Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: Recent progress and future perspectives
The electrocatalytic oxygen reactions, i.e. oxygen reduction/evolution reactions (ORR/OER), play a key role in electrochemical energy conversion and storage devices, including fuel cells, electrolyzers, and metal-air batteries, and have attracted significant attention in the past decades. Platinum-g...
Saved in:
Published in | Carbon (New York) Vol. 156; pp. 77 - 92 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.01.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0008-6223 1873-3891 |
DOI | 10.1016/j.carbon.2019.09.029 |
Cover
Loading…
Abstract | The electrocatalytic oxygen reactions, i.e. oxygen reduction/evolution reactions (ORR/OER), play a key role in electrochemical energy conversion and storage devices, including fuel cells, electrolyzers, and metal-air batteries, and have attracted significant attention in the past decades. Platinum-group metal (PGM)-free materials have been intensively investigated as alternatives to replace the well-accepted but costly PGM-based catalysts such as Pt for ORR and Ir/Ru (oxides) for OER. Particularly, metal-organic framework (MOF)-derived carbon materials are emerging PGM-free catalysts for ORR/OER. So far, excellent works have been achieved to enhance the activity and durability of the MOF-derived PGM-free catalysts. It is the occasion to promote the PGM-free catalysts to the next level of application, i.e. in real devices. However, ORR/OER in real devices are potentially subject to the porosity related challenges, e.g. electron/mass transfer issue and active site isolation in organic Li-air batteries. To address these challenges, the rational design of porous electrocatalyst for devices is required. In this review, we summarize the most recent progress of MOF-derived carbon materials for ORR/OER with the focus on not only the active site engineering but also the design of porous structure. We also provide perspectives on the rational design of PGM-free catalysts using MOF as precursors.
[Display omitted] |
---|---|
AbstractList | The electrocatalytic oxygen reactions, i.e. oxygen reduction/evolution reactions (ORR/OER), play a key role in electrochemical energy conversion and storage devices, including fuel cells, electrolyzers, and metal-air batteries, and have attracted significant attention in the past decades. Platinum-group metal (PGM)-free materials have been intensively investigated as alternatives to replace the well-accepted but costly PGM-based catalysts such as Pt for ORR and Ir/Ru (oxides) for OER. Particularly, metal-organic framework (MOF)-derived carbon materials are emerging PGM-free catalysts for ORR/OER. So far, excellent works have been achieved to enhance the activity and durability of the MOF-derived PGM-free catalysts. It is the occasion to promote the PGM-free catalysts to the next level of application, i.e. in real devices. However, ORR/OER in real devices are potentially subject to the porosity related challenges, e.g. electron/mass transfer issue and active site isolation in organic Li-air batteries. To address these challenges, the rational design of porous electrocatalyst for devices is required. In this review, we summarize the most recent progress of MOF-derived carbon materials for ORR/OER with the focus on not only the active site engineering but also the design of porous structure. We also provide perspectives on the rational design of PGM-free catalysts using MOF as precursors. The electrocatalytic oxygen reactions, i.e. oxygen reduction/evolution reactions (ORR/OER), play a key role in electrochemical energy conversion and storage devices, including fuel cells, electrolyzers, and metal-air batteries, and have attracted significant attention in the past decades. Platinum-group metal (PGM)-free materials have been intensively investigated as alternatives to replace the well-accepted but costly PGM-based catalysts such as Pt for ORR and Ir/Ru (oxides) for OER. Particularly, metal-organic framework (MOF)-derived carbon materials are emerging PGM-free catalysts for ORR/OER. So far, excellent works have been achieved to enhance the activity and durability of the MOF-derived PGM-free catalysts. It is the occasion to promote the PGM-free catalysts to the next level of application, i.e. in real devices. However, ORR/OER in real devices are potentially subject to the porosity related challenges, e.g. electron/mass transfer issue and active site isolation in organic Li-air batteries. To address these challenges, the rational design of porous electrocatalyst for devices is required. In this review, we summarize the most recent progress of MOF-derived carbon materials for ORR/OER with the focus on not only the active site engineering but also the design of porous structure. We also provide perspectives on the rational design of PGM-free catalysts using MOF as precursors. [Display omitted] |
Author | Sun, Shuhui Du, Lei Xing, Lixin Zhang, Gaixia |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0001-9584-4748 surname: Du fullname: Du, Lei organization: Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada – sequence: 2 givenname: Lixin surname: Xing fullname: Xing, Lixin organization: Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada – sequence: 3 givenname: Gaixia surname: Zhang fullname: Zhang, Gaixia email: gaixia.zhang@emt.inrs.ca organization: Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada – sequence: 4 givenname: Shuhui surname: Sun fullname: Sun, Shuhui email: shuhui@emt.inrs.ca organization: Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada |
BookMark | eNqFkU-LFDEQxYOs4OzqN_AQ8OKlZ_Onpzu9B0EWdYUVQfQcMtWVIWNPMlbSq3Pyq5uhPe1BoaCo4r0fxatLdhFTRMZeSrGWQnbX-zU42qa4VkIOa1FLDU_YSppeN9oM8oKthBCm6ZTSz9hlzvs6tka2K_b7ExY3NYl2LgbgntwBfyb6zkek8IAjX8j84EpduClzn4jjhFAogaveU6m-9Ou0w8gJHZSQYr7hXxAwFn6ktCPMmbs4cj-XmZAfkfKxAio_P2dPfaXii7_9in17_-7r7V1z__nDx9u39w20WpemV9BLA1r1m3EwPXTgse-20IsN9K02zjg54sajkW6Q7ej61nvVbdUWZB2VvmKvF2496MeMudhDyIDT5CKmOVulN6pVuhWySl89ku7TTLFeV1XKaKGl6aqqXVRAKWdCb48UDo5OVgp7_ord2yU7e_6KFbXUUG03j2wQijtnVsiF6X_mN4sZa1IPAclmCBgBx0A1Tzum8G_AH7fasA8 |
CitedBy_id | crossref_primary_10_1007_s00216_021_03493_3 crossref_primary_10_1016_j_ccr_2024_216116 crossref_primary_10_1002_adma_202408139 crossref_primary_10_1039_D1MA00475A crossref_primary_10_1039_D0NR03115A crossref_primary_10_1016_j_ccr_2020_213488 crossref_primary_10_3390_ma13184215 crossref_primary_10_1002_adma_201908232 crossref_primary_10_1016_j_inoche_2025_114072 crossref_primary_10_1016_j_cej_2021_133560 crossref_primary_10_1002_er_7198 crossref_primary_10_1016_j_jallcom_2022_168084 crossref_primary_10_1002_smll_202106279 crossref_primary_10_1002_er_7635 crossref_primary_10_1016_j_mtnano_2021_100146 crossref_primary_10_1002_smll_202202194 crossref_primary_10_1002_smll_202304663 crossref_primary_10_1016_j_jpowsour_2020_229196 crossref_primary_10_1016_j_jpowsour_2021_229592 crossref_primary_10_1016_j_jpowsour_2020_229339 crossref_primary_10_1002_smll_202007484 crossref_primary_10_1016_j_cej_2023_145652 crossref_primary_10_1002_aoc_6434 crossref_primary_10_1016_j_ccr_2022_214602 crossref_primary_10_1016_j_microc_2022_107873 crossref_primary_10_1016_j_jallcom_2023_172518 crossref_primary_10_1103_PRXEnergy_2_043008 crossref_primary_10_1016_j_jcis_2022_08_141 crossref_primary_10_1111_jace_18130 crossref_primary_10_1016_j_electacta_2021_138433 crossref_primary_10_1016_j_jelechem_2024_118235 crossref_primary_10_1007_s40843_022_2302_0 crossref_primary_10_1016_j_ccr_2022_214839 crossref_primary_10_1016_j_scitotenv_2022_156186 crossref_primary_10_1002_aenm_202003291 crossref_primary_10_1002_ange_202306726 crossref_primary_10_1016_j_ijhydene_2024_04_003 crossref_primary_10_1016_j_micromeso_2020_110726 crossref_primary_10_1016_j_scib_2022_04_022 crossref_primary_10_1039_D0RA06780F crossref_primary_10_1039_D1NJ00613D crossref_primary_10_1016_j_matt_2022_03_002 crossref_primary_10_1016_j_apenergy_2023_120931 crossref_primary_10_1038_s41598_025_87952_2 crossref_primary_10_1039_D1CC07228E crossref_primary_10_1007_s40820_021_00656_w crossref_primary_10_1016_j_carbon_2020_08_041 crossref_primary_10_1039_D3CE00360D crossref_primary_10_1016_j_ccr_2023_215400 crossref_primary_10_1016_j_colsurfa_2021_127033 crossref_primary_10_1016_j_materresbull_2022_111744 crossref_primary_10_1016_j_ijhydene_2020_06_259 crossref_primary_10_1149_1945_7111_ad5380 crossref_primary_10_1002_aenm_202001537 crossref_primary_10_1016_j_est_2021_103263 crossref_primary_10_1016_j_checat_2022_12_001 crossref_primary_10_1016_j_electacta_2023_143304 crossref_primary_10_1021_acsami_0c18036 crossref_primary_10_1002_cnma_202200225 crossref_primary_10_1039_D0TA05866A crossref_primary_10_1016_j_carbon_2021_04_028 crossref_primary_10_1016_j_jcis_2022_10_004 crossref_primary_10_1002_elsa_202400033 crossref_primary_10_1007_s11581_021_04217_4 crossref_primary_10_1007_s11581_022_04672_7 crossref_primary_10_1021_acs_inorgchem_3c03368 crossref_primary_10_1039_D1TA03176G crossref_primary_10_1039_D4RA05183A crossref_primary_10_1002_smtd_202000494 crossref_primary_10_1016_j_carbon_2021_12_071 crossref_primary_10_1002_celc_202001614 crossref_primary_10_1002_zaac_202100321 crossref_primary_10_1039_D2TA03312G crossref_primary_10_1002_smtd_202000016 crossref_primary_10_1021_acsomega_0c01128 crossref_primary_10_1016_j_seppur_2022_122988 crossref_primary_10_1021_acsami_0c03983 crossref_primary_10_1515_znb_2021_0185 crossref_primary_10_1016_j_hazadv_2021_100002 crossref_primary_10_1016_j_cclet_2021_06_054 crossref_primary_10_1016_j_ijhydene_2022_05_025 crossref_primary_10_1016_j_jhazmat_2020_124521 crossref_primary_10_1039_D4TA07911F crossref_primary_10_1016_j_carbon_2024_119830 crossref_primary_10_1016_j_apmt_2021_101161 crossref_primary_10_1016_j_ijhydene_2021_07_196 crossref_primary_10_3390_molecules28237751 crossref_primary_10_1016_j_jmgm_2022_108212 crossref_primary_10_1016_j_jorganchem_2021_122070 crossref_primary_10_1016_j_matchemphys_2022_126438 crossref_primary_10_1039_D0OB01729A crossref_primary_10_1016_j_pnsc_2020_10_014 crossref_primary_10_1016_j_carbon_2025_120161 crossref_primary_10_1002_cey2_265 crossref_primary_10_1021_acsaem_1c01677 crossref_primary_10_1016_j_ccr_2021_214119 crossref_primary_10_1016_j_envres_2023_115516 crossref_primary_10_1016_j_jcou_2023_102412 crossref_primary_10_1142_S108842462150036X crossref_primary_10_1016_j_seppur_2019_116342 crossref_primary_10_1002_cssc_202101461 crossref_primary_10_1021_acsnano_3c09261 crossref_primary_10_1007_s42154_021_00146_0 crossref_primary_10_1039_D1RA01350E crossref_primary_10_1002_smll_202006773 crossref_primary_10_1016_j_jcis_2022_05_051 crossref_primary_10_1016_j_jallcom_2022_168565 crossref_primary_10_1149_1945_7111_ac2090 crossref_primary_10_1016_j_ccr_2020_213441 crossref_primary_10_1016_j_fuel_2022_125881 crossref_primary_10_1007_s10853_024_09587_4 crossref_primary_10_1016_j_cej_2022_138416 crossref_primary_10_1002_inf2_12257 crossref_primary_10_1016_j_cej_2023_141939 crossref_primary_10_1016_j_cej_2021_129096 crossref_primary_10_1016_j_ccr_2021_213954 crossref_primary_10_1002_anie_202306726 crossref_primary_10_1016_j_colsurfa_2022_129484 crossref_primary_10_1002_cey2_73 crossref_primary_10_1007_s13762_021_03499_5 crossref_primary_10_1016_j_electacta_2022_139974 crossref_primary_10_1016_j_ijhydene_2021_08_158 crossref_primary_10_1016_j_jpcs_2022_111030 crossref_primary_10_1039_D0EE03697H crossref_primary_10_1016_j_jcis_2021_03_108 crossref_primary_10_1039_D0SE01154A crossref_primary_10_1002_adma_202002559 crossref_primary_10_1016_j_mattod_2024_06_006 crossref_primary_10_1039_D1DT01482J crossref_primary_10_1016_j_ijhydene_2021_01_194 crossref_primary_10_1016_j_jallcom_2025_178827 crossref_primary_10_1002_cctc_202401538 crossref_primary_10_1016_j_ces_2021_117038 crossref_primary_10_1016_j_nanoen_2024_109559 crossref_primary_10_1021_acs_energyfuels_2c01659 crossref_primary_10_1016_j_ijhydene_2020_08_180 crossref_primary_10_1016_j_envres_2022_112727 crossref_primary_10_1007_s11814_020_0730_z crossref_primary_10_1007_s40242_020_0163_6 crossref_primary_10_1016_j_chemosphere_2021_130269 crossref_primary_10_1016_j_ijhydene_2024_07_388 crossref_primary_10_1016_j_ijhydene_2021_11_204 crossref_primary_10_1016_j_ijhydene_2024_11_481 crossref_primary_10_1039_D1NR07614K crossref_primary_10_1016_j_cclet_2022_03_112 crossref_primary_10_1002_cssc_202002137 crossref_primary_10_1016_j_ceramint_2025_02_193 crossref_primary_10_1016_j_ccr_2020_213619 crossref_primary_10_1007_s11581_020_03473_0 crossref_primary_10_1039_D2DT02002E crossref_primary_10_1021_acsami_1c03477 crossref_primary_10_1002_advs_202402610 crossref_primary_10_1021_acs_energyfuels_2c04234 crossref_primary_10_20964_2021_07_27 crossref_primary_10_1016_j_cclet_2022_107815 crossref_primary_10_1021_acssuschemeng_9b06785 crossref_primary_10_1016_j_ijhydene_2020_07_252 crossref_primary_10_1016_j_jhazmat_2024_137067 crossref_primary_10_1002_chem_202102209 crossref_primary_10_1039_D1TA00585E crossref_primary_10_1016_j_cej_2022_135852 crossref_primary_10_1016_j_microc_2023_109485 crossref_primary_10_1016_j_electacta_2022_141436 crossref_primary_10_1002_slct_202304194 crossref_primary_10_1039_D3GC02151C crossref_primary_10_1016_j_jcis_2021_01_093 |
Cites_doi | 10.1126/science.1200832 10.1016/j.carbon.2017.01.085 10.1073/pnas.0602439103 10.1038/nmat4738 10.1021/cr200324t 10.1021/acscatal.6b01861 10.1002/adsu.201600038 10.1126/science.1170051 10.1016/S0022-0728(00)00407-1 10.1021/ja510442p 10.1007/s41918-018-0003-2 10.1021/cr2003272 10.1016/j.electacta.2007.11.057 10.1002/aenm.201601198 10.1021/cr200190s 10.1021/nl803279t 10.1021/jacs.7b06514 10.1002/adfm.201403657 10.1002/anie.201501590 10.1002/anie.201604802 10.1016/j.jpowsour.2009.06.005 10.1021/jp021634q 10.1039/c3ra41079j 10.1021/ja511759u 10.1021/acscatal.6b02702 10.1126/science.aan5412 10.1021/cr200217c 10.1039/C2TA00278G 10.1126/sciadv.1501122 10.1016/j.nanoen.2016.04.027 10.1126/science.aan2255 10.1021/ja3055639 10.3390/catal5031574 10.1039/C5NR06726J 10.1016/j.nanoen.2016.04.042 10.1002/aenm.201301735 10.1021/acscatal.6b02650 10.1039/C5EE03316K 10.1016/S1872-2067(16)62480-4 10.1002/aenm.201501497 10.1126/science.1168049 10.1002/aenm.201400840 10.1002/adfm.201402078 10.1021/acsnano.7b00417 10.1007/s41918-018-0025-9 10.1002/adma.201502315 10.1021/acs.chemrev.5b00462 10.1007/s003390101186 10.1016/j.jpowsour.2018.09.078 10.1002/adma.201706758 10.1039/C8EE02694G 10.1166/jnn.2010.2939 10.1039/C6MH00344C 10.1039/C6CS00250A 10.1038/nnano.2015.48 10.1016/j.carbon.2018.02.051 10.1126/sciadv.1400129 10.1016/j.ijhydene.2013.12.120 10.1021/acscatal.6b01222 10.1039/C6EE01160H 10.1039/C7EE02302B 10.1126/science.aad4998 10.1021/cr5003563 10.1002/aenm.201800716 10.1021/cr300014x 10.1021/am503372f 10.1038/s41929-019-0304-9 10.1021/cr200216x 10.1021/cr200167v 10.1016/j.jpowsour.2016.06.098 10.1016/j.apcatb.2009.10.008 10.1039/C6CS00328A 10.1016/j.nanoen.2016.09.040 10.1021/cr2003147 10.1007/s40843-017-9174-1 10.1021/ja7106146 10.1021/ja104425h 10.1016/j.carbon.2010.06.008 10.1002/adma.201505045 10.1016/j.jpowsour.2016.06.114 10.1021/cr200274s 10.1002/celc.201800657 10.1021/acs.jpcc.6b01885 10.1039/C6CC07049C 10.1039/C4CS00484A 10.1039/b200393g 10.1002/anie.201101287 10.1002/anie.201408990 10.1016/j.nanoen.2018.07.062 10.1016/j.nanoen.2015.07.002 10.1002/aenm.201801065 10.1039/C9EE00867E 10.1021/acscatal.7b02861 10.1021/cs3000864 10.1021/acs.chemrev.6b00398 10.1038/srep05130 10.1007/s41918-018-0002-3 10.1016/j.carbon.2019.02.013 10.1016/S0009-2614(02)00831-X 10.1021/acs.chemmater.5b03148 10.1002/aenm.201801289 10.1016/j.apsusc.2019.03.335 10.1038/nenergy.2015.6 10.1016/j.carbon.2017.03.037 10.1038/nmat4367 10.1126/science.1083440 10.1126/science.aad0832 10.1021/cr200205j 10.1021/ja5082553 10.1021/nn505582e 10.1002/adma.201606967 10.1016/j.jpowsour.2015.09.081 10.1021/acsenergylett.9b00804 10.1021/jp808560p 10.1002/chem.201304404 10.1039/C7TA09092G 10.1021/nn203393d 10.1016/j.apcatb.2018.05.046 10.1021/cs500673k 10.1002/adma.201807615 10.1002/smtd.201800168 10.1021/ja3043905 10.1016/j.electacta.2018.09.202 10.1038/s41929-018-0164-8 10.1039/C9TA01953G 10.3390/catal6080116 10.1002/anie.201303924 10.1002/anie.201204958 10.1039/C8CY00533H 10.1002/anie.201610119 10.1016/j.apcatb.2016.03.031 10.1039/C9EE00877B 10.1002/aenm.201000010 10.1021/cs500612k 10.1002/aenm.201600621 10.1002/aenm.201600794 10.1039/C6EE02171A 10.1002/aenm.201700518 10.1021/acsenergylett.6b00644 10.1016/j.apcatb.2012.02.009 10.1021/cr200256v 10.1016/j.carbon.2016.07.047 10.1016/j.carbon.2018.05.062 10.1021/acsami.7b12666 10.1038/ncomms12582 10.1016/j.nanoen.2016.03.016 10.1021/jz300243r 10.1021/cr200174w 10.1038/nenergy.2016.184 10.1021/cr200101d 10.1017/S1431927618009868 10.1021/cs300579b 10.1039/C4TA01506A 10.1021/acsami.6b02630 10.1016/j.nanoen.2016.02.038 10.1039/C5TA03900B 10.1016/j.apcatb.2014.02.040 10.1021/jacs.7b10385 10.1038/ncomms8343 10.1002/advs.201400015 10.1038/ncomms1427 10.1016/j.carbon.2016.10.046 10.1039/C4EE02281E 10.1002/adma.201604437 10.1016/j.carbon.2005.08.019 10.1016/j.nanoen.2017.07.006 10.1016/j.carbon.2015.12.034 10.1021/cs400374k 10.1021/nl203332e 10.1002/aenm.201601052 10.1039/C7TA08746B 10.1016/j.nanoen.2016.11.033 10.1002/anie.201509382 10.1016/j.coelec.2017.09.006 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Jan 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2020 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.carbon.2019.09.029 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Engineering |
EISSN | 1873-3891 |
EndPage | 92 |
ExternalDocumentID | 10_1016_j_carbon_2019_09_029 S0008622319309340 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EFKBS 7SR 8FD JG9 SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-72c718c3275d987c6cfe76bc705c7438a8a1de5fe81a914da74ff26b2bc114d23 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Thu Jul 10 22:09:43 EDT 2025 Fri Jul 25 07:46:41 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Tue Aug 05 03:08:24 EDT 2025 Fri Feb 23 02:49:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxygen evolution Oxygen reduction Porous structure Catalysts Metal-organic frameworks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-72c718c3275d987c6cfe76bc705c7438a8a1de5fe81a914da74ff26b2bc114d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9584-4748 |
PQID | 2328303186 |
PQPubID | 2045273 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2352423401 proquest_journals_2328303186 crossref_primary_10_1016_j_carbon_2019_09_029 crossref_citationtrail_10_1016_j_carbon_2019_09_029 elsevier_sciencedirect_doi_10_1016_j_carbon_2019_09_029 |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Carbon (New York) |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Li, Chen, Cullen, Hwang, Wang, Li, Liu, Karakalos, Lucero, Zhang, Lei, Xu, Sterbinsky, Feng, Su, More, Wang, Wang, Wu (bib29) 2018; 1 Mayrhofer, Strmcnik, Blizanac, Stamenkovic, Arenz, Markovic (bib151) 2008; 53 Yang, Shui, Du, Shao, Liu, Dai, Hu (bib15) 2019; 31 Hofmann, Blume, Wirth, Cantoro, Sharma, Ducati, Hävecker, Zafeiratos, Schnoerch, Oestereich, Teschner, Albrecht, Knop-Gericke, Schlögl, Robertson (bib168) 2009; 113 Serov, Artyushkova, Niangar, Wang, Dale, Jaouen, Sougrati, Jia, Mukerjee, Atanassov (bib89) 2015; 16 Li, Fang, Lin, Tian, An, Fu, Li, Jin, Ma (bib121) 2015; 3 Wei, Yang, Zhang, Wang, Zuin, Banham, Yang, Ye, Wang, Mohamedi, Sun (bib156) 2018; 237 Lee, Nam, Sun, Higashi, Lee, Lee, Chen, Cui, Cho (bib59) 2016 Sevilla, Fuertes (bib166) 2006; 44 Zhang, Xin, Li (bib51) 2012; 119–120 Park, Ni, Cote, Choi, Huang, Uribe-Romo, Chae, O'Keeffe, Yaghi (bib66) 2006; 103 Wang, Luo, Shao (bib180) 2018; 24 Yao, Huang, Xie, Lacey, Jacob, Xie, Chen, Nie, Pu, Rehwoldt, Yu, Zachariah, Wang, Shahbazian-Yassar, Li, Hu (bib175) 2018; 359 Shao, Dodelet, Wu, Zelenay (bib98) 2019 Wang, Fang, Zhang, Li, Wilkinson, Ignaszak, Zhang, Zhang (bib17) 2018; 1 Zhang, Chenitz, Lefèvre, Sun, Dodelet (bib97) 2016; 29 Xiong, Du, Liu, Perez, Supp, Ramakrishnan, Dai, Jiang (bib137) 2010; 132 Shang, Yu, Huang, Bian, Shi, Zhao, Waterhouse, Wu, Tung, Zhang (bib177) 2016; 28 Song, Yang, Singh, Yuan, Yu (bib133) 2016; 191 Hussain, Pawar, Huang, Tahir, Fischer, Zhu, Xia (bib83) 2019; 146 Yang, Qian, Du, Hua, Zuo, Cheng, Ma, Yin (bib38) 2017; 118 Wei, Tong, Zhang, Qiao, Gong, Sun (bib12) 2015; 5 Yin, Li, Lv, Fan, Zhao, Zhang, Wang, Cheng, Xi, Guo (bib60) 2017; 11 Nie, Li, Wei (bib10) 2015; 44 Wang, Prabhakaran, He, Shao, Wu (bib100) 2019 Burke, Enman, Batchellor, Zou, Boettcher (bib118) 2015; 27 Du, Shao, Sun, Yin, Liu, Wang (bib46) 2016; 29 Aijaz, Masa, Rosler, Xia, Weide, Botz, Fischer, Schuhmann, Muhler (bib124) 2016; 55 Guo, Shibuya, Akiba, Saji, Kondo, Nakamura (bib146) 2016; 351 Kreno, Leong, Farha, Allendorf, Van Duyne, Hupp (bib74) 2012; 112 Gong, Du, Xia, Durstock, Dai (bib134) 2009; 323 Liu, Shioyama, Akita, Xu (bib147) 2008; 130 Singh, Bae, Yu (bib103) 2015; 137 Stamenkovic, Strmcnik, Lopes, Markovic (bib3) 2016; 16 Sumida, Rogow, Mason, McDonald, Bloch, Herm, Bae, Long (bib69) 2012; 112 Dionigi, Strasser (bib125) 2016; 6 Yang, Zheng, Yang, Shi, Zhong, Zhang, Zhang, Hong, Peng, Zhou, Sun (bib91) 2017; 7 Wei, Fu, Zhang, Sun (bib4) 2017; 4 Chen, Li, Xu, Zhang (bib82) 2018; 132 Guan, Yu, Lou (bib178) 2016; 9 Lefevre, Proietti, Jaouen, Dodelet (bib93) 2009; 324 Lee, Tai Kim, Cao, Choi, Liu, Lee, Cho (bib61) 2011; 1 Lu, Yin, Shen (bib128) 2018; 2 Wang, Xiao, Yang, Xu, Lu, Du, Levin, Ge, Pan, Zhang, An (bib14) 2019; 7 He, Hwang, Cullen, Uddin, Langhorst, Li, Karakalos, Kropf, Wegener, Sokolowski, Chen, Myers, Su, More, Wang, Litster, Wu (bib101) 2019 Hunter, Gray, Muller (bib8) 2016; 116 Tu, Ren, Deng, Bao (bib132) 2018; 52 Dai, Xue, Qu, Choi, Baek (bib7) 2015; 115 Jeong, Shin, Choun, Maurya, Baik, Mun, Moon, Su, Lee (bib110) 2016; 120 Chung, Cullen, Higgins, Sneed, Holby, More, Zelenay (bib37) 2017; 357 Li, Sculley, Zhou (bib72) 2012; 112 Qian, Hu, Ge, Yang, Peng, Kang, Liu, Lee, Zhao (bib58) 2017; 111 Lee, Park, Yu (bib170) 2002; 360 Horcajada, Gref, Baati, Allan, Maurin, Couvreur, Ferey, Morris, Serre (bib75) 2012; 112 Zhou, Yang, Chan (bib41) 2014; 4 Sun, Zhang, Song, Pan, Zhuang, Xu, Xing (bib141) 2013; 3 Suen, Hung, Quan, Zhang, Xu, Chen (bib11) 2017; 46 Wei, Xu (bib53) 2018 Wang, Zhou, Fu, Li, Fan, Xin, Zheng, Li (bib102) 2014; 2 Zhang, Yang, Dubois, Herraiz, Chenitz, Lefèvre, Cherif, Vidal, Glibin, Sun, Dodelet (bib184) 2019 Simoes, Baranton, Coutanceau (bib50) 2010; 93 Chen, He, Spendelow, Wu (bib24) 2019 Barkholtz, Liu (bib23) 2017; 4 Zelenay (bib92) 2016 Chaikittisilp, Ariga, Yamauchi (bib85) 2013; 1 Zhong, Wang, Zhang, Xu, Xing, Xu, Zhang, Zhang (bib148) 2014; 53 Govindhan, Mao, Chen (bib54) 2016; 8 Proietti, Jaouen, Lefevre, Larouche, Tian, Herranz, Dodelet (bib35) 2011; 2 Wei, Zhang, Yang, Fu, Yang, Chen, Chen, Sun (bib155) 2018; 6 Rosi, Eckert, Eddaoudi, Vodak, Kim, O'Keeffe, Yaghi (bib65) 2003; 300 Wu, Geng, Ge, Guo, Wang, Zheng (bib42) 2016; 6 Lu, Du, Wang, Yang, Liu, Zhang, An, Levin, Wang, Ge (bib87) 2018; 5 Shen, Chen, Chen, Li (bib22) 2016; 6 Zhang, Chung, Cullen, Wagner, Kramm, More, Zelenay, Wu (bib30) 2019; 12 Huang, Liang, Wang, Cao (bib79) 2017; 46 Chaikittisilp, Torad, Li, Imura, Suzuki, Ishihara, Ariga, Yamauchi (bib123) 2014; 20 Van Pham, Klingele, Britton, Vuyyuru, Unmuessig, Holdcroft, Fischer, Thiele (bib142) 2017; 1 Varnell, Tse, Schulz, Fister, Haasch, Timoshenko, Frenkel, Gewirth (bib109) 2016; 7 Liu, Wang, Chen, Chen, Yang, Ma, Li, Wang (bib127) 2018; 403 Wang, Yin, Li, Chen, Wang (bib113) 2014; 39 Ledendecker, Clavel, Antonietti, Shalom (bib40) 2015; 25 Chen, Zhou, Xing, Xu, Tong, Xie, Zhang, Yan, Chu, Wu, Xie (bib112) 2017; 56 Wang, Cullen, Pan, Hwang, Wang, Feng, Wang, Engelhard, Zhang, He, Shao, Su, More, Spendelow, Wu (bib26) 2018 Yang, Miao, Hung, Chen, Tao, Wang, Zhang, Chen, Gao, Chen, Dai, Liu (bib145) 2016; 2 You, Gong, Wang, Qi, Wang, Chen, Ren (bib173) 2016; 6 Rabis, Rodriguez, Schmidt (bib1) 2012; 2 Yang, Jiang, Zhao, Zhu, Chen, Wang, Wu, Ma, Ma, Hu (bib140) 2011; 50 Chen, Wang, Wu, Xiong, Xu, Yu, Jiang (bib165) 2015; 27 Wang, Huang, Liu, Chang, Tang, Li, Chen, Jia, Yao, Wei, Wu, Li (bib27) 2017; 139 Kwon, Schouten, van der Waal, de Jong, Koper (bib48) 2016; 6 Du, Kong, Chen, Du, Gao, Yin (bib96) 2016; 37 Ding, Wei, Chen, Qi, Yang, Hu, Wang, Wan, Alvi, Li (bib39) 2013; 52 Suh, Park, Prasad, Lim (bib70) 2012; 112 Wu, Shen, Zhu, Zhou, Ji, Ma, Xu, Yang, Yuan (bib81) 2017; 116 Song, Wang, Pan, Xu, Zhuang (bib106) 2015; 300 Banham, Ye (bib33) 2017; 2 Wang, Zhang, Lin, Gupta, Wang, Tao, Fu, Wang, Zheng, Wu, Li (bib164) 2016; 25 Sun, Du, Du, Gao, Yin (bib13) 2019; 485 Cui, Ren, Deng, Deng, Bao (bib131) 2016; 9 Stariha, Artyushkova, Workman, Serov, McKinney, Halevi, Atanassov (bib34) 2016; 326 Farha, Eryazici, Jeong, Hauser, Wilmer, Sarjeant, Snurr, Nguyen, Yazaydin, Hupp (bib67) 2012; 134 Zhang, Osgood, Xie, Shao, Wu (bib18) 2017; 31 Banham, Choi, Kishimoto, Ye (bib182) 2019 Martinez, Komini Babu, Holby, Chung, Yin, Zelenay (bib183) 2019; 31 Li, Ghoshal, Liang, Sougrati, Jaouen, Halevi, McKinney, McCool, Ma, Yuan, Ma, Mukerjee, Jia (bib107) 2016; 9 Deng, Yu, Chen, Wang, Jin, Pan, Deng, Sun, Bao (bib130) 2013; 52 Zhou, Long, Yaghi (bib62) 2012; 112 Hu, Xiao, Zou, Dai (bib16) 2018; 1 Williford, Zhang (bib152) 2009; 194 Paulus, Schmidt, Gasteiger, Behm (bib150) 2001; 495 Yin, Yao, Wu, Zheng, Lin, Liu, Ju, Zhu, Hong, Deng, Zhou, Wei, Li (bib99) 2016; 55 Jaouen, Marcotte, Dodelet, Lindbergh (bib105) 2003; 107 Ma, Dai, Jaroniec, Qiao (bib120) 2014; 136 McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib56) 2015; 137 Li, Li, Tang, Li, Zhou, Kong, Lan, Bao, Dai (bib149) 2014; 4 Xia, Yan, Li, Wu, Lou, Wang (bib172) 2016; 1 Getman, Bae, Wilmer, Snurr (bib68) 2012; 112 Cui, Yue, Qian, Chen (bib76) 2012; 112 James (bib63) 2003; 32 Hou, Wen, Cui, Ci, Mao, Chen (bib84) 2015; 25 Zitolo, Goellner, Armel, Sougrati, Mineva, Stievano, Fonda, Jaouen (bib88) 2015; 14 Gupta, Qiao, Zhao, Xu, Lin, Devaguptapu, Wang, Swihart, Wu (bib126) 2016; 6 Chen, Duan, Ran, Qiao (bib160) 2015; 2 Luo, Engelhard, Shao, Wang (bib179) 2017; 7 Li, Cui, Zhong, Li, Wang, Wang, Jiang (bib111) 2016; 52 Wang, Xu, Liu, Li, Lu, Pan (bib163) 2016; 108 Kumar, Ando (bib167) 2010; 10 Zhang, Zhao, Xia, Dai (bib135) 2015; 10 Huang, Wang, Wen, Sennett, Gibson, Ren (bib169) 2002; 74 Liu, Zhu, Guo, Vasileff, Qiao (bib19) 2017; 7 Miao, He, Sahoo, Luo, Zhong, Chen, Guild, Jafari, Dutta, Cetegen, Wang, Alpay, Suib (bib57) 2016; 7 Du, Du, Chen, Kong, Yin, Wang (bib5) 2016; 8 Yang, Yao, Li, Fang, Nie, Liu, Zhou, Chen, Huang (bib43) 2011; 6 Zhao, Wang, Dong, He, Yin, An, Zhao, Zhang, Gao, Zhang, Lv, Wang, Zhang, Khattak, Khan, Wei, Zhang, Liu, Zhao, Tang (bib115) 2016; 1 Song, Cheng, Lushington, Sun (bib21) 2016; 6 Yoon, Srirambalaji, Kim (bib78) 2012; 112 Wei, Liu, Wang, Zhang, Huang, Yu (bib144) 2009; 9 Seh, Kibsgaard, Dickens, Chorkendorff, Nørskov, Jaramillo (bib2) 2017; 355 Lu, Gu, Wang, Wu, Liao, Li (bib119) 2016; 29 Li, Zheng, Jin, Li, Geng, Xue, Pang, Xu (bib20) 2018 Zhang, Guo, Tao, Lu, Wang (bib25) 2018 Zhang, Hwang, Wang, Feng, Karakalos, Luo, Qiao, Xie, Wang, Su, Shao, Wu (bib28) 2017; 139 Li, Wu, Higgins, Choi, Chen (bib90) 2012; 2 Zhang, Zhu, Pei, Liu, Qin, Zhang, Wang, Yin, Guiver (bib157) 2019 Wang, Swihart, Wu (bib31) 2019; 2 Shui, Wang, Du, Dai (bib136) 2015; 1 Singh, Mamtani, Bruening, Miller, Ozkan (bib44) 2014 Du, Luo, Feng, Engelhard, Xie, Han, Sun, Zhang, Yin, Wang, Wang, Shao (bib52) 2017; 39 Fang, Li, Li, Lin, Tian, Long, An, Fu, Jin, Ma (bib114) 2016; 326 Yan, Guo, Xie, Wang, Li, Li, Wang (bib138) 2017; 61 Chenitz, Kramm, Lefèvre, Glibin, Zhang, Sun, Dodelet (bib95) 2018; 11 Du, Shao, Sun, Yin, Du, Wang (bib47) 2018; 8 O'Keeffe, Yaghi (bib64) 2012; 112 Strickland, Miner, Jia, Tylus, Ramaswamy, Liang, Sougrati, Jaouen, Mukerjee (bib108) 2015; 6 Serov, Artyushkova, Atanassov (bib86) 2014; 4 Wei, Zhang, Yang, Chenitz, Banham, Yang, Ye, Knights, Sun (bib161) 2017; 9 Li, Wei, Gou, Xu (bib139) 2013; 3 Zhang, Xiong (bib77) 2012; 112 Xia, Zou, An, Xia, Guo (bib122) 2015; 8 Deng, Deng, Bao (bib129) 2017; 29 Arenz, Zana (bib181) 2016; 29 Zhang, Liu, Zang, Liu, Liu, Wang, Zhang, Zhang, Zhao (bib55) 2016; 30 Betard, Fischer (bib73) 2012; 112 Senthil Raja, Chuah, Lu (bib116) 2018 Zhao, Yin, Du, He, Zhao, Chang, Yin, Zhao, Liu, Tang (bib158) 2014; 8 Aijaz, Karkamkar, Choi, Tsumori, Ronnebro, Autrey, Shioyama, Xu (bib171) 2012; 134 Zelenay (bib94) 2017 Yan, Dong, Huang, Zou, Xie, Wang, Zhang, Liu, Shen, Wang (bib117) 2018; 6 Lee, Choun, Ye, Lee, Mun, Kang, Hwang, Lee, Shin, Moon, Kim, Lee, Lee (bib176) 2015; 54 Kuang, Luo, Kuang, Wang, Sun, Zhang, Wei (bib80) 2018; 137 Qiao, Liao, Wang, Zheng, Song, Li (bib143) 2016; 99 Wang, Yang, Wang, Chen, Zhou, Sun (bib45) 2014; 4 Qian, Sun, Du, Lou, Du, Zuo, Ma, Cheng, Gao, Yin (bib153) 2018; 292 Hu, Wang, Gao, Guo (bib162) 2010; 48 Wu, More, Johnston, Zelenay (bib104) 2 Chung (10.1016/j.carbon.2019.09.029_bib37) 2017; 357 Wu (10.1016/j.carbon.2019.09.029_bib71) 2012; 112 Dionigi (10.1016/j.carbon.2019.09.029_bib125) 2016; 6 Gong (10.1016/j.carbon.2019.09.029_bib134) 2009; 323 Yoon (10.1016/j.carbon.2019.09.029_bib78) 2012; 112 Zelenay (10.1016/j.carbon.2019.09.029_bib92) 2016 Lefevre (10.1016/j.carbon.2019.09.029_bib93) 2009; 324 Lu (10.1016/j.carbon.2019.09.029_bib87) 2018; 5 Barkholtz (10.1016/j.carbon.2019.09.029_bib23) 2017; 4 Qi (10.1016/j.carbon.2019.09.029_bib49) 2014; 154 Li (10.1016/j.carbon.2019.09.029_bib90) 2012; 2 Wang (10.1016/j.carbon.2019.09.029_bib45) 2014; 4 Hofmann (10.1016/j.carbon.2019.09.029_bib168) 2009; 113 Qiao (10.1016/j.carbon.2019.09.029_bib143) 2016; 99 Kumar (10.1016/j.carbon.2019.09.029_bib167) 2010; 10 Seh (10.1016/j.carbon.2019.09.029_bib2) 2017; 355 Ledendecker (10.1016/j.carbon.2019.09.029_bib40) 2015; 25 Banham (10.1016/j.carbon.2019.09.029_bib33) 2017; 2 Rosi (10.1016/j.carbon.2019.09.029_bib65) 2003; 300 Yan (10.1016/j.carbon.2019.09.029_bib117) 2018; 6 Zhong (10.1016/j.carbon.2019.09.029_bib148) 2014; 53 Tu (10.1016/j.carbon.2019.09.029_bib132) 2018; 52 Suen (10.1016/j.carbon.2019.09.029_bib11) 2017; 46 Song (10.1016/j.carbon.2019.09.029_bib21) 2016; 6 Wang (10.1016/j.carbon.2019.09.029_bib26) 2018 Zhang (10.1016/j.carbon.2019.09.029_bib51) 2012; 119–120 Van Pham (10.1016/j.carbon.2019.09.029_bib142) 2017; 1 Yin (10.1016/j.carbon.2019.09.029_bib99) 2016; 55 Burke (10.1016/j.carbon.2019.09.029_bib118) 2015; 27 Varnell (10.1016/j.carbon.2019.09.029_bib109) 2016; 7 Yan (10.1016/j.carbon.2019.09.029_bib138) 2017; 61 McCloskey (10.1016/j.carbon.2019.09.029_bib154) 2012; 3 Yang (10.1016/j.carbon.2019.09.029_bib43) 2011; 6 Chen (10.1016/j.carbon.2019.09.029_bib82) 2018; 132 Strickland (10.1016/j.carbon.2019.09.029_bib108) 2015; 6 Gupta (10.1016/j.carbon.2019.09.029_bib126) 2016; 6 Du (10.1016/j.carbon.2019.09.029_bib5) 2016; 8 Yang (10.1016/j.carbon.2019.09.029_bib38) 2017; 118 Hu (10.1016/j.carbon.2019.09.029_bib16) 2018; 1 Yang (10.1016/j.carbon.2019.09.029_bib145) 2016; 2 Li (10.1016/j.carbon.2019.09.029_bib159) 2016 Sumida (10.1016/j.carbon.2019.09.029_bib69) 2012; 112 Aijaz (10.1016/j.carbon.2019.09.029_bib171) 2012; 134 Guan (10.1016/j.carbon.2019.09.029_bib178) 2016; 9 Yang (10.1016/j.carbon.2019.09.029_bib140) 2011; 50 Shao (10.1016/j.carbon.2019.09.029_bib98) 2019 Chen (10.1016/j.carbon.2019.09.029_bib165) 2015; 27 Wei (10.1016/j.carbon.2019.09.029_bib12) 2015; 5 Dai (10.1016/j.carbon.2019.09.029_bib7) 2015; 115 Wu (10.1016/j.carbon.2019.09.029_bib42) 2016; 6 Williford (10.1016/j.carbon.2019.09.029_bib152) 2009; 194 Hu (10.1016/j.carbon.2019.09.029_bib162) 2010; 48 Mayrhofer (10.1016/j.carbon.2019.09.029_bib151) 2008; 53 Arenz (10.1016/j.carbon.2019.09.029_bib181) 2016; 29 Zhao (10.1016/j.carbon.2019.09.029_bib158) 2014; 8 Stariha (10.1016/j.carbon.2019.09.029_bib34) 2016; 326 Xia (10.1016/j.carbon.2019.09.029_bib172) 2016; 1 Zhang (10.1016/j.carbon.2019.09.029_bib77) 2012; 112 Shen (10.1016/j.carbon.2019.09.029_bib22) 2016; 6 Lee (10.1016/j.carbon.2019.09.029_bib61) 2011; 1 Shang (10.1016/j.carbon.2019.09.029_bib177) 2016; 28 Li (10.1016/j.carbon.2019.09.029_bib111) 2016; 52 Chen (10.1016/j.carbon.2019.09.029_bib24) 2019 Park (10.1016/j.carbon.2019.09.029_bib66) 2006; 103 Wang (10.1016/j.carbon.2019.09.029_bib164) 2016; 25 Govindhan (10.1016/j.carbon.2019.09.029_bib54) 2016; 8 Serov (10.1016/j.carbon.2019.09.029_bib86) 2014; 4 Shao (10.1016/j.carbon.2019.09.029_bib9) 2016; 116 Proietti (10.1016/j.carbon.2019.09.029_bib35) 2011; 2 Getman (10.1016/j.carbon.2019.09.029_bib68) 2012; 112 Cui (10.1016/j.carbon.2019.09.029_bib76) 2012; 112 Senthil Raja (10.1016/j.carbon.2019.09.029_bib116) 2018 Chaikittisilp (10.1016/j.carbon.2019.09.029_bib85) 2013; 1 Deng (10.1016/j.carbon.2019.09.029_bib129) 2017; 29 Du (10.1016/j.carbon.2019.09.029_bib46) 2016; 29 Wang (10.1016/j.carbon.2019.09.029_bib113) 2014; 39 Luo (10.1016/j.carbon.2019.09.029_bib179) 2017; 7 McCrory (10.1016/j.carbon.2019.09.029_bib56) 2015; 137 Singh (10.1016/j.carbon.2019.09.029_bib103) 2015; 137 Singh (10.1016/j.carbon.2019.09.029_bib44) 2014 Zhang (10.1016/j.carbon.2019.09.029_bib28) 2017; 139 Ballard (10.1016/j.carbon.2019.09.029_bib32) 2017 Lu (10.1016/j.carbon.2019.09.029_bib128) 2018; 2 Sevilla (10.1016/j.carbon.2019.09.029_bib166) 2006; 44 Wei (10.1016/j.carbon.2019.09.029_bib53) 2018 Ma (10.1016/j.carbon.2019.09.029_bib120) 2014; 136 Yang (10.1016/j.carbon.2019.09.029_bib15) 2019; 31 Paulus (10.1016/j.carbon.2019.09.029_bib150) 2001; 495 Li (10.1016/j.carbon.2019.09.029_bib29) 2018; 1 He (10.1016/j.carbon.2019.09.029_bib101) 2019 Liu (10.1016/j.carbon.2019.09.029_bib127) 2018; 403 Simoes (10.1016/j.carbon.2019.09.029_bib50) 2010; 93 Zhang (10.1016/j.carbon.2019.09.029_bib25) 2018 Horcajada (10.1016/j.carbon.2019.09.029_bib75) 2012; 112 Chenitz (10.1016/j.carbon.2019.09.029_bib95) 2018; 11 Kreno (10.1016/j.carbon.2019.09.029_bib74) 2012; 112 Liu (10.1016/j.carbon.2019.09.029_bib147) 2008; 130 Hunter (10.1016/j.carbon.2019.09.029_bib8) 2016; 116 Farha (10.1016/j.carbon.2019.09.029_bib67) 2012; 134 Zhang (10.1016/j.carbon.2019.09.029_bib55) 2016; 30 Hou (10.1016/j.carbon.2019.09.029_bib84) 2015; 25 Song (10.1016/j.carbon.2019.09.029_bib106) 2015; 300 Aijaz (10.1016/j.carbon.2019.09.029_bib124) 2016; 55 Yang (10.1016/j.carbon.2019.09.029_bib91) 2017; 7 Zhou (10.1016/j.carbon.2019.09.029_bib62) 2012; 112 Zhang (10.1016/j.carbon.2019.09.029_bib30) 2019; 12 Zhao (10.1016/j.carbon.2019.09.029_bib115) 2016; 1 Jeong (10.1016/j.carbon.2019.09.029_bib110) 2016; 120 Martinez (10.1016/j.carbon.2019.09.029_bib183) 2019; 31 Wu (10.1016/j.carbon.2019.09.029_bib104) 2011; 332 Guo (10.1016/j.carbon.2019.09.029_bib146) 2016; 351 Wang (10.1016/j.carbon.2019.09.029_bib100) 2019 Li (10.1016/j.carbon.2019.09.029_bib121) 2015; 3 Xia (10.1016/j.carbon.2019.09.029_bib122) 2015; 8 O'Keeffe (10.1016/j.carbon.2019.09.029_bib64) 2012; 112 Shui (10.1016/j.carbon.2019.09.029_bib136) 2015; 1 Sun (10.1016/j.carbon.2019.09.029_bib13) 2019; 485 Zitolo (10.1016/j.carbon.2019.09.029_bib88) 2015; 14 Rabis (10.1016/j.carbon.2019.09.029_bib1) 2012; 2 Qian (10.1016/j.carbon.2019.09.029_bib58) 2017; 111 Zhang (10.1016/j.carbon.2019.09.029_bib135) 2015; 10 Wang (10.1016/j.carbon.2019.09.029_bib31) 2019; 2 Li (10.1016/j.carbon.2019.09.029_bib139) 2013; 3 Du (10.1016/j.carbon.2019.09.029_bib47) 2018; 8 James (10.1016/j.carbon.2019.09.029_bib63) 2003; 32 Betard (10.1016/j.carbon.2019.09.029_bib73) 2012; 112 Li (10.1016/j.carbon.2019.09.029_bib149) 2014; 4 Huang (10.1016/j.carbon.2019.09.029_bib169) 2002; 74 Du (10.1016/j.carbon.2019.09.029_bib52) 2017; 39 Wang (10.1016/j.carbon.2019.09.029_bib27) 2017; 139 Wu (10.1016/j.carbon.2019.09.029_bib81) 2017; 116 Li (10.1016/j.carbon.2019.09.029_bib72) 2012; 112 Wang (10.1016/j.carbon.2019.09.029_bib102) 2014; 2 Wei (10.1016/j.carbon.2019.09.029_bib144) 2009; 9 Wei (10.1016/j.carbon.2019.09.029_bib161) 2017; 9 Wang (10.1016/j.carbon.2019.09.029_bib14) 2019; 7 Xiao (10.1016/j.carbon.2019.09.029_bib36) 2011; 11 Jaouen (10.1016/j.carbon.2019.09.029_bib105) 2003; 107 Zelenay (10.1016/j.carbon.2019.09.029_bib94) 2017 Deng (10.1016/j.carbon.2019.09.029_bib130) 2013; 52 Zhou (10.1016/j.carbon.2019.09.029_bib41) 2014; 4 Lu (10.1016/j.carbon.2019.09.029_bib119) 2016; 29 Huang (10.1016/j.carbon.2019.09.029_bib79) 2017; 46 Nie (10.1016/j.carbon.2019.09.029_bib10) 2015; 44 Lee (10.1016/j.carbon.2019.09.029_bib170) 2002; 360 Yao (10.1016/j.carbon.2019.09.029_bib175) 2018; 359 Zhang (10.1016/j.carbon.2019.09.029_bib18) 2017; 31 Song (10.1016/j.carbon.2019.09.029_bib133) 2016; 191 You (10.1016/j.carbon.2019.09.029_bib173) 2016; 6 Kwon (10.1016/j.carbon.2019.09.029_bib48) 2016; 6 Zhang (10.1016/j.carbon.2019.09.029_bib157) 2019 Li (10.1016/j.carbon.2019.09.029_bib107) 2016; 9 Du (10.1016/j.carbon.2019.09.029_bib96) 2016; 37 Yin (10.1016/j.carbon.2019.09.029_bib60) 2017; 11 Zhang (10.1016/j.carbon.2019.09.029_bib184) 2019 Ding (10.1016/j.carbon.2019.09.029_bib39) 2013; 52 Cui (10.1016/j.carbon.2019.09.029_bib131) 2016; 9 Chen (10.1016/j.carbon.2019.09.029_bib160) 2015; 2 Du (10.1016/j.carbon.2019.09.029_bib6) 2014; 6 Chaikittisilp (10.1016/j.carbon.2019.09.029_bib123) 2014; 20 Xiong (10.1016/j.carbon.2019.09.029_bib137) 2010; 132 Hussain (10.1016/j.carbon.2019.09.029_bib83) 2019; 146 Suh (10.1016/j.carbon.2019.09.029_bib70) 2012; 112 Chen (10.1016/j.carbon.2019.09.029_bib112) 2017; 56 Miao (10.1016/j.carbon.2019.09.029_bib57) 2016; 7 Stamenkovic (10.1016/j.carbon.2019.09.029_bib3) 2016; 16 Zhang (10.1016/j.carbon.2019.09.029_bib97) 2016; 29 Wang (10.1016/j.carbon.2019.09.029_bib180) 2018; 24 Wei (10.1016/j.carbon.2019.09.029_bib4) 2017; 4 Qian (10.1016/j.carbon.2019.09.029_bib153) 2018; 292 Kuang (10.1016/j.carbon.2019.09.029_bib80) 2018; 137 Wei (10.1016/j.carbon.2019.09.029_bib156) 2018; 237 Wang (10.1016/j.carbon.2019.09.029_bib163) 2016; 108 Serov (10.1016/j.carbon.2019.09.029_bib89) 2015; 16 Liu (10.1016/j.carbon.2019.09.029_bib19) 2017; 7 Wei (10.1016/j.carbon.2019.09.029_bib155) 2018; 6 Fang (10.1016/j.carbon.2019.09.029_bib114) 2016; 326 Sun (10.1016/j.carbon.2019.09.029_bib141) 2013; 3 Wang (10.1016/j.carbon.2019.09.029_bib17) 2018; 1 Lee (10.1016/j.carbon.2019.09.029_bib59) 2016 Lee (10.1016/j.carbon.2019.09.029_bib176) 2015; 54 Banham (10.1016/j.carbon.2019.09.029_bib182) 2019 Li (10.1016/j.carbon.2019.09.029_bib20) 2018 Li (10.1016/j.carbon.2019.09.029_bib174) 2018 |
References_xml | – volume: 44 start-page: 2168 year: 2015 end-page: 2201 ident: bib10 article-title: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction publication-title: Chem. Soc. Rev. – volume: 37 start-page: 1025 year: 2016 end-page: 1036 ident: bib96 article-title: A review of applications of poly(diallyldimethyl ammonium chloride) in polymer membrane fuel cells: from nanoparticles to support materials publication-title: Chin. J. Catal. – volume: 8 start-page: 1485 year: 2016 end-page: 1492 ident: bib54 article-title: Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting publication-title: Nanoscale – volume: 10 start-page: 444 year: 2015 end-page: 452 ident: bib135 article-title: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions publication-title: Nat. Nanotechnol. – volume: 134 start-page: 13926 year: 2012 end-page: 13929 ident: bib171 article-title: Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 314 year: 2016 end-page: 322 ident: bib46 article-title: Advanced catalyst supports for PEM fuel cell cathodes publication-title: Nano Energy – volume: 359 start-page: 1489 year: 2018 end-page: 1494 ident: bib175 article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles publication-title: Science – volume: 39 start-page: 245 year: 2017 end-page: 252 ident: bib52 article-title: Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: a highly durable oxygen evolution catalyst publication-title: Nano Energy – volume: 12 start-page: 2548 year: 2019 end-page: 2558 ident: bib30 article-title: High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites publication-title: Energy Environ. Sci. – volume: 112 start-page: 1055 year: 2012 end-page: 1083 ident: bib73 article-title: Metal-organic framework thin films: from fundamentals to applications publication-title: Chem. Rev. – volume: 1 start-page: 16184 year: 2016 ident: bib115 article-title: Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution publication-title: Nat. Energy – volume: 6 start-page: 1501497 year: 2016 ident: bib173 article-title: Enhanced cathodic oxygen reduction and power production of microbial fuel cell based on noble-metal-free electrocatalyst derived from metal-organic frameworks publication-title: Adv. Energy Mater. – volume: 2 year: 2016 ident: bib145 article-title: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst publication-title: Sci. Adv. – volume: 357 start-page: 479 year: 2017 end-page: 484 ident: bib37 article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst publication-title: Science – volume: 28 start-page: 1668 year: 2016 end-page: 1674 ident: bib177 article-title: Well-dispersed ZIF-derived Co,N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts publication-title: Adv. Mater. – volume: 112 start-page: 673 year: 2012 end-page: 674 ident: bib62 article-title: Introduction to metal-organic frameworks publication-title: Chem. Rev. – volume: 115 start-page: 4823 year: 2015 end-page: 4892 ident: bib7 article-title: Metal-free catalysts for oxygen reduction reaction publication-title: Chem. Rev. – volume: 485 start-page: 41 year: 2019 end-page: 47 ident: bib13 article-title: Three-dimensional layered double hydroxides on carbon nanofibers: the engineered mass transfer channels and active sites towards oxygen evolution reaction publication-title: Appl. Surf. Sci. – start-page: 1800716 year: 2018 ident: bib20 article-title: Metal-organic framework-derived carbons for battery applications publication-title: Adv. Energy Mater. – volume: 6 start-page: 205 year: 2011 end-page: 211 ident: bib43 article-title: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction publication-title: ACS Nano – volume: 360 start-page: 250 year: 2002 end-page: 255 ident: bib170 article-title: Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition publication-title: Chem. Phys. Lett. – volume: 25 start-page: 110 year: 2016 end-page: 119 ident: bib164 article-title: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid publication-title: Nano Energy – volume: 55 start-page: 10800 year: 2016 end-page: 10805 ident: bib99 article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts publication-title: Angew. Chem. Int. Ed. – volume: 25 start-page: 393 year: 2015 end-page: 399 ident: bib40 article-title: Highly porous materials as tunable electrocatalysts for the hydrogen and oxygen evolution reaction publication-title: Adv. Funct. Mater. – volume: 191 start-page: 202 year: 2016 end-page: 208 ident: bib133 article-title: Nitrogen-doped hollow carbon spheres with highly graphitized mesoporous shell: role of Fe for oxygen evolution reaction publication-title: Appl. Catal., B – volume: 116 start-page: 3594 year: 2016 end-page: 3657 ident: bib9 article-title: Recent advances in electrocatalysts for oxygen reduction reaction publication-title: Chem. Rev. – year: 2016 ident: bib92 article-title: Non-Precious metal fuel cell cathodes: catalyst development and electrode structure design publication-title: 2016 Annual Merit Review and Peer Evaluation Meeting – volume: 52 start-page: 494 year: 2018 end-page: 500 ident: bib132 article-title: Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation publication-title: Nano Energy – start-page: 1801065 year: 2018 ident: bib116 article-title: In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities publication-title: Adv. Energy Mater. – volume: 6 start-page: 805 year: 2018 end-page: 810 ident: bib117 article-title: Engineering the coordination geometry of metal–organic complex electrocatalysts for highly enhanced oxygen evolution reaction publication-title: J. Mater. Chem. – volume: 3 start-page: 9978 year: 2013 ident: bib139 article-title: Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts publication-title: RSC Adv. – volume: 25 start-page: 872 year: 2015 end-page: 882 ident: bib84 article-title: An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting publication-title: Adv. Funct. Mater. – volume: 8 start-page: 15250 year: 2016 end-page: 15257 ident: bib5 article-title: Metal-organic coordination networks: prussian blue and its synergy with Pt nanoparticles to enhance oxygen reduction kinetics publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 13233 year: 2016 end-page: 13236 ident: bib111 article-title: Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction publication-title: Chem. Commun. – volume: 300 start-page: 1127 year: 2003 end-page: 1129 ident: bib65 article-title: Hydrogen storage in microporous metal-organic frameworks publication-title: Science – volume: 24 start-page: 1876 year: 2018 end-page: 1877 ident: bib180 article-title: In-situ S/TEM probing of the behavior of nanoparticles under chemical and electrochemical reactions in the system involving solid, liquid and gas publication-title: Microsc. Microanal. – start-page: 1619 year: 2019 end-page: 1633 ident: bib24 article-title: Atomically dispersed metal catalysts for oxygen reduction publication-title: ACS Energy Lett. – volume: 16 start-page: 57 year: 2016 end-page: 69 ident: bib3 article-title: Energy and fuels from electrochemical interfaces publication-title: Nat. Mater. – volume: 112 start-page: 1163 year: 2012 end-page: 1195 ident: bib77 article-title: Ferroelectric metal-organic frameworks publication-title: Chem. Rev. – volume: 11 start-page: 365 year: 2018 end-page: 382 ident: bib95 article-title: A specific demetalation of Fe–N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells publication-title: Energy Environ. Sci. – start-page: 1706758 year: 2018 ident: bib26 article-title: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells publication-title: Adv. Mater. – volume: 29 start-page: 1604437 year: 2016 ident: bib119 article-title: Bimetal-organic framework derived CoFe2 O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction publication-title: Adv. Mater. – year: 2017 ident: bib94 article-title: ElectroCat (Electrocatalysis Consortium), 2017 Annual Merit Review and Peer Evaluation Meeting – year: 2017 ident: bib32 article-title: Ballard to Offer World's First PEM Fuel Cell Product Using Non Precious Metal Catalyst – volume: 1 start-page: 15006 year: 2016 ident: bib172 article-title: A metal–organic framework-derived bifunctional oxygen electrocatalyst publication-title: Nat. Energy – year: 2019 ident: bib182 article-title: Integrating PGM-free Catalysts into Catalyst Layers and Proton Exchange Membrane Fuel Cell Devices – volume: 2 start-page: 629 year: 2017 end-page: 638 ident: bib33 article-title: Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective publication-title: ACS Energy Lett. – volume: 111 start-page: 641 year: 2017 end-page: 650 ident: bib58 article-title: A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries publication-title: Carbon – volume: 326 start-page: 43 year: 2016 end-page: 49 ident: bib34 article-title: PGM-free Fe-N-C catalysts for oxygen reduction reaction: catalyst layer design publication-title: J. Power Sources – volume: 5 start-page: 3323 year: 2018 end-page: 3329 ident: bib87 article-title: Highly dispersed Cu−NX moieties embedded in graphene: a promising electrocatalyst towards the oxygen reduction reaction publication-title: ChemElectroChem – volume: 300 start-page: 279 year: 2015 end-page: 284 ident: bib106 article-title: Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction publication-title: J. Power Sources – volume: 1 start-page: 1 year: 2018 end-page: 34 ident: bib17 article-title: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal–air batteries publication-title: Electrochem. Energy Rev. – volume: 119–120 start-page: 40 year: 2012 end-page: 48 ident: bib51 article-title: Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: cogeneration of electricity and valuable chemicals publication-title: Appl. Catal., B – volume: 332 start-page: 443 year: 2011 end-page: 447 ident: bib104 article-title: High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt publication-title: Science – volume: 6 start-page: 1601198 year: 2016 ident: bib126 article-title: Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution publication-title: Adv. Energy Mater. – volume: 112 start-page: 1105 year: 2012 end-page: 1125 ident: bib74 article-title: Metal-organic framework materials as chemical sensors publication-title: Chem. Rev. – volume: 46 start-page: 126 year: 2017 end-page: 157 ident: bib79 article-title: Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions publication-title: Chem. Soc. Rev. – volume: 6 start-page: 14043 year: 2014 end-page: 14049 ident: bib6 article-title: Polyelectrolyte assisted synthesis and enhanced oxygen reduction activity of Pt nanocrystals with controllable shape and size publication-title: ACS Appl. Mater. Interfaces – volume: 118 start-page: 139 year: 2017 end-page: 147 ident: bib38 article-title: Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: a promising cathode scaffold with excellent rate performance for rechargeable Li-O 2 batteries publication-title: Carbon – volume: 237 start-page: 85 year: 2018 end-page: 93 ident: bib156 article-title: An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction publication-title: Appl. Catal., B – volume: 32 start-page: 276 year: 2003 ident: bib63 article-title: Metal-organic frameworks publication-title: Chem. Soc. Rev. – volume: 1 start-page: 14 year: 2013 end-page: 19 ident: bib85 article-title: A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications publication-title: J. Mater. Chem. – volume: 194 start-page: 1164 year: 2009 end-page: 1170 ident: bib152 article-title: Air electrode design for sustained high power operation of Li/air batteries publication-title: J. Power Sources – year: 2019 ident: bib157 article-title: Hierarchically Porous Co-N-C Cathode Catalyst Layers for Anion Exchange Membrane Fuel Cells – volume: 355 year: 2017 ident: bib2 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – start-page: 1601052 year: 2016 ident: bib59 article-title: Composites of a prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn-air battery publication-title: Adv. Energy Mater. – volume: 7 start-page: 11007 year: 2019 end-page: 11015 ident: bib14 article-title: Dual-nitrogen-source engineered Fe-nx moieties as A booster to oxygen electroreduction publication-title: J. Mater. Chem. – volume: 136 start-page: 13925 year: 2014 end-page: 13931 ident: bib120 article-title: Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 7549 year: 2015 end-page: 7558 ident: bib118 article-title: Oxygen evolution reaction electrocatalysis on transition metal oxides and (Oxy)hydroxides: activity trends and design principles publication-title: Chem. Mater. – volume: 154 start-page: 360 year: 2014 end-page: 368 ident: bib49 article-title: Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration publication-title: Appl. Catal., B – volume: 9 start-page: 2418 year: 2016 end-page: 2432 ident: bib107 article-title: Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction publication-title: Energy Environ. Sci. – volume: 132 start-page: 15839 year: 2010 end-page: 15841 ident: bib137 article-title: 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 ident: bib183 article-title: Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction publication-title: Adv. Mater. – volume: 39 start-page: 16179 year: 2014 end-page: 16186 ident: bib113 article-title: Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte publication-title: Int. J. Hydrogen Energy – volume: 134 start-page: 15016 year: 2012 end-page: 15021 ident: bib67 article-title: Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 997 year: 2012 end-page: 1001 ident: bib154 article-title: Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries publication-title: J. Phys. Chem. Lett. – volume: 112 start-page: 703 year: 2012 end-page: 723 ident: bib68 article-title: Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks publication-title: Chem. Rev. – volume: 55 start-page: 4087 year: 2016 end-page: 4091 ident: bib124 article-title: Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode publication-title: Angew. Chem. Int. Ed. – year: 2019 ident: bib98 article-title: PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges publication-title: Adv. Mater. – volume: 2 start-page: 416 year: 2011 ident: bib35 article-title: Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells publication-title: Nat. Commun. – year: 2019 ident: bib101 article-title: Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy publication-title: Energy Environ. Sci. – start-page: 1800406 year: 2018 ident: bib25 article-title: Defect-based single-atom electrocatalysts publication-title: Small Methods – volume: 16 start-page: 293 year: 2015 end-page: 300 ident: bib89 article-title: Nano-structured non-platinum catalysts for automotive fuel cell application publication-title: Nano Energy – volume: 6 start-page: 116 year: 2016 ident: bib21 article-title: Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells publication-title: Catalysts – start-page: 1800168 year: 2018 ident: bib53 article-title: The comprehensive understanding of 10 mA cmgeo−2 as an evaluation parameter for electrochemical water splitting publication-title: Small Methods – volume: 44 start-page: 468 year: 2006 end-page: 474 ident: bib166 article-title: Catalytic graphitization of templated mesoporous carbons publication-title: Carbon – volume: 1 year: 2015 ident: bib136 article-title: N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells publication-title: Sci. Adv. – volume: 6 start-page: 7343 year: 2015 ident: bib108 article-title: Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination publication-title: Nat. Commun. – volume: 7 start-page: 7658 year: 2017 end-page: 7664 ident: bib179 article-title: Revealing the dynamics of platinum nanoparticle catalysts on carbon in oxygen and water using environmental TEM publication-title: ACS Catal. – volume: 31 year: 2019 ident: bib15 article-title: Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future publication-title: Adv. Mater. – volume: 6 start-page: 5887 year: 2016 end-page: 5903 ident: bib22 article-title: Development of MOF-derived carbon-based nanomaterials for efficient catalysis publication-title: ACS Catal. – volume: 112 start-page: 1196 year: 2012 end-page: 1231 ident: bib78 article-title: Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis publication-title: Chem. Rev. – volume: 8 start-page: 568 year: 2015 end-page: 576 ident: bib122 article-title: A metal–organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction publication-title: Energy Environ. Sci. – volume: 137 start-page: 433 year: 2018 end-page: 441 ident: bib80 article-title: Metal organic framework nanofibers derived Co 3 O 4 -doped carbon-nitrogen nanosheet arrays for high efficiency electrocatalytic oxygen evolution publication-title: Carbon – volume: 9 start-page: 1752 year: 2009 end-page: 1758 ident: bib144 article-title: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties publication-title: Nano Lett. – volume: 112 start-page: 869 year: 2012 end-page: 932 ident: bib72 article-title: Metal-organic frameworks for separations publication-title: Chem. Rev. – volume: 29 start-page: 1606967 year: 2017 ident: bib129 article-title: Robust catalysis on 2D materials encapsulating metals: concept, application, and perspective publication-title: Adv. Mater. – volume: 6 start-page: 6704 year: 2016 end-page: 6717 ident: bib48 article-title: Electrocatalytic conversion of furanic compounds publication-title: ACS Catal. – volume: 7 start-page: 12582 year: 2016 ident: bib109 article-title: Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts publication-title: Nat. Commun. – volume: 52 start-page: 11755 year: 2013 end-page: 11759 ident: bib39 article-title: Space-Confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction publication-title: Angew. Chem. Int. Ed. – volume: 146 start-page: 348 year: 2019 end-page: 363 ident: bib83 article-title: Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: a correlational study publication-title: Carbon – start-page: 1801289 year: 2018 ident: bib174 article-title: In situ “chainmail catalyst” assembly in low-tortuosity, hierarchical carbon frameworks for efficient and stable hydrogen generation publication-title: Adv. Energy Mater. – volume: 93 start-page: 354 year: 2010 end-page: 362 ident: bib50 article-title: Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration publication-title: Appl. Catal., B – volume: 56 start-page: 610 year: 2017 end-page: 614 ident: bib112 article-title: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 1400015 year: 2015 ident: bib160 article-title: Paper-based N-doped carbon films for enhanced oxygen evolution electrocatalysis publication-title: Adv. Sci. – volume: 1 start-page: 935 year: 2018 end-page: 945 ident: bib29 article-title: Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells publication-title: Nat. Catal. – volume: 112 start-page: 836 year: 2012 end-page: 868 ident: bib71 article-title: Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks publication-title: Chem. Rev. – volume: 7 start-page: 139 year: 2017 end-page: 145 ident: bib91 article-title: Modeling Fe/N/C catalysts in monolayer graphene publication-title: ACS Catal. – volume: 323 start-page: 760 year: 2009 end-page: 764 ident: bib134 article-title: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction publication-title: Science – volume: 9 start-page: 3092 year: 2016 end-page: 3096 ident: bib178 article-title: A dual-metal–organic-framework derived electrocatalyst for oxygen reduction publication-title: Energy Environ. Sci. – volume: 6 start-page: 1600794 year: 2016 ident: bib42 article-title: Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts publication-title: Adv. Energy Mater. – volume: 137 start-page: 3165 year: 2015 end-page: 3168 ident: bib103 article-title: Fe-P: a new class of electroactive catalyst for oxygen reduction reaction publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 17281 year: 2017 end-page: 17284 ident: bib27 article-title: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1400840 year: 2014 ident: bib41 article-title: Structuring porous iron-nitrogen-doped carbon in a core/shell geometry for the oxygen reduction reaction publication-title: Adv. Energy Mater. – volume: 10 start-page: 3739 year: 2010 end-page: 3758 ident: bib167 article-title: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production publication-title: J. Nanosci. Nanotechnol. – volume: 116 start-page: 14120 year: 2016 end-page: 14136 ident: bib8 article-title: Earth-abundant heterogeneous water oxidation catalysts publication-title: Chem. Rev. – volume: 1 start-page: 34 year: 2011 end-page: 50 ident: bib61 article-title: Metal-air batteries with high energy density: Li-air versus Zn-air publication-title: Adv. Energy Mater. – volume: 4 start-page: 1301735 year: 2014 ident: bib86 article-title: Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: synthesis, structure, and reactivity publication-title: Adv. Energy Mater. – volume: 3 start-page: 1726 year: 2013 end-page: 1729 ident: bib141 article-title: Fluorine-doped carbon blacks: highly efficient metal-free electrocatalysts for oxygen reduction reaction publication-title: ACS Catal. – volume: 495 start-page: 134 year: 2001 end-page: 145 ident: bib150 article-title: Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study publication-title: J. Electroanal. Chem. – volume: 52 start-page: 371 year: 2013 end-page: 375 ident: bib130 article-title: Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. – volume: 116 start-page: 68 year: 2017 end-page: 76 ident: bib81 article-title: Metal organic framework derived NiFe@N-doped graphene microtube composites for hydrogen evolution catalyst publication-title: Carbon – volume: 8 start-page: 3216 year: 2018 end-page: 3232 ident: bib47 article-title: Electrocatalytic valorisation of biomass derived chemicals publication-title: Catal. Sci. Technol. – volume: 9 start-page: 36944 year: 2017 end-page: 36954 ident: bib161 article-title: 3D porous Fe/N/C spherical nanostructures as high-performance electrocatalysts for oxygen reduction in both alkaline and acidic media publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 3928 year: 2014 end-page: 3936 ident: bib45 article-title: Pyrolyzed Fe–N–C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium publication-title: ACS Catal. – volume: 324 start-page: 71 year: 2009 end-page: 74 ident: bib93 article-title: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells publication-title: Science – volume: 326 start-page: 50 year: 2016 end-page: 59 ident: bib114 article-title: Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst publication-title: J. Power Sources – volume: 120 start-page: 7705 year: 2016 end-page: 7714 ident: bib110 article-title: Nitrogen-deficient ORR active sites formation by iron-assisted water vapor activation of electrospun carbon nanofibers publication-title: J. Phys. Chem. C – volume: 1 start-page: 1600038 year: 2017 ident: bib142 article-title: Tridoped reduced graphene oxide as a metal-free catalyst for oxygen reduction reaction demonstrated in acidic and alkaline polymer electrolyte fuel cells publication-title: Adv. Sustain. Syst. – volume: 30 start-page: 93 year: 2016 end-page: 102 ident: bib55 article-title: Co/Co9S8@S,N-Doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media publication-title: Nano Energy – volume: 29 start-page: 111 year: 2016 end-page: 125 ident: bib97 article-title: Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells? publication-title: Nano Energy – volume: 50 start-page: 7132 year: 2011 end-page: 7135 ident: bib140 article-title: Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. – volume: 403 start-page: 90 year: 2018 end-page: 96 ident: bib127 article-title: Quaternary bimetallic phosphosulphide nanosheets derived from prussian blue analogues: origin of the ultra-high activity for oxygen evolution publication-title: J. Power Sources – volume: 11 start-page: 2275 year: 2017 end-page: 2283 ident: bib60 article-title: NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries publication-title: ACS Nano – volume: 2 start-page: 864 year: 2012 end-page: 890 ident: bib1 article-title: Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges publication-title: ACS Catal. – volume: 11 start-page: 5071 year: 2011 end-page: 5078 ident: bib36 article-title: Hierarchically porous graphene as a lithium-air battery electrode publication-title: Nano Lett. – year: 2019 ident: bib100 article-title: Iron-free cathode catalysts for proton-exchange-membrane fuel cells: cobalt catalysts and the peroxide mitigation approach publication-title: Adv. Mater. – volume: 2 start-page: 105 year: 2018 end-page: 127 ident: bib128 article-title: Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction publication-title: Electrochem. Energy Rev. – volume: 74 start-page: 387 year: 2002 end-page: 391 ident: bib169 article-title: Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes publication-title: Appl. Phys. A – volume: 3 start-page: 17392 year: 2015 end-page: 17402 ident: bib121 article-title: MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR publication-title: J. Mater. Chem. – volume: 292 start-page: 838 year: 2018 end-page: 845 ident: bib153 article-title: Insights into the role of oxygen functional groups and defects in the rechargeable nonaqueous Li–O2 batteries publication-title: Electrochim. Acta – volume: 99 start-page: 272 year: 2016 end-page: 279 ident: bib143 article-title: Simultaneous doping of nitrogen and fluorine into reduced graphene oxide: a highly active metal-free electrocatalyst for oxygen reduction publication-title: Carbon – volume: 103 start-page: 10186 year: 2006 end-page: 10191 ident: bib66 article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 113 start-page: 1648 year: 2009 end-page: 1656 ident: bib168 article-title: State of transition metal catalysts during carbon nanotube growth publication-title: J. Phys. Chem. C – volume: 5 start-page: 1574 year: 2015 end-page: 1602 ident: bib12 article-title: Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions publication-title: Catalysts – volume: 53 start-page: 14235 year: 2014 end-page: 14239 ident: bib148 article-title: ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 299 year: 2016 end-page: 313 ident: bib181 article-title: Fuel cell catalyst degradation: identical location electron microscopy and related methods publication-title: Nano Energy – volume: 112 start-page: 1126 year: 2012 end-page: 1162 ident: bib76 article-title: Luminescent functional metal-organic frameworks publication-title: Chem. Rev. – volume: 20 start-page: 4217 year: 2014 end-page: 4221 ident: bib123 article-title: Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks publication-title: Chemistry – volume: 4 start-page: 45 year: 2017 end-page: 59 ident: bib4 article-title: Rational design of carbon-based oxygen electrocatalysts for zinc–air batteries publication-title: Curr. Opin. Electrochem. – volume: 112 start-page: 782 year: 2012 end-page: 835 ident: bib70 article-title: Hydrogen storage in metal-organic frameworks publication-title: Chem. Rev. – volume: 6 start-page: 4605 year: 2018 end-page: 4610 ident: bib155 article-title: Litchi-like porous Fe/N/C spheres with atomically dispersed FeNx promoted by sulfur as highly efficient oxygen electrocatalysts for Zn–air batteries publication-title: J. Mater. Chem. – volume: 46 start-page: 337 year: 2017 end-page: 365 ident: bib11 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. – volume: 1 start-page: 84 year: 2018 end-page: 112 ident: bib16 article-title: Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection publication-title: Electrochem. Energy Rev. – volume: 4 start-page: 5130 year: 2014 ident: bib149 article-title: Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction publication-title: Sci. Rep. – volume: 27 start-page: 5010 year: 2015 end-page: 5016 ident: bib165 article-title: From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis publication-title: Adv. Mater. – volume: 112 start-page: 724 year: 2012 end-page: 781 ident: bib69 article-title: Carbon dioxide capture in metal-organic frameworks publication-title: Chem. Rev. – volume: 53 start-page: 3181 year: 2008 end-page: 3188 ident: bib151 article-title: Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts publication-title: Electrochim. Acta – volume: 112 start-page: 1232 year: 2012 end-page: 1268 ident: bib75 article-title: Metal-organic frameworks in biomedicine publication-title: Chem. Rev. – volume: 108 start-page: 433 year: 2016 end-page: 439 ident: bib163 article-title: From metal-organic frameworks to porous carbons: a promising strategy to prepare high-performance electrode materials for capacitive deionization publication-title: Carbon – volume: 31 start-page: 331 year: 2017 end-page: 350 ident: bib18 article-title: Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks publication-title: Nano Energy – volume: 54 start-page: 9230 year: 2015 end-page: 9234 ident: bib176 article-title: Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: effects of pore size and doping-site position publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1600621 year: 2016 ident: bib125 article-title: NiFe-based (Oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes publication-title: Adv. Energy Mater. – start-page: 1604356 year: 2016 ident: bib159 article-title: Pyrolysis of self-assembled iron porphyrin on carbon black as core/shell structured electrocatalysts for highly efficient oxygen reduction in both alkaline and acidic medium publication-title: Adv. Funct. Mater. – start-page: 3454 year: 2014 end-page: 3462 ident: bib44 article-title: Use of H2S to probe the active sites in FeNC catalysts for the oxygen reduction reaction (ORR) in acidic media publication-title: ACS Catal. – volume: 2 start-page: 14064 year: 2014 end-page: 14070 ident: bib102 article-title: MOF derived catalysts for electrochemical oxygen reduction publication-title: J. Mater. Chem. – volume: 61 start-page: 679 year: 2017 end-page: 685 ident: bib138 article-title: N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction publication-title: Sci. China Mater. – volume: 2 start-page: 578 year: 2019 end-page: 589 ident: bib31 article-title: Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation publication-title: Nat. Catal. – volume: 132 start-page: 172 year: 2018 end-page: 180 ident: bib82 article-title: Metal-organic framework derived coralline-like non-precious metal catalyst for highly efficient oxygen reduction reaction publication-title: Carbon – volume: 7 start-page: 819 year: 2016 end-page: 832 ident: bib57 article-title: Reduced graphene oxide supported nickel-manganese-cobalt spinel ternary oxide nanocomposites and their chemical-converted sulfide nanocomposites as efficient electrocatalysts for alkaline water splitting publication-title: ACS Catal. – volume: 351 start-page: 361 year: 2016 end-page: 365 ident: bib146 article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts publication-title: Science – volume: 7 start-page: 1700518 year: 2017 ident: bib19 article-title: Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions publication-title: Adv. Energy Mater. – year: 2019 ident: bib184 article-title: Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and the stability of a highly active NC_Ar+NH3 catalyst publication-title: Energy Environ. Sci. – volume: 9 start-page: 123 year: 2016 end-page: 129 ident: bib131 article-title: Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation publication-title: Energy Environ. Sci. – volume: 139 start-page: 14143 year: 2017 end-page: 14149 ident: bib28 article-title: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 20 year: 2017 end-page: 37 ident: bib23 article-title: Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks publication-title: Mater. Horiz. – volume: 112 start-page: 675 year: 2012 end-page: 702 ident: bib64 article-title: Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets publication-title: Chem. Rev. – volume: 14 start-page: 937 year: 2015 end-page: 942 ident: bib88 article-title: Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials publication-title: Nat. Mater. – volume: 48 start-page: 3599 year: 2010 end-page: 3606 ident: bib162 article-title: Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors publication-title: Carbon – volume: 8 start-page: 12660 year: 2014 end-page: 12668 ident: bib158 article-title: Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction publication-title: ACS Nano – volume: 107 start-page: 1376 year: 2003 end-page: 1386 ident: bib105 article-title: Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports publication-title: J. Phys. Chem. B – volume: 2 start-page: 2761 year: 2012 end-page: 2768 ident: bib90 article-title: Determination of iron active sites in pyrolyzed iron-based catalysts for the oxygen reduction reaction publication-title: ACS Catal. – volume: 130 start-page: 5390 year: 2008 end-page: 5391 ident: bib147 article-title: Metal-organic framework as a template for porous carbon synthesis publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 4347 year: 2015 end-page: 4357 ident: bib56 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J. Am. Chem. Soc. – volume: 332 start-page: 443 year: 2011 ident: 10.1016/j.carbon.2019.09.029_bib104 article-title: High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt publication-title: Science doi: 10.1126/science.1200832 – volume: 116 start-page: 68 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib81 article-title: Metal organic framework derived NiFe@N-doped graphene microtube composites for hydrogen evolution catalyst publication-title: Carbon doi: 10.1016/j.carbon.2017.01.085 – volume: 103 start-page: 10186 year: 2006 ident: 10.1016/j.carbon.2019.09.029_bib66 article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0602439103 – volume: 16 start-page: 57 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib3 article-title: Energy and fuels from electrochemical interfaces publication-title: Nat. Mater. doi: 10.1038/nmat4738 – volume: 112 start-page: 1105 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib74 article-title: Metal-organic framework materials as chemical sensors publication-title: Chem. Rev. doi: 10.1021/cr200324t – volume: 6 start-page: 6704 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib48 article-title: Electrocatalytic conversion of furanic compounds publication-title: ACS Catal. doi: 10.1021/acscatal.6b01861 – volume: 1 start-page: 1600038 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib142 article-title: Tridoped reduced graphene oxide as a metal-free catalyst for oxygen reduction reaction demonstrated in acidic and alkaline polymer electrolyte fuel cells publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.201600038 – volume: 324 start-page: 71 year: 2009 ident: 10.1016/j.carbon.2019.09.029_bib93 article-title: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells publication-title: Science doi: 10.1126/science.1170051 – volume: 495 start-page: 134 year: 2001 ident: 10.1016/j.carbon.2019.09.029_bib150 article-title: Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(00)00407-1 – volume: 137 start-page: 4347 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib56 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510442p – volume: 1 start-page: 84 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib16 article-title: Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0003-2 – volume: 112 start-page: 724 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib69 article-title: Carbon dioxide capture in metal-organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr2003272 – volume: 53 start-page: 3181 year: 2008 ident: 10.1016/j.carbon.2019.09.029_bib151 article-title: Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.11.057 – volume: 6 start-page: 1601198 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib126 article-title: Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601198 – volume: 112 start-page: 869 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib72 article-title: Metal-organic frameworks for separations publication-title: Chem. Rev. doi: 10.1021/cr200190s – volume: 9 start-page: 1752 year: 2009 ident: 10.1016/j.carbon.2019.09.029_bib144 article-title: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties publication-title: Nano Lett. doi: 10.1021/nl803279t – volume: 139 start-page: 14143 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib28 article-title: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06514 – volume: 25 start-page: 872 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib84 article-title: An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403657 – volume: 54 start-page: 9230 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib176 article-title: Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: effects of pore size and doping-site position publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201501590 – volume: 55 start-page: 10800 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib99 article-title: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604802 – volume: 194 start-page: 1164 year: 2009 ident: 10.1016/j.carbon.2019.09.029_bib152 article-title: Air electrode design for sustained high power operation of Li/air batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.06.005 – volume: 107 start-page: 1376 year: 2003 ident: 10.1016/j.carbon.2019.09.029_bib105 article-title: Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports publication-title: J. Phys. Chem. B doi: 10.1021/jp021634q – volume: 3 start-page: 9978 year: 2013 ident: 10.1016/j.carbon.2019.09.029_bib139 article-title: Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts publication-title: RSC Adv. doi: 10.1039/c3ra41079j – volume: 137 start-page: 3165 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib103 article-title: Fe-P: a new class of electroactive catalyst for oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511759u – volume: 7 start-page: 139 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib91 article-title: Modeling Fe/N/C catalysts in monolayer graphene publication-title: ACS Catal. doi: 10.1021/acscatal.6b02702 – volume: 359 start-page: 1489 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib175 article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles publication-title: Science doi: 10.1126/science.aan5412 – volume: 112 start-page: 703 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib68 article-title: Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr200217c – volume: 1 start-page: 14 year: 2013 ident: 10.1016/j.carbon.2019.09.029_bib85 article-title: A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications publication-title: J. Mater. Chem. doi: 10.1039/C2TA00278G – volume: 2 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib145 article-title: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst publication-title: Sci. Adv. doi: 10.1126/sciadv.1501122 – volume: 29 start-page: 299 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib181 article-title: Fuel cell catalyst degradation: identical location electron microscopy and related methods publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.027 – volume: 357 start-page: 479 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib37 article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst publication-title: Science doi: 10.1126/science.aan2255 – volume: 134 start-page: 15016 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib67 article-title: Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3055639 – volume: 5 start-page: 1574 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib12 article-title: Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions publication-title: Catalysts doi: 10.3390/catal5031574 – volume: 8 start-page: 1485 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib54 article-title: Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting publication-title: Nanoscale doi: 10.1039/C5NR06726J – volume: 25 start-page: 110 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib164 article-title: Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.042 – volume: 4 start-page: 1301735 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib86 article-title: Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: synthesis, structure, and reactivity publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301735 – volume: 7 start-page: 819 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib57 article-title: Reduced graphene oxide supported nickel-manganese-cobalt spinel ternary oxide nanocomposites and their chemical-converted sulfide nanocomposites as efficient electrocatalysts for alkaline water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.6b02650 – volume: 9 start-page: 123 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib131 article-title: Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03316K – volume: 37 start-page: 1025 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib96 article-title: A review of applications of poly(diallyldimethyl ammonium chloride) in polymer membrane fuel cells: from nanoparticles to support materials publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(16)62480-4 – volume: 6 start-page: 1501497 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib173 article-title: Enhanced cathodic oxygen reduction and power production of microbial fuel cell based on noble-metal-free electrocatalyst derived from metal-organic frameworks publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501497 – volume: 323 start-page: 760 year: 2009 ident: 10.1016/j.carbon.2019.09.029_bib134 article-title: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction publication-title: Science doi: 10.1126/science.1168049 – volume: 4 start-page: 1400840 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib41 article-title: Structuring porous iron-nitrogen-doped carbon in a core/shell geometry for the oxygen reduction reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400840 – volume: 25 start-page: 393 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib40 article-title: Highly porous materials as tunable electrocatalysts for the hydrogen and oxygen evolution reaction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402078 – volume: 11 start-page: 2275 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib60 article-title: NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries publication-title: ACS Nano doi: 10.1021/acsnano.7b00417 – volume: 2 start-page: 105 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib128 article-title: Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0025-9 – volume: 27 start-page: 5010 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib165 article-title: From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201502315 – volume: 116 start-page: 3594 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib9 article-title: Recent advances in electrocatalysts for oxygen reduction reaction publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00462 – volume: 74 start-page: 387 year: 2002 ident: 10.1016/j.carbon.2019.09.029_bib169 article-title: Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes publication-title: Appl. Phys. A doi: 10.1007/s003390101186 – volume: 403 start-page: 90 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib127 article-title: Quaternary bimetallic phosphosulphide nanosheets derived from prussian blue analogues: origin of the ultra-high activity for oxygen evolution publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.09.078 – year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib182 – start-page: 1706758 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib26 article-title: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells publication-title: Adv. Mater. doi: 10.1002/adma.201706758 – year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib101 article-title: Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02694G – volume: 10 start-page: 3739 year: 2010 ident: 10.1016/j.carbon.2019.09.029_bib167 article-title: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2010.2939 – volume: 4 start-page: 20 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib23 article-title: Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks publication-title: Mater. Horiz. doi: 10.1039/C6MH00344C – volume: 46 start-page: 126 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib79 article-title: Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00250A – volume: 10 start-page: 444 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib135 article-title: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.48 – volume: 132 start-page: 172 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib82 article-title: Metal-organic framework derived coralline-like non-precious metal catalyst for highly efficient oxygen reduction reaction publication-title: Carbon doi: 10.1016/j.carbon.2018.02.051 – volume: 1 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib136 article-title: N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells publication-title: Sci. Adv. doi: 10.1126/sciadv.1400129 – year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib157 – volume: 39 start-page: 16179 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib113 article-title: Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.12.120 – volume: 6 start-page: 5887 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib22 article-title: Development of MOF-derived carbon-based nanomaterials for efficient catalysis publication-title: ACS Catal. doi: 10.1021/acscatal.6b01222 – volume: 9 start-page: 2418 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib107 article-title: Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01160H – volume: 11 start-page: 365 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib95 article-title: A specific demetalation of Fe–N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02302B – volume: 355 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib2 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 115 start-page: 4823 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib7 article-title: Metal-free catalysts for oxygen reduction reaction publication-title: Chem. Rev. doi: 10.1021/cr5003563 – start-page: 1800716 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib20 article-title: Metal-organic framework-derived carbons for battery applications publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800716 – volume: 112 start-page: 673 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib62 article-title: Introduction to metal-organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr300014x – volume: 6 start-page: 14043 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib6 article-title: Polyelectrolyte assisted synthesis and enhanced oxygen reduction activity of Pt nanocrystals with controllable shape and size publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am503372f – volume: 2 start-page: 578 year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib31 article-title: Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation publication-title: Nat. Catal. doi: 10.1038/s41929-019-0304-9 – volume: 112 start-page: 836 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib71 article-title: Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr200216x – start-page: 1800406 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib25 article-title: Defect-based single-atom electrocatalysts publication-title: Small Methods – year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib92 article-title: Non-Precious metal fuel cell cathodes: catalyst development and electrode structure design – volume: 112 start-page: 1055 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib73 article-title: Metal-organic framework thin films: from fundamentals to applications publication-title: Chem. Rev. doi: 10.1021/cr200167v – volume: 326 start-page: 43 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib34 article-title: PGM-free Fe-N-C catalysts for oxygen reduction reaction: catalyst layer design publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.098 – year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib32 – volume: 93 start-page: 354 year: 2010 ident: 10.1016/j.carbon.2019.09.029_bib50 article-title: Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2009.10.008 – volume: 46 start-page: 337 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib11 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 30 start-page: 93 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib55 article-title: Co/Co9S8@S,N-Doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.040 – volume: 112 start-page: 1196 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib78 article-title: Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis publication-title: Chem. Rev. doi: 10.1021/cr2003147 – volume: 61 start-page: 679 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib138 article-title: N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction publication-title: Sci. China Mater. doi: 10.1007/s40843-017-9174-1 – volume: 130 start-page: 5390 year: 2008 ident: 10.1016/j.carbon.2019.09.029_bib147 article-title: Metal-organic framework as a template for porous carbon synthesis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja7106146 – volume: 132 start-page: 15839 year: 2010 ident: 10.1016/j.carbon.2019.09.029_bib137 article-title: 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104425h – volume: 48 start-page: 3599 year: 2010 ident: 10.1016/j.carbon.2019.09.029_bib162 article-title: Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2010.06.008 – volume: 28 start-page: 1668 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib177 article-title: Well-dispersed ZIF-derived Co,N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.201505045 – volume: 326 start-page: 50 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib114 article-title: Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.114 – volume: 112 start-page: 782 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib70 article-title: Hydrogen storage in metal-organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr200274s – volume: 5 start-page: 3323 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib87 article-title: Highly dispersed Cu−NX moieties embedded in graphene: a promising electrocatalyst towards the oxygen reduction reaction publication-title: ChemElectroChem doi: 10.1002/celc.201800657 – volume: 120 start-page: 7705 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib110 article-title: Nitrogen-deficient ORR active sites formation by iron-assisted water vapor activation of electrospun carbon nanofibers publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b01885 – volume: 52 start-page: 13233 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib111 article-title: Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction publication-title: Chem. Commun. doi: 10.1039/C6CC07049C – volume: 44 start-page: 2168 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib10 article-title: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00484A – volume: 32 start-page: 276 year: 2003 ident: 10.1016/j.carbon.2019.09.029_bib63 article-title: Metal-organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/b200393g – volume: 50 start-page: 7132 year: 2011 ident: 10.1016/j.carbon.2019.09.029_bib140 article-title: Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201101287 – volume: 53 start-page: 14235 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib148 article-title: ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408990 – volume: 52 start-page: 494 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib132 article-title: Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.062 – volume: 16 start-page: 293 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib89 article-title: Nano-structured non-platinum catalysts for automotive fuel cell application publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.07.002 – start-page: 1801065 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib116 article-title: In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801065 – year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib184 article-title: Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and the stability of a highly active NC_Ar+NH3 catalyst publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00867E – volume: 7 start-page: 7658 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib179 article-title: Revealing the dynamics of platinum nanoparticle catalysts on carbon in oxygen and water using environmental TEM publication-title: ACS Catal. doi: 10.1021/acscatal.7b02861 – volume: 2 start-page: 864 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib1 article-title: Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges publication-title: ACS Catal. doi: 10.1021/cs3000864 – volume: 116 start-page: 14120 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib8 article-title: Earth-abundant heterogeneous water oxidation catalysts publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00398 – volume: 31 year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib183 article-title: Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction publication-title: Adv. Mater. – volume: 4 start-page: 5130 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib149 article-title: Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction publication-title: Sci. Rep. doi: 10.1038/srep05130 – volume: 1 start-page: 1 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib17 article-title: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal–air batteries publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0002-3 – volume: 146 start-page: 348 year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib83 article-title: Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: a correlational study publication-title: Carbon doi: 10.1016/j.carbon.2019.02.013 – volume: 360 start-page: 250 year: 2002 ident: 10.1016/j.carbon.2019.09.029_bib170 article-title: Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00831-X – volume: 27 start-page: 7549 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib118 article-title: Oxygen evolution reaction electrocatalysis on transition metal oxides and (Oxy)hydroxides: activity trends and design principles publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03148 – volume: 31 year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib15 article-title: Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future publication-title: Adv. Mater. – start-page: 1801289 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib174 article-title: In situ “chainmail catalyst” assembly in low-tortuosity, hierarchical carbon frameworks for efficient and stable hydrogen generation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801289 – volume: 485 start-page: 41 year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib13 article-title: Three-dimensional layered double hydroxides on carbon nanofibers: the engineered mass transfer channels and active sites towards oxygen evolution reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.335 – volume: 1 start-page: 15006 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib172 article-title: A metal–organic framework-derived bifunctional oxygen electrocatalyst publication-title: Nat. Energy doi: 10.1038/nenergy.2015.6 – volume: 118 start-page: 139 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib38 article-title: Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: a promising cathode scaffold with excellent rate performance for rechargeable Li-O 2 batteries publication-title: Carbon doi: 10.1016/j.carbon.2017.03.037 – volume: 14 start-page: 937 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib88 article-title: Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials publication-title: Nat. Mater. doi: 10.1038/nmat4367 – volume: 300 start-page: 1127 year: 2003 ident: 10.1016/j.carbon.2019.09.029_bib65 article-title: Hydrogen storage in microporous metal-organic frameworks publication-title: Science doi: 10.1126/science.1083440 – volume: 351 start-page: 361 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib146 article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts publication-title: Science doi: 10.1126/science.aad0832 – volume: 112 start-page: 675 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib64 article-title: Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets publication-title: Chem. Rev. doi: 10.1021/cr200205j – volume: 136 start-page: 13925 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib120 article-title: Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5082553 – volume: 8 start-page: 12660 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib158 article-title: Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction publication-title: ACS Nano doi: 10.1021/nn505582e – volume: 29 start-page: 1606967 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib129 article-title: Robust catalysis on 2D materials encapsulating metals: concept, application, and perspective publication-title: Adv. Mater. doi: 10.1002/adma.201606967 – volume: 300 start-page: 279 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib106 article-title: Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.081 – start-page: 1619 year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib24 article-title: Atomically dispersed metal catalysts for oxygen reduction publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00804 – volume: 113 start-page: 1648 year: 2009 ident: 10.1016/j.carbon.2019.09.029_bib168 article-title: State of transition metal catalysts during carbon nanotube growth publication-title: J. Phys. Chem. C doi: 10.1021/jp808560p – volume: 20 start-page: 4217 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib123 article-title: Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks publication-title: Chemistry doi: 10.1002/chem.201304404 – volume: 6 start-page: 805 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib117 article-title: Engineering the coordination geometry of metal–organic complex electrocatalysts for highly enhanced oxygen evolution reaction publication-title: J. Mater. Chem. doi: 10.1039/C7TA09092G – volume: 6 start-page: 205 year: 2011 ident: 10.1016/j.carbon.2019.09.029_bib43 article-title: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction publication-title: ACS Nano doi: 10.1021/nn203393d – volume: 237 start-page: 85 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib156 article-title: An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.05.046 – volume: 4 start-page: 3928 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib45 article-title: Pyrolyzed Fe–N–C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium publication-title: ACS Catal. doi: 10.1021/cs500673k – year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib98 article-title: PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges publication-title: Adv. Mater. doi: 10.1002/adma.201807615 – start-page: 1800168 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib53 article-title: The comprehensive understanding of 10 mA cmgeo−2 as an evaluation parameter for electrochemical water splitting publication-title: Small Methods doi: 10.1002/smtd.201800168 – volume: 134 start-page: 13926 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib171 article-title: Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3043905 – volume: 292 start-page: 838 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib153 article-title: Insights into the role of oxygen functional groups and defects in the rechargeable nonaqueous Li–O2 batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.09.202 – volume: 1 start-page: 935 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib29 article-title: Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells publication-title: Nat. Catal. doi: 10.1038/s41929-018-0164-8 – volume: 7 start-page: 11007 year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib14 article-title: Dual-nitrogen-source engineered Fe-nx moieties as A booster to oxygen electroreduction publication-title: J. Mater. Chem. doi: 10.1039/C9TA01953G – volume: 6 start-page: 116 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib21 article-title: Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells publication-title: Catalysts doi: 10.3390/catal6080116 – volume: 52 start-page: 11755 year: 2013 ident: 10.1016/j.carbon.2019.09.029_bib39 article-title: Space-Confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201303924 – year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib94 – volume: 52 start-page: 371 year: 2013 ident: 10.1016/j.carbon.2019.09.029_bib130 article-title: Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204958 – volume: 8 start-page: 3216 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib47 article-title: Electrocatalytic valorisation of biomass derived chemicals publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY00533H – volume: 56 start-page: 610 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib112 article-title: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610119 – volume: 191 start-page: 202 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib133 article-title: Nitrogen-doped hollow carbon spheres with highly graphitized mesoporous shell: role of Fe for oxygen evolution reaction publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.03.031 – volume: 12 start-page: 2548 year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib30 article-title: High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00877B – volume: 1 start-page: 34 year: 2011 ident: 10.1016/j.carbon.2019.09.029_bib61 article-title: Metal-air batteries with high energy density: Li-air versus Zn-air publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201000010 – start-page: 3454 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib44 article-title: Use of H2S to probe the active sites in FeNC catalysts for the oxygen reduction reaction (ORR) in acidic media publication-title: ACS Catal. doi: 10.1021/cs500612k – volume: 6 start-page: 1600621 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib125 article-title: NiFe-based (Oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600621 – volume: 6 start-page: 1600794 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib42 article-title: Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600794 – volume: 9 start-page: 3092 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib178 article-title: A dual-metal–organic-framework derived electrocatalyst for oxygen reduction publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02171A – volume: 7 start-page: 1700518 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib19 article-title: Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700518 – volume: 2 start-page: 629 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib33 article-title: Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00644 – volume: 119–120 start-page: 40 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib51 article-title: Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: cogeneration of electricity and valuable chemicals publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2012.02.009 – volume: 112 start-page: 1232 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib75 article-title: Metal-organic frameworks in biomedicine publication-title: Chem. Rev. doi: 10.1021/cr200256v – volume: 108 start-page: 433 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib163 article-title: From metal-organic frameworks to porous carbons: a promising strategy to prepare high-performance electrode materials for capacitive deionization publication-title: Carbon doi: 10.1016/j.carbon.2016.07.047 – volume: 137 start-page: 433 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib80 article-title: Metal organic framework nanofibers derived Co 3 O 4 -doped carbon-nitrogen nanosheet arrays for high efficiency electrocatalytic oxygen evolution publication-title: Carbon doi: 10.1016/j.carbon.2018.05.062 – volume: 9 start-page: 36944 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib161 article-title: 3D porous Fe/N/C spherical nanostructures as high-performance electrocatalysts for oxygen reduction in both alkaline and acidic media publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b12666 – volume: 7 start-page: 12582 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib109 article-title: Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts publication-title: Nat. Commun. doi: 10.1038/ncomms12582 – volume: 29 start-page: 314 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib46 article-title: Advanced catalyst supports for PEM fuel cell cathodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.03.016 – year: 2019 ident: 10.1016/j.carbon.2019.09.029_bib100 article-title: Iron-free cathode catalysts for proton-exchange-membrane fuel cells: cobalt catalysts and the peroxide mitigation approach publication-title: Adv. Mater. – volume: 3 start-page: 997 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib154 article-title: Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300243r – volume: 112 start-page: 1163 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib77 article-title: Ferroelectric metal-organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr200174w – volume: 1 start-page: 16184 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib115 article-title: Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution publication-title: Nat. Energy doi: 10.1038/nenergy.2016.184 – volume: 112 start-page: 1126 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib76 article-title: Luminescent functional metal-organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr200101d – volume: 24 start-page: 1876 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib180 article-title: In-situ S/TEM probing of the behavior of nanoparticles under chemical and electrochemical reactions in the system involving solid, liquid and gas publication-title: Microsc. Microanal. doi: 10.1017/S1431927618009868 – volume: 2 start-page: 2761 year: 2012 ident: 10.1016/j.carbon.2019.09.029_bib90 article-title: Determination of iron active sites in pyrolyzed iron-based catalysts for the oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/cs300579b – volume: 2 start-page: 14064 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib102 article-title: MOF derived catalysts for electrochemical oxygen reduction publication-title: J. Mater. Chem. doi: 10.1039/C4TA01506A – volume: 8 start-page: 15250 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib5 article-title: Metal-organic coordination networks: prussian blue and its synergy with Pt nanoparticles to enhance oxygen reduction kinetics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02630 – volume: 29 start-page: 111 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib97 article-title: Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells? publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.038 – volume: 3 start-page: 17392 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib121 article-title: MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR publication-title: J. Mater. Chem. doi: 10.1039/C5TA03900B – volume: 154 start-page: 360 year: 2014 ident: 10.1016/j.carbon.2019.09.029_bib49 article-title: Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2014.02.040 – volume: 139 start-page: 17281 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib27 article-title: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10385 – volume: 6 start-page: 7343 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib108 article-title: Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination publication-title: Nat. Commun. doi: 10.1038/ncomms8343 – volume: 2 start-page: 1400015 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib160 article-title: Paper-based N-doped carbon films for enhanced oxygen evolution electrocatalysis publication-title: Adv. Sci. doi: 10.1002/advs.201400015 – volume: 2 start-page: 416 year: 2011 ident: 10.1016/j.carbon.2019.09.029_bib35 article-title: Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells publication-title: Nat. Commun. doi: 10.1038/ncomms1427 – volume: 111 start-page: 641 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib58 article-title: A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries publication-title: Carbon doi: 10.1016/j.carbon.2016.10.046 – start-page: 1604356 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib159 article-title: Pyrolysis of self-assembled iron porphyrin on carbon black as core/shell structured electrocatalysts for highly efficient oxygen reduction in both alkaline and acidic medium publication-title: Adv. Funct. Mater. – volume: 8 start-page: 568 year: 2015 ident: 10.1016/j.carbon.2019.09.029_bib122 article-title: A metal–organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02281E – volume: 29 start-page: 1604437 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib119 article-title: Bimetal-organic framework derived CoFe2 O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201604437 – volume: 44 start-page: 468 year: 2006 ident: 10.1016/j.carbon.2019.09.029_bib166 article-title: Catalytic graphitization of templated mesoporous carbons publication-title: Carbon doi: 10.1016/j.carbon.2005.08.019 – volume: 39 start-page: 245 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib52 article-title: Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: a highly durable oxygen evolution catalyst publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.006 – volume: 99 start-page: 272 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib143 article-title: Simultaneous doping of nitrogen and fluorine into reduced graphene oxide: a highly active metal-free electrocatalyst for oxygen reduction publication-title: Carbon doi: 10.1016/j.carbon.2015.12.034 – volume: 3 start-page: 1726 year: 2013 ident: 10.1016/j.carbon.2019.09.029_bib141 article-title: Fluorine-doped carbon blacks: highly efficient metal-free electrocatalysts for oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/cs400374k – volume: 11 start-page: 5071 year: 2011 ident: 10.1016/j.carbon.2019.09.029_bib36 article-title: Hierarchically porous graphene as a lithium-air battery electrode publication-title: Nano Lett. doi: 10.1021/nl203332e – start-page: 1601052 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib59 article-title: Composites of a prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn-air battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601052 – volume: 6 start-page: 4605 year: 2018 ident: 10.1016/j.carbon.2019.09.029_bib155 article-title: Litchi-like porous Fe/N/C spheres with atomically dispersed FeNx promoted by sulfur as highly efficient oxygen electrocatalysts for Zn–air batteries publication-title: J. Mater. Chem. doi: 10.1039/C7TA08746B – volume: 31 start-page: 331 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib18 article-title: Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.033 – volume: 55 start-page: 4087 year: 2016 ident: 10.1016/j.carbon.2019.09.029_bib124 article-title: Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509382 – volume: 4 start-page: 45 year: 2017 ident: 10.1016/j.carbon.2019.09.029_bib4 article-title: Rational design of carbon-based oxygen electrocatalysts for zinc–air batteries publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2017.09.006 |
SSID | ssj0004814 |
Score | 2.6390252 |
SecondaryResourceType | review_article |
Snippet | The electrocatalytic oxygen reactions, i.e. oxygen reduction/evolution reactions (ORR/OER), play a key role in electrochemical energy conversion and storage... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 77 |
SubjectTerms | active sites batteries Carbon Catalysts catalytic activity Chemical reactions coordination polymers Devices durability Electrocatalysis electrochemistry Electrolytic cells Energy conversion Energy management Energy storage engineering Fuel cells Iridium Mass transfer Metal air batteries Metal-organic frameworks oxides Oxygen Oxygen evolution Oxygen reduction Platinum Porosity Porous structure ruthenium Storage batteries |
Title | Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: Recent progress and future perspectives |
URI | https://dx.doi.org/10.1016/j.carbon.2019.09.029 https://www.proquest.com/docview/2328303186 https://www.proquest.com/docview/2352423401 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT1xfRPBa3ebRtN5kUVZFTwreQl4FRbqLu4pe9K87k7SKIghCT2nShsxk5ptkHoTslwHUCq_ANvFSgoGSw54zfZtZZnMA0IZzibHDl1fF8Eac38rbGTLoYmHQrbKV_UmmR2ndthy2q3k4vrvDGF-E44BPKrzNE2i3C6GQyw_evtw8RJnye-M1P_buwueij5czj3aEWVDzKmY7jUDzV_X0Q1BH7XO6RBZb2EiP08yWyUxoVsj8oKvWtkreLwPA6CwVaXK07nyuqAcWew6epklQAKiJ5yigVdoWwYlnOK_waTp6eQWOooAkY7zD5IgCrgS9RKMfF0hFahpPUyISOv4K1JyskZvTk-vBMGuLK2ROcD7NFHOglhxnSvqqVK5wdVCFdaovHaCK0pQm90HWocxNlQtvlKhrVgANHZhQnvF1MtuMmrBBqKxyWxTOMA-6vnbCGquEACRoheoXLPQI79ZUuzbzOBbAeNCdi9m9TougkRK6Dw-reiT7HDVOmTf-6K86culvHKRBOfwxcrujrm538EQD0iw5SryiR_Y-XwNR8ULFNGH0hH0kwlHg8M1__3yLLDA04eOpzjaZnT4-hR3AOVO7Gxl5l8wdn10Mrz4AuOn_Tg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC5kPZhLUJOQVaMdyHVwpx_TM7nJoqzR3ZOCt6ZfA4Ywu7ir6Mm_bvVjlIggCHPq6Z5puqqrvuquB8Cv2qNaYQ3aJk4INFBK3HN6ZApDTYkAWjMmQuzwdFZNLvmfK3G1BuM-Fia4VWbZn2R6lNa55TCv5uHi-jrE-AY4jvikCbd5HO329ZCdSgxg_ej0bDJ7CY-sU4rvcNMfBvQRdNHNy-obMw-JUMsmJjyNWPNNDfVKVkcFdLIJnzNyJEdpcluw5rtt2Bj3Bdu-wOPUI5IuUp0mS9re7Yo45LI770iaBEGMmtiOIGAluQ5OPMZ5wE-T-f0DMhVBMBlDHpa_CUJLVE0kunKhYCS6cyTlIiGLl1jN5Ve4PDm-GE-KXF-hsJyxVSGpRc1kGZXCNbW0lW29rIyVI2ERWNS61qXzovV1qZuSOy1529IKyWjRinKUfYNBN-_8dyCiKU1VWU0dqvvWcqON5BzBoOFyVFE_BNavqbI5-XiogfFP9V5mf1VaBBUooUb40GYIxfOoRUq-8U5_2ZNL_cdECvXDOyP3euqqvImXCsFmzYLQq4bw8_k1EjXcqejOz29DHxEQKTL5zod_fgAbk4vpuTo_nZ3twicaLPp4yLMHg9XNrf-BsGdl9jNbPwFr1gIO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-organic+framework+derived+carbon+materials+for+electrocatalytic+oxygen+reactions%3A+Recent+progress+and+future+perspectives&rft.jtitle=Carbon+%28New+York%29&rft.au=Du%2C+Lei&rft.au=Xing%2C+Lixin&rft.au=Zhang%2C+Gaixia&rft.au=Sun%2C+Shuhui&rft.date=2020-01-01&rft.issn=0008-6223&rft.volume=156+p.77-92&rft.spage=77&rft.epage=92&rft_id=info:doi/10.1016%2Fj.carbon.2019.09.029&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |