crossref_primary_10_1063_5_0006498 crossref_primary_10_1016_j_ceramint_2024_04_011 crossref_primary_10_1016_j_icheatmasstransfer_2024_108361 crossref_primary_10_1140_epjb_s10051_021_00156_1 crossref_primary_10_1002_chem_202401148 crossref_primary_10_1007_s11433_021_1739_4 crossref_primary_10_1016_j_commatsci_2022_111699 crossref_primary_10_1038_s41567_024_02761_0 crossref_primary_10_1103_PhysRevE_108_055310 crossref_primary_10_1021_acs_jpcb_2c07477 crossref_primary_10_1002_adfm_202313188 crossref_primary_10_1016_j_ceramint_2024_05_296 crossref_primary_10_1063_5_0183610 crossref_primary_10_1063_5_0200833 crossref_primary_10_1088_1361_651X_ac5ebb crossref_primary_10_1021_acs_jctc_2c00102 crossref_primary_10_1007_s10543_025_01052_1 crossref_primary_10_1080_21650373_2023_2219251 crossref_primary_10_1021_acs_jcim_3c00643 crossref_primary_10_1021_acs_jpcb_3c05928 crossref_primary_10_1103_PhysRevE_110_L033301 crossref_primary_10_1063_5_0089210 crossref_primary_10_1016_j_compositesb_2024_111452 crossref_primary_10_1021_acs_jpcc_3c01870 crossref_primary_10_1016_j_susc_2024_122595 crossref_primary_10_1021_acs_jpclett_3c01231 crossref_primary_10_1016_j_cpc_2022_108580 crossref_primary_10_1021_acs_jctc_0c01261 crossref_primary_10_1016_j_commatsci_2024_113189 crossref_primary_10_1038_s41524_023_00969_x crossref_primary_10_1137_23M161937X crossref_primary_10_1103_PhysRevB_109_094101 crossref_primary_10_1021_acs_jpclett_4c00575 crossref_primary_10_1063_5_0153196 crossref_primary_10_1088_0256_307X_39_11_116301 crossref_primary_10_1038_s41524_024_01456_7 crossref_primary_10_31857_S1234567823050099 crossref_primary_10_1016_j_cemconres_2023_107092 crossref_primary_10_1016_j_actamat_2023_119416 crossref_primary_10_1021_jacsau_4c00618 crossref_primary_10_1016_j_solmat_2024_113275 crossref_primary_10_1039_D4CP02223H crossref_primary_10_1063_5_0040190 crossref_primary_10_1103_PhysRevB_99_184305 crossref_primary_10_1029_2023JB028333 crossref_primary_10_1103_PhysRevMaterials_9_033804 crossref_primary_10_7498_aps_72_20231258 crossref_primary_10_1039_D0CP01893G crossref_primary_10_1021_acs_jctc_1c01223 crossref_primary_10_1021_acs_jpclett_3c01200 crossref_primary_10_1103_PhysRevB_111_024305 crossref_primary_10_1021_acs_jcim_3c01953 crossref_primary_10_1002_anie_202411849 crossref_primary_10_1063_5_0240030 crossref_primary_10_1021_acs_jpclett_4c02771 crossref_primary_10_1002_ange_202107369 crossref_primary_10_1021_acs_chemmater_3c02726 crossref_primary_10_1016_j_mtener_2021_100665 crossref_primary_10_2477_jccj_2024_0018 crossref_primary_10_1063_5_0179161 crossref_primary_10_1021_acs_jctc_1c00565 crossref_primary_10_1007_s40843_024_2851_9 crossref_primary_10_1021_acs_jctc_3c00344 crossref_primary_10_1021_acs_jctc_3c00587 crossref_primary_10_1016_j_molliq_2022_120689 crossref_primary_10_1016_j_jnucmat_2025_155660 crossref_primary_10_1021_jacs_4c03445 crossref_primary_10_1016_j_intermet_2022_107678 crossref_primary_10_1103_PhysRevE_102_052125 crossref_primary_10_1103_PhysRevB_109_045153 crossref_primary_10_1016_j_cpc_2024_109187 crossref_primary_10_1038_s41557_024_01593_y crossref_primary_10_1016_j_commatsci_2022_111494 crossref_primary_10_1021_jacs_2c06785 crossref_primary_10_1039_D4FD00140K crossref_primary_10_1007_s11227_020_03362_3 crossref_primary_10_1021_acs_jctc_3c00334 crossref_primary_10_1016_j_mser_2024_100825 crossref_primary_10_1021_acs_jctc_3c00571 crossref_primary_10_1103_PhysRevMaterials_7_025601 crossref_primary_10_1039_D2NR05918E crossref_primary_10_1016_j_gsf_2023_101735 crossref_primary_10_1109_TCSI_2023_3255199 crossref_primary_10_1093_bib_bbab158 crossref_primary_10_1021_acs_chemmater_3c00524 crossref_primary_10_1038_s41467_021_27250_3 crossref_primary_10_1063_5_0099448 crossref_primary_10_1103_PhysRevB_110_235410 crossref_primary_10_1002_cplu_202400461 crossref_primary_10_1103_PhysRevResearch_6_013292 crossref_primary_10_1016_j_ijmecsci_2024_109852 crossref_primary_10_1063_5_0098330 crossref_primary_10_1103_PhysRevApplied_18_054066 crossref_primary_10_1063_5_0219401 crossref_primary_10_1016_j_cemconres_2021_106685 crossref_primary_10_1063_5_0259061 crossref_primary_10_1007_s00339_024_07348_3 crossref_primary_10_1039_C8CP06077K crossref_primary_10_1063_5_0190372 crossref_primary_10_1038_s41467_023_38650_y crossref_primary_10_1016_j_jechem_2022_01_018 crossref_primary_10_1021_acs_langmuir_4c03126 crossref_primary_10_1029_2022GL100337 crossref_primary_10_1063_5_0230440 crossref_primary_10_1021_acsphyschemau_3c00076 crossref_primary_10_1021_acs_jpclett_3c02112 crossref_primary_10_1063_5_0079602 crossref_primary_10_1088_1361_651X_acda50 crossref_primary_10_1103_PRXEnergy_3_013001 crossref_primary_10_1016_j_solmat_2024_113091 crossref_primary_10_1016_j_heliyon_2023_e17575 crossref_primary_10_1126_sciadv_ado9593 crossref_primary_10_1038_s41560_023_01356_y crossref_primary_10_1103_PhysRevMaterials_6_063802 crossref_primary_10_1088_0256_307X_40_11_116301 crossref_primary_10_1039_D3TA03830K crossref_primary_10_1016_j_cpc_2021_108218 crossref_primary_10_1021_acs_jpclett_5c00376 crossref_primary_10_1093_mam_ozae044_127 crossref_primary_10_1016_j_jallcom_2019_03_197 crossref_primary_10_1016_j_mtcomm_2024_111161 crossref_primary_10_1126_science_abd7716 crossref_primary_10_1016_j_jpowsour_2025_236591 crossref_primary_10_1002_anie_202405379 crossref_primary_10_1016_j_cjsc_2024_100266 crossref_primary_10_1021_acs_jpclett_4c01242 crossref_primary_10_1016_j_actamat_2020_116513 crossref_primary_10_1016_j_watres_2024_121580 crossref_primary_10_1021_acs_jpca_3c07598 crossref_primary_10_1103_PhysRevApplied_22_014036 crossref_primary_10_1103_PRXEnergy_3_013014 crossref_primary_10_1016_j_coche_2019_02_001 crossref_primary_10_1021_acs_jpclett_2c03445 crossref_primary_10_1063_5_0030123 crossref_primary_10_1080_27660400_2023_2292486 crossref_primary_10_1021_acsami_4c19397 crossref_primary_10_1021_acs_jcim_9b00994 crossref_primary_10_1016_j_commatsci_2024_113486 crossref_primary_10_1063_5_0164824 crossref_primary_10_1021_acs_jctc_3c01115 crossref_primary_10_1103_PhysRevLett_132_264101 crossref_primary_10_1021_acs_jctc_3c00271 crossref_primary_10_1021_acs_jpcb_4c08461 crossref_primary_10_1103_PhysRevLett_126_236001 crossref_primary_10_3390_ma15165606 crossref_primary_10_1116_6_0001408 crossref_primary_10_1002_aisy_202100014 crossref_primary_10_1021_acs_chemrev_2c00220 crossref_primary_10_1039_D2CP05530A crossref_primary_10_3390_pr12112407 crossref_primary_10_1063_5_0197757 crossref_primary_10_1021_jacs_4c06641 crossref_primary_10_1016_j_chip_2022_100033 crossref_primary_10_1063_1_5098061 crossref_primary_10_1111_jace_19741 crossref_primary_10_1021_acs_jpcc_4c04604 crossref_primary_10_1080_00268976_2024_2365430 crossref_primary_10_1039_D3CP04657E crossref_primary_10_1038_s41524_021_00510_y crossref_primary_10_1016_j_ces_2024_119836 crossref_primary_10_1063_5_0149447 crossref_primary_10_1038_s41524_024_01332_4 crossref_primary_10_1016_j_molliq_2022_118787 crossref_primary_10_1063_5_0147025 crossref_primary_10_1103_PhysRevB_102_214113 crossref_primary_10_1103_PhysRevB_110_054301 crossref_primary_10_1016_j_apsusc_2023_156893 crossref_primary_10_1103_PhysRevB_105_174422 crossref_primary_10_1007_s10853_023_08672_4 crossref_primary_10_1021_acs_jpca_2c06252 crossref_primary_10_1021_acs_jpcc_1c10300 crossref_primary_10_1021_acs_jctc_3c00244 crossref_primary_10_1038_s41570_022_00416_3 crossref_primary_10_12677_MP_2019_96026 crossref_primary_10_1063_5_0126333 crossref_primary_10_1088_2632_2153_accd45 crossref_primary_10_1021_acsami_1c00604 crossref_primary_10_1021_acs_jced_4c00207 crossref_primary_10_1021_acs_jpclett_4c03332 crossref_primary_10_1038_s41467_023_42958_0 crossref_primary_10_1360_SSC_2022_0022 crossref_primary_10_1021_jacsau_1c00538 crossref_primary_10_1360_SSC_2022_0028 crossref_primary_10_21105_joss_05118 crossref_primary_10_5802_crchim_315 crossref_primary_10_1016_j_isci_2024_109673 crossref_primary_10_1021_acs_jctc_2c00400 crossref_primary_10_1063_5_0118952 crossref_primary_10_1002_adfm_202402993 crossref_primary_10_1016_j_chemphys_2024_112533 crossref_primary_10_1016_j_cpc_2025_109512 crossref_primary_10_1021_acs_jpcc_4c00028 crossref_primary_10_1039_D4DD00069B crossref_primary_10_1016_j_commatsci_2022_111709 crossref_primary_10_1021_acs_jctc_3c01320 crossref_primary_10_1088_1741_4326_ac888b crossref_primary_10_1103_PhysRevB_107_224301 crossref_primary_10_1021_acs_jpclett_1c02328 crossref_primary_10_1063_5_0069443 crossref_primary_10_1002_aenm_202200596 crossref_primary_10_1103_PhysRevB_110_064103 crossref_primary_10_1109_MCI_2024_3365234 crossref_primary_10_1029_2024GL109793 crossref_primary_10_1016_j_commatsci_2022_111941 crossref_primary_10_1103_PhysRevB_109_184108 crossref_primary_10_1103_PhysRevB_107_064103 crossref_primary_10_1073_pnas_2212250120 crossref_primary_10_1103_PhysRevB_108_014108 crossref_primary_10_1021_acs_jpcc_0c08873 crossref_primary_10_1103_PhysRevResearch_2_042034 crossref_primary_10_1063_5_0255515 crossref_primary_10_1021_acs_jctc_2c00816 crossref_primary_10_1088_1361_648X_acf6ea crossref_primary_10_1021_acs_langmuir_4c05004 crossref_primary_10_1039_D3DD00078H crossref_primary_10_1111_jace_19934 crossref_primary_10_1021_acsami_3c05376 crossref_primary_10_1002_jcc_27269 crossref_primary_10_31857_S0235010623040096 crossref_primary_10_1016_j_commatsci_2021_110567 crossref_primary_10_1038_s41598_024_78377_4 crossref_primary_10_1016_j_commatsci_2024_113293 crossref_primary_10_1016_j_commatsci_2024_113294 crossref_primary_10_3390_ma18030659 crossref_primary_10_1021_acs_jpcb_2c09059 crossref_primary_10_1038_s41524_024_01467_4 crossref_primary_10_1063_5_0159288 crossref_primary_10_1016_j_actamat_2025_120892 crossref_primary_10_1063_5_0142843 crossref_primary_10_1063_5_0165948 crossref_primary_10_1088_1367_2630_ab4535 crossref_primary_10_1021_acs_jctc_2c00827 crossref_primary_10_1103_PhysRevLett_129_226001 crossref_primary_10_1021_acs_jpcc_3c01941 crossref_primary_10_1103_PhysRevB_109_115129 crossref_primary_10_1002_jcc_27497 crossref_primary_10_1039_D4EE03944K crossref_primary_10_1039_D4TC02618G crossref_primary_10_1021_acs_jpcc_3c07010 crossref_primary_10_1103_PhysRevLett_131_076801 crossref_primary_10_31857_S2686953524010073 crossref_primary_10_1021_acs_jpcc_1c01411 crossref_primary_10_1063_5_0236394 crossref_primary_10_1021_acs_jpcb_3c04629 crossref_primary_10_1088_1367_2630_ac9cff crossref_primary_10_1557_mrs_2020_231 crossref_primary_10_1016_j_mtcomm_2024_110243 crossref_primary_10_1088_2053_1583_ad4661 crossref_primary_10_1002_advs_202105574 crossref_primary_10_1021_acsami_3c04022 crossref_primary_10_1016_j_scib_2021_09_010 crossref_primary_10_1038_s41570_021_00278_1 crossref_primary_10_1093_bib_bbab590 crossref_primary_10_1016_j_jma_2024_11_009 crossref_primary_10_1021_acs_jpcc_3c08138 crossref_primary_10_1002_syst_201900031 crossref_primary_10_1038_s41467_025_57120_1 crossref_primary_10_1016_j_fuel_2023_129909 crossref_primary_10_1016_j_cjche_2020_10_044 crossref_primary_10_1029_2022GL101161 crossref_primary_10_1021_acs_jpca_2c06201 crossref_primary_10_1021_jacs_2c03099 crossref_primary_10_1039_D2DD00102K crossref_primary_10_1103_PhysRevMaterials_4_113803 crossref_primary_10_1039_D3EE03536K crossref_primary_10_1016_j_jmst_2023_04_074 crossref_primary_10_1021_acs_jpcc_1c08022 crossref_primary_10_1016_j_commatsci_2020_110055 crossref_primary_10_1088_1674_1056_ad362b crossref_primary_10_1016_j_ijheatmasstransfer_2023_124705 crossref_primary_10_1103_PhysRevB_110_054109 crossref_primary_10_1016_j_mtcomm_2025_111868 crossref_primary_10_1016_j_commatsci_2024_113641 crossref_primary_10_1126_sciadv_adr4145 crossref_primary_10_1063_5_0224137 crossref_primary_10_1021_jacs_4c18223 crossref_primary_10_1063_5_0143724 crossref_primary_10_1360_SSC_2023_0044 crossref_primary_10_3390_nano12213891 crossref_primary_10_1088_1361_648X_ad577b crossref_primary_10_1007_s11581_023_05265_8 crossref_primary_10_1021_acsmaterialslett_4c01047 crossref_primary_10_1016_j_xcrp_2024_102042 crossref_primary_10_1063_5_0203682 crossref_primary_10_1016_j_molliq_2022_120803 crossref_primary_10_1063_5_0215663 crossref_primary_10_1038_s41529_024_00536_9 crossref_primary_10_1063_1674_0068_cjcp2110218 crossref_primary_10_1002_admi_202201346 crossref_primary_10_1038_s41524_022_00734_6 crossref_primary_10_1039_D2CP06073F crossref_primary_10_1021_acs_chemmater_4c01049 crossref_primary_10_1038_s41598_023_50978_5 crossref_primary_10_1063_5_0001491 crossref_primary_10_1007_s40843_023_2733_7 crossref_primary_10_1103_PhysRevMaterials_5_015602 crossref_primary_10_1063_5_0023265 crossref_primary_10_3390_nano13091576 crossref_primary_10_1016_j_jnucmat_2022_154029 crossref_primary_10_1021_acs_inorgchem_4c00074 crossref_primary_10_1038_s43586_023_00263_6 crossref_primary_10_1016_j_jcp_2022_111857 crossref_primary_10_1021_acs_jctc_4c01176 crossref_primary_10_1021_acsami_4c01480 crossref_primary_10_1021_acs_jpcb_4c06450 crossref_primary_10_1063_5_0214588 crossref_primary_10_1038_s41467_023_37376_1 crossref_primary_10_1021_acscatal_3c05376 crossref_primary_10_1021_acs_jpcc_2c07423 crossref_primary_10_1021_acsanm_4c01803 crossref_primary_10_1021_acsami_4c02339 crossref_primary_10_1038_s41524_023_01104_6 crossref_primary_10_1145_3617327 crossref_primary_10_1016_j_jcis_2023_05_188 crossref_primary_10_1021_acs_jcim_3c00077 crossref_primary_10_1002_ange_202410802 crossref_primary_10_1021_acsami_2c16203 crossref_primary_10_1007_s41061_021_00339_5 crossref_primary_10_1093_nsr_nwae023 crossref_primary_10_1016_j_cpc_2024_109446 crossref_primary_10_1063_5_0201241 crossref_primary_10_1021_acs_jpcc_2c07877 crossref_primary_10_2139_ssrn_4185786 crossref_primary_10_1063_5_0163303 crossref_primary_10_1038_s41467_023_38855_1 crossref_primary_10_1038_s41524_021_00661_y crossref_primary_10_1016_j_actamat_2024_120135 crossref_primary_10_1039_D3YA00057E crossref_primary_10_1002_adts_202200206 crossref_primary_10_1063_5_0249882 crossref_primary_10_1002_ange_202407892 crossref_primary_10_1103_PhysRevB_108_024305 crossref_primary_10_1360_SST_2023_0408 crossref_primary_10_1021_acscatal_3c06201 crossref_primary_10_1080_00268976_2019_1652366 crossref_primary_10_1039_D3CP04833K crossref_primary_10_1063_5_0160046 crossref_primary_10_1063_5_0205616 crossref_primary_10_1021_acs_jcim_4c01473 crossref_primary_10_1109_TCBB_2022_3141697 crossref_primary_10_6023_A22110446 crossref_primary_10_1039_D4NR04968C crossref_primary_10_1002_adts_201900135 crossref_primary_10_1063_5_0215869 crossref_primary_10_1002_wcms_1621 crossref_primary_10_1021_acs_jpcc_4c05568 crossref_primary_10_1039_D3CP05709G crossref_primary_10_1016_j_mtcomm_2024_109624 crossref_primary_10_1371_journal_pone_0256990 crossref_primary_10_1016_j_commatsci_2021_110963 crossref_primary_10_1016_j_intermet_2023_108121 crossref_primary_10_1126_sciadv_abq2900 crossref_primary_10_1080_00268976_2021_1916634 crossref_primary_10_1021_acs_jpclett_2c00647 crossref_primary_10_1039_D1DD00005E crossref_primary_10_1016_j_commatsci_2024_113450 crossref_primary_10_3390_coatings14070815 crossref_primary_10_3390_nano13121853 crossref_primary_10_1038_s41467_025_56322_x crossref_primary_10_1038_s41467_023_43625_0 crossref_primary_10_1088_2632_2153_ad1626 crossref_primary_10_1103_PhysRevLett_127_080603 crossref_primary_10_1002_qua_70036 crossref_primary_10_1021_acsmaterialslett_3c00119 crossref_primary_10_1029_2023GL107245 crossref_primary_10_1016_j_commatsci_2024_113459 crossref_primary_10_1021_acs_chemmater_4c02575 crossref_primary_10_1063_5_0146803 crossref_primary_10_1063_5_0139010 crossref_primary_10_1063_5_0244175 crossref_primary_10_1016_j_commatsci_2025_113719 crossref_primary_10_1016_j_carbon_2021_09_062 crossref_primary_10_1088_1361_651X_ac4002 crossref_primary_10_1088_1361_6528_adb8f3 crossref_primary_10_1016_j_ijmecsci_2022_107998 crossref_primary_10_1063_5_0211276 crossref_primary_10_1088_1361_6528_ac46d7 crossref_primary_10_1016_j_physrep_2021_08_002 crossref_primary_10_1039_D1MA01152A crossref_primary_10_1063_1674_0068_cjcp2211173 crossref_primary_10_1103_PhysRevB_105_144106 crossref_primary_10_1016_j_jallcom_2025_179121 crossref_primary_10_1007_s00894_024_06084_y crossref_primary_10_1002_adma_202413587 crossref_primary_10_1016_j_jcis_2024_05_189 crossref_primary_10_1021_acs_biomac_1c01436 crossref_primary_10_1038_s41467_023_39829_z crossref_primary_10_1016_j_ensm_2024_103470 crossref_primary_10_1088_1361_6463_acd792 crossref_primary_10_1021_acs_jpclett_0c00527 crossref_primary_10_1063_5_0139281 crossref_primary_10_1007_s40843_024_2967_2 crossref_primary_10_1039_D4CP00997E crossref_primary_10_1088_1361_648X_ac462b crossref_primary_10_1103_PhysRevMaterials_7_033803 crossref_primary_10_1021_acs_jpcb_3c04473 crossref_primary_10_1021_prechem_4c00060 crossref_primary_10_1063_1674_0068_cjcp2108145 crossref_primary_10_1021_acs_jpclett_2c01710 crossref_primary_10_1088_2515_7639_ab8c2d crossref_primary_10_1016_j_nocx_2022_100115 crossref_primary_10_3390_nano13081352 crossref_primary_10_1063_5_0166858 crossref_primary_10_1360_SSC_2023_0050 crossref_primary_10_1016_j_cpc_2020_107624 crossref_primary_10_1088_1361_648X_ada710 crossref_primary_10_1073_pnas_2403497121 crossref_primary_10_1021_acs_jpcb_1c04372 crossref_primary_10_1063_5_0198431 crossref_primary_10_1002_adts_202000180 crossref_primary_10_1016_j_commatsci_2021_110752 crossref_primary_10_1137_23M1574051 crossref_primary_10_1021_prechem_4c00056 crossref_primary_10_1016_j_jnoncrysol_2024_123379 crossref_primary_10_1021_prechem_4c00051 crossref_primary_10_1063_5_0201698 crossref_primary_10_1016_j_ijmecsci_2024_109911 crossref_primary_10_1063_5_0025051 crossref_primary_10_1021_acs_jctc_1c00647 crossref_primary_10_1360_SSC_2023_0205 crossref_primary_10_1021_acs_jpcb_4c06956 crossref_primary_10_1021_acs_jpcc_9b04207 crossref_primary_10_1021_acs_jpcc_2c08581 crossref_primary_10_1016_j_jmst_2020_07_014 crossref_primary_10_1103_PhysRevMaterials_5_083804 crossref_primary_10_1038_s41467_020_19497_z crossref_primary_10_1021_acs_jpcc_2c08589 crossref_primary_10_1038_s41563_020_0777_6 crossref_primary_10_1038_s41467_020_16372_9 crossref_primary_10_1016_j_energy_2024_133799 crossref_primary_10_1016_j_commatsci_2024_112843 crossref_primary_10_1039_D4TA08860C crossref_primary_10_1016_j_taml_2023_100481 crossref_primary_10_1021_jacs_3c07506 crossref_primary_10_1088_2632_2153_ad0fa5 crossref_primary_10_1021_acsami_1c17942 crossref_primary_10_1002_aenm_202403876 crossref_primary_10_1103_PhysRevB_102_115155 crossref_primary_10_1063_5_0131696 crossref_primary_10_1039_D4CP03014A crossref_primary_10_1063_5_0157615 crossref_primary_10_1103_PhysRevMaterials_7_053603 crossref_primary_10_1021_acs_jctc_4c00248 crossref_primary_10_1038_s41467_023_39686_w crossref_primary_10_1063_1_5027645 crossref_primary_10_1021_acs_chemrev_1c00021 crossref_primary_10_1103_PhysRevB_106_174101 crossref_primary_10_1103_PhysRevB_106_094107 crossref_primary_10_1016_j_commatsci_2023_112535 crossref_primary_10_1016_j_molliq_2023_123533 crossref_primary_10_1016_j_solmat_2024_112903 crossref_primary_10_1021_acsnano_3c13099 crossref_primary_10_1002_cphc_202400090 crossref_primary_10_1038_s41598_024_69873_8 crossref_primary_10_1063_5_0158918 crossref_primary_10_1002_adfm_202408870 crossref_primary_10_1039_D4DD00209A crossref_primary_10_1063_5_0155887 crossref_primary_10_1039_D3NR04471H crossref_primary_10_1039_D4CP01801J crossref_primary_10_1103_PhysRevB_106_014311 crossref_primary_10_1103_PhysRevLett_132_167301 crossref_primary_10_1021_acs_jctc_2c01172 crossref_primary_10_1016_j_cej_2023_145355 crossref_primary_10_3390_nano13121832 crossref_primary_10_1021_acs_jpcb_1c03884 crossref_primary_10_1103_PhysRevLett_128_045301 crossref_primary_10_1063_5_0100505 crossref_primary_10_1029_2021GL093573 crossref_primary_10_1016_j_solmat_2024_112916 crossref_primary_10_1038_s41598_020_76770_3 crossref_primary_10_1021_acs_jced_3c00580 crossref_primary_10_1088_2632_2153_ab9c3e crossref_primary_10_1021_acs_jpclett_4c01954 crossref_primary_10_1021_acs_jctc_4c00463 crossref_primary_10_1063_5_0230195 crossref_primary_10_1021_acs_jctc_4c00460 crossref_primary_10_1016_j_mtphys_2023_101282 crossref_primary_10_1002_adma_202413430 crossref_primary_10_1088_2632_2153_ad594a crossref_primary_10_1021_acsami_1c24488 crossref_primary_10_1038_s41524_023_01168_4 crossref_primary_10_1021_acs_jctc_2c01183 crossref_primary_10_1016_j_actamat_2023_119364 crossref_primary_10_1016_j_commatsci_2022_111384 crossref_primary_10_1016_j_actamat_2024_120661 crossref_primary_10_1021_acs_jctc_2c00017 crossref_primary_10_1016_j_commatsci_2023_112111 crossref_primary_10_1021_acs_jpca_3c07859 crossref_primary_10_1002_advs_202302816 crossref_primary_10_1039_D4CP02584A crossref_primary_10_7498_aps_72_20231169 crossref_primary_10_1016_j_cma_2023_116290 crossref_primary_10_1016_j_epsl_2023_118084 crossref_primary_10_1021_acs_jpcb_4c01466 crossref_primary_10_1039_D4CP02499K crossref_primary_10_1016_j_coelec_2024_101605 crossref_primary_10_1134_S0031918X24602178 crossref_primary_10_1021_acs_jpcc_3c05522 crossref_primary_10_1016_j_jmst_2021_12_074 crossref_primary_10_1021_acsami_0c20665 crossref_primary_10_1021_acs_chemrev_0c00749 crossref_primary_10_1002_wcms_1581 crossref_primary_10_1039_D3TA03771A crossref_primary_10_1038_s41467_024_46891_8 crossref_primary_10_1038_s41598_022_25682_5 crossref_primary_10_1103_PhysRevB_108_064104 crossref_primary_10_1016_j_jnucmat_2022_154183 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125673 crossref_primary_10_1002_aenm_202400564 crossref_primary_10_1038_s41929_023_01006_2 crossref_primary_10_1039_D4CP00079J crossref_primary_10_1021_acs_jpcb_4c04750 crossref_primary_10_1021_jacs_4c14610 crossref_primary_10_1063_5_0156327 crossref_primary_10_1039_D0SM01019G crossref_primary_10_1016_j_ceramint_2024_07_152 crossref_primary_10_1063_5_0202963 crossref_primary_10_1016_j_actamat_2024_120429 crossref_primary_10_1016_j_pecs_2023_101084 crossref_primary_10_1021_acs_jpclett_4c00657 crossref_primary_10_1038_s41467_024_54631_1 crossref_primary_10_1134_S0012501624600049 crossref_primary_10_1063_5_0190890 crossref_primary_10_1016_j_cemconres_2024_107690 crossref_primary_10_1016_j_jmst_2020_01_005 crossref_primary_10_1103_PhysRevMaterials_6_113603 crossref_primary_10_1021_acsmaterialslett_4c01982 crossref_primary_10_1039_D2CP01808J crossref_primary_10_1002_adfm_202301663 crossref_primary_10_1039_D4TA00452C crossref_primary_10_1111_jace_20356 crossref_primary_10_1007_s11467_023_1325_z crossref_primary_10_1063_1674_0068_cjcp2402023 crossref_primary_10_1016_j_carbon_2024_119910 crossref_primary_10_1038_s41467_024_47695_6 crossref_primary_10_1063_5_0189696 crossref_primary_10_1016_j_jpowsour_2025_236632 crossref_primary_10_1016_j_mtelec_2025_100138 crossref_primary_10_1063_5_0095593 crossref_primary_10_1038_s41524_025_01547_z crossref_primary_10_1116_6_0004027 crossref_primary_10_1039_D3CP06202C crossref_primary_10_1039_D3SC06282A crossref_primary_10_1063_5_0146753 crossref_primary_10_1063_5_0199240 crossref_primary_10_1016_j_jallcom_2024_177178 crossref_primary_10_1016_j_eml_2024_102151 crossref_primary_10_1021_acs_jctc_1c00245 crossref_primary_10_1103_PhysRevB_110_245305 crossref_primary_10_1016_j_jnucmat_2025_155749 crossref_primary_10_1039_D2SC02227C crossref_primary_10_1016_j_jmst_2024_10_020 crossref_primary_10_1016_j_molliq_2024_124054 crossref_primary_10_1557_s43580_022_00289_0 crossref_primary_10_1016_j_cpc_2021_108171 crossref_primary_10_1016_j_commatsci_2022_111330 crossref_primary_10_1038_s41524_022_00773_z crossref_primary_10_1103_PhysRevResearch_3_033116 crossref_primary_10_1016_j_carbon_2024_119498 crossref_primary_10_6023_A22010003 crossref_primary_10_1103_PhysRevLett_125_195503 crossref_primary_10_1088_1361_648X_ad44f9 crossref_primary_10_1039_D4CP02781G crossref_primary_10_1016_j_ces_2024_120421 crossref_primary_10_1016_j_cpc_2023_108723 crossref_primary_10_1063_5_0213811 crossref_primary_10_1021_acs_jpclett_4c02430 crossref_primary_10_1088_0256_307X_42_1_017402 crossref_primary_10_1039_D0CP01689F crossref_primary_10_1021_acs_jpclett_3c02424 crossref_primary_10_1021_acs_jpcc_4c01988 crossref_primary_10_1021_acsami_2c19272 crossref_primary_10_1103_PhysRevB_104_224202 crossref_primary_10_1039_D4NR03424D crossref_primary_10_1016_j_commatsci_2020_109955 crossref_primary_10_1088_2632_2153_ad4a04 crossref_primary_10_1002_anie_202304205 crossref_primary_10_1088_1361_648X_ad7fb0 crossref_primary_10_1021_acsnano_4c12369 crossref_primary_10_1103_PhysRevMaterials_3_023804 crossref_primary_10_1063_5_0253847 crossref_primary_10_1063_1674_0068_cjcp2009163 crossref_primary_10_1016_j_ssi_2023_116298 crossref_primary_10_1039_C9SC05116C crossref_primary_10_1038_s41567_024_02707_6 crossref_primary_10_1021_acs_jctc_2c00010 crossref_primary_10_1063_5_0167238 crossref_primary_10_1021_acs_jctc_4c00869 crossref_primary_10_1103_PhysRevMaterials_7_115001 crossref_primary_10_1021_acs_jctc_1c00201 crossref_primary_10_1039_D1SC03564A crossref_primary_10_1039_D4FD00153B crossref_primary_10_26599_JAC_2023_9220721 crossref_primary_10_1039_D1EE01509E crossref_primary_10_1063_5_0134379 crossref_primary_10_1021_acsami_2c01768 crossref_primary_10_1103_PhysRevB_108_224114 crossref_primary_10_1021_jacsau_4c00957 crossref_primary_10_1002_smtd_202201138 crossref_primary_10_1063_5_0230101 crossref_primary_10_1063_5_0207567 crossref_primary_10_1021_acs_jpclett_1c02214 crossref_primary_10_1007_s10909_024_03061_w crossref_primary_10_1016_j_commatsci_2021_111014 crossref_primary_10_1016_j_jpcs_2022_111143 crossref_primary_10_1021_acs_jpca_2c00601 crossref_primary_10_1021_jacsau_2c00526 crossref_primary_10_1038_s43246_025_00745_y crossref_primary_10_1063_5_0147218 crossref_primary_10_1103_PhysRevB_111_104112 crossref_primary_10_1021_acs_chemrev_3c00070 crossref_primary_10_1021_acs_jpca_4c03074 crossref_primary_10_1016_j_matlet_2025_138336 crossref_primary_10_1103_PhysRevLett_120_143001 crossref_primary_10_1021_acs_jpcc_1c04895 crossref_primary_10_1038_s41524_024_01217_6 crossref_primary_10_1021_acs_jpcb_3c02972 crossref_primary_10_1063_5_0243641 crossref_primary_10_1021_acs_jpclett_4c02224 crossref_primary_10_1016_j_solmat_2021_111346 crossref_primary_10_1021_acs_jctc_3c00214 crossref_primary_10_1021_acs_jpca_0c03926 crossref_primary_10_1016_j_mtphys_2023_101066 crossref_primary_10_1021_acs_jpcc_0c03333 crossref_primary_10_1002_aenm_202400163 crossref_primary_10_1039_D4NR02114B crossref_primary_10_1088_2515_7655_ab2060 crossref_primary_10_1557_s43577_024_00855_x crossref_primary_10_1016_j_egyai_2022_100135 crossref_primary_10_1021_acscatal_4c01364 crossref_primary_10_1016_j_jnoncrysol_2023_122682 crossref_primary_10_1021_acs_jpclett_3c01392 crossref_primary_10_1038_s41524_024_01500_6 crossref_primary_10_1103_PhysRevB_107_144103 crossref_primary_10_1088_1361_648X_ad9657 crossref_primary_10_1021_acs_jpcc_1c04403 crossref_primary_10_1039_C9TA05453G crossref_primary_10_1021_acs_jctc_0c00217 crossref_primary_10_1038_s41578_020_00255_y crossref_primary_10_1088_0256_307X_41_6_066101 crossref_primary_10_1103_PhysRevB_109_174104 crossref_primary_10_1103_PhysRevB_109_174106 crossref_primary_10_1016_j_molliq_2021_118181 crossref_primary_10_1063_5_0219764 crossref_primary_10_1016_j_mssp_2022_106513 crossref_primary_10_1021_acs_jctc_3c00445 crossref_primary_10_1021_acs_energyfuels_0c03211 crossref_primary_10_1021_acs_jpcc_4c08188 crossref_primary_10_3390_ijms25031448 crossref_primary_10_1021_acs_jpcc_3c02426 crossref_primary_10_1021_acs_jpcb_3c07187 crossref_primary_10_1016_j_mtphys_2025_101670 crossref_primary_10_1039_D2TA08264K crossref_primary_10_1103_PhysRevB_104_174107 crossref_primary_10_1364_OME_532462 crossref_primary_10_1103_PhysRevB_110_184115 crossref_primary_10_1039_D3CP05425J crossref_primary_10_1103_PhysRevMaterials_4_103602 crossref_primary_10_1134_S0012501622010018 crossref_primary_10_3365_KJMM_2020_58_10_728 crossref_primary_10_1021_acs_jpcc_2c02423 crossref_primary_10_1002_adma_202306733 crossref_primary_10_1063_5_0138987 crossref_primary_10_1038_s41563_023_01560_x crossref_primary_10_1063_5_0171528 crossref_primary_10_1063_5_0228003 crossref_primary_10_1016_j_gsf_2024_101935 crossref_primary_10_1007_s11664_023_10403_z crossref_primary_10_1016_j_jechem_2023_03_013 crossref_primary_10_1021_acsami_4c00618 crossref_primary_10_1116_6_0003579 crossref_primary_10_1016_j_actamat_2024_120608 crossref_primary_10_1038_s41567_025_02804_0 crossref_primary_10_1002_adem_202302076 crossref_primary_10_1021_acsami_0c19270 |
Cites_doi | 10.1103/PhysRev.140.A1133 10.1103/PhysRevLett.98.146401 10.1002/jcc.20035 10.1016/j.cpc.2013.10.027 10.1126/sciadv.1603015 10.1103/PhysRevLett.104.136403 10.1002/jcc.20289 10.1103/PhysRevB.87.184115 10.1038/nature16961 10.1006/jcph.1995.1039 10.1038/35053024 10.1021/ja9621760 10.1039/C7SC04934J 10.4208/cicp.OA-2017-0213 10.1021/ct700301q 10.1016/j.jcp.2014.12.018 10.1002/jcc.21367 10.1039/C6SC05720A 10.1038/nature14539 10.1103/PhysRevLett.55.2471 10.1038/s41524-017-0042-y 10.1103/PhysRevLett.108.058301 10.1038/ncomms13890 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
CorporateAuthor | Princeton Univ., NJ (United States) |
CorporateAuthor_xml | – name: Princeton Univ., NJ (United States) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1016/j.cpc.2018.03.016 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1879-2944 |
EndPage | 184 |
ExternalDocumentID | 1538211 10_1016_j_cpc_2018_03_016 S0010465518300882 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AALMO ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c433t-75f26cfbd9ba4dfce7a123dc3fbf5593b34219782691415a9dc9b1c00089f6a93 |
IEDL.DBID | .~1 |
ISSN | 0010-4655 |
IngestDate | Fri May 19 02:19:09 EDT 2023 Tue Jul 01 02:40:29 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Fri Feb 23 02:30:57 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Molecular dynamics Many-body potential energy Deep neural networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-75f26cfbd9ba4dfce7a123dc3fbf5593b34219782691415a9dc9b1c00089f6a93 |
Notes | SC0008626; SC0009248 USDOE Office of Science (SC) |
ORCID | 0000-0002-8470-5846 0000000284705846 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0010465518300882?via%3Dihub |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1538211 crossref_citationtrail_10_1016_j_cpc_2018_03_016 crossref_primary_10_1016_j_cpc_2018_03_016 elsevier_sciencedirect_doi_10_1016_j_cpc_2018_03_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 2018-07-00 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Computer physics communications |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Huan, Batra, Chapman, Krishnan, Chen, Ramprasad (b8) 2017; 3 Morawietz, Singraber, Dellago, Behler (b10) 2016 Jorgensen, Maxwell, Tirado-Rives (b5) 1996; 118 Plimpton (b26) 1995; 117 T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang, Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems, 2015, arXiv preprint Bartók, Payne, Kondor, Csányi (b11) 2010; 104 K. Yao, J.E. Herr, D.W. Toth, R. Mcintyre, J. Parkhill, The tensormol-0.1 model chemistry: a neural network augmented with long-range physics, 2017, arXiv preprint D. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint Errington, Debenedetti (b32) 2001; 409 Thompson, Swiler, Trott, Foiles, Tucker (b7) 2015; 285 Kohn, Sham (b1) 1965; 140 Bartók, Kondor, Csányi (b30) 2013; 87 Behler, Parrinello (b9) 2007; 98 Ceriotti, More, Manolopoulos (b29) 2014; 185 Chmiela, Tkatchenko, Sauceda, Poltavsky, Schütt, Müller (b14) 2017; 3 Car, Parrinello (b2) 1985; 55 Han, Zhang, Car, E (b17) 2018; 23 Schütt, Arbabzadah, Chmiela, Müller, Tkatchenko (b13) 2017; 8 Smith, Isayev, Roitberg (b15) 2017; 8 . LeCun, Bengio, Hinton (b19) 2015; 521 M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., OSDI, vol. 16, 2016, pp. 265–283. Wang, Wolf, Caldwell, Kollman, Case (b6) 2004; 25 Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (b23) 2014 Hess, Kutzner, van der Spoel, Lindahl (b27) 2008; 4 Goodfellow, Bengio, Courville (b20) 2016 Marx, Hutter (b3) 2009 Vanommeslaeghe, Hatcher, Acharya, Kundu, Zhong, Shim, Darian, Guvench, Lopes, Vorobyov, Mackerell (b4) 2010; 31 Zhang, Han, Wang, Car, E (b18) 2017 Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (b21) 2016; 529 R. Collobert, K. Kavukcuoglu, C. Farabet, BigLearn, NIPS Workshop, no. EPFL-CONF-192376, 2011. Rupp, Tkatchenko, Müller, VonLilienfeld (b12) 2012; 108 Phillips, Braun, Wang, Gumbart, Tajkhorshid, Villa, Chipot, Skeel, Kale, Schulten (b28) 2005; 26 Car (10.1016/j.cpc.2018.03.016_b2) 1985; 55 Kohn (10.1016/j.cpc.2018.03.016_b1) 1965; 140 Zhang (10.1016/j.cpc.2018.03.016_b18) 2017 Plimpton (10.1016/j.cpc.2018.03.016_b26) 1995; 117 Thompson (10.1016/j.cpc.2018.03.016_b7) 2015; 285 Rupp (10.1016/j.cpc.2018.03.016_b12) 2012; 108 Hess (10.1016/j.cpc.2018.03.016_b27) 2008; 4 10.1016/j.cpc.2018.03.016_b31 Bartók (10.1016/j.cpc.2018.03.016_b11) 2010; 104 Morawietz (10.1016/j.cpc.2018.03.016_b10) 2016 Han (10.1016/j.cpc.2018.03.016_b17) 2018; 23 10.1016/j.cpc.2018.03.016_b24 10.1016/j.cpc.2018.03.016_b25 Huan (10.1016/j.cpc.2018.03.016_b8) 2017; 3 Jia (10.1016/j.cpc.2018.03.016_b23) 2014 Errington (10.1016/j.cpc.2018.03.016_b32) 2001; 409 Vanommeslaeghe (10.1016/j.cpc.2018.03.016_b4) 2010; 31 Chmiela (10.1016/j.cpc.2018.03.016_b14) 2017; 3 Ceriotti (10.1016/j.cpc.2018.03.016_b29) 2014; 185 Smith (10.1016/j.cpc.2018.03.016_b15) 2017; 8 Silver (10.1016/j.cpc.2018.03.016_b21) 2016; 529 Jorgensen (10.1016/j.cpc.2018.03.016_b5) 1996; 118 Marx (10.1016/j.cpc.2018.03.016_b3) 2009 10.1016/j.cpc.2018.03.016_b22 LeCun (10.1016/j.cpc.2018.03.016_b19) 2015; 521 Phillips (10.1016/j.cpc.2018.03.016_b28) 2005; 26 Bartók (10.1016/j.cpc.2018.03.016_b30) 2013; 87 10.1016/j.cpc.2018.03.016_b16 Goodfellow (10.1016/j.cpc.2018.03.016_b20) 2016 Wang (10.1016/j.cpc.2018.03.016_b6) 2004; 25 Behler (10.1016/j.cpc.2018.03.016_b9) 2007; 98 Schütt (10.1016/j.cpc.2018.03.016_b13) 2017; 8 |
References_xml | – volume: 140 start-page: A1133 year: 1965 ident: b1 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. – year: 2016 ident: b20 article-title: Deep Learning – volume: 3 start-page: 1 year: 2017 ident: b8 article-title: A universal strategy for the creation of machine learning-based atomistic force fields publication-title: NPJ Comput. Mater. – volume: 529 start-page: 484 year: 2016 end-page: 489 ident: b21 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature – volume: 4 start-page: 435 year: 2008 end-page: 447 ident: b27 article-title: Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation publication-title: J. Chem. Theory Comput. – volume: 3 start-page: e1603015 year: 2017 ident: b14 article-title: Machine learning of accurate energy-conserving molecular force fields publication-title: Sci. Adv. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b19 article-title: Deep learning publication-title: Nature – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: b26 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. – volume: 108 start-page: 058301 year: 2012 ident: b12 article-title: Fast and accurate modeling of molecular atomization energies with machine learning publication-title: Phys. Rev. Lett. – reference: R. Collobert, K. Kavukcuoglu, C. Farabet, BigLearn, NIPS Workshop, no. EPFL-CONF-192376, 2011. – volume: 285 start-page: 316 year: 2015 end-page: 330 ident: b7 article-title: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials publication-title: J. Comput. Phys. – volume: 8 start-page: 13890 year: 2017 ident: b13 article-title: Quantum-chemical insights from deep tensor neural networks publication-title: Nature Commun. – start-page: 201602375 year: 2016 ident: b10 article-title: How van der waals interactions determine the unique properties of water publication-title: Proc. Natl. Acad. Sci. – year: 2009 ident: b3 article-title: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods – volume: 98 start-page: 146401 year: 2007 ident: b9 article-title: Generalized neural-network representation of high-dimensional potential-energy surfaces publication-title: Phys. Rev. Lett. – volume: 55 start-page: 2471 year: 1985 ident: b2 article-title: Unified approach for molecular dynamics and density-functional theory publication-title: Phys. Rev. Lett. – reference: K. Yao, J.E. Herr, D.W. Toth, R. Mcintyre, J. Parkhill, The tensormol-0.1 model chemistry: a neural network augmented with long-range physics, 2017, arXiv preprint – volume: 118 start-page: 11225 year: 1996 end-page: 11236 ident: b5 article-title: Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids publication-title: J. Am. Chem. Soc. – reference: . – volume: 104 start-page: 136403 year: 2010 ident: b11 article-title: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons publication-title: Phys. Rev. Lett. – volume: 409 start-page: 318 year: 2001 ident: b32 article-title: Relationship between structural order and the anomalies of liquid water publication-title: Nature – volume: 185 start-page: 1019 year: 2014 end-page: 1026 ident: b29 article-title: i-PI: A Python interface for ab initio path integral molecular dynamics simulations publication-title: Comput. Phys. Comm. – reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., OSDI, vol. 16, 2016, pp. 265–283. – volume: 31 start-page: 671 year: 2010 end-page: 690 ident: b4 article-title: Charmm general force field: a force field for drug-like molecules compatible with the charmm all-atom additive biological force fields publication-title: J. Comput. Chem. – volume: 87 start-page: 184115 year: 2013 ident: b30 article-title: On representing chemical environments publication-title: Phys. Rev. B – reference: D. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint – year: 2017 ident: b18 article-title: Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics publication-title: Phys. Rev. Lett. – volume: 25 start-page: 1157 year: 2004 end-page: 1174 ident: b6 article-title: Development and testing of a general amber force field publication-title: J. Comput. Chem. – volume: 26 start-page: 1781 year: 2005 end-page: 1802 ident: b28 article-title: Scalable molecular dynamics with namd publication-title: J. Comput. Chem. – start-page: 675 year: 2014 end-page: 678 ident: b23 article-title: Caffe: convolutional architecture for fast feature embedding publication-title: Proceedings of the 22nd ACM International Conference on Multimedia – volume: 23 start-page: 629 year: 2018 end-page: 639 ident: b17 article-title: Deep potential: a general representation of a many-body potential energy surface publication-title: Commun. Comput. Phys. – volume: 8 start-page: 3192 year: 2017 end-page: 3203 ident: b15 article-title: Ani-1: an extensible neural network potential with dft accuracy at force field computational cost publication-title: Chem. Sci. – reference: T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang, Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems, 2015, arXiv preprint – volume: 140 start-page: A1133 issue: 4A year: 1965 ident: 10.1016/j.cpc.2018.03.016_b1 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 98 start-page: 146401 issue: 14 year: 2007 ident: 10.1016/j.cpc.2018.03.016_b9 article-title: Generalized neural-network representation of high-dimensional potential-energy surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.146401 – volume: 25 start-page: 1157 issue: 9 year: 2004 ident: 10.1016/j.cpc.2018.03.016_b6 article-title: Development and testing of a general amber force field publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 – volume: 185 start-page: 1019 issue: 3 year: 2014 ident: 10.1016/j.cpc.2018.03.016_b29 article-title: i-PI: A Python interface for ab initio path integral molecular dynamics simulations publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2013.10.027 – volume: 3 start-page: e1603015 issue: 5 year: 2017 ident: 10.1016/j.cpc.2018.03.016_b14 article-title: Machine learning of accurate energy-conserving molecular force fields publication-title: Sci. Adv. doi: 10.1126/sciadv.1603015 – ident: 10.1016/j.cpc.2018.03.016_b22 – year: 2009 ident: 10.1016/j.cpc.2018.03.016_b3 – ident: 10.1016/j.cpc.2018.03.016_b24 – volume: 104 start-page: 136403 issue: 13 year: 2010 ident: 10.1016/j.cpc.2018.03.016_b11 article-title: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.136403 – volume: 26 start-page: 1781 issue: 16 year: 2005 ident: 10.1016/j.cpc.2018.03.016_b28 article-title: Scalable molecular dynamics with namd publication-title: J. Comput. Chem. doi: 10.1002/jcc.20289 – volume: 87 start-page: 184115 issue: 18 year: 2013 ident: 10.1016/j.cpc.2018.03.016_b30 article-title: On representing chemical environments publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.184115 – volume: 529 start-page: 484 issue: 7587 year: 2016 ident: 10.1016/j.cpc.2018.03.016_b21 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 117 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.cpc.2018.03.016_b26 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – year: 2017 ident: 10.1016/j.cpc.2018.03.016_b18 article-title: Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics publication-title: Phys. Rev. Lett. – volume: 409 start-page: 318 issue: 6818 year: 2001 ident: 10.1016/j.cpc.2018.03.016_b32 article-title: Relationship between structural order and the anomalies of liquid water publication-title: Nature doi: 10.1038/35053024 – volume: 118 start-page: 11225 issue: 45 year: 1996 ident: 10.1016/j.cpc.2018.03.016_b5 article-title: Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9621760 – ident: 10.1016/j.cpc.2018.03.016_b16 doi: 10.1039/C7SC04934J – volume: 23 start-page: 629 issue: 3 year: 2018 ident: 10.1016/j.cpc.2018.03.016_b17 article-title: Deep potential: a general representation of a many-body potential energy surface publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2017-0213 – volume: 4 start-page: 435 issue: 3 year: 2008 ident: 10.1016/j.cpc.2018.03.016_b27 article-title: Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – volume: 285 start-page: 316 year: 2015 ident: 10.1016/j.cpc.2018.03.016_b7 article-title: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.12.018 – ident: 10.1016/j.cpc.2018.03.016_b31 – volume: 31 start-page: 671 issue: 4 year: 2010 ident: 10.1016/j.cpc.2018.03.016_b4 article-title: Charmm general force field: a force field for drug-like molecules compatible with the charmm all-atom additive biological force fields publication-title: J. Comput. Chem. doi: 10.1002/jcc.21367 – volume: 8 start-page: 3192 issue: 4 year: 2017 ident: 10.1016/j.cpc.2018.03.016_b15 article-title: Ani-1: an extensible neural network potential with dft accuracy at force field computational cost publication-title: Chem. Sci. doi: 10.1039/C6SC05720A – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.cpc.2018.03.016_b19 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 55 start-page: 2471 issue: 22 year: 1985 ident: 10.1016/j.cpc.2018.03.016_b2 article-title: Unified approach for molecular dynamics and density-functional theory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.2471 – volume: 3 start-page: 1 year: 2017 ident: 10.1016/j.cpc.2018.03.016_b8 article-title: A universal strategy for the creation of machine learning-based atomistic force fields publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-017-0042-y – volume: 108 start-page: 058301 issue: 5 year: 2012 ident: 10.1016/j.cpc.2018.03.016_b12 article-title: Fast and accurate modeling of molecular atomization energies with machine learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.058301 – year: 2016 ident: 10.1016/j.cpc.2018.03.016_b20 – start-page: 201602375 year: 2016 ident: 10.1016/j.cpc.2018.03.016_b10 article-title: How van der waals interactions determine the unique properties of water publication-title: Proc. Natl. Acad. Sci. – start-page: 675 year: 2014 ident: 10.1016/j.cpc.2018.03.016_b23 article-title: Caffe: convolutional architecture for fast feature embedding – ident: 10.1016/j.cpc.2018.03.016_b25 – volume: 8 start-page: 13890 year: 2017 ident: 10.1016/j.cpc.2018.03.016_b13 article-title: Quantum-chemical insights from deep tensor neural networks publication-title: Nature Commun. doi: 10.1038/ncomms13890 |
SSID | ssj0007793 |
Score | 2.699613 |
Snippet | Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma... Not provided. |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 178 |
SubjectTerms | Computer Science Deep neural networks Many-body potential energy Molecular dynamics Physics |
Title | DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics |
URI | https://dx.doi.org/10.1016/j.cpc.2018.03.016 https://www.osti.gov/biblio/1538211 |
Volume | 228 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPlGrZQ-ehLVtss0m3kprqZYWEYu9hexL6yMJNh68-NudycMHiAdPIWFnCbO738ywM98Qctz1dKS62jLEPsYV1wzCiDazAuyZYwJH-VicPJl6oxm_nHfnNdKvamEwrbLE_gLTc7Quv7RKbbbSxQJrfPF-EhnF3DY6iljBzgXu8tP3rzQPIUriXcAbHF3dbOY5XipFFsOOn_OcYsvz321TPYHj9s3sDDfIeukv0l7xS5ukZuItsprnbarlNrkfGHM1GbDHRXZGe1Qbk9KyEcQdhXD4EeCCgl9Kn-HQM5noN5omGWYIwaQmr_ujOa9lVYMU0yjW9Llqmkt10bF-uUNmw_Ob_oiVzROY4q6bMdG1jqes1IGMuLbKiAiMlFaulRaiCFe6HMAK_AMv6IARjwKtAtlR6BME1osCd5fU4yQ2e4R6wnpKaOkL2-GOVj7M7EnDIRKx3Hf4PmlXagtVySyODS6ewiqF7CEETYeo6bDthvBln5x8iqQFrcZfg3m1FuGPvREC7P8l1sB1QxHkw1WYOAQyCPEQ9R78b9IGWcO3ImH3kNSzl1dzBG5JJpv5vmuSld7FeDTF5_j6dvwBHOniXw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF6kInoRn1ife9CLsNom2zwED8Uq9VHxoOBtzb60atNgI9KLf8o_6Ey68QHiQfCaZDdhdvPNDPvNN4RsNgKdqIa2DLGPccU1gzSixmwI_swzsaciLE7unAftK35y3bgeI29lLQzSKh32jzC9QGt3ZddZczfrdrHGF88nUVHMr2Gg6JiVp2b4AnnbYP-4BYu85XlHh5cHbeZaCzDFfT9nYcN6gbJSxzLh2ioTJgDhWvlWWoixfelz-JXBewZxHVxcEmsVy7pCjxnbIEEFJsD9cQ5wgW0Tdl4_eSVh6JR-AeDw88qj1IJUpjKUTaxHhbAq9lj_2RlW-vB_f_FzRzNk2gWotDmywSwZM-kcmSiIomowT-5axlx0Wuyhm-_RJtXGZNR1nrilkH8_AD5RCIRpD1CGyb4e0qyfIyUJJjVFoSEthDTLoqeUJqmmvbJLL9XDNOnBqxbI1b-YdJFU0n5qlggNQhuoUMsotHXuaRXBzIE0HFIfyyOPV0mtNJtQTsocO2o8ipKzdi_A0gItLWq-gCtVsv0xJBvpePz2MC_XQnzbjAL8zG_DVnDdcAgK8CpkKsEY9CmQZi__bdINMtm-7JyJs-Pz0xUyhXdGbOFVUsmfns0axES5XC_2ICU3_73p3wFZJRyf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeePMD-kit%3A+A+deep+learning+package+for+many-body+potential+energy+representation+and+molecular+dynamics&rft.jtitle=Computer+physics+communications&rft.au=Wang%2C+Han&rft.au=Zhang%2C+Linfeng&rft.au=Han%2C+Jiequn&rft.au=E%2C+Weinan&rft.date=2018-07-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=228&rft.spage=178&rft.epage=184&rft_id=info:doi/10.1016%2Fj.cpc.2018.03.016&rft.externalDocID=S0010465518300882 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |