Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: Recent progress and future perspectives

The electrocatalytic oxygen reactions, i.e. oxygen reduction/evolution reactions (ORR/OER), play a key role in electrochemical energy conversion and storage devices, including fuel cells, electrolyzers, and metal-air batteries, and have attracted significant attention in the past decades. Platinum-g...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 156; pp. 77 - 92
Main Authors Du, Lei, Xing, Lixin, Zhang, Gaixia, Sun, Shuhui
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.01.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0008-6223
1873-3891
DOI10.1016/j.carbon.2019.09.029

Cover

Loading…
Abstract The electrocatalytic oxygen reactions, i.e. oxygen reduction/evolution reactions (ORR/OER), play a key role in electrochemical energy conversion and storage devices, including fuel cells, electrolyzers, and metal-air batteries, and have attracted significant attention in the past decades. Platinum-group metal (PGM)-free materials have been intensively investigated as alternatives to replace the well-accepted but costly PGM-based catalysts such as Pt for ORR and Ir/Ru (oxides) for OER. Particularly, metal-organic framework (MOF)-derived carbon materials are emerging PGM-free catalysts for ORR/OER. So far, excellent works have been achieved to enhance the activity and durability of the MOF-derived PGM-free catalysts. It is the occasion to promote the PGM-free catalysts to the next level of application, i.e. in real devices. However, ORR/OER in real devices are potentially subject to the porosity related challenges, e.g. electron/mass transfer issue and active site isolation in organic Li-air batteries. To address these challenges, the rational design of porous electrocatalyst for devices is required. In this review, we summarize the most recent progress of MOF-derived carbon materials for ORR/OER with the focus on not only the active site engineering but also the design of porous structure. We also provide perspectives on the rational design of PGM-free catalysts using MOF as precursors. [Display omitted]
AbstractList The electrocatalytic oxygen reactions, i.e. oxygen reduction/evolution reactions (ORR/OER), play a key role in electrochemical energy conversion and storage devices, including fuel cells, electrolyzers, and metal-air batteries, and have attracted significant attention in the past decades. Platinum-group metal (PGM)-free materials have been intensively investigated as alternatives to replace the well-accepted but costly PGM-based catalysts such as Pt for ORR and Ir/Ru (oxides) for OER. Particularly, metal-organic framework (MOF)-derived carbon materials are emerging PGM-free catalysts for ORR/OER. So far, excellent works have been achieved to enhance the activity and durability of the MOF-derived PGM-free catalysts. It is the occasion to promote the PGM-free catalysts to the next level of application, i.e. in real devices. However, ORR/OER in real devices are potentially subject to the porosity related challenges, e.g. electron/mass transfer issue and active site isolation in organic Li-air batteries. To address these challenges, the rational design of porous electrocatalyst for devices is required. In this review, we summarize the most recent progress of MOF-derived carbon materials for ORR/OER with the focus on not only the active site engineering but also the design of porous structure. We also provide perspectives on the rational design of PGM-free catalysts using MOF as precursors.
The electrocatalytic oxygen reactions, i.e. oxygen reduction/evolution reactions (ORR/OER), play a key role in electrochemical energy conversion and storage devices, including fuel cells, electrolyzers, and metal-air batteries, and have attracted significant attention in the past decades. Platinum-group metal (PGM)-free materials have been intensively investigated as alternatives to replace the well-accepted but costly PGM-based catalysts such as Pt for ORR and Ir/Ru (oxides) for OER. Particularly, metal-organic framework (MOF)-derived carbon materials are emerging PGM-free catalysts for ORR/OER. So far, excellent works have been achieved to enhance the activity and durability of the MOF-derived PGM-free catalysts. It is the occasion to promote the PGM-free catalysts to the next level of application, i.e. in real devices. However, ORR/OER in real devices are potentially subject to the porosity related challenges, e.g. electron/mass transfer issue and active site isolation in organic Li-air batteries. To address these challenges, the rational design of porous electrocatalyst for devices is required. In this review, we summarize the most recent progress of MOF-derived carbon materials for ORR/OER with the focus on not only the active site engineering but also the design of porous structure. We also provide perspectives on the rational design of PGM-free catalysts using MOF as precursors. [Display omitted]
Author Sun, Shuhui
Du, Lei
Xing, Lixin
Zhang, Gaixia
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0001-9584-4748
  surname: Du
  fullname: Du, Lei
  organization: Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada
– sequence: 2
  givenname: Lixin
  surname: Xing
  fullname: Xing, Lixin
  organization: Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada
– sequence: 3
  givenname: Gaixia
  surname: Zhang
  fullname: Zhang, Gaixia
  email: gaixia.zhang@emt.inrs.ca
  organization: Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada
– sequence: 4
  givenname: Shuhui
  surname: Sun
  fullname: Sun, Shuhui
  email: shuhui@emt.inrs.ca
  organization: Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada
BookMark eNqFkU-LFDEQxYOs4OzqN_AQ8OKlZ_Onpzu9B0EWdYUVQfQcMtWVIWNPMlbSq3Pyq5uhPe1BoaCo4r0fxatLdhFTRMZeSrGWQnbX-zU42qa4VkIOa1FLDU_YSppeN9oM8oKthBCm6ZTSz9hlzvs6tka2K_b7ExY3NYl2LgbgntwBfyb6zkek8IAjX8j84EpduClzn4jjhFAogaveU6m-9Ou0w8gJHZSQYr7hXxAwFn6ktCPMmbs4cj-XmZAfkfKxAio_P2dPfaXii7_9in17_-7r7V1z__nDx9u39w20WpemV9BLA1r1m3EwPXTgse-20IsN9K02zjg54sajkW6Q7ej61nvVbdUWZB2VvmKvF2496MeMudhDyIDT5CKmOVulN6pVuhWySl89ku7TTLFeV1XKaKGl6aqqXVRAKWdCb48UDo5OVgp7_ord2yU7e_6KFbXUUG03j2wQijtnVsiF6X_mN4sZa1IPAclmCBgBx0A1Tzum8G_AH7fasA8
CitedBy_id crossref_primary_10_1007_s00216_021_03493_3
crossref_primary_10_1016_j_ccr_2024_216116
crossref_primary_10_1002_adma_202408139
crossref_primary_10_1039_D1MA00475A
crossref_primary_10_1039_D0NR03115A
crossref_primary_10_1016_j_ccr_2020_213488
crossref_primary_10_3390_ma13184215
crossref_primary_10_1002_adma_201908232
crossref_primary_10_1016_j_inoche_2025_114072
crossref_primary_10_1016_j_cej_2021_133560
crossref_primary_10_1002_er_7198
crossref_primary_10_1016_j_jallcom_2022_168084
crossref_primary_10_1002_smll_202106279
crossref_primary_10_1002_er_7635
crossref_primary_10_1016_j_mtnano_2021_100146
crossref_primary_10_1002_smll_202202194
crossref_primary_10_1002_smll_202304663
crossref_primary_10_1016_j_jpowsour_2020_229196
crossref_primary_10_1016_j_jpowsour_2021_229592
crossref_primary_10_1016_j_jpowsour_2020_229339
crossref_primary_10_1002_smll_202007484
crossref_primary_10_1016_j_cej_2023_145652
crossref_primary_10_1002_aoc_6434
crossref_primary_10_1016_j_ccr_2022_214602
crossref_primary_10_1016_j_microc_2022_107873
crossref_primary_10_1016_j_jallcom_2023_172518
crossref_primary_10_1103_PRXEnergy_2_043008
crossref_primary_10_1016_j_jcis_2022_08_141
crossref_primary_10_1111_jace_18130
crossref_primary_10_1016_j_electacta_2021_138433
crossref_primary_10_1016_j_jelechem_2024_118235
crossref_primary_10_1007_s40843_022_2302_0
crossref_primary_10_1016_j_ccr_2022_214839
crossref_primary_10_1016_j_scitotenv_2022_156186
crossref_primary_10_1002_aenm_202003291
crossref_primary_10_1002_ange_202306726
crossref_primary_10_1016_j_ijhydene_2024_04_003
crossref_primary_10_1016_j_micromeso_2020_110726
crossref_primary_10_1016_j_scib_2022_04_022
crossref_primary_10_1039_D0RA06780F
crossref_primary_10_1039_D1NJ00613D
crossref_primary_10_1016_j_matt_2022_03_002
crossref_primary_10_1016_j_apenergy_2023_120931
crossref_primary_10_1038_s41598_025_87952_2
crossref_primary_10_1039_D1CC07228E
crossref_primary_10_1007_s40820_021_00656_w
crossref_primary_10_1016_j_carbon_2020_08_041
crossref_primary_10_1039_D3CE00360D
crossref_primary_10_1016_j_ccr_2023_215400
crossref_primary_10_1016_j_colsurfa_2021_127033
crossref_primary_10_1016_j_materresbull_2022_111744
crossref_primary_10_1016_j_ijhydene_2020_06_259
crossref_primary_10_1149_1945_7111_ad5380
crossref_primary_10_1002_aenm_202001537
crossref_primary_10_1016_j_est_2021_103263
crossref_primary_10_1016_j_checat_2022_12_001
crossref_primary_10_1016_j_electacta_2023_143304
crossref_primary_10_1021_acsami_0c18036
crossref_primary_10_1002_cnma_202200225
crossref_primary_10_1039_D0TA05866A
crossref_primary_10_1016_j_carbon_2021_04_028
crossref_primary_10_1016_j_jcis_2022_10_004
crossref_primary_10_1002_elsa_202400033
crossref_primary_10_1007_s11581_021_04217_4
crossref_primary_10_1007_s11581_022_04672_7
crossref_primary_10_1021_acs_inorgchem_3c03368
crossref_primary_10_1039_D1TA03176G
crossref_primary_10_1039_D4RA05183A
crossref_primary_10_1002_smtd_202000494
crossref_primary_10_1016_j_carbon_2021_12_071
crossref_primary_10_1002_celc_202001614
crossref_primary_10_1002_zaac_202100321
crossref_primary_10_1039_D2TA03312G
crossref_primary_10_1002_smtd_202000016
crossref_primary_10_1021_acsomega_0c01128
crossref_primary_10_1016_j_seppur_2022_122988
crossref_primary_10_1021_acsami_0c03983
crossref_primary_10_1515_znb_2021_0185
crossref_primary_10_1016_j_hazadv_2021_100002
crossref_primary_10_1016_j_cclet_2021_06_054
crossref_primary_10_1016_j_ijhydene_2022_05_025
crossref_primary_10_1016_j_jhazmat_2020_124521
crossref_primary_10_1039_D4TA07911F
crossref_primary_10_1016_j_carbon_2024_119830
crossref_primary_10_1016_j_apmt_2021_101161
crossref_primary_10_1016_j_ijhydene_2021_07_196
crossref_primary_10_3390_molecules28237751
crossref_primary_10_1016_j_jmgm_2022_108212
crossref_primary_10_1016_j_jorganchem_2021_122070
crossref_primary_10_1016_j_matchemphys_2022_126438
crossref_primary_10_1039_D0OB01729A
crossref_primary_10_1016_j_pnsc_2020_10_014
crossref_primary_10_1016_j_carbon_2025_120161
crossref_primary_10_1002_cey2_265
crossref_primary_10_1021_acsaem_1c01677
crossref_primary_10_1016_j_ccr_2021_214119
crossref_primary_10_1016_j_envres_2023_115516
crossref_primary_10_1016_j_jcou_2023_102412
crossref_primary_10_1142_S108842462150036X
crossref_primary_10_1016_j_seppur_2019_116342
crossref_primary_10_1002_cssc_202101461
crossref_primary_10_1021_acsnano_3c09261
crossref_primary_10_1007_s42154_021_00146_0
crossref_primary_10_1039_D1RA01350E
crossref_primary_10_1002_smll_202006773
crossref_primary_10_1016_j_jcis_2022_05_051
crossref_primary_10_1016_j_jallcom_2022_168565
crossref_primary_10_1149_1945_7111_ac2090
crossref_primary_10_1016_j_ccr_2020_213441
crossref_primary_10_1016_j_fuel_2022_125881
crossref_primary_10_1007_s10853_024_09587_4
crossref_primary_10_1016_j_cej_2022_138416
crossref_primary_10_1002_inf2_12257
crossref_primary_10_1016_j_cej_2023_141939
crossref_primary_10_1016_j_cej_2021_129096
crossref_primary_10_1016_j_ccr_2021_213954
crossref_primary_10_1002_anie_202306726
crossref_primary_10_1016_j_colsurfa_2022_129484
crossref_primary_10_1002_cey2_73
crossref_primary_10_1007_s13762_021_03499_5
crossref_primary_10_1016_j_electacta_2022_139974
crossref_primary_10_1016_j_ijhydene_2021_08_158
crossref_primary_10_1016_j_jpcs_2022_111030
crossref_primary_10_1039_D0EE03697H
crossref_primary_10_1016_j_jcis_2021_03_108
crossref_primary_10_1039_D0SE01154A
crossref_primary_10_1002_adma_202002559
crossref_primary_10_1016_j_mattod_2024_06_006
crossref_primary_10_1039_D1DT01482J
crossref_primary_10_1016_j_ijhydene_2021_01_194
crossref_primary_10_1016_j_jallcom_2025_178827
crossref_primary_10_1002_cctc_202401538
crossref_primary_10_1016_j_ces_2021_117038
crossref_primary_10_1016_j_nanoen_2024_109559
crossref_primary_10_1021_acs_energyfuels_2c01659
crossref_primary_10_1016_j_ijhydene_2020_08_180
crossref_primary_10_1016_j_envres_2022_112727
crossref_primary_10_1007_s11814_020_0730_z
crossref_primary_10_1007_s40242_020_0163_6
crossref_primary_10_1016_j_chemosphere_2021_130269
crossref_primary_10_1016_j_ijhydene_2024_07_388
crossref_primary_10_1016_j_ijhydene_2021_11_204
crossref_primary_10_1016_j_ijhydene_2024_11_481
crossref_primary_10_1039_D1NR07614K
crossref_primary_10_1016_j_cclet_2022_03_112
crossref_primary_10_1002_cssc_202002137
crossref_primary_10_1016_j_ceramint_2025_02_193
crossref_primary_10_1016_j_ccr_2020_213619
crossref_primary_10_1007_s11581_020_03473_0
crossref_primary_10_1039_D2DT02002E
crossref_primary_10_1021_acsami_1c03477
crossref_primary_10_1002_advs_202402610
crossref_primary_10_1021_acs_energyfuels_2c04234
crossref_primary_10_20964_2021_07_27
crossref_primary_10_1016_j_cclet_2022_107815
crossref_primary_10_1021_acssuschemeng_9b06785
crossref_primary_10_1016_j_ijhydene_2020_07_252
crossref_primary_10_1016_j_jhazmat_2024_137067
crossref_primary_10_1002_chem_202102209
crossref_primary_10_1039_D1TA00585E
crossref_primary_10_1016_j_cej_2022_135852
crossref_primary_10_1016_j_microc_2023_109485
crossref_primary_10_1016_j_electacta_2022_141436
crossref_primary_10_1002_slct_202304194
crossref_primary_10_1039_D3GC02151C
crossref_primary_10_1016_j_jcis_2021_01_093
Cites_doi 10.1126/science.1200832
10.1016/j.carbon.2017.01.085
10.1073/pnas.0602439103
10.1038/nmat4738
10.1021/cr200324t
10.1021/acscatal.6b01861
10.1002/adsu.201600038
10.1126/science.1170051
10.1016/S0022-0728(00)00407-1
10.1021/ja510442p
10.1007/s41918-018-0003-2
10.1021/cr2003272
10.1016/j.electacta.2007.11.057
10.1002/aenm.201601198
10.1021/cr200190s
10.1021/nl803279t
10.1021/jacs.7b06514
10.1002/adfm.201403657
10.1002/anie.201501590
10.1002/anie.201604802
10.1016/j.jpowsour.2009.06.005
10.1021/jp021634q
10.1039/c3ra41079j
10.1021/ja511759u
10.1021/acscatal.6b02702
10.1126/science.aan5412
10.1021/cr200217c
10.1039/C2TA00278G
10.1126/sciadv.1501122
10.1016/j.nanoen.2016.04.027
10.1126/science.aan2255
10.1021/ja3055639
10.3390/catal5031574
10.1039/C5NR06726J
10.1016/j.nanoen.2016.04.042
10.1002/aenm.201301735
10.1021/acscatal.6b02650
10.1039/C5EE03316K
10.1016/S1872-2067(16)62480-4
10.1002/aenm.201501497
10.1126/science.1168049
10.1002/aenm.201400840
10.1002/adfm.201402078
10.1021/acsnano.7b00417
10.1007/s41918-018-0025-9
10.1002/adma.201502315
10.1021/acs.chemrev.5b00462
10.1007/s003390101186
10.1016/j.jpowsour.2018.09.078
10.1002/adma.201706758
10.1039/C8EE02694G
10.1166/jnn.2010.2939
10.1039/C6MH00344C
10.1039/C6CS00250A
10.1038/nnano.2015.48
10.1016/j.carbon.2018.02.051
10.1126/sciadv.1400129
10.1016/j.ijhydene.2013.12.120
10.1021/acscatal.6b01222
10.1039/C6EE01160H
10.1039/C7EE02302B
10.1126/science.aad4998
10.1021/cr5003563
10.1002/aenm.201800716
10.1021/cr300014x
10.1021/am503372f
10.1038/s41929-019-0304-9
10.1021/cr200216x
10.1021/cr200167v
10.1016/j.jpowsour.2016.06.098
10.1016/j.apcatb.2009.10.008
10.1039/C6CS00328A
10.1016/j.nanoen.2016.09.040
10.1021/cr2003147
10.1007/s40843-017-9174-1
10.1021/ja7106146
10.1021/ja104425h
10.1016/j.carbon.2010.06.008
10.1002/adma.201505045
10.1016/j.jpowsour.2016.06.114
10.1021/cr200274s
10.1002/celc.201800657
10.1021/acs.jpcc.6b01885
10.1039/C6CC07049C
10.1039/C4CS00484A
10.1039/b200393g
10.1002/anie.201101287
10.1002/anie.201408990
10.1016/j.nanoen.2018.07.062
10.1016/j.nanoen.2015.07.002
10.1002/aenm.201801065
10.1039/C9EE00867E
10.1021/acscatal.7b02861
10.1021/cs3000864
10.1021/acs.chemrev.6b00398
10.1038/srep05130
10.1007/s41918-018-0002-3
10.1016/j.carbon.2019.02.013
10.1016/S0009-2614(02)00831-X
10.1021/acs.chemmater.5b03148
10.1002/aenm.201801289
10.1016/j.apsusc.2019.03.335
10.1038/nenergy.2015.6
10.1016/j.carbon.2017.03.037
10.1038/nmat4367
10.1126/science.1083440
10.1126/science.aad0832
10.1021/cr200205j
10.1021/ja5082553
10.1021/nn505582e
10.1002/adma.201606967
10.1016/j.jpowsour.2015.09.081
10.1021/acsenergylett.9b00804
10.1021/jp808560p
10.1002/chem.201304404
10.1039/C7TA09092G
10.1021/nn203393d
10.1016/j.apcatb.2018.05.046
10.1021/cs500673k
10.1002/adma.201807615
10.1002/smtd.201800168
10.1021/ja3043905
10.1016/j.electacta.2018.09.202
10.1038/s41929-018-0164-8
10.1039/C9TA01953G
10.3390/catal6080116
10.1002/anie.201303924
10.1002/anie.201204958
10.1039/C8CY00533H
10.1002/anie.201610119
10.1016/j.apcatb.2016.03.031
10.1039/C9EE00877B
10.1002/aenm.201000010
10.1021/cs500612k
10.1002/aenm.201600621
10.1002/aenm.201600794
10.1039/C6EE02171A
10.1002/aenm.201700518
10.1021/acsenergylett.6b00644
10.1016/j.apcatb.2012.02.009
10.1021/cr200256v
10.1016/j.carbon.2016.07.047
10.1016/j.carbon.2018.05.062
10.1021/acsami.7b12666
10.1038/ncomms12582
10.1016/j.nanoen.2016.03.016
10.1021/jz300243r
10.1021/cr200174w
10.1038/nenergy.2016.184
10.1021/cr200101d
10.1017/S1431927618009868
10.1021/cs300579b
10.1039/C4TA01506A
10.1021/acsami.6b02630
10.1016/j.nanoen.2016.02.038
10.1039/C5TA03900B
10.1016/j.apcatb.2014.02.040
10.1021/jacs.7b10385
10.1038/ncomms8343
10.1002/advs.201400015
10.1038/ncomms1427
10.1016/j.carbon.2016.10.046
10.1039/C4EE02281E
10.1002/adma.201604437
10.1016/j.carbon.2005.08.019
10.1016/j.nanoen.2017.07.006
10.1016/j.carbon.2015.12.034
10.1021/cs400374k
10.1021/nl203332e
10.1002/aenm.201601052
10.1039/C7TA08746B
10.1016/j.nanoen.2016.11.033
10.1002/anie.201509382
10.1016/j.coelec.2017.09.006
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jan 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2020
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.carbon.2019.09.029
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Engineering
EISSN 1873-3891
EndPage 92
ExternalDocumentID 10_1016_j_carbon_2019_09_029
S0008622319309340
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EFKBS
7SR
8FD
JG9
SSH
7S9
L.6
ID FETCH-LOGICAL-c433t-72c718c3275d987c6cfe76bc705c7438a8a1de5fe81a914da74ff26b2bc114d23
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Thu Jul 10 22:09:43 EDT 2025
Fri Jul 25 07:46:41 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Tue Aug 05 03:08:24 EDT 2025
Fri Feb 23 02:49:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oxygen evolution
Oxygen reduction
Porous structure
Catalysts
Metal-organic frameworks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-72c718c3275d987c6cfe76bc705c7438a8a1de5fe81a914da74ff26b2bc114d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9584-4748
PQID 2328303186
PQPubID 2045273
PageCount 16
ParticipantIDs proquest_miscellaneous_2352423401
proquest_journals_2328303186
crossref_primary_10_1016_j_carbon_2019_09_029
crossref_citationtrail_10_1016_j_carbon_2019_09_029
elsevier_sciencedirect_doi_10_1016_j_carbon_2019_09_029
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, Chen, Cullen, Hwang, Wang, Li, Liu, Karakalos, Lucero, Zhang, Lei, Xu, Sterbinsky, Feng, Su, More, Wang, Wang, Wu (bib29) 2018; 1
Mayrhofer, Strmcnik, Blizanac, Stamenkovic, Arenz, Markovic (bib151) 2008; 53
Yang, Shui, Du, Shao, Liu, Dai, Hu (bib15) 2019; 31
Hofmann, Blume, Wirth, Cantoro, Sharma, Ducati, Hävecker, Zafeiratos, Schnoerch, Oestereich, Teschner, Albrecht, Knop-Gericke, Schlögl, Robertson (bib168) 2009; 113
Serov, Artyushkova, Niangar, Wang, Dale, Jaouen, Sougrati, Jia, Mukerjee, Atanassov (bib89) 2015; 16
Li, Fang, Lin, Tian, An, Fu, Li, Jin, Ma (bib121) 2015; 3
Wei, Yang, Zhang, Wang, Zuin, Banham, Yang, Ye, Wang, Mohamedi, Sun (bib156) 2018; 237
Lee, Nam, Sun, Higashi, Lee, Lee, Chen, Cui, Cho (bib59) 2016
Sevilla, Fuertes (bib166) 2006; 44
Zhang, Xin, Li (bib51) 2012; 119–120
Park, Ni, Cote, Choi, Huang, Uribe-Romo, Chae, O'Keeffe, Yaghi (bib66) 2006; 103
Wang, Luo, Shao (bib180) 2018; 24
Yao, Huang, Xie, Lacey, Jacob, Xie, Chen, Nie, Pu, Rehwoldt, Yu, Zachariah, Wang, Shahbazian-Yassar, Li, Hu (bib175) 2018; 359
Shao, Dodelet, Wu, Zelenay (bib98) 2019
Wang, Fang, Zhang, Li, Wilkinson, Ignaszak, Zhang, Zhang (bib17) 2018; 1
Zhang, Chenitz, Lefèvre, Sun, Dodelet (bib97) 2016; 29
Xiong, Du, Liu, Perez, Supp, Ramakrishnan, Dai, Jiang (bib137) 2010; 132
Shang, Yu, Huang, Bian, Shi, Zhao, Waterhouse, Wu, Tung, Zhang (bib177) 2016; 28
Song, Yang, Singh, Yuan, Yu (bib133) 2016; 191
Hussain, Pawar, Huang, Tahir, Fischer, Zhu, Xia (bib83) 2019; 146
Yang, Qian, Du, Hua, Zuo, Cheng, Ma, Yin (bib38) 2017; 118
Wei, Tong, Zhang, Qiao, Gong, Sun (bib12) 2015; 5
Yin, Li, Lv, Fan, Zhao, Zhang, Wang, Cheng, Xi, Guo (bib60) 2017; 11
Nie, Li, Wei (bib10) 2015; 44
Wang, Prabhakaran, He, Shao, Wu (bib100) 2019
Burke, Enman, Batchellor, Zou, Boettcher (bib118) 2015; 27
Du, Shao, Sun, Yin, Liu, Wang (bib46) 2016; 29
Aijaz, Masa, Rosler, Xia, Weide, Botz, Fischer, Schuhmann, Muhler (bib124) 2016; 55
Guo, Shibuya, Akiba, Saji, Kondo, Nakamura (bib146) 2016; 351
Kreno, Leong, Farha, Allendorf, Van Duyne, Hupp (bib74) 2012; 112
Gong, Du, Xia, Durstock, Dai (bib134) 2009; 323
Liu, Shioyama, Akita, Xu (bib147) 2008; 130
Singh, Bae, Yu (bib103) 2015; 137
Stamenkovic, Strmcnik, Lopes, Markovic (bib3) 2016; 16
Sumida, Rogow, Mason, McDonald, Bloch, Herm, Bae, Long (bib69) 2012; 112
Dionigi, Strasser (bib125) 2016; 6
Yang, Zheng, Yang, Shi, Zhong, Zhang, Zhang, Hong, Peng, Zhou, Sun (bib91) 2017; 7
Wei, Fu, Zhang, Sun (bib4) 2017; 4
Chen, Li, Xu, Zhang (bib82) 2018; 132
Guan, Yu, Lou (bib178) 2016; 9
Lefevre, Proietti, Jaouen, Dodelet (bib93) 2009; 324
Lee, Tai Kim, Cao, Choi, Liu, Lee, Cho (bib61) 2011; 1
Lu, Yin, Shen (bib128) 2018; 2
Wang, Xiao, Yang, Xu, Lu, Du, Levin, Ge, Pan, Zhang, An (bib14) 2019; 7
He, Hwang, Cullen, Uddin, Langhorst, Li, Karakalos, Kropf, Wegener, Sokolowski, Chen, Myers, Su, More, Wang, Litster, Wu (bib101) 2019
Hunter, Gray, Muller (bib8) 2016; 116
Tu, Ren, Deng, Bao (bib132) 2018; 52
Dai, Xue, Qu, Choi, Baek (bib7) 2015; 115
Jeong, Shin, Choun, Maurya, Baik, Mun, Moon, Su, Lee (bib110) 2016; 120
Chung, Cullen, Higgins, Sneed, Holby, More, Zelenay (bib37) 2017; 357
Li, Sculley, Zhou (bib72) 2012; 112
Qian, Hu, Ge, Yang, Peng, Kang, Liu, Lee, Zhao (bib58) 2017; 111
Lee, Park, Yu (bib170) 2002; 360
Horcajada, Gref, Baati, Allan, Maurin, Couvreur, Ferey, Morris, Serre (bib75) 2012; 112
Zhou, Yang, Chan (bib41) 2014; 4
Sun, Zhang, Song, Pan, Zhuang, Xu, Xing (bib141) 2013; 3
Suen, Hung, Quan, Zhang, Xu, Chen (bib11) 2017; 46
Wei, Xu (bib53) 2018
Wang, Zhou, Fu, Li, Fan, Xin, Zheng, Li (bib102) 2014; 2
Zhang, Yang, Dubois, Herraiz, Chenitz, Lefèvre, Cherif, Vidal, Glibin, Sun, Dodelet (bib184) 2019
Simoes, Baranton, Coutanceau (bib50) 2010; 93
Chen, He, Spendelow, Wu (bib24) 2019
Barkholtz, Liu (bib23) 2017; 4
Zelenay (bib92) 2016
Chaikittisilp, Ariga, Yamauchi (bib85) 2013; 1
Zhong, Wang, Zhang, Xu, Xing, Xu, Zhang, Zhang (bib148) 2014; 53
Govindhan, Mao, Chen (bib54) 2016; 8
Proietti, Jaouen, Lefevre, Larouche, Tian, Herranz, Dodelet (bib35) 2011; 2
Wei, Zhang, Yang, Fu, Yang, Chen, Chen, Sun (bib155) 2018; 6
Rosi, Eckert, Eddaoudi, Vodak, Kim, O'Keeffe, Yaghi (bib65) 2003; 300
Wu, Geng, Ge, Guo, Wang, Zheng (bib42) 2016; 6
Lu, Du, Wang, Yang, Liu, Zhang, An, Levin, Wang, Ge (bib87) 2018; 5
Shen, Chen, Chen, Li (bib22) 2016; 6
Zhang, Chung, Cullen, Wagner, Kramm, More, Zelenay, Wu (bib30) 2019; 12
Huang, Liang, Wang, Cao (bib79) 2017; 46
Chaikittisilp, Torad, Li, Imura, Suzuki, Ishihara, Ariga, Yamauchi (bib123) 2014; 20
Van Pham, Klingele, Britton, Vuyyuru, Unmuessig, Holdcroft, Fischer, Thiele (bib142) 2017; 1
Varnell, Tse, Schulz, Fister, Haasch, Timoshenko, Frenkel, Gewirth (bib109) 2016; 7
Liu, Wang, Chen, Chen, Yang, Ma, Li, Wang (bib127) 2018; 403
Wang, Yin, Li, Chen, Wang (bib113) 2014; 39
Ledendecker, Clavel, Antonietti, Shalom (bib40) 2015; 25
Chen, Zhou, Xing, Xu, Tong, Xie, Zhang, Yan, Chu, Wu, Xie (bib112) 2017; 56
Wang, Cullen, Pan, Hwang, Wang, Feng, Wang, Engelhard, Zhang, He, Shao, Su, More, Spendelow, Wu (bib26) 2018
Yang, Miao, Hung, Chen, Tao, Wang, Zhang, Chen, Gao, Chen, Dai, Liu (bib145) 2016; 2
You, Gong, Wang, Qi, Wang, Chen, Ren (bib173) 2016; 6
Rabis, Rodriguez, Schmidt (bib1) 2012; 2
Yang, Jiang, Zhao, Zhu, Chen, Wang, Wu, Ma, Ma, Hu (bib140) 2011; 50
Chen, Wang, Wu, Xiong, Xu, Yu, Jiang (bib165) 2015; 27
Wang, Huang, Liu, Chang, Tang, Li, Chen, Jia, Yao, Wei, Wu, Li (bib27) 2017; 139
Kwon, Schouten, van der Waal, de Jong, Koper (bib48) 2016; 6
Du, Kong, Chen, Du, Gao, Yin (bib96) 2016; 37
Ding, Wei, Chen, Qi, Yang, Hu, Wang, Wan, Alvi, Li (bib39) 2013; 52
Suh, Park, Prasad, Lim (bib70) 2012; 112
Wu, Shen, Zhu, Zhou, Ji, Ma, Xu, Yang, Yuan (bib81) 2017; 116
Song, Wang, Pan, Xu, Zhuang (bib106) 2015; 300
Banham, Ye (bib33) 2017; 2
Wang, Zhang, Lin, Gupta, Wang, Tao, Fu, Wang, Zheng, Wu, Li (bib164) 2016; 25
Sun, Du, Du, Gao, Yin (bib13) 2019; 485
Cui, Ren, Deng, Deng, Bao (bib131) 2016; 9
Stariha, Artyushkova, Workman, Serov, McKinney, Halevi, Atanassov (bib34) 2016; 326
Farha, Eryazici, Jeong, Hauser, Wilmer, Sarjeant, Snurr, Nguyen, Yazaydin, Hupp (bib67) 2012; 134
Zhang, Osgood, Xie, Shao, Wu (bib18) 2017; 31
Banham, Choi, Kishimoto, Ye (bib182) 2019
Martinez, Komini Babu, Holby, Chung, Yin, Zelenay (bib183) 2019; 31
Li, Ghoshal, Liang, Sougrati, Jaouen, Halevi, McKinney, McCool, Ma, Yuan, Ma, Mukerjee, Jia (bib107) 2016; 9
Deng, Yu, Chen, Wang, Jin, Pan, Deng, Sun, Bao (bib130) 2013; 52
Zhou, Long, Yaghi (bib62) 2012; 112
Hu, Xiao, Zou, Dai (bib16) 2018; 1
Williford, Zhang (bib152) 2009; 194
Paulus, Schmidt, Gasteiger, Behm (bib150) 2001; 495
Yin, Yao, Wu, Zheng, Lin, Liu, Ju, Zhu, Hong, Deng, Zhou, Wei, Li (bib99) 2016; 55
Jaouen, Marcotte, Dodelet, Lindbergh (bib105) 2003; 107
Ma, Dai, Jaroniec, Qiao (bib120) 2014; 136
McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib56) 2015; 137
Li, Li, Tang, Li, Zhou, Kong, Lan, Bao, Dai (bib149) 2014; 4
Xia, Yan, Li, Wu, Lou, Wang (bib172) 2016; 1
Getman, Bae, Wilmer, Snurr (bib68) 2012; 112
Cui, Yue, Qian, Chen (bib76) 2012; 112
James (bib63) 2003; 32
Hou, Wen, Cui, Ci, Mao, Chen (bib84) 2015; 25
Zitolo, Goellner, Armel, Sougrati, Mineva, Stievano, Fonda, Jaouen (bib88) 2015; 14
Gupta, Qiao, Zhao, Xu, Lin, Devaguptapu, Wang, Swihart, Wu (bib126) 2016; 6
Chen, Duan, Ran, Qiao (bib160) 2015; 2
Luo, Engelhard, Shao, Wang (bib179) 2017; 7
Li, Cui, Zhong, Li, Wang, Wang, Jiang (bib111) 2016; 52
Wang, Xu, Liu, Li, Lu, Pan (bib163) 2016; 108
Kumar, Ando (bib167) 2010; 10
Zhang, Zhao, Xia, Dai (bib135) 2015; 10
Huang, Wang, Wen, Sennett, Gibson, Ren (bib169) 2002; 74
Liu, Zhu, Guo, Vasileff, Qiao (bib19) 2017; 7
Miao, He, Sahoo, Luo, Zhong, Chen, Guild, Jafari, Dutta, Cetegen, Wang, Alpay, Suib (bib57) 2016; 7
Du, Du, Chen, Kong, Yin, Wang (bib5) 2016; 8
Yang, Yao, Li, Fang, Nie, Liu, Zhou, Chen, Huang (bib43) 2011; 6
Zhao, Wang, Dong, He, Yin, An, Zhao, Zhang, Gao, Zhang, Lv, Wang, Zhang, Khattak, Khan, Wei, Zhang, Liu, Zhao, Tang (bib115) 2016; 1
Song, Cheng, Lushington, Sun (bib21) 2016; 6
Yoon, Srirambalaji, Kim (bib78) 2012; 112
Wei, Liu, Wang, Zhang, Huang, Yu (bib144) 2009; 9
Seh, Kibsgaard, Dickens, Chorkendorff, Nørskov, Jaramillo (bib2) 2017; 355
Lu, Gu, Wang, Wu, Liao, Li (bib119) 2016; 29
Li, Zheng, Jin, Li, Geng, Xue, Pang, Xu (bib20) 2018
Zhang, Guo, Tao, Lu, Wang (bib25) 2018
Zhang, Hwang, Wang, Feng, Karakalos, Luo, Qiao, Xie, Wang, Su, Shao, Wu (bib28) 2017; 139
Li, Wu, Higgins, Choi, Chen (bib90) 2012; 2
Zhang, Zhu, Pei, Liu, Qin, Zhang, Wang, Yin, Guiver (bib157) 2019
Wang, Swihart, Wu (bib31) 2019; 2
Shui, Wang, Du, Dai (bib136) 2015; 1
Singh, Mamtani, Bruening, Miller, Ozkan (bib44) 2014
Du, Luo, Feng, Engelhard, Xie, Han, Sun, Zhang, Yin, Wang, Wang, Shao (bib52) 2017; 39
Fang, Li, Li, Lin, Tian, Long, An, Fu, Jin, Ma (bib114) 2016; 326
Yan, Guo, Xie, Wang, Li, Li, Wang (bib138) 2017; 61
Chenitz, Kramm, Lefèvre, Glibin, Zhang, Sun, Dodelet (bib95) 2018; 11
Du, Shao, Sun, Yin, Du, Wang (bib47) 2018; 8
O'Keeffe, Yaghi (bib64) 2012; 112
Strickland, Miner, Jia, Tylus, Ramaswamy, Liang, Sougrati, Jaouen, Mukerjee (bib108) 2015; 6
Serov, Artyushkova, Atanassov (bib86) 2014; 4
Wei, Zhang, Yang, Chenitz, Banham, Yang, Ye, Knights, Sun (bib161) 2017; 9
Li, Wei, Gou, Xu (bib139) 2013; 3
Zhang, Xiong (bib77) 2012; 112
Xia, Zou, An, Xia, Guo (bib122) 2015; 8
Deng, Deng, Bao (bib129) 2017; 29
Arenz, Zana (bib181) 2016; 29
Zhang, Liu, Zang, Liu, Liu, Wang, Zhang, Zhang, Zhao (bib55) 2016; 30
Betard, Fischer (bib73) 2012; 112
Senthil Raja, Chuah, Lu (bib116) 2018
Zhao, Yin, Du, He, Zhao, Chang, Yin, Zhao, Liu, Tang (bib158) 2014; 8
Aijaz, Karkamkar, Choi, Tsumori, Ronnebro, Autrey, Shioyama, Xu (bib171) 2012; 134
Zelenay (bib94) 2017
Yan, Dong, Huang, Zou, Xie, Wang, Zhang, Liu, Shen, Wang (bib117) 2018; 6
Lee, Choun, Ye, Lee, Mun, Kang, Hwang, Lee, Shin, Moon, Kim, Lee, Lee (bib176) 2015; 54
Kuang, Luo, Kuang, Wang, Sun, Zhang, Wei (bib80) 2018; 137
Qiao, Liao, Wang, Zheng, Song, Li (bib143) 2016; 99
Wang, Yang, Wang, Chen, Zhou, Sun (bib45) 2014; 4
Qian, Sun, Du, Lou, Du, Zuo, Ma, Cheng, Gao, Yin (bib153) 2018; 292
Hu, Wang, Gao, Guo (bib162) 2010; 48
Wu, More, Johnston, Zelenay (bib104) 2
Chung (10.1016/j.carbon.2019.09.029_bib37) 2017; 357
Wu (10.1016/j.carbon.2019.09.029_bib71) 2012; 112
Dionigi (10.1016/j.carbon.2019.09.029_bib125) 2016; 6
Gong (10.1016/j.carbon.2019.09.029_bib134) 2009; 323
Yoon (10.1016/j.carbon.2019.09.029_bib78) 2012; 112
Zelenay (10.1016/j.carbon.2019.09.029_bib92) 2016
Lefevre (10.1016/j.carbon.2019.09.029_bib93) 2009; 324
Lu (10.1016/j.carbon.2019.09.029_bib87) 2018; 5
Barkholtz (10.1016/j.carbon.2019.09.029_bib23) 2017; 4
Qi (10.1016/j.carbon.2019.09.029_bib49) 2014; 154
Li (10.1016/j.carbon.2019.09.029_bib90) 2012; 2
Wang (10.1016/j.carbon.2019.09.029_bib45) 2014; 4
Hofmann (10.1016/j.carbon.2019.09.029_bib168) 2009; 113
Qiao (10.1016/j.carbon.2019.09.029_bib143) 2016; 99
Kumar (10.1016/j.carbon.2019.09.029_bib167) 2010; 10
Seh (10.1016/j.carbon.2019.09.029_bib2) 2017; 355
Ledendecker (10.1016/j.carbon.2019.09.029_bib40) 2015; 25
Banham (10.1016/j.carbon.2019.09.029_bib33) 2017; 2
Rosi (10.1016/j.carbon.2019.09.029_bib65) 2003; 300
Yan (10.1016/j.carbon.2019.09.029_bib117) 2018; 6
Zhong (10.1016/j.carbon.2019.09.029_bib148) 2014; 53
Tu (10.1016/j.carbon.2019.09.029_bib132) 2018; 52
Suen (10.1016/j.carbon.2019.09.029_bib11) 2017; 46
Song (10.1016/j.carbon.2019.09.029_bib21) 2016; 6
Wang (10.1016/j.carbon.2019.09.029_bib26) 2018
Zhang (10.1016/j.carbon.2019.09.029_bib51) 2012; 119–120
Van Pham (10.1016/j.carbon.2019.09.029_bib142) 2017; 1
Yin (10.1016/j.carbon.2019.09.029_bib99) 2016; 55
Burke (10.1016/j.carbon.2019.09.029_bib118) 2015; 27
Varnell (10.1016/j.carbon.2019.09.029_bib109) 2016; 7
Yan (10.1016/j.carbon.2019.09.029_bib138) 2017; 61
McCloskey (10.1016/j.carbon.2019.09.029_bib154) 2012; 3
Yang (10.1016/j.carbon.2019.09.029_bib43) 2011; 6
Chen (10.1016/j.carbon.2019.09.029_bib82) 2018; 132
Strickland (10.1016/j.carbon.2019.09.029_bib108) 2015; 6
Gupta (10.1016/j.carbon.2019.09.029_bib126) 2016; 6
Du (10.1016/j.carbon.2019.09.029_bib5) 2016; 8
Yang (10.1016/j.carbon.2019.09.029_bib38) 2017; 118
Hu (10.1016/j.carbon.2019.09.029_bib16) 2018; 1
Yang (10.1016/j.carbon.2019.09.029_bib145) 2016; 2
Li (10.1016/j.carbon.2019.09.029_bib159) 2016
Sumida (10.1016/j.carbon.2019.09.029_bib69) 2012; 112
Aijaz (10.1016/j.carbon.2019.09.029_bib171) 2012; 134
Guan (10.1016/j.carbon.2019.09.029_bib178) 2016; 9
Yang (10.1016/j.carbon.2019.09.029_bib140) 2011; 50
Shao (10.1016/j.carbon.2019.09.029_bib98) 2019
Chen (10.1016/j.carbon.2019.09.029_bib165) 2015; 27
Wei (10.1016/j.carbon.2019.09.029_bib12) 2015; 5
Dai (10.1016/j.carbon.2019.09.029_bib7) 2015; 115
Wu (10.1016/j.carbon.2019.09.029_bib42) 2016; 6
Williford (10.1016/j.carbon.2019.09.029_bib152) 2009; 194
Hu (10.1016/j.carbon.2019.09.029_bib162) 2010; 48
Mayrhofer (10.1016/j.carbon.2019.09.029_bib151) 2008; 53
Arenz (10.1016/j.carbon.2019.09.029_bib181) 2016; 29
Zhao (10.1016/j.carbon.2019.09.029_bib158) 2014; 8
Stariha (10.1016/j.carbon.2019.09.029_bib34) 2016; 326
Xia (10.1016/j.carbon.2019.09.029_bib172) 2016; 1
Zhang (10.1016/j.carbon.2019.09.029_bib77) 2012; 112
Shen (10.1016/j.carbon.2019.09.029_bib22) 2016; 6
Lee (10.1016/j.carbon.2019.09.029_bib61) 2011; 1
Shang (10.1016/j.carbon.2019.09.029_bib177) 2016; 28
Li (10.1016/j.carbon.2019.09.029_bib111) 2016; 52
Chen (10.1016/j.carbon.2019.09.029_bib24) 2019
Park (10.1016/j.carbon.2019.09.029_bib66) 2006; 103
Wang (10.1016/j.carbon.2019.09.029_bib164) 2016; 25
Govindhan (10.1016/j.carbon.2019.09.029_bib54) 2016; 8
Serov (10.1016/j.carbon.2019.09.029_bib86) 2014; 4
Shao (10.1016/j.carbon.2019.09.029_bib9) 2016; 116
Proietti (10.1016/j.carbon.2019.09.029_bib35) 2011; 2
Getman (10.1016/j.carbon.2019.09.029_bib68) 2012; 112
Cui (10.1016/j.carbon.2019.09.029_bib76) 2012; 112
Senthil Raja (10.1016/j.carbon.2019.09.029_bib116) 2018
Chaikittisilp (10.1016/j.carbon.2019.09.029_bib85) 2013; 1
Deng (10.1016/j.carbon.2019.09.029_bib129) 2017; 29
Du (10.1016/j.carbon.2019.09.029_bib46) 2016; 29
Wang (10.1016/j.carbon.2019.09.029_bib113) 2014; 39
Luo (10.1016/j.carbon.2019.09.029_bib179) 2017; 7
McCrory (10.1016/j.carbon.2019.09.029_bib56) 2015; 137
Singh (10.1016/j.carbon.2019.09.029_bib103) 2015; 137
Singh (10.1016/j.carbon.2019.09.029_bib44) 2014
Zhang (10.1016/j.carbon.2019.09.029_bib28) 2017; 139
Ballard (10.1016/j.carbon.2019.09.029_bib32) 2017
Lu (10.1016/j.carbon.2019.09.029_bib128) 2018; 2
Sevilla (10.1016/j.carbon.2019.09.029_bib166) 2006; 44
Wei (10.1016/j.carbon.2019.09.029_bib53) 2018
Ma (10.1016/j.carbon.2019.09.029_bib120) 2014; 136
Yang (10.1016/j.carbon.2019.09.029_bib15) 2019; 31
Paulus (10.1016/j.carbon.2019.09.029_bib150) 2001; 495
Li (10.1016/j.carbon.2019.09.029_bib29) 2018; 1
He (10.1016/j.carbon.2019.09.029_bib101) 2019
Liu (10.1016/j.carbon.2019.09.029_bib127) 2018; 403
Simoes (10.1016/j.carbon.2019.09.029_bib50) 2010; 93
Zhang (10.1016/j.carbon.2019.09.029_bib25) 2018
Horcajada (10.1016/j.carbon.2019.09.029_bib75) 2012; 112
Chenitz (10.1016/j.carbon.2019.09.029_bib95) 2018; 11
Kreno (10.1016/j.carbon.2019.09.029_bib74) 2012; 112
Liu (10.1016/j.carbon.2019.09.029_bib147) 2008; 130
Hunter (10.1016/j.carbon.2019.09.029_bib8) 2016; 116
Farha (10.1016/j.carbon.2019.09.029_bib67) 2012; 134
Zhang (10.1016/j.carbon.2019.09.029_bib55) 2016; 30
Hou (10.1016/j.carbon.2019.09.029_bib84) 2015; 25
Song (10.1016/j.carbon.2019.09.029_bib106) 2015; 300
Aijaz (10.1016/j.carbon.2019.09.029_bib124) 2016; 55
Yang (10.1016/j.carbon.2019.09.029_bib91) 2017; 7
Zhou (10.1016/j.carbon.2019.09.029_bib62) 2012; 112
Zhang (10.1016/j.carbon.2019.09.029_bib30) 2019; 12
Zhao (10.1016/j.carbon.2019.09.029_bib115) 2016; 1
Jeong (10.1016/j.carbon.2019.09.029_bib110) 2016; 120
Martinez (10.1016/j.carbon.2019.09.029_bib183) 2019; 31
Wu (10.1016/j.carbon.2019.09.029_bib104) 2011; 332
Guo (10.1016/j.carbon.2019.09.029_bib146) 2016; 351
Wang (10.1016/j.carbon.2019.09.029_bib100) 2019
Li (10.1016/j.carbon.2019.09.029_bib121) 2015; 3
Xia (10.1016/j.carbon.2019.09.029_bib122) 2015; 8
O'Keeffe (10.1016/j.carbon.2019.09.029_bib64) 2012; 112
Shui (10.1016/j.carbon.2019.09.029_bib136) 2015; 1
Sun (10.1016/j.carbon.2019.09.029_bib13) 2019; 485
Zitolo (10.1016/j.carbon.2019.09.029_bib88) 2015; 14
Rabis (10.1016/j.carbon.2019.09.029_bib1) 2012; 2
Qian (10.1016/j.carbon.2019.09.029_bib58) 2017; 111
Zhang (10.1016/j.carbon.2019.09.029_bib135) 2015; 10
Wang (10.1016/j.carbon.2019.09.029_bib31) 2019; 2
Li (10.1016/j.carbon.2019.09.029_bib139) 2013; 3
Du (10.1016/j.carbon.2019.09.029_bib47) 2018; 8
James (10.1016/j.carbon.2019.09.029_bib63) 2003; 32
Betard (10.1016/j.carbon.2019.09.029_bib73) 2012; 112
Li (10.1016/j.carbon.2019.09.029_bib149) 2014; 4
Huang (10.1016/j.carbon.2019.09.029_bib169) 2002; 74
Du (10.1016/j.carbon.2019.09.029_bib52) 2017; 39
Wang (10.1016/j.carbon.2019.09.029_bib27) 2017; 139
Wu (10.1016/j.carbon.2019.09.029_bib81) 2017; 116
Li (10.1016/j.carbon.2019.09.029_bib72) 2012; 112
Wang (10.1016/j.carbon.2019.09.029_bib102) 2014; 2
Wei (10.1016/j.carbon.2019.09.029_bib144) 2009; 9
Wei (10.1016/j.carbon.2019.09.029_bib161) 2017; 9
Wang (10.1016/j.carbon.2019.09.029_bib14) 2019; 7
Xiao (10.1016/j.carbon.2019.09.029_bib36) 2011; 11
Jaouen (10.1016/j.carbon.2019.09.029_bib105) 2003; 107
Zelenay (10.1016/j.carbon.2019.09.029_bib94) 2017
Deng (10.1016/j.carbon.2019.09.029_bib130) 2013; 52
Zhou (10.1016/j.carbon.2019.09.029_bib41) 2014; 4
Lu (10.1016/j.carbon.2019.09.029_bib119) 2016; 29
Huang (10.1016/j.carbon.2019.09.029_bib79) 2017; 46
Nie (10.1016/j.carbon.2019.09.029_bib10) 2015; 44
Lee (10.1016/j.carbon.2019.09.029_bib170) 2002; 360
Yao (10.1016/j.carbon.2019.09.029_bib175) 2018; 359
Zhang (10.1016/j.carbon.2019.09.029_bib18) 2017; 31
Song (10.1016/j.carbon.2019.09.029_bib133) 2016; 191
You (10.1016/j.carbon.2019.09.029_bib173) 2016; 6
Kwon (10.1016/j.carbon.2019.09.029_bib48) 2016; 6
Zhang (10.1016/j.carbon.2019.09.029_bib157) 2019
Li (10.1016/j.carbon.2019.09.029_bib107) 2016; 9
Du (10.1016/j.carbon.2019.09.029_bib96) 2016; 37
Yin (10.1016/j.carbon.2019.09.029_bib60) 2017; 11
Zhang (10.1016/j.carbon.2019.09.029_bib184) 2019
Ding (10.1016/j.carbon.2019.09.029_bib39) 2013; 52
Cui (10.1016/j.carbon.2019.09.029_bib131) 2016; 9
Chen (10.1016/j.carbon.2019.09.029_bib160) 2015; 2
Du (10.1016/j.carbon.2019.09.029_bib6) 2014; 6
Chaikittisilp (10.1016/j.carbon.2019.09.029_bib123) 2014; 20
Xiong (10.1016/j.carbon.2019.09.029_bib137) 2010; 132
Hussain (10.1016/j.carbon.2019.09.029_bib83) 2019; 146
Suh (10.1016/j.carbon.2019.09.029_bib70) 2012; 112
Chen (10.1016/j.carbon.2019.09.029_bib112) 2017; 56
Miao (10.1016/j.carbon.2019.09.029_bib57) 2016; 7
Stamenkovic (10.1016/j.carbon.2019.09.029_bib3) 2016; 16
Zhang (10.1016/j.carbon.2019.09.029_bib97) 2016; 29
Wang (10.1016/j.carbon.2019.09.029_bib180) 2018; 24
Wei (10.1016/j.carbon.2019.09.029_bib4) 2017; 4
Qian (10.1016/j.carbon.2019.09.029_bib153) 2018; 292
Kuang (10.1016/j.carbon.2019.09.029_bib80) 2018; 137
Wei (10.1016/j.carbon.2019.09.029_bib156) 2018; 237
Wang (10.1016/j.carbon.2019.09.029_bib163) 2016; 108
Serov (10.1016/j.carbon.2019.09.029_bib89) 2015; 16
Liu (10.1016/j.carbon.2019.09.029_bib19) 2017; 7
Wei (10.1016/j.carbon.2019.09.029_bib155) 2018; 6
Fang (10.1016/j.carbon.2019.09.029_bib114) 2016; 326
Sun (10.1016/j.carbon.2019.09.029_bib141) 2013; 3
Wang (10.1016/j.carbon.2019.09.029_bib17) 2018; 1
Lee (10.1016/j.carbon.2019.09.029_bib59) 2016
Lee (10.1016/j.carbon.2019.09.029_bib176) 2015; 54
Banham (10.1016/j.carbon.2019.09.029_bib182) 2019
Li (10.1016/j.carbon.2019.09.029_bib20) 2018
Li (10.1016/j.carbon.2019.09.029_bib174) 2018
References_xml – volume: 44
  start-page: 2168
  year: 2015
  end-page: 2201
  ident: bib10
  article-title: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction
  publication-title: Chem. Soc. Rev.
– volume: 37
  start-page: 1025
  year: 2016
  end-page: 1036
  ident: bib96
  article-title: A review of applications of poly(diallyldimethyl ammonium chloride) in polymer membrane fuel cells: from nanoparticles to support materials
  publication-title: Chin. J. Catal.
– volume: 8
  start-page: 1485
  year: 2016
  end-page: 1492
  ident: bib54
  article-title: Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting
  publication-title: Nanoscale
– volume: 10
  start-page: 444
  year: 2015
  end-page: 452
  ident: bib135
  article-title: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
  publication-title: Nat. Nanotechnol.
– volume: 134
  start-page: 13926
  year: 2012
  end-page: 13929
  ident: bib171
  article-title: Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 314
  year: 2016
  end-page: 322
  ident: bib46
  article-title: Advanced catalyst supports for PEM fuel cell cathodes
  publication-title: Nano Energy
– volume: 359
  start-page: 1489
  year: 2018
  end-page: 1494
  ident: bib175
  article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles
  publication-title: Science
– volume: 39
  start-page: 245
  year: 2017
  end-page: 252
  ident: bib52
  article-title: Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: a highly durable oxygen evolution catalyst
  publication-title: Nano Energy
– volume: 12
  start-page: 2548
  year: 2019
  end-page: 2558
  ident: bib30
  article-title: High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites
  publication-title: Energy Environ. Sci.
– volume: 112
  start-page: 1055
  year: 2012
  end-page: 1083
  ident: bib73
  article-title: Metal-organic framework thin films: from fundamentals to applications
  publication-title: Chem. Rev.
– volume: 1
  start-page: 16184
  year: 2016
  ident: bib115
  article-title: Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution
  publication-title: Nat. Energy
– volume: 6
  start-page: 1501497
  year: 2016
  ident: bib173
  article-title: Enhanced cathodic oxygen reduction and power production of microbial fuel cell based on noble-metal-free electrocatalyst derived from metal-organic frameworks
  publication-title: Adv. Energy Mater.
– volume: 2
  year: 2016
  ident: bib145
  article-title: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst
  publication-title: Sci. Adv.
– volume: 357
  start-page: 479
  year: 2017
  end-page: 484
  ident: bib37
  article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
  publication-title: Science
– volume: 28
  start-page: 1668
  year: 2016
  end-page: 1674
  ident: bib177
  article-title: Well-dispersed ZIF-derived Co,N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts
  publication-title: Adv. Mater.
– volume: 112
  start-page: 673
  year: 2012
  end-page: 674
  ident: bib62
  article-title: Introduction to metal-organic frameworks
  publication-title: Chem. Rev.
– volume: 115
  start-page: 4823
  year: 2015
  end-page: 4892
  ident: bib7
  article-title: Metal-free catalysts for oxygen reduction reaction
  publication-title: Chem. Rev.
– volume: 485
  start-page: 41
  year: 2019
  end-page: 47
  ident: bib13
  article-title: Three-dimensional layered double hydroxides on carbon nanofibers: the engineered mass transfer channels and active sites towards oxygen evolution reaction
  publication-title: Appl. Surf. Sci.
– start-page: 1800716
  year: 2018
  ident: bib20
  article-title: Metal-organic framework-derived carbons for battery applications
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 205
  year: 2011
  end-page: 211
  ident: bib43
  article-title: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction
  publication-title: ACS Nano
– volume: 360
  start-page: 250
  year: 2002
  end-page: 255
  ident: bib170
  article-title: Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition
  publication-title: Chem. Phys. Lett.
– volume: 25
  start-page: 110
  year: 2016
  end-page: 119
  ident: bib164
  article-title: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid
  publication-title: Nano Energy
– volume: 55
  start-page: 10800
  year: 2016
  end-page: 10805
  ident: bib99
  article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 25
  start-page: 393
  year: 2015
  end-page: 399
  ident: bib40
  article-title: Highly porous materials as tunable electrocatalysts for the hydrogen and oxygen evolution reaction
  publication-title: Adv. Funct. Mater.
– volume: 191
  start-page: 202
  year: 2016
  end-page: 208
  ident: bib133
  article-title: Nitrogen-doped hollow carbon spheres with highly graphitized mesoporous shell: role of Fe for oxygen evolution reaction
  publication-title: Appl. Catal., B
– volume: 116
  start-page: 3594
  year: 2016
  end-page: 3657
  ident: bib9
  article-title: Recent advances in electrocatalysts for oxygen reduction reaction
  publication-title: Chem. Rev.
– year: 2016
  ident: bib92
  article-title: Non-Precious metal fuel cell cathodes: catalyst development and electrode structure design
  publication-title: 2016 Annual Merit Review and Peer Evaluation Meeting
– volume: 52
  start-page: 494
  year: 2018
  end-page: 500
  ident: bib132
  article-title: Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation
  publication-title: Nano Energy
– start-page: 1801065
  year: 2018
  ident: bib116
  article-title: In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 805
  year: 2018
  end-page: 810
  ident: bib117
  article-title: Engineering the coordination geometry of metal–organic complex electrocatalysts for highly enhanced oxygen evolution reaction
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 9978
  year: 2013
  ident: bib139
  article-title: Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts
  publication-title: RSC Adv.
– volume: 25
  start-page: 872
  year: 2015
  end-page: 882
  ident: bib84
  article-title: An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 15250
  year: 2016
  end-page: 15257
  ident: bib5
  article-title: Metal-organic coordination networks: prussian blue and its synergy with Pt nanoparticles to enhance oxygen reduction kinetics
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 13233
  year: 2016
  end-page: 13236
  ident: bib111
  article-title: Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction
  publication-title: Chem. Commun.
– volume: 300
  start-page: 1127
  year: 2003
  end-page: 1129
  ident: bib65
  article-title: Hydrogen storage in microporous metal-organic frameworks
  publication-title: Science
– volume: 24
  start-page: 1876
  year: 2018
  end-page: 1877
  ident: bib180
  article-title: In-situ S/TEM probing of the behavior of nanoparticles under chemical and electrochemical reactions in the system involving solid, liquid and gas
  publication-title: Microsc. Microanal.
– start-page: 1619
  year: 2019
  end-page: 1633
  ident: bib24
  article-title: Atomically dispersed metal catalysts for oxygen reduction
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 57
  year: 2016
  end-page: 69
  ident: bib3
  article-title: Energy and fuels from electrochemical interfaces
  publication-title: Nat. Mater.
– volume: 112
  start-page: 1163
  year: 2012
  end-page: 1195
  ident: bib77
  article-title: Ferroelectric metal-organic frameworks
  publication-title: Chem. Rev.
– volume: 11
  start-page: 365
  year: 2018
  end-page: 382
  ident: bib95
  article-title: A specific demetalation of Fe–N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells
  publication-title: Energy Environ. Sci.
– start-page: 1706758
  year: 2018
  ident: bib26
  article-title: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1604437
  year: 2016
  ident: bib119
  article-title: Bimetal-organic framework derived CoFe2 O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction
  publication-title: Adv. Mater.
– year: 2017
  ident: bib94
  article-title: ElectroCat (Electrocatalysis Consortium), 2017 Annual Merit Review and Peer Evaluation Meeting
– year: 2017
  ident: bib32
  article-title: Ballard to Offer World's First PEM Fuel Cell Product Using Non Precious Metal Catalyst
– volume: 1
  start-page: 15006
  year: 2016
  ident: bib172
  article-title: A metal–organic framework-derived bifunctional oxygen electrocatalyst
  publication-title: Nat. Energy
– year: 2019
  ident: bib182
  article-title: Integrating PGM-free Catalysts into Catalyst Layers and Proton Exchange Membrane Fuel Cell Devices
– volume: 2
  start-page: 629
  year: 2017
  end-page: 638
  ident: bib33
  article-title: Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective
  publication-title: ACS Energy Lett.
– volume: 111
  start-page: 641
  year: 2017
  end-page: 650
  ident: bib58
  article-title: A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries
  publication-title: Carbon
– volume: 326
  start-page: 43
  year: 2016
  end-page: 49
  ident: bib34
  article-title: PGM-free Fe-N-C catalysts for oxygen reduction reaction: catalyst layer design
  publication-title: J. Power Sources
– volume: 5
  start-page: 3323
  year: 2018
  end-page: 3329
  ident: bib87
  article-title: Highly dispersed Cu−NX moieties embedded in graphene: a promising electrocatalyst towards the oxygen reduction reaction
  publication-title: ChemElectroChem
– volume: 300
  start-page: 279
  year: 2015
  end-page: 284
  ident: bib106
  article-title: Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction
  publication-title: J. Power Sources
– volume: 1
  start-page: 1
  year: 2018
  end-page: 34
  ident: bib17
  article-title: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal–air batteries
  publication-title: Electrochem. Energy Rev.
– volume: 119–120
  start-page: 40
  year: 2012
  end-page: 48
  ident: bib51
  article-title: Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: cogeneration of electricity and valuable chemicals
  publication-title: Appl. Catal., B
– volume: 332
  start-page: 443
  year: 2011
  end-page: 447
  ident: bib104
  article-title: High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt
  publication-title: Science
– volume: 6
  start-page: 1601198
  year: 2016
  ident: bib126
  article-title: Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution
  publication-title: Adv. Energy Mater.
– volume: 112
  start-page: 1105
  year: 2012
  end-page: 1125
  ident: bib74
  article-title: Metal-organic framework materials as chemical sensors
  publication-title: Chem. Rev.
– volume: 46
  start-page: 126
  year: 2017
  end-page: 157
  ident: bib79
  article-title: Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 14043
  year: 2014
  end-page: 14049
  ident: bib6
  article-title: Polyelectrolyte assisted synthesis and enhanced oxygen reduction activity of Pt nanocrystals with controllable shape and size
  publication-title: ACS Appl. Mater. Interfaces
– volume: 118
  start-page: 139
  year: 2017
  end-page: 147
  ident: bib38
  article-title: Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: a promising cathode scaffold with excellent rate performance for rechargeable Li-O 2 batteries
  publication-title: Carbon
– volume: 237
  start-page: 85
  year: 2018
  end-page: 93
  ident: bib156
  article-title: An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction
  publication-title: Appl. Catal., B
– volume: 32
  start-page: 276
  year: 2003
  ident: bib63
  article-title: Metal-organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 14
  year: 2013
  end-page: 19
  ident: bib85
  article-title: A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications
  publication-title: J. Mater. Chem.
– volume: 194
  start-page: 1164
  year: 2009
  end-page: 1170
  ident: bib152
  article-title: Air electrode design for sustained high power operation of Li/air batteries
  publication-title: J. Power Sources
– year: 2019
  ident: bib157
  article-title: Hierarchically Porous Co-N-C Cathode Catalyst Layers for Anion Exchange Membrane Fuel Cells
– volume: 355
  year: 2017
  ident: bib2
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– start-page: 1601052
  year: 2016
  ident: bib59
  article-title: Composites of a prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn-air battery
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 11007
  year: 2019
  end-page: 11015
  ident: bib14
  article-title: Dual-nitrogen-source engineered Fe-nx moieties as A booster to oxygen electroreduction
  publication-title: J. Mater. Chem.
– volume: 136
  start-page: 13925
  year: 2014
  end-page: 13931
  ident: bib120
  article-title: Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 7549
  year: 2015
  end-page: 7558
  ident: bib118
  article-title: Oxygen evolution reaction electrocatalysis on transition metal oxides and (Oxy)hydroxides: activity trends and design principles
  publication-title: Chem. Mater.
– volume: 154
  start-page: 360
  year: 2014
  end-page: 368
  ident: bib49
  article-title: Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration
  publication-title: Appl. Catal., B
– volume: 9
  start-page: 2418
  year: 2016
  end-page: 2432
  ident: bib107
  article-title: Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction
  publication-title: Energy Environ. Sci.
– volume: 132
  start-page: 15839
  year: 2010
  end-page: 15841
  ident: bib137
  article-title: 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  ident: bib183
  article-title: Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction
  publication-title: Adv. Mater.
– volume: 39
  start-page: 16179
  year: 2014
  end-page: 16186
  ident: bib113
  article-title: Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte
  publication-title: Int. J. Hydrogen Energy
– volume: 134
  start-page: 15016
  year: 2012
  end-page: 15021
  ident: bib67
  article-title: Metal-organic framework materials with ultrahigh surface areas: is the sky the limit?
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 997
  year: 2012
  end-page: 1001
  ident: bib154
  article-title: Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries
  publication-title: J. Phys. Chem. Lett.
– volume: 112
  start-page: 703
  year: 2012
  end-page: 723
  ident: bib68
  article-title: Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks
  publication-title: Chem. Rev.
– volume: 55
  start-page: 4087
  year: 2016
  end-page: 4091
  ident: bib124
  article-title: Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode
  publication-title: Angew. Chem. Int. Ed.
– year: 2019
  ident: bib98
  article-title: PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges
  publication-title: Adv. Mater.
– volume: 2
  start-page: 416
  year: 2011
  ident: bib35
  article-title: Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells
  publication-title: Nat. Commun.
– year: 2019
  ident: bib101
  article-title: Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy
  publication-title: Energy Environ. Sci.
– start-page: 1800406
  year: 2018
  ident: bib25
  article-title: Defect-based single-atom electrocatalysts
  publication-title: Small Methods
– volume: 16
  start-page: 293
  year: 2015
  end-page: 300
  ident: bib89
  article-title: Nano-structured non-platinum catalysts for automotive fuel cell application
  publication-title: Nano Energy
– volume: 6
  start-page: 116
  year: 2016
  ident: bib21
  article-title: Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells
  publication-title: Catalysts
– start-page: 1800168
  year: 2018
  ident: bib53
  article-title: The comprehensive understanding of 10 mA cmgeo−2 as an evaluation parameter for electrochemical water splitting
  publication-title: Small Methods
– volume: 44
  start-page: 468
  year: 2006
  end-page: 474
  ident: bib166
  article-title: Catalytic graphitization of templated mesoporous carbons
  publication-title: Carbon
– volume: 1
  year: 2015
  ident: bib136
  article-title: N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells
  publication-title: Sci. Adv.
– volume: 6
  start-page: 7343
  year: 2015
  ident: bib108
  article-title: Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination
  publication-title: Nat. Commun.
– volume: 7
  start-page: 7658
  year: 2017
  end-page: 7664
  ident: bib179
  article-title: Revealing the dynamics of platinum nanoparticle catalysts on carbon in oxygen and water using environmental TEM
  publication-title: ACS Catal.
– volume: 31
  year: 2019
  ident: bib15
  article-title: Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future
  publication-title: Adv. Mater.
– volume: 6
  start-page: 5887
  year: 2016
  end-page: 5903
  ident: bib22
  article-title: Development of MOF-derived carbon-based nanomaterials for efficient catalysis
  publication-title: ACS Catal.
– volume: 112
  start-page: 1196
  year: 2012
  end-page: 1231
  ident: bib78
  article-title: Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis
  publication-title: Chem. Rev.
– volume: 8
  start-page: 568
  year: 2015
  end-page: 576
  ident: bib122
  article-title: A metal–organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 433
  year: 2018
  end-page: 441
  ident: bib80
  article-title: Metal organic framework nanofibers derived Co 3 O 4 -doped carbon-nitrogen nanosheet arrays for high efficiency electrocatalytic oxygen evolution
  publication-title: Carbon
– volume: 9
  start-page: 1752
  year: 2009
  end-page: 1758
  ident: bib144
  article-title: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties
  publication-title: Nano Lett.
– volume: 112
  start-page: 869
  year: 2012
  end-page: 932
  ident: bib72
  article-title: Metal-organic frameworks for separations
  publication-title: Chem. Rev.
– volume: 29
  start-page: 1606967
  year: 2017
  ident: bib129
  article-title: Robust catalysis on 2D materials encapsulating metals: concept, application, and perspective
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6704
  year: 2016
  end-page: 6717
  ident: bib48
  article-title: Electrocatalytic conversion of furanic compounds
  publication-title: ACS Catal.
– volume: 7
  start-page: 12582
  year: 2016
  ident: bib109
  article-title: Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts
  publication-title: Nat. Commun.
– volume: 52
  start-page: 11755
  year: 2013
  end-page: 11759
  ident: bib39
  article-title: Space-Confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 146
  start-page: 348
  year: 2019
  end-page: 363
  ident: bib83
  article-title: Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: a correlational study
  publication-title: Carbon
– start-page: 1801289
  year: 2018
  ident: bib174
  article-title: In situ “chainmail catalyst” assembly in low-tortuosity, hierarchical carbon frameworks for efficient and stable hydrogen generation
  publication-title: Adv. Energy Mater.
– volume: 93
  start-page: 354
  year: 2010
  end-page: 362
  ident: bib50
  article-title: Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration
  publication-title: Appl. Catal., B
– volume: 56
  start-page: 610
  year: 2017
  end-page: 614
  ident: bib112
  article-title: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 1400015
  year: 2015
  ident: bib160
  article-title: Paper-based N-doped carbon films for enhanced oxygen evolution electrocatalysis
  publication-title: Adv. Sci.
– volume: 1
  start-page: 935
  year: 2018
  end-page: 945
  ident: bib29
  article-title: Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells
  publication-title: Nat. Catal.
– volume: 112
  start-page: 836
  year: 2012
  end-page: 868
  ident: bib71
  article-title: Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks
  publication-title: Chem. Rev.
– volume: 7
  start-page: 139
  year: 2017
  end-page: 145
  ident: bib91
  article-title: Modeling Fe/N/C catalysts in monolayer graphene
  publication-title: ACS Catal.
– volume: 323
  start-page: 760
  year: 2009
  end-page: 764
  ident: bib134
  article-title: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction
  publication-title: Science
– volume: 9
  start-page: 3092
  year: 2016
  end-page: 3096
  ident: bib178
  article-title: A dual-metal–organic-framework derived electrocatalyst for oxygen reduction
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1600794
  year: 2016
  ident: bib42
  article-title: Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 3165
  year: 2015
  end-page: 3168
  ident: bib103
  article-title: Fe-P: a new class of electroactive catalyst for oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 17281
  year: 2017
  end-page: 17284
  ident: bib27
  article-title: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1400840
  year: 2014
  ident: bib41
  article-title: Structuring porous iron-nitrogen-doped carbon in a core/shell geometry for the oxygen reduction reaction
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 3739
  year: 2010
  end-page: 3758
  ident: bib167
  article-title: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
  publication-title: J. Nanosci. Nanotechnol.
– volume: 116
  start-page: 14120
  year: 2016
  end-page: 14136
  ident: bib8
  article-title: Earth-abundant heterogeneous water oxidation catalysts
  publication-title: Chem. Rev.
– volume: 1
  start-page: 34
  year: 2011
  end-page: 50
  ident: bib61
  article-title: Metal-air batteries with high energy density: Li-air versus Zn-air
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1301735
  year: 2014
  ident: bib86
  article-title: Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: synthesis, structure, and reactivity
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1726
  year: 2013
  end-page: 1729
  ident: bib141
  article-title: Fluorine-doped carbon blacks: highly efficient metal-free electrocatalysts for oxygen reduction reaction
  publication-title: ACS Catal.
– volume: 495
  start-page: 134
  year: 2001
  end-page: 145
  ident: bib150
  article-title: Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study
  publication-title: J. Electroanal. Chem.
– volume: 52
  start-page: 371
  year: 2013
  end-page: 375
  ident: bib130
  article-title: Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 116
  start-page: 68
  year: 2017
  end-page: 76
  ident: bib81
  article-title: Metal organic framework derived NiFe@N-doped graphene microtube composites for hydrogen evolution catalyst
  publication-title: Carbon
– volume: 8
  start-page: 3216
  year: 2018
  end-page: 3232
  ident: bib47
  article-title: Electrocatalytic valorisation of biomass derived chemicals
  publication-title: Catal. Sci. Technol.
– volume: 9
  start-page: 36944
  year: 2017
  end-page: 36954
  ident: bib161
  article-title: 3D porous Fe/N/C spherical nanostructures as high-performance electrocatalysts for oxygen reduction in both alkaline and acidic media
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 3928
  year: 2014
  end-page: 3936
  ident: bib45
  article-title: Pyrolyzed Fe–N–C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium
  publication-title: ACS Catal.
– volume: 324
  start-page: 71
  year: 2009
  end-page: 74
  ident: bib93
  article-title: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells
  publication-title: Science
– volume: 326
  start-page: 50
  year: 2016
  end-page: 59
  ident: bib114
  article-title: Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst
  publication-title: J. Power Sources
– volume: 120
  start-page: 7705
  year: 2016
  end-page: 7714
  ident: bib110
  article-title: Nitrogen-deficient ORR active sites formation by iron-assisted water vapor activation of electrospun carbon nanofibers
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 1600038
  year: 2017
  ident: bib142
  article-title: Tridoped reduced graphene oxide as a metal-free catalyst for oxygen reduction reaction demonstrated in acidic and alkaline polymer electrolyte fuel cells
  publication-title: Adv. Sustain. Syst.
– volume: 30
  start-page: 93
  year: 2016
  end-page: 102
  ident: bib55
  article-title: Co/Co9S8@S,N-Doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media
  publication-title: Nano Energy
– volume: 29
  start-page: 111
  year: 2016
  end-page: 125
  ident: bib97
  article-title: Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells?
  publication-title: Nano Energy
– volume: 50
  start-page: 7132
  year: 2011
  end-page: 7135
  ident: bib140
  article-title: Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 403
  start-page: 90
  year: 2018
  end-page: 96
  ident: bib127
  article-title: Quaternary bimetallic phosphosulphide nanosheets derived from prussian blue analogues: origin of the ultra-high activity for oxygen evolution
  publication-title: J. Power Sources
– volume: 11
  start-page: 2275
  year: 2017
  end-page: 2283
  ident: bib60
  article-title: NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries
  publication-title: ACS Nano
– volume: 2
  start-page: 864
  year: 2012
  end-page: 890
  ident: bib1
  article-title: Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges
  publication-title: ACS Catal.
– volume: 11
  start-page: 5071
  year: 2011
  end-page: 5078
  ident: bib36
  article-title: Hierarchically porous graphene as a lithium-air battery electrode
  publication-title: Nano Lett.
– year: 2019
  ident: bib100
  article-title: Iron-free cathode catalysts for proton-exchange-membrane fuel cells: cobalt catalysts and the peroxide mitigation approach
  publication-title: Adv. Mater.
– volume: 2
  start-page: 105
  year: 2018
  end-page: 127
  ident: bib128
  article-title: Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction
  publication-title: Electrochem. Energy Rev.
– volume: 74
  start-page: 387
  year: 2002
  end-page: 391
  ident: bib169
  article-title: Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes
  publication-title: Appl. Phys. A
– volume: 3
  start-page: 17392
  year: 2015
  end-page: 17402
  ident: bib121
  article-title: MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR
  publication-title: J. Mater. Chem.
– volume: 292
  start-page: 838
  year: 2018
  end-page: 845
  ident: bib153
  article-title: Insights into the role of oxygen functional groups and defects in the rechargeable nonaqueous Li–O2 batteries
  publication-title: Electrochim. Acta
– volume: 99
  start-page: 272
  year: 2016
  end-page: 279
  ident: bib143
  article-title: Simultaneous doping of nitrogen and fluorine into reduced graphene oxide: a highly active metal-free electrocatalyst for oxygen reduction
  publication-title: Carbon
– volume: 103
  start-page: 10186
  year: 2006
  end-page: 10191
  ident: bib66
  article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 113
  start-page: 1648
  year: 2009
  end-page: 1656
  ident: bib168
  article-title: State of transition metal catalysts during carbon nanotube growth
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 1574
  year: 2015
  end-page: 1602
  ident: bib12
  article-title: Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions
  publication-title: Catalysts
– volume: 53
  start-page: 14235
  year: 2014
  end-page: 14239
  ident: bib148
  article-title: ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  start-page: 299
  year: 2016
  end-page: 313
  ident: bib181
  article-title: Fuel cell catalyst degradation: identical location electron microscopy and related methods
  publication-title: Nano Energy
– volume: 112
  start-page: 1126
  year: 2012
  end-page: 1162
  ident: bib76
  article-title: Luminescent functional metal-organic frameworks
  publication-title: Chem. Rev.
– volume: 20
  start-page: 4217
  year: 2014
  end-page: 4221
  ident: bib123
  article-title: Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks
  publication-title: Chemistry
– volume: 4
  start-page: 45
  year: 2017
  end-page: 59
  ident: bib4
  article-title: Rational design of carbon-based oxygen electrocatalysts for zinc–air batteries
  publication-title: Curr. Opin. Electrochem.
– volume: 112
  start-page: 782
  year: 2012
  end-page: 835
  ident: bib70
  article-title: Hydrogen storage in metal-organic frameworks
  publication-title: Chem. Rev.
– volume: 6
  start-page: 4605
  year: 2018
  end-page: 4610
  ident: bib155
  article-title: Litchi-like porous Fe/N/C spheres with atomically dispersed FeNx promoted by sulfur as highly efficient oxygen electrocatalysts for Zn–air batteries
  publication-title: J. Mater. Chem.
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  ident: bib11
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 84
  year: 2018
  end-page: 112
  ident: bib16
  article-title: Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection
  publication-title: Electrochem. Energy Rev.
– volume: 4
  start-page: 5130
  year: 2014
  ident: bib149
  article-title: Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction
  publication-title: Sci. Rep.
– volume: 27
  start-page: 5010
  year: 2015
  end-page: 5016
  ident: bib165
  article-title: From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis
  publication-title: Adv. Mater.
– volume: 112
  start-page: 724
  year: 2012
  end-page: 781
  ident: bib69
  article-title: Carbon dioxide capture in metal-organic frameworks
  publication-title: Chem. Rev.
– volume: 53
  start-page: 3181
  year: 2008
  end-page: 3188
  ident: bib151
  article-title: Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts
  publication-title: Electrochim. Acta
– volume: 112
  start-page: 1232
  year: 2012
  end-page: 1268
  ident: bib75
  article-title: Metal-organic frameworks in biomedicine
  publication-title: Chem. Rev.
– volume: 108
  start-page: 433
  year: 2016
  end-page: 439
  ident: bib163
  article-title: From metal-organic frameworks to porous carbons: a promising strategy to prepare high-performance electrode materials for capacitive deionization
  publication-title: Carbon
– volume: 31
  start-page: 331
  year: 2017
  end-page: 350
  ident: bib18
  article-title: Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks
  publication-title: Nano Energy
– volume: 54
  start-page: 9230
  year: 2015
  end-page: 9234
  ident: bib176
  article-title: Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: effects of pore size and doping-site position
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 1600621
  year: 2016
  ident: bib125
  article-title: NiFe-based (Oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes
  publication-title: Adv. Energy Mater.
– start-page: 1604356
  year: 2016
  ident: bib159
  article-title: Pyrolysis of self-assembled iron porphyrin on carbon black as core/shell structured electrocatalysts for highly efficient oxygen reduction in both alkaline and acidic medium
  publication-title: Adv. Funct. Mater.
– start-page: 3454
  year: 2014
  end-page: 3462
  ident: bib44
  article-title: Use of H2S to probe the active sites in FeNC catalysts for the oxygen reduction reaction (ORR) in acidic media
  publication-title: ACS Catal.
– volume: 2
  start-page: 14064
  year: 2014
  end-page: 14070
  ident: bib102
  article-title: MOF derived catalysts for electrochemical oxygen reduction
  publication-title: J. Mater. Chem.
– volume: 61
  start-page: 679
  year: 2017
  end-page: 685
  ident: bib138
  article-title: N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction
  publication-title: Sci. China Mater.
– volume: 2
  start-page: 578
  year: 2019
  end-page: 589
  ident: bib31
  article-title: Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation
  publication-title: Nat. Catal.
– volume: 132
  start-page: 172
  year: 2018
  end-page: 180
  ident: bib82
  article-title: Metal-organic framework derived coralline-like non-precious metal catalyst for highly efficient oxygen reduction reaction
  publication-title: Carbon
– volume: 7
  start-page: 819
  year: 2016
  end-page: 832
  ident: bib57
  article-title: Reduced graphene oxide supported nickel-manganese-cobalt spinel ternary oxide nanocomposites and their chemical-converted sulfide nanocomposites as efficient electrocatalysts for alkaline water splitting
  publication-title: ACS Catal.
– volume: 351
  start-page: 361
  year: 2016
  end-page: 365
  ident: bib146
  article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts
  publication-title: Science
– volume: 7
  start-page: 1700518
  year: 2017
  ident: bib19
  article-title: Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions
  publication-title: Adv. Energy Mater.
– year: 2019
  ident: bib184
  article-title: Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and the stability of a highly active NC_Ar+NH3 catalyst
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 123
  year: 2016
  end-page: 129
  ident: bib131
  article-title: Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 14143
  year: 2017
  end-page: 14149
  ident: bib28
  article-title: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 20
  year: 2017
  end-page: 37
  ident: bib23
  article-title: Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks
  publication-title: Mater. Horiz.
– volume: 112
  start-page: 675
  year: 2012
  end-page: 702
  ident: bib64
  article-title: Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets
  publication-title: Chem. Rev.
– volume: 14
  start-page: 937
  year: 2015
  end-page: 942
  ident: bib88
  article-title: Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials
  publication-title: Nat. Mater.
– volume: 48
  start-page: 3599
  year: 2010
  end-page: 3606
  ident: bib162
  article-title: Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors
  publication-title: Carbon
– volume: 8
  start-page: 12660
  year: 2014
  end-page: 12668
  ident: bib158
  article-title: Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction
  publication-title: ACS Nano
– volume: 107
  start-page: 1376
  year: 2003
  end-page: 1386
  ident: bib105
  article-title: Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports
  publication-title: J. Phys. Chem. B
– volume: 2
  start-page: 2761
  year: 2012
  end-page: 2768
  ident: bib90
  article-title: Determination of iron active sites in pyrolyzed iron-based catalysts for the oxygen reduction reaction
  publication-title: ACS Catal.
– volume: 130
  start-page: 5390
  year: 2008
  end-page: 5391
  ident: bib147
  article-title: Metal-organic framework as a template for porous carbon synthesis
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 4347
  year: 2015
  end-page: 4357
  ident: bib56
  article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
  publication-title: J. Am. Chem. Soc.
– volume: 332
  start-page: 443
  year: 2011
  ident: 10.1016/j.carbon.2019.09.029_bib104
  article-title: High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt
  publication-title: Science
  doi: 10.1126/science.1200832
– volume: 116
  start-page: 68
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib81
  article-title: Metal organic framework derived NiFe@N-doped graphene microtube composites for hydrogen evolution catalyst
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.085
– volume: 103
  start-page: 10186
  year: 2006
  ident: 10.1016/j.carbon.2019.09.029_bib66
  article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0602439103
– volume: 16
  start-page: 57
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib3
  article-title: Energy and fuels from electrochemical interfaces
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4738
– volume: 112
  start-page: 1105
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib74
  article-title: Metal-organic framework materials as chemical sensors
  publication-title: Chem. Rev.
  doi: 10.1021/cr200324t
– volume: 6
  start-page: 6704
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib48
  article-title: Electrocatalytic conversion of furanic compounds
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01861
– volume: 1
  start-page: 1600038
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib142
  article-title: Tridoped reduced graphene oxide as a metal-free catalyst for oxygen reduction reaction demonstrated in acidic and alkaline polymer electrolyte fuel cells
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201600038
– volume: 324
  start-page: 71
  year: 2009
  ident: 10.1016/j.carbon.2019.09.029_bib93
  article-title: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells
  publication-title: Science
  doi: 10.1126/science.1170051
– volume: 495
  start-page: 134
  year: 2001
  ident: 10.1016/j.carbon.2019.09.029_bib150
  article-title: Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(00)00407-1
– volume: 137
  start-page: 4347
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib56
  article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510442p
– volume: 1
  start-page: 84
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib16
  article-title: Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0003-2
– volume: 112
  start-page: 724
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib69
  article-title: Carbon dioxide capture in metal-organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003272
– volume: 53
  start-page: 3181
  year: 2008
  ident: 10.1016/j.carbon.2019.09.029_bib151
  article-title: Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.11.057
– volume: 6
  start-page: 1601198
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib126
  article-title: Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601198
– volume: 112
  start-page: 869
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib72
  article-title: Metal-organic frameworks for separations
  publication-title: Chem. Rev.
  doi: 10.1021/cr200190s
– volume: 9
  start-page: 1752
  year: 2009
  ident: 10.1016/j.carbon.2019.09.029_bib144
  article-title: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties
  publication-title: Nano Lett.
  doi: 10.1021/nl803279t
– volume: 139
  start-page: 14143
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib28
  article-title: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06514
– volume: 25
  start-page: 872
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib84
  article-title: An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403657
– volume: 54
  start-page: 9230
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib176
  article-title: Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: effects of pore size and doping-site position
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201501590
– volume: 55
  start-page: 10800
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib99
  article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604802
– volume: 194
  start-page: 1164
  year: 2009
  ident: 10.1016/j.carbon.2019.09.029_bib152
  article-title: Air electrode design for sustained high power operation of Li/air batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.06.005
– volume: 107
  start-page: 1376
  year: 2003
  ident: 10.1016/j.carbon.2019.09.029_bib105
  article-title: Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp021634q
– volume: 3
  start-page: 9978
  year: 2013
  ident: 10.1016/j.carbon.2019.09.029_bib139
  article-title: Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts
  publication-title: RSC Adv.
  doi: 10.1039/c3ra41079j
– volume: 137
  start-page: 3165
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib103
  article-title: Fe-P: a new class of electroactive catalyst for oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511759u
– volume: 7
  start-page: 139
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib91
  article-title: Modeling Fe/N/C catalysts in monolayer graphene
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02702
– volume: 359
  start-page: 1489
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib175
  article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles
  publication-title: Science
  doi: 10.1126/science.aan5412
– volume: 112
  start-page: 703
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib68
  article-title: Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr200217c
– volume: 1
  start-page: 14
  year: 2013
  ident: 10.1016/j.carbon.2019.09.029_bib85
  article-title: A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications
  publication-title: J. Mater. Chem.
  doi: 10.1039/C2TA00278G
– volume: 2
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib145
  article-title: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501122
– volume: 29
  start-page: 299
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib181
  article-title: Fuel cell catalyst degradation: identical location electron microscopy and related methods
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.027
– volume: 357
  start-page: 479
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib37
  article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
  publication-title: Science
  doi: 10.1126/science.aan2255
– volume: 134
  start-page: 15016
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib67
  article-title: Metal-organic framework materials with ultrahigh surface areas: is the sky the limit?
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3055639
– volume: 5
  start-page: 1574
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib12
  article-title: Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions
  publication-title: Catalysts
  doi: 10.3390/catal5031574
– volume: 8
  start-page: 1485
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib54
  article-title: Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting
  publication-title: Nanoscale
  doi: 10.1039/C5NR06726J
– volume: 25
  start-page: 110
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib164
  article-title: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.042
– volume: 4
  start-page: 1301735
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib86
  article-title: Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: synthesis, structure, and reactivity
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301735
– volume: 7
  start-page: 819
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib57
  article-title: Reduced graphene oxide supported nickel-manganese-cobalt spinel ternary oxide nanocomposites and their chemical-converted sulfide nanocomposites as efficient electrocatalysts for alkaline water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02650
– volume: 9
  start-page: 123
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib131
  article-title: Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03316K
– volume: 37
  start-page: 1025
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib96
  article-title: A review of applications of poly(diallyldimethyl ammonium chloride) in polymer membrane fuel cells: from nanoparticles to support materials
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(16)62480-4
– volume: 6
  start-page: 1501497
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib173
  article-title: Enhanced cathodic oxygen reduction and power production of microbial fuel cell based on noble-metal-free electrocatalyst derived from metal-organic frameworks
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501497
– volume: 323
  start-page: 760
  year: 2009
  ident: 10.1016/j.carbon.2019.09.029_bib134
  article-title: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction
  publication-title: Science
  doi: 10.1126/science.1168049
– volume: 4
  start-page: 1400840
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib41
  article-title: Structuring porous iron-nitrogen-doped carbon in a core/shell geometry for the oxygen reduction reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400840
– volume: 25
  start-page: 393
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib40
  article-title: Highly porous materials as tunable electrocatalysts for the hydrogen and oxygen evolution reaction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402078
– volume: 11
  start-page: 2275
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib60
  article-title: NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00417
– volume: 2
  start-page: 105
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib128
  article-title: Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0025-9
– volume: 27
  start-page: 5010
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib165
  article-title: From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502315
– volume: 116
  start-page: 3594
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib9
  article-title: Recent advances in electrocatalysts for oxygen reduction reaction
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00462
– volume: 74
  start-page: 387
  year: 2002
  ident: 10.1016/j.carbon.2019.09.029_bib169
  article-title: Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes
  publication-title: Appl. Phys. A
  doi: 10.1007/s003390101186
– volume: 403
  start-page: 90
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib127
  article-title: Quaternary bimetallic phosphosulphide nanosheets derived from prussian blue analogues: origin of the ultra-high activity for oxygen evolution
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.09.078
– year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib182
– start-page: 1706758
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib26
  article-title: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706758
– year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib101
  article-title: Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02694G
– volume: 10
  start-page: 3739
  year: 2010
  ident: 10.1016/j.carbon.2019.09.029_bib167
  article-title: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2010.2939
– volume: 4
  start-page: 20
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib23
  article-title: Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00344C
– volume: 46
  start-page: 126
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib79
  article-title: Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00250A
– volume: 10
  start-page: 444
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib135
  article-title: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.48
– volume: 132
  start-page: 172
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib82
  article-title: Metal-organic framework derived coralline-like non-precious metal catalyst for highly efficient oxygen reduction reaction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.02.051
– volume: 1
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib136
  article-title: N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1400129
– year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib157
– volume: 39
  start-page: 16179
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib113
  article-title: Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.12.120
– volume: 6
  start-page: 5887
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib22
  article-title: Development of MOF-derived carbon-based nanomaterials for efficient catalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01222
– volume: 9
  start-page: 2418
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib107
  article-title: Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01160H
– volume: 11
  start-page: 365
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib95
  article-title: A specific demetalation of Fe–N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02302B
– volume: 355
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib2
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 115
  start-page: 4823
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib7
  article-title: Metal-free catalysts for oxygen reduction reaction
  publication-title: Chem. Rev.
  doi: 10.1021/cr5003563
– start-page: 1800716
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib20
  article-title: Metal-organic framework-derived carbons for battery applications
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800716
– volume: 112
  start-page: 673
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib62
  article-title: Introduction to metal-organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr300014x
– volume: 6
  start-page: 14043
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib6
  article-title: Polyelectrolyte assisted synthesis and enhanced oxygen reduction activity of Pt nanocrystals with controllable shape and size
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am503372f
– volume: 2
  start-page: 578
  year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib31
  article-title: Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0304-9
– volume: 112
  start-page: 836
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib71
  article-title: Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr200216x
– start-page: 1800406
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib25
  article-title: Defect-based single-atom electrocatalysts
  publication-title: Small Methods
– year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib92
  article-title: Non-Precious metal fuel cell cathodes: catalyst development and electrode structure design
– volume: 112
  start-page: 1055
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib73
  article-title: Metal-organic framework thin films: from fundamentals to applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr200167v
– volume: 326
  start-page: 43
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib34
  article-title: PGM-free Fe-N-C catalysts for oxygen reduction reaction: catalyst layer design
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.098
– year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib32
– volume: 93
  start-page: 354
  year: 2010
  ident: 10.1016/j.carbon.2019.09.029_bib50
  article-title: Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2009.10.008
– volume: 46
  start-page: 337
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib11
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 30
  start-page: 93
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib55
  article-title: Co/Co9S8@S,N-Doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.040
– volume: 112
  start-page: 1196
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib78
  article-title: Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003147
– volume: 61
  start-page: 679
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib138
  article-title: N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-017-9174-1
– volume: 130
  start-page: 5390
  year: 2008
  ident: 10.1016/j.carbon.2019.09.029_bib147
  article-title: Metal-organic framework as a template for porous carbon synthesis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja7106146
– volume: 132
  start-page: 15839
  year: 2010
  ident: 10.1016/j.carbon.2019.09.029_bib137
  article-title: 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104425h
– volume: 48
  start-page: 3599
  year: 2010
  ident: 10.1016/j.carbon.2019.09.029_bib162
  article-title: Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.06.008
– volume: 28
  start-page: 1668
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib177
  article-title: Well-dispersed ZIF-derived Co,N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505045
– volume: 326
  start-page: 50
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib114
  article-title: Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.114
– volume: 112
  start-page: 782
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib70
  article-title: Hydrogen storage in metal-organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr200274s
– volume: 5
  start-page: 3323
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib87
  article-title: Highly dispersed Cu−NX moieties embedded in graphene: a promising electrocatalyst towards the oxygen reduction reaction
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800657
– volume: 120
  start-page: 7705
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib110
  article-title: Nitrogen-deficient ORR active sites formation by iron-assisted water vapor activation of electrospun carbon nanofibers
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b01885
– volume: 52
  start-page: 13233
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib111
  article-title: Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC07049C
– volume: 44
  start-page: 2168
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib10
  article-title: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00484A
– volume: 32
  start-page: 276
  year: 2003
  ident: 10.1016/j.carbon.2019.09.029_bib63
  article-title: Metal-organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b200393g
– volume: 50
  start-page: 7132
  year: 2011
  ident: 10.1016/j.carbon.2019.09.029_bib140
  article-title: Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201101287
– volume: 53
  start-page: 14235
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib148
  article-title: ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201408990
– volume: 52
  start-page: 494
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib132
  article-title: Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.062
– volume: 16
  start-page: 293
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib89
  article-title: Nano-structured non-platinum catalysts for automotive fuel cell application
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.07.002
– start-page: 1801065
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib116
  article-title: In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801065
– year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib184
  article-title: Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and the stability of a highly active NC_Ar+NH3 catalyst
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00867E
– volume: 7
  start-page: 7658
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib179
  article-title: Revealing the dynamics of platinum nanoparticle catalysts on carbon in oxygen and water using environmental TEM
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02861
– volume: 2
  start-page: 864
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib1
  article-title: Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges
  publication-title: ACS Catal.
  doi: 10.1021/cs3000864
– volume: 116
  start-page: 14120
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib8
  article-title: Earth-abundant heterogeneous water oxidation catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00398
– volume: 31
  year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib183
  article-title: Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction
  publication-title: Adv. Mater.
– volume: 4
  start-page: 5130
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib149
  article-title: Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction
  publication-title: Sci. Rep.
  doi: 10.1038/srep05130
– volume: 1
  start-page: 1
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib17
  article-title: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal–air batteries
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0002-3
– volume: 146
  start-page: 348
  year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib83
  article-title: Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: a correlational study
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.02.013
– volume: 360
  start-page: 250
  year: 2002
  ident: 10.1016/j.carbon.2019.09.029_bib170
  article-title: Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00831-X
– volume: 27
  start-page: 7549
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib118
  article-title: Oxygen evolution reaction electrocatalysis on transition metal oxides and (Oxy)hydroxides: activity trends and design principles
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03148
– volume: 31
  year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib15
  article-title: Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future
  publication-title: Adv. Mater.
– start-page: 1801289
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib174
  article-title: In situ “chainmail catalyst” assembly in low-tortuosity, hierarchical carbon frameworks for efficient and stable hydrogen generation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801289
– volume: 485
  start-page: 41
  year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib13
  article-title: Three-dimensional layered double hydroxides on carbon nanofibers: the engineered mass transfer channels and active sites towards oxygen evolution reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.335
– volume: 1
  start-page: 15006
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib172
  article-title: A metal–organic framework-derived bifunctional oxygen electrocatalyst
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.6
– volume: 118
  start-page: 139
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib38
  article-title: Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: a promising cathode scaffold with excellent rate performance for rechargeable Li-O 2 batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.03.037
– volume: 14
  start-page: 937
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib88
  article-title: Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4367
– volume: 300
  start-page: 1127
  year: 2003
  ident: 10.1016/j.carbon.2019.09.029_bib65
  article-title: Hydrogen storage in microporous metal-organic frameworks
  publication-title: Science
  doi: 10.1126/science.1083440
– volume: 351
  start-page: 361
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib146
  article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts
  publication-title: Science
  doi: 10.1126/science.aad0832
– volume: 112
  start-page: 675
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib64
  article-title: Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets
  publication-title: Chem. Rev.
  doi: 10.1021/cr200205j
– volume: 136
  start-page: 13925
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib120
  article-title: Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5082553
– volume: 8
  start-page: 12660
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib158
  article-title: Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction
  publication-title: ACS Nano
  doi: 10.1021/nn505582e
– volume: 29
  start-page: 1606967
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib129
  article-title: Robust catalysis on 2D materials encapsulating metals: concept, application, and perspective
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606967
– volume: 300
  start-page: 279
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib106
  article-title: Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.081
– start-page: 1619
  year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib24
  article-title: Atomically dispersed metal catalysts for oxygen reduction
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00804
– volume: 113
  start-page: 1648
  year: 2009
  ident: 10.1016/j.carbon.2019.09.029_bib168
  article-title: State of transition metal catalysts during carbon nanotube growth
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp808560p
– volume: 20
  start-page: 4217
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib123
  article-title: Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks
  publication-title: Chemistry
  doi: 10.1002/chem.201304404
– volume: 6
  start-page: 805
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib117
  article-title: Engineering the coordination geometry of metal–organic complex electrocatalysts for highly enhanced oxygen evolution reaction
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA09092G
– volume: 6
  start-page: 205
  year: 2011
  ident: 10.1016/j.carbon.2019.09.029_bib43
  article-title: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction
  publication-title: ACS Nano
  doi: 10.1021/nn203393d
– volume: 237
  start-page: 85
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib156
  article-title: An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.05.046
– volume: 4
  start-page: 3928
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib45
  article-title: Pyrolyzed Fe–N–C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium
  publication-title: ACS Catal.
  doi: 10.1021/cs500673k
– year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib98
  article-title: PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807615
– start-page: 1800168
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib53
  article-title: The comprehensive understanding of 10 mA cmgeo−2 as an evaluation parameter for electrochemical water splitting
  publication-title: Small Methods
  doi: 10.1002/smtd.201800168
– volume: 134
  start-page: 13926
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib171
  article-title: Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3043905
– volume: 292
  start-page: 838
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib153
  article-title: Insights into the role of oxygen functional groups and defects in the rechargeable nonaqueous Li–O2 batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.09.202
– volume: 1
  start-page: 935
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib29
  article-title: Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0164-8
– volume: 7
  start-page: 11007
  year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib14
  article-title: Dual-nitrogen-source engineered Fe-nx moieties as A booster to oxygen electroreduction
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA01953G
– volume: 6
  start-page: 116
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib21
  article-title: Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells
  publication-title: Catalysts
  doi: 10.3390/catal6080116
– volume: 52
  start-page: 11755
  year: 2013
  ident: 10.1016/j.carbon.2019.09.029_bib39
  article-title: Space-Confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201303924
– year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib94
– volume: 52
  start-page: 371
  year: 2013
  ident: 10.1016/j.carbon.2019.09.029_bib130
  article-title: Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204958
– volume: 8
  start-page: 3216
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib47
  article-title: Electrocatalytic valorisation of biomass derived chemicals
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY00533H
– volume: 56
  start-page: 610
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib112
  article-title: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610119
– volume: 191
  start-page: 202
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib133
  article-title: Nitrogen-doped hollow carbon spheres with highly graphitized mesoporous shell: role of Fe for oxygen evolution reaction
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.03.031
– volume: 12
  start-page: 2548
  year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib30
  article-title: High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00877B
– volume: 1
  start-page: 34
  year: 2011
  ident: 10.1016/j.carbon.2019.09.029_bib61
  article-title: Metal-air batteries with high energy density: Li-air versus Zn-air
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201000010
– start-page: 3454
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib44
  article-title: Use of H2S to probe the active sites in FeNC catalysts for the oxygen reduction reaction (ORR) in acidic media
  publication-title: ACS Catal.
  doi: 10.1021/cs500612k
– volume: 6
  start-page: 1600621
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib125
  article-title: NiFe-based (Oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600621
– volume: 6
  start-page: 1600794
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib42
  article-title: Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600794
– volume: 9
  start-page: 3092
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib178
  article-title: A dual-metal–organic-framework derived electrocatalyst for oxygen reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02171A
– volume: 7
  start-page: 1700518
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib19
  article-title: Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700518
– volume: 2
  start-page: 629
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib33
  article-title: Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00644
– volume: 119–120
  start-page: 40
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib51
  article-title: Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: cogeneration of electricity and valuable chemicals
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2012.02.009
– volume: 112
  start-page: 1232
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib75
  article-title: Metal-organic frameworks in biomedicine
  publication-title: Chem. Rev.
  doi: 10.1021/cr200256v
– volume: 108
  start-page: 433
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib163
  article-title: From metal-organic frameworks to porous carbons: a promising strategy to prepare high-performance electrode materials for capacitive deionization
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.07.047
– volume: 137
  start-page: 433
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib80
  article-title: Metal organic framework nanofibers derived Co 3 O 4 -doped carbon-nitrogen nanosheet arrays for high efficiency electrocatalytic oxygen evolution
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.05.062
– volume: 9
  start-page: 36944
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib161
  article-title: 3D porous Fe/N/C spherical nanostructures as high-performance electrocatalysts for oxygen reduction in both alkaline and acidic media
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b12666
– volume: 7
  start-page: 12582
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib109
  article-title: Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12582
– volume: 29
  start-page: 314
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib46
  article-title: Advanced catalyst supports for PEM fuel cell cathodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.03.016
– year: 2019
  ident: 10.1016/j.carbon.2019.09.029_bib100
  article-title: Iron-free cathode catalysts for proton-exchange-membrane fuel cells: cobalt catalysts and the peroxide mitigation approach
  publication-title: Adv. Mater.
– volume: 3
  start-page: 997
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib154
  article-title: Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300243r
– volume: 112
  start-page: 1163
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib77
  article-title: Ferroelectric metal-organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr200174w
– volume: 1
  start-page: 16184
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib115
  article-title: Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.184
– volume: 112
  start-page: 1126
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib76
  article-title: Luminescent functional metal-organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr200101d
– volume: 24
  start-page: 1876
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib180
  article-title: In-situ S/TEM probing of the behavior of nanoparticles under chemical and electrochemical reactions in the system involving solid, liquid and gas
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927618009868
– volume: 2
  start-page: 2761
  year: 2012
  ident: 10.1016/j.carbon.2019.09.029_bib90
  article-title: Determination of iron active sites in pyrolyzed iron-based catalysts for the oxygen reduction reaction
  publication-title: ACS Catal.
  doi: 10.1021/cs300579b
– volume: 2
  start-page: 14064
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib102
  article-title: MOF derived catalysts for electrochemical oxygen reduction
  publication-title: J. Mater. Chem.
  doi: 10.1039/C4TA01506A
– volume: 8
  start-page: 15250
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib5
  article-title: Metal-organic coordination networks: prussian blue and its synergy with Pt nanoparticles to enhance oxygen reduction kinetics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02630
– volume: 29
  start-page: 111
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib97
  article-title: Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells?
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.038
– volume: 3
  start-page: 17392
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib121
  article-title: MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA03900B
– volume: 154
  start-page: 360
  year: 2014
  ident: 10.1016/j.carbon.2019.09.029_bib49
  article-title: Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2014.02.040
– volume: 139
  start-page: 17281
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib27
  article-title: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10385
– volume: 6
  start-page: 7343
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib108
  article-title: Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8343
– volume: 2
  start-page: 1400015
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib160
  article-title: Paper-based N-doped carbon films for enhanced oxygen evolution electrocatalysis
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201400015
– volume: 2
  start-page: 416
  year: 2011
  ident: 10.1016/j.carbon.2019.09.029_bib35
  article-title: Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1427
– volume: 111
  start-page: 641
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib58
  article-title: A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.10.046
– start-page: 1604356
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib159
  article-title: Pyrolysis of self-assembled iron porphyrin on carbon black as core/shell structured electrocatalysts for highly efficient oxygen reduction in both alkaline and acidic medium
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 568
  year: 2015
  ident: 10.1016/j.carbon.2019.09.029_bib122
  article-title: A metal–organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02281E
– volume: 29
  start-page: 1604437
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib119
  article-title: Bimetal-organic framework derived CoFe2 O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604437
– volume: 44
  start-page: 468
  year: 2006
  ident: 10.1016/j.carbon.2019.09.029_bib166
  article-title: Catalytic graphitization of templated mesoporous carbons
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.08.019
– volume: 39
  start-page: 245
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib52
  article-title: Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: a highly durable oxygen evolution catalyst
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.006
– volume: 99
  start-page: 272
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib143
  article-title: Simultaneous doping of nitrogen and fluorine into reduced graphene oxide: a highly active metal-free electrocatalyst for oxygen reduction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.12.034
– volume: 3
  start-page: 1726
  year: 2013
  ident: 10.1016/j.carbon.2019.09.029_bib141
  article-title: Fluorine-doped carbon blacks: highly efficient metal-free electrocatalysts for oxygen reduction reaction
  publication-title: ACS Catal.
  doi: 10.1021/cs400374k
– volume: 11
  start-page: 5071
  year: 2011
  ident: 10.1016/j.carbon.2019.09.029_bib36
  article-title: Hierarchically porous graphene as a lithium-air battery electrode
  publication-title: Nano Lett.
  doi: 10.1021/nl203332e
– start-page: 1601052
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib59
  article-title: Composites of a prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn-air battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601052
– volume: 6
  start-page: 4605
  year: 2018
  ident: 10.1016/j.carbon.2019.09.029_bib155
  article-title: Litchi-like porous Fe/N/C spheres with atomically dispersed FeNx promoted by sulfur as highly efficient oxygen electrocatalysts for Zn–air batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA08746B
– volume: 31
  start-page: 331
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib18
  article-title: Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.033
– volume: 55
  start-page: 4087
  year: 2016
  ident: 10.1016/j.carbon.2019.09.029_bib124
  article-title: Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201509382
– volume: 4
  start-page: 45
  year: 2017
  ident: 10.1016/j.carbon.2019.09.029_bib4
  article-title: Rational design of carbon-based oxygen electrocatalysts for zinc–air batteries
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2017.09.006
SSID ssj0004814
Score 2.6390252
SecondaryResourceType review_article
Snippet The electrocatalytic oxygen reactions, i.e. oxygen reduction/evolution reactions (ORR/OER), play a key role in electrochemical energy conversion and storage...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 77
SubjectTerms active sites
batteries
Carbon
Catalysts
catalytic activity
Chemical reactions
coordination polymers
Devices
durability
Electrocatalysis
electrochemistry
Electrolytic cells
Energy conversion
Energy management
Energy storage
engineering
Fuel cells
Iridium
Mass transfer
Metal air batteries
Metal-organic frameworks
oxides
Oxygen
Oxygen evolution
Oxygen reduction
Platinum
Porosity
Porous structure
ruthenium
Storage batteries
Title Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: Recent progress and future perspectives
URI https://dx.doi.org/10.1016/j.carbon.2019.09.029
https://www.proquest.com/docview/2328303186
https://www.proquest.com/docview/2352423401
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT1xfRPBa3ebRtN5kUVZFTwreQl4FRbqLu4pe9K87k7SKIghCT2nShsxk5ptkHoTslwHUCq_ANvFSgoGSw54zfZtZZnMA0IZzibHDl1fF8Eac38rbGTLoYmHQrbKV_UmmR2ndthy2q3k4vrvDGF-E44BPKrzNE2i3C6GQyw_evtw8RJnye-M1P_buwueij5czj3aEWVDzKmY7jUDzV_X0Q1BH7XO6RBZb2EiP08yWyUxoVsj8oKvWtkreLwPA6CwVaXK07nyuqAcWew6epklQAKiJ5yigVdoWwYlnOK_waTp6eQWOooAkY7zD5IgCrgS9RKMfF0hFahpPUyISOv4K1JyskZvTk-vBMGuLK2ROcD7NFHOglhxnSvqqVK5wdVCFdaovHaCK0pQm90HWocxNlQtvlKhrVgANHZhQnvF1MtuMmrBBqKxyWxTOMA-6vnbCGquEACRoheoXLPQI79ZUuzbzOBbAeNCdi9m9TougkRK6Dw-reiT7HDVOmTf-6K86culvHKRBOfwxcrujrm538EQD0iw5SryiR_Y-XwNR8ULFNGH0hH0kwlHg8M1__3yLLDA04eOpzjaZnT4-hR3AOVO7Gxl5l8wdn10Mrz4AuOn_Tg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC5kPZhLUJOQVaMdyHVwpx_TM7nJoqzR3ZOCt6ZfA4Ywu7ir6Mm_bvVjlIggCHPq6Z5puqqrvuquB8Cv2qNaYQ3aJk4INFBK3HN6ZApDTYkAWjMmQuzwdFZNLvmfK3G1BuM-Fia4VWbZn2R6lNa55TCv5uHi-jrE-AY4jvikCbd5HO329ZCdSgxg_ej0bDJ7CY-sU4rvcNMfBvQRdNHNy-obMw-JUMsmJjyNWPNNDfVKVkcFdLIJnzNyJEdpcluw5rtt2Bj3Bdu-wOPUI5IuUp0mS9re7Yo45LI770iaBEGMmtiOIGAluQ5OPMZ5wE-T-f0DMhVBMBlDHpa_CUJLVE0kunKhYCS6cyTlIiGLl1jN5Ve4PDm-GE-KXF-hsJyxVSGpRc1kGZXCNbW0lW29rIyVI2ERWNS61qXzovV1qZuSOy1529IKyWjRinKUfYNBN-_8dyCiKU1VWU0dqvvWcqON5BzBoOFyVFE_BNavqbI5-XiogfFP9V5mf1VaBBUooUb40GYIxfOoRUq-8U5_2ZNL_cdECvXDOyP3euqqvImXCsFmzYLQq4bw8_k1EjXcqejOz29DHxEQKTL5zod_fgAbk4vpuTo_nZ3twicaLPp4yLMHg9XNrf-BsGdl9jNbPwFr1gIO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-organic+framework+derived+carbon+materials+for+electrocatalytic+oxygen+reactions%3A+Recent+progress+and+future+perspectives&rft.jtitle=Carbon+%28New+York%29&rft.au=Du%2C+Lei&rft.au=Xing%2C+Lixin&rft.au=Zhang%2C+Gaixia&rft.au=Sun%2C+Shuhui&rft.date=2020-01-01&rft.issn=0008-6223&rft.volume=156+p.77-92&rft.spage=77&rft.epage=92&rft_id=info:doi/10.1016%2Fj.carbon.2019.09.029&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon