DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform molecular dynamics simulations for large scale systems with quantum accuracy. However, making these models truly reliable and practically usefu...

Full description

Saved in:
Bibliographic Details
Published inComputer physics communications Vol. 253; no. C; p. 107206
Main Authors Zhang, Yuzhi, Wang, Haidi, Chen, Weijie, Zeng, Jinzhe, Zhang, Linfeng, Wang, Han, E, Weinan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform molecular dynamics simulations for large scale systems with quantum accuracy. However, making these models truly reliable and practically useful is still a very non-trivial task. A key component in this task is the generation of datasets used in model training. In this paper, we introduce the Deep Potential GENerator (DP-GEN), an open-source software platform that implements the recently proposed ”on-the-fly” learning procedure (Zhang et al. 2019) and is capable of generating uniformly accurate deep learning based PES models in a way that minimizes human intervention and the computational cost for data generation and model training. DP-GEN automatically and iteratively performs three steps: exploration, labeling, and training. It supports various popular packages for these three steps: LAMMPS for exploration, Quantum Espresso, VASP, CP2K, etc. for labeling, and DeePMD-kit for training. It also allows automatic job submission and result collection on different types of machines, such as high performance clusters and cloud machines, and is adaptive to different job management tools, including Slurm, PBS, and LSF. As a concrete example, we illustrate the details of the process for generating a general-purpose PES model for Cu using DP-GEN. Program Title: DP-GEN Program Files doi:http://dx.doi.org/10.17632/sxybkgc5xc.1 Licensing provisions: LGPL Programming language: Python Nature of problem: Generating reliable deep learning based potential energy models with minimal human intervention and computational cost. Solution method: The concurrent learning scheme is implemented. Supports for sampling configuration space with LAMMPS, generating ab initio data with Quantum Espresso, VASP, CP2K and training potential models with DeePMD-kit are provided. Supports for different machines including workstations, high performance clusters and cloud machines are provided. Supports for job management tools including Slurm, PBS, LSF are provided.
AbstractList In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform molecular dynamics simulations for large scale systems with quantum accuracy. However, making these models truly reliable and practically useful is still a very non-trivial task. A key component in this task is the generation of datasets used in model training. In this paper, we introduce the Deep Potential GENerator (DP-GEN), an open-source software platform that implements the recently proposed ”on-the-fly” learning procedure (Zhang et al. 2019) and is capable of generating uniformly accurate deep learning based PES models in a way that minimizes human intervention and the computational cost for data generation and model training. DP-GEN automatically and iteratively performs three steps: exploration, labeling, and training. It supports various popular packages for these three steps: LAMMPS for exploration, Quantum Espresso, VASP, CP2K, etc. for labeling, and DeePMD-kit for training. It also allows automatic job submission and result collection on different types of machines, such as high performance clusters and cloud machines, and is adaptive to different job management tools, including Slurm, PBS, and LSF. As a concrete example, we illustrate the details of the process for generating a general-purpose PES model for Cu using DP-GEN. Program Title: DP-GEN Program Files doi:http://dx.doi.org/10.17632/sxybkgc5xc.1 Licensing provisions: LGPL Programming language: Python Nature of problem: Generating reliable deep learning based potential energy models with minimal human intervention and computational cost. Solution method: The concurrent learning scheme is implemented. Supports for sampling configuration space with LAMMPS, generating ab initio data with Quantum Espresso, VASP, CP2K and training potential models with DeePMD-kit are provided. Supports for different machines including workstations, high performance clusters and cloud machines are provided. Supports for job management tools including Slurm, PBS, LSF are provided.
ArticleNumber 107206
Author Wang, Haidi
Zeng, Jinzhe
Zhang, Yuzhi
Chen, Weijie
Zhang, Linfeng
E, Weinan
Wang, Han
Author_xml – sequence: 1
  givenname: Yuzhi
  orcidid: 0000-0002-5841-1107
  surname: Zhang
  fullname: Zhang, Yuzhi
  organization: Beijing Institute of Big Data Research, Beijing 100871, People’s Republic of China
– sequence: 2
  givenname: Haidi
  orcidid: 0000-0003-4768-2136
  surname: Wang
  fullname: Wang, Haidi
  organization: School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230601, People’s Republic of China
– sequence: 3
  givenname: Weijie
  orcidid: 0000-0003-3657-2943
  surname: Chen
  fullname: Chen, Weijie
  organization: Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People’s Republic of China
– sequence: 4
  givenname: Jinzhe
  orcidid: 0000-0002-1515-8172
  surname: Zeng
  fullname: Zeng, Jinzhe
  organization: School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
– sequence: 5
  givenname: Linfeng
  surname: Zhang
  fullname: Zhang, Linfeng
  email: linfengz@princeton.edu
  organization: Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, USA
– sequence: 6
  givenname: Han
  surname: Wang
  fullname: Wang, Han
  email: wang_han@iapcm.ac.cn
  organization: Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Huayuan Road 6, Beijing 100088, People’s Republic of China
– sequence: 7
  givenname: Weinan
  surname: E
  fullname: E, Weinan
  email: weinan@math.princeton.edu
  organization: Beijing Institute of Big Data Research, Beijing 100871, People’s Republic of China
BackLink https://www.osti.gov/biblio/1631382$$D View this record in Osti.gov
BookMark eNp9kE1LAzEQhoMo2Ko_wFvwvjXJ7iaNnqTWDxD1oOeQzU5qyjZZkyj037trBcGDlxkG3meYeaZo3wcPCJ1SMqOE8vP1zPRmxggbZ8EI30MTOheyYLKq9tGEEEqKitf1IZqmtCaECCHLCXq_fi5ul48X-Aqb4M1HjOAz7kBH7_wK953ONsQNHgrOb4BX4CHq7ILHweIIndNNB7gF6H-pRidocR_ysMvpDo_Maos3oYUuHaMDq7sEJz_9CL3eLF8Wd8XD0-394uqhMFVZ5oJbKUpBBZNyXjeGzC0XlDJZV7yqtTS0hYoYrS03LSNUALcNb0rBJbPAbFMeobPd3pCyU8m4DOZt-NGDyYrykpZzNoTELmRiSCmCVUPu-70ctesUJWrUq9Zq0KtGvWqndyDpH7KPbqPj9l_mcscMGuDTQRzPAm-gdXG8qg3uH_oL0_aUwQ
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_109762
crossref_primary_10_1021_acsami_4c19397
crossref_primary_10_1016_j_cattod_2021_03_018
crossref_primary_10_1103_PhysRevMaterials_7_093601
crossref_primary_10_1002_anie_202410802
crossref_primary_10_1016_j_solmat_2025_113505
crossref_primary_10_1039_D4CP01980F
crossref_primary_10_1073_pnas_2407295121
crossref_primary_10_1073_pnas_2015440117
crossref_primary_10_1002_apxr_202400125
crossref_primary_10_1021_acs_jpcb_4c08461
crossref_primary_10_1103_PhysRevLett_126_236001
crossref_primary_10_1039_D2CP05530A
crossref_primary_10_2139_ssrn_4185808
crossref_primary_10_1021_jacs_4c06641
crossref_primary_10_1016_j_cjsc_2023_100061
crossref_primary_10_1016_j_commatsci_2022_111843
crossref_primary_10_1103_PhysRevB_110_064322
crossref_primary_10_1016_j_jeurceramsoc_2023_09_079
crossref_primary_10_1039_D2CP00710J
crossref_primary_10_1016_j_molliq_2021_118380
crossref_primary_10_1007_s11431_021_2068_8
crossref_primary_10_1016_j_molliq_2022_120500
crossref_primary_10_1111_jace_17779
crossref_primary_10_1063_5_0126333
crossref_primary_10_1016_j_sbi_2022_102502
crossref_primary_10_1016_j_carbon_2023_118180
crossref_primary_10_1021_jacs_4c18769
crossref_primary_10_5802_crchim_315
crossref_primary_10_1021_acs_jctc_2c00400
crossref_primary_10_1002_adfm_202402993
crossref_primary_10_1039_D4CP00017J
crossref_primary_10_1038_s41467_024_52063_5
crossref_primary_10_1021_acs_jctc_3c01320
crossref_primary_10_1088_1741_4326_ac888b
crossref_primary_10_1016_j_cplett_2025_142036
crossref_primary_10_1039_D4TA05071A
crossref_primary_10_1016_j_jmst_2023_09_059
crossref_primary_10_1021_acs_jpcc_4c02205
crossref_primary_10_1103_PhysRevB_110_064103
crossref_primary_10_1103_PhysRevB_108_L180104
crossref_primary_10_1002_aenm_202202892
crossref_primary_10_1016_j_commatsci_2022_111941
crossref_primary_10_1103_PhysRevMaterials_8_103804
crossref_primary_10_1029_2024JH000434
crossref_primary_10_1039_D2CP04697K
crossref_primary_10_7566_JPSJ_92_074002
crossref_primary_10_1002_aelm_202300352
crossref_primary_10_1088_1361_648X_ad5c31
crossref_primary_10_1021_acs_jctc_1c00041
crossref_primary_10_1007_s10967_024_09757_3
crossref_primary_10_1063_5_0255515
crossref_primary_10_1021_acs_jctc_2c00816
crossref_primary_10_1038_s41467_024_52991_2
crossref_primary_10_1080_08927022_2020_1851028
crossref_primary_10_1039_D2CP04105G
crossref_primary_10_1002_jcc_27269
crossref_primary_10_31857_S0235010623040096
crossref_primary_10_1002_cjoc_202100352
crossref_primary_10_1016_j_commatsci_2021_110567
crossref_primary_10_1038_s41598_024_78377_4
crossref_primary_10_1073_pnas_2309952120
crossref_primary_10_1103_PhysRevLett_134_076101
crossref_primary_10_1021_acs_jpclett_3c01783
crossref_primary_10_1063_5_0142843
crossref_primary_10_1063_5_0165948
crossref_primary_10_1021_acs_inorgchem_4c01484
crossref_primary_10_1021_acs_jctc_2c00827
crossref_primary_10_1021_acs_jpcc_3c01941
crossref_primary_10_1039_D0QI00921K
crossref_primary_10_1039_D2SC01306A
crossref_primary_10_1063_5_0175630
crossref_primary_10_1103_PhysRevB_102_041121
crossref_primary_10_1063_1674_0068_cjcp2203037
crossref_primary_10_1103_PhysRevLett_131_076801
crossref_primary_10_31857_S2686953524010073
crossref_primary_10_1021_acs_jpcc_1c01411
crossref_primary_10_1063_5_0236394
crossref_primary_10_1021_acs_jpcb_3c04629
crossref_primary_10_1103_PhysRevB_110_054102
crossref_primary_10_1039_D3CP00571B
crossref_primary_10_1021_acsami_4c22462
crossref_primary_10_1038_s41524_024_01431_2
crossref_primary_10_1002_advs_202105574
crossref_primary_10_1038_s41524_023_00967_z
crossref_primary_10_1021_acsami_3c04022
crossref_primary_10_1021_acs_jpca_2c05000
crossref_primary_10_1021_acs_macromol_3c01377
crossref_primary_10_1039_D4DD00353E
crossref_primary_10_1039_D2TA02610D
crossref_primary_10_1016_j_biortech_2024_130590
crossref_primary_10_6023_A23070328
crossref_primary_10_1016_j_fuel_2023_129909
crossref_primary_10_1073_pnas_2203397119
crossref_primary_10_1103_PhysRevMaterials_7_034601
crossref_primary_10_1021_acs_jpca_2c06201
crossref_primary_10_1021_jacs_2c03099
crossref_primary_10_3390_electronics12244957
crossref_primary_10_1021_acs_jpcc_4c02250
crossref_primary_10_1002_advs_202409880
crossref_primary_10_1021_acs_jpcc_1c08022
crossref_primary_10_1016_j_actamat_2022_118217
crossref_primary_10_1016_j_commatsci_2024_113160
crossref_primary_10_1038_s41524_025_01561_1
crossref_primary_10_1088_1674_1056_ad362b
crossref_primary_10_1039_D2CP04411K
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124705
crossref_primary_10_1021_acs_jctc_4c00824
crossref_primary_10_1103_PhysRevB_110_054109
crossref_primary_10_1039_D2CP02758E
crossref_primary_10_1016_j_commatsci_2024_113641
crossref_primary_10_1016_j_ensm_2024_103576
crossref_primary_10_1126_sciadv_adr4145
crossref_primary_10_1039_D4CP04472J
crossref_primary_10_1103_PhysRevB_109_054117
crossref_primary_10_1063_5_0215663
crossref_primary_10_1002_admi_202201346
crossref_primary_10_1039_D2CP06073F
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125359
crossref_primary_10_1007_s40843_023_2733_7
crossref_primary_10_1103_PhysRevB_107_014101
crossref_primary_10_1063_5_0023265
crossref_primary_10_1016_j_jnucmat_2022_154029
crossref_primary_10_1021_acsnano_4c00733
crossref_primary_10_1016_j_ensm_2023_103069
crossref_primary_10_1063_5_0155600
crossref_primary_10_1134_S0036029524701994
crossref_primary_10_1021_acselectrochem_4c00077
crossref_primary_10_1021_acsami_4c01480
crossref_primary_10_1039_D4SC01422G
crossref_primary_10_1021_acsaenm_4c00280
crossref_primary_10_1063_5_0173250
crossref_primary_10_1021_acs_jpcb_4c06450
crossref_primary_10_1039_D1SC01825F
crossref_primary_10_1002_adts_202301171
crossref_primary_10_1002_adfm_202303936
crossref_primary_10_1021_acsanm_4c01803
crossref_primary_10_1016_j_actamat_2024_120364
crossref_primary_10_1038_s41467_024_47999_7
crossref_primary_10_1007_s12274_024_6983_9
crossref_primary_10_1021_acs_jcim_3c00077
crossref_primary_10_1021_acs_chemrev_4c00572
crossref_primary_10_1177_10943420241288242
crossref_primary_10_1016_j_molliq_2024_125950
crossref_primary_10_1002_ange_202410802
crossref_primary_10_1021_acs_langmuir_4c00843
crossref_primary_10_1063_5_0234287
crossref_primary_10_1093_nsr_nwae023
crossref_primary_10_1016_j_cpc_2024_109446
crossref_primary_10_1021_acscatal_4c05338
crossref_primary_10_1021_acs_jpcc_2c07877
crossref_primary_10_1016_j_fmre_2024_04_004
crossref_primary_10_3389_fchem_2020_589795
crossref_primary_10_1063_5_0041849
crossref_primary_10_1038_s41524_021_00661_y
crossref_primary_10_1002_adts_202200206
crossref_primary_10_1103_PhysRevB_108_024305
crossref_primary_10_1016_j_cej_2024_151492
crossref_primary_10_1080_17460441_2023_2198699
crossref_primary_10_1016_j_actbio_2025_02_036
crossref_primary_10_1360_SST_2023_0408
crossref_primary_10_1021_acscatal_4c07646
crossref_primary_10_1103_PhysRevB_110_214112
crossref_primary_10_1002_ange_202304205
crossref_primary_10_1016_j_epsl_2023_118368
crossref_primary_10_1007_s10853_024_09937_2
crossref_primary_10_1007_s42864_023_00230_4
crossref_primary_10_1021_acs_jcim_4c01594
crossref_primary_10_1073_pnas_2322040121
crossref_primary_10_1021_acs_jpclett_3c00506
crossref_primary_10_1039_D4TA03520H
crossref_primary_10_1021_acs_jpca_4c04959
crossref_primary_10_1103_PhysRevB_106_224102
crossref_primary_10_1002_cphc_202100841
crossref_primary_10_1021_acs_jcim_1c01125
crossref_primary_10_1021_acs_jpcc_4c05568
crossref_primary_10_1039_D3CP05709G
crossref_primary_10_1016_j_mtcomm_2024_109624
crossref_primary_10_1016_j_commatsci_2021_110963
crossref_primary_10_1016_j_gca_2023_03_032
crossref_primary_10_1029_2021GL093806
crossref_primary_10_1002_sstr_202300222
crossref_primary_10_1021_acsomega_3c10014
crossref_primary_10_1063_5_0144500
crossref_primary_10_1021_acs_jpclett_2c00647
crossref_primary_10_1039_D1DD00005E
crossref_primary_10_1016_j_commatsci_2024_113450
crossref_primary_10_1063_5_0083669
crossref_primary_10_1140_epjp_s13360_024_05348_z
crossref_primary_10_1038_s41467_025_56322_x
crossref_primary_10_1103_PhysRevLett_127_080603
crossref_primary_10_1021_acs_chemmater_4c02454
crossref_primary_10_1021_acs_chemmater_4c02575
crossref_primary_10_1038_s41524_024_01278_7
crossref_primary_10_1016_j_ces_2025_121494
crossref_primary_10_1021_acs_jpcc_2c08429
crossref_primary_10_1063_5_0139010
crossref_primary_10_1134_S1063776123120208
crossref_primary_10_1103_PhysRevLett_132_176801
crossref_primary_10_1002_ange_202411849
crossref_primary_10_1063_5_0244175
crossref_primary_10_1088_1361_651X_ac4002
crossref_primary_10_1063_5_0211276
crossref_primary_10_1063_1674_0068_cjcp2211173
crossref_primary_10_1016_j_commatsci_2024_113422
crossref_primary_10_1038_s41524_021_00693_4
crossref_primary_10_1002_adma_202413587
crossref_primary_10_1038_s41467_022_28538_8
crossref_primary_10_1021_acs_chemmater_4c01152
crossref_primary_10_1103_PhysRevB_110_064427
crossref_primary_10_1016_j_ensm_2024_103470
crossref_primary_10_1038_s41524_024_01451_y
crossref_primary_10_1038_s41467_024_46806_7
crossref_primary_10_1021_acscatal_4c05372
crossref_primary_10_1021_acsami_4c13597
crossref_primary_10_1021_acs_jced_3c00553
crossref_primary_10_1126_science_ado1744
crossref_primary_10_1063_5_0233395
crossref_primary_10_1088_2752_5724_ad7619
crossref_primary_10_1016_j_nocx_2022_100115
crossref_primary_10_1016_j_commatsci_2024_113434
crossref_primary_10_1021_acs_jpcb_3c05428
crossref_primary_10_1063_5_0166858
crossref_primary_10_1360_SSC_2023_0050
crossref_primary_10_1021_jacs_2c11793
crossref_primary_10_1088_1674_1056_abf134
crossref_primary_10_1021_acscatal_3c05275
crossref_primary_10_1021_prechem_4c00056
crossref_primary_10_1039_D4SC06967F
crossref_primary_10_1039_D3TA05784D
crossref_primary_10_1002_anie_202215544
crossref_primary_10_1021_acs_jctc_3c00944
crossref_primary_10_1016_j_ijmecsci_2024_109911
crossref_primary_10_1063_5_0222355
crossref_primary_10_1088_1361_6544_ac337f
crossref_primary_10_1016_j_jnucmat_2024_154897
crossref_primary_10_1021_acs_jpcb_4c06956
crossref_primary_10_1021_acs_jctc_4c00594
crossref_primary_10_1002_ange_202215544
crossref_primary_10_1038_s41467_020_19497_z
crossref_primary_10_1007_s00339_024_07277_1
crossref_primary_10_1016_j_commatsci_2023_112664
crossref_primary_10_1016_j_taml_2023_100481
crossref_primary_10_1016_j_commatsci_2024_112966
crossref_primary_10_1063_5_0152293
crossref_primary_10_1063_5_0131696
crossref_primary_10_1016_j_jpowsour_2022_232350
crossref_primary_10_1016_j_ijhydene_2022_04_119
crossref_primary_10_1557_s43578_023_01141_3
crossref_primary_10_1002_smll_202404274
crossref_primary_10_1103_PhysRevMaterials_7_053603
crossref_primary_10_1103_PhysRevE_111_L023401
crossref_primary_10_1039_D2CP03511A
crossref_primary_10_1063_5_0256260
crossref_primary_10_1039_D4SC05399K
crossref_primary_10_1063_5_0256140
crossref_primary_10_1016_j_egyai_2024_100454
crossref_primary_10_1038_s41467_023_39686_w
crossref_primary_10_1021_acs_jpca_4c01546
crossref_primary_10_1103_PhysRevB_106_174101
crossref_primary_10_1016_j_commatsci_2023_112656
crossref_primary_10_1103_PhysRevMaterials_7_043801
crossref_primary_10_1016_j_molliq_2023_123533
crossref_primary_10_1016_j_solmat_2024_112903
crossref_primary_10_1002_cphc_202400090
crossref_primary_10_1038_s41598_024_69873_8
crossref_primary_10_1103_PhysRevE_105_015311
crossref_primary_10_1039_D4DD00209A
crossref_primary_10_1016_j_desal_2024_117946
crossref_primary_10_1038_s41467_024_52868_4
crossref_primary_10_1038_s42004_022_00684_6
crossref_primary_10_1021_acs_langmuir_3c03060
crossref_primary_10_1063_5_0201527
crossref_primary_10_1088_2752_5724_ac681d
crossref_primary_10_1016_j_mcat_2024_114047
crossref_primary_10_1038_s41467_025_56055_x
crossref_primary_10_1021_acs_jpcb_3c00610
crossref_primary_10_1063_5_0100505
crossref_primary_10_1029_2021GL093573
crossref_primary_10_1021_acs_langmuir_4c02888
crossref_primary_10_1016_j_mssp_2021_106146
crossref_primary_10_1021_acs_jced_3c00580
crossref_primary_10_1021_acs_jctc_4c00463
crossref_primary_10_1016_j_ijplas_2023_103552
crossref_primary_10_1039_D4SC06422D
crossref_primary_10_1021_acs_jctc_4c00587
crossref_primary_10_1002_wcms_1559
crossref_primary_10_1039_D3NR06468A
crossref_primary_10_1016_j_mtcomm_2024_110955
crossref_primary_10_1038_s41598_025_90981_6
crossref_primary_10_1016_j_actamat_2023_119364
crossref_primary_10_1021_acs_jctc_2c00017
crossref_primary_10_1021_acs_jpca_3c07859
crossref_primary_10_1007_s40843_024_2999_8
crossref_primary_10_3390_molecules28114337
crossref_primary_10_1016_j_epsl_2023_118084
crossref_primary_10_1021_acs_jpcb_4c01466
crossref_primary_10_1021_acs_jpcc_4c07596
crossref_primary_10_1039_D4CP02499K
crossref_primary_10_1142_S0129183124501523
crossref_primary_10_1021_acsami_1c11595
crossref_primary_10_1016_j_coelec_2024_101605
crossref_primary_10_1039_D4CP01483A
crossref_primary_10_1021_acs_jpcc_3c05522
crossref_primary_10_1134_S0021364023600234
crossref_primary_10_1039_D4TA06675H
crossref_primary_10_1016_j_aichem_2023_100037
crossref_primary_10_1039_D4EE05500D
crossref_primary_10_1038_s41467_024_46891_8
crossref_primary_10_1103_PhysRevB_108_064102
crossref_primary_10_3390_molecules28041715
crossref_primary_10_1021_acs_macromol_4c00488
crossref_primary_10_1103_PhysRevB_103_024108
crossref_primary_10_1038_s41929_023_01006_2
crossref_primary_10_1038_s41524_022_00830_7
crossref_primary_10_1016_j_supflu_2023_106051
crossref_primary_10_1021_acs_jpcb_4c04750
crossref_primary_10_1038_s41524_024_01493_2
crossref_primary_10_1021_acsmaterialslett_4c02600
crossref_primary_10_1021_acs_jpcb_2c06354
crossref_primary_10_1016_j_ceramint_2024_07_152
crossref_primary_10_1016_j_aichem_2023_100027
crossref_primary_10_1021_acs_jctc_2c00151
crossref_primary_10_1016_j_commatsci_2023_112693
crossref_primary_10_1021_acsanm_4c06634
crossref_primary_10_1134_S0012501624600049
crossref_primary_10_1021_acs_jpclett_3c03158
crossref_primary_10_1063_5_0247832
crossref_primary_10_1016_j_commatsci_2024_112979
crossref_primary_10_1038_s41467_022_33783_y
crossref_primary_10_1039_D3CC01576A
crossref_primary_10_1021_acs_jpclett_1c02086
crossref_primary_10_3390_molecules29112703
crossref_primary_10_1088_1361_651X_ad801e
crossref_primary_10_1021_acsmaterialslett_4c01982
crossref_primary_10_1002_adfm_202301663
crossref_primary_10_1063_5_0036298
crossref_primary_10_1007_s11467_023_1325_z
crossref_primary_10_1063_1674_0068_cjcp2402023
crossref_primary_10_1016_j_carbon_2024_119910
crossref_primary_10_1016_j_commatsci_2024_112983
crossref_primary_10_1038_s41467_024_52481_5
crossref_primary_10_1088_2516_1075_ad8b8c
crossref_primary_10_1039_D3TA03434H
crossref_primary_10_1063_5_0189696
crossref_primary_10_1016_j_jpowsour_2025_236632
crossref_primary_10_1021_acs_jpcc_3c03229
crossref_primary_10_1116_6_0004027
crossref_primary_10_1103_PhysRevB_105_064104
crossref_primary_10_1021_acs_nanolett_2c02010
crossref_primary_10_1039_D3SC06282A
crossref_primary_10_1103_PhysRevMaterials_6_103802
crossref_primary_10_1063_5_0147720
crossref_primary_10_1016_j_commt_2024_100005
crossref_primary_10_1016_j_eml_2024_102151
crossref_primary_10_1021_acs_jctc_1c00245
crossref_primary_10_1021_acs_jctc_1c01214
crossref_primary_10_1103_PhysRevB_110_245302
crossref_primary_10_1021_jacs_4c01221
crossref_primary_10_1016_j_jnucmat_2025_155749
crossref_primary_10_1016_j_apsusc_2025_162836
crossref_primary_10_3390_molecules28010321
crossref_primary_10_1039_D3DD00046J
crossref_primary_10_1063_5_0070931
crossref_primary_10_1103_PhysRevB_110_014112
crossref_primary_10_1016_j_jmst_2024_10_020
crossref_primary_10_1016_j_molliq_2024_124054
crossref_primary_10_1103_PhysRevE_108_055310
crossref_primary_10_1016_j_actamat_2025_120856
crossref_primary_10_1038_s41524_022_00773_z
crossref_primary_10_1038_s41467_025_57101_4
crossref_primary_10_1016_j_carbon_2024_119498
crossref_primary_10_1021_acs_jctc_2c00102
crossref_primary_10_1103_PhysRevB_109_094117
crossref_primary_10_1002_adfm_202425912
crossref_primary_10_1016_j_jmat_2024_06_006
crossref_primary_10_1103_PhysRevB_103_094116
crossref_primary_10_1021_acs_jcim_3c00889
crossref_primary_10_1016_j_compositesb_2024_111452
crossref_primary_10_1021_acs_jpclett_4c02430
crossref_primary_10_1021_acs_jpcc_3c01870
crossref_primary_10_1021_acs_jcim_4c01714
crossref_primary_10_1038_s43246_024_00603_3
crossref_primary_10_31857_S004445102312012X
crossref_primary_10_1002_chem_202401373
crossref_primary_10_1016_j_commatsci_2024_113189
crossref_primary_10_1103_PhysRevB_109_094101
crossref_primary_10_1021_acs_jpclett_4c00575
crossref_primary_10_1063_5_0153196
crossref_primary_10_1088_0256_307X_39_11_116301
crossref_primary_10_1038_s41524_024_01456_7
crossref_primary_10_1103_PhysRevB_109_115135
crossref_primary_10_1016_j_molliq_2023_121751
crossref_primary_10_31857_S1234567823050099
crossref_primary_10_1016_j_cemconres_2023_107092
crossref_primary_10_1016_j_actamat_2023_119416
crossref_primary_10_1016_j_apsusc_2024_161210
crossref_primary_10_1039_D4CP02223H
crossref_primary_10_1063_5_0040190
crossref_primary_10_34133_icomputing_0006
crossref_primary_10_1002_anie_202304205
crossref_primary_10_1016_j_commatsci_2024_113078
crossref_primary_10_1088_1361_648X_ad7fb0
crossref_primary_10_1038_s41524_024_01422_3
crossref_primary_10_1039_D0CP01893G
crossref_primary_10_1039_D4NR02431A
crossref_primary_10_1063_5_0243420
crossref_primary_10_1103_PhysRevB_111_024305
crossref_primary_10_1002_anie_202411849
crossref_primary_10_1063_5_0240030
crossref_primary_10_1063_5_0160729
crossref_primary_10_1021_acs_jctc_2c00010
crossref_primary_10_1039_D4NR05458J
crossref_primary_10_1016_j_mtener_2021_100665
crossref_primary_10_1063_5_0239284
crossref_primary_10_2477_jccj_2024_0018
crossref_primary_10_1021_acs_jctc_1c00201
crossref_primary_10_1021_acs_jctc_1c00565
crossref_primary_10_1007_s12613_024_2928_2
crossref_primary_10_1021_acs_jctc_3c00344
crossref_primary_10_1021_acsaem_4c01249
crossref_primary_10_1103_PhysRevB_108_224114
crossref_primary_10_1021_acs_jpcc_3c04703
crossref_primary_10_1038_s41524_024_01327_1
crossref_primary_10_1016_j_ijengsci_2023_103901
crossref_primary_10_1073_pnas_2406386121
crossref_primary_10_1063_5_0207567
crossref_primary_10_1103_PhysRevE_102_052125
crossref_primary_10_1016_j_jpcs_2022_111143
crossref_primary_10_1021_jacsau_2c00526
crossref_primary_10_1103_PhysRevB_111_104112
crossref_primary_10_1016_j_cpc_2024_109187
crossref_primary_10_1016_j_nanoen_2023_108992
crossref_primary_10_1038_s41557_024_01593_y
crossref_primary_10_1021_jacs_2c06785
crossref_primary_10_1039_D4FD00140K
crossref_primary_10_1021_acs_jpclett_4c02224
crossref_primary_10_1021_acs_jctc_3c00214
crossref_primary_10_1021_acs_jpcc_0c03333
crossref_primary_10_1021_acs_jctc_3c00571
crossref_primary_10_1002_qua_27087
crossref_primary_10_1016_j_ceramint_2024_04_167
crossref_primary_10_1016_j_gsf_2023_101735
crossref_primary_10_1021_acscatal_4c01364
crossref_primary_10_1063_5_0099448
crossref_primary_10_1103_PhysRevB_107_144102
crossref_primary_10_1103_PhysRevB_109_174104
crossref_primary_10_1103_PhysRevResearch_6_013292
crossref_primary_10_1063_5_0098330
crossref_primary_10_1103_PhysRevB_109_174106
crossref_primary_10_1016_j_molliq_2021_118181
crossref_primary_10_1063_5_0219401
crossref_primary_10_1016_j_mssp_2022_106513
crossref_primary_10_1038_s41467_023_38650_y
crossref_primary_10_1021_acs_energyfuels_0c03211
crossref_primary_10_1016_j_jechem_2022_01_018
crossref_primary_10_1021_acs_jpcc_3c02426
crossref_primary_10_1021_acs_langmuir_4c03126
crossref_primary_10_1029_2022GL100337
crossref_primary_10_1063_5_0230440
crossref_primary_10_1016_j_mtphys_2025_101670
crossref_primary_10_1103_PhysRevB_104_174107
crossref_primary_10_1021_acsphyschemau_3c00076
crossref_primary_10_1021_acs_jpclett_3c02112
crossref_primary_10_1021_acs_jpca_3c07129
crossref_primary_10_1039_D4SC01952K
crossref_primary_10_1126_sciadv_ado9593
crossref_primary_10_1021_acs_jpcc_2c02423
crossref_primary_10_1016_j_fmre_2022_06_002
crossref_primary_10_1063_5_0138987
crossref_primary_10_1016_j_mtcomm_2024_111161
crossref_primary_10_1016_j_gsf_2024_101935
crossref_primary_10_1021_acsami_4c00618
crossref_primary_10_1103_PhysRevApplied_22_014036
crossref_primary_10_1103_PhysRevB_110_035204
Cites_doi 10.1103/PhysRevLett.104.136403
10.1016/j.cpc.2013.10.027
10.1006/jcph.1995.1039
10.1103/PhysRevB.54.11169
10.1103/PhysRevLett.55.2471
10.1103/PhysRev.164.922
10.1080/14786437108217418
10.1016/0927-0256(96)00008-0
10.1103/PhysRev.98.969
10.1103/PhysRevMaterials.3.023804
10.1103/PhysRevB.13.5188
10.1016/j.scriptamat.2015.07.021
10.1039/C7SC04934J
10.1016/j.commatsci.2015.09.013
10.1103/PhysRev.140.A1133
10.4208/cicp.OA-2017-0213
10.1016/j.commatsci.2017.08.031
10.1002/wcms.1159
10.1103/PhysRevLett.120.143001
10.1080/10408436.2013.772503
10.1063/1.5023802
10.1103/PhysRevB.46.2727
10.1103/PhysRevLett.77.3865
10.1016/j.cpc.2018.03.016
10.1103/PhysRevLett.98.146401
10.1103/PhysRevB.12.4634
10.1016/j.commatsci.2015.11.047
10.1021/acs.jctc.8b00908
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.cpc.2020.107206
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
ExternalDocumentID 1631382
10_1016_j_cpc_2020_107206
S001046552030045X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AALMO
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c433t-6f97371729985bc08f67112954645a9c1de40caaf6cd2017e6fb6b37692fe2fb3
IEDL.DBID .~1
ISSN 0010-4655
IngestDate Thu May 18 22:26:11 EDT 2023
Tue Jul 01 02:40:32 EDT 2025
Thu Apr 24 22:53:37 EDT 2025
Fri Feb 23 02:47:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Deep learning
Concurrent learning
Many-body potential energy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-6f97371729985bc08f67112954645a9c1de40caaf6cd2017e6fb6b37692fe2fb3
Notes USDOE
ORCID 0000-0002-1515-8172
0000-0003-3657-2943
0000-0003-4768-2136
0000-0002-5841-1107
0000000336572943
0000000258411107
0000000347682136
0000000215158172
OpenAccessLink https://doi.org/10.1016/j.cpc.2020.107206
ParticipantIDs osti_scitechconnect_1631382
crossref_citationtrail_10_1016_j_cpc_2020_107206
crossref_primary_10_1016_j_cpc_2020_107206
elsevier_sciencedirect_doi_10_1016_j_cpc_2020_107206
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Computer physics communications
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kresse, Furthmüller (b20) 1996; 6
Wang, Zhang, Han, E. (b10) 2018; 228
Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Petersson, Nakatsuji, Li, Caricato, Marenich, Bloino, Janesko, Gomperts, Mennucci, Hratchian, Ortiz, Izmaylov, Sonnenberg, Williams-Young, Ding, Lipparini, Egidi, Goings, Peng, Petrone, Henderson, Ranasinghe, Zakrzewski, Gao, Rega, Zheng, Liang, Hada, Ehara, Toyota, Fukuda, Hasegawa, Ishida, Nakajima, Honda, Kitao, Nakai, Vreven, Throssell, Montgomery, Peralta, Ogliaro, Bearpark, Heyd, Brothers, Kudin, Staroverov, Keith, Kobayashi, Normand, Raghavachari, Rendell, Burant, Iyengar, Tomasi, Cossi, Millam, Klene, Adamo, Cammi, Ochterski, Martin, Morokuma, Farkas, Foresman, Fox (b23) 2016
Stobbs, Sworn (b36) 1971; 24
Nicklow, Gilat, Smith, Raubenheimer, Wilkinson (b39) 1967; 164
Zhang, Lin, Wang, Car, E (b18) 2019; 3
for phonon calculations using phonopy.
Togo, Tanaka (b37) 2015; 108
D. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Proceedings of the International Conference on Learning Representations (ICLR), 2015.
Medvedev, Cox, Wagman (b32) 1989
Behler, Parrinello (b5) 2007; 98
Monkhorst, Pack (b29) 1976; 13
Smith, Nebgen, Lubbers, Isayev, Roitberg (b17) 2018; 148
Kohn, Sham (b1) 1965; 140
Overton Jr, Gaffney (b35) 1955; 98
for code implementation.
Zhang, Han, Wang, Saidi, Car, E (b8) 2018
Baskes (b40) 1992; 46
Lejaeghere, Van Speybroeck, Van Oost, Cottenier (b33) 2014; 39
Schutt, Kessel, Gastegger, Nicoli, Tkatchenko, Müller (b11) 2018; 15
Yao, Herr, Toth, Mckintyre, Parkhill (b12) 2018; 9
Car, Parrinello (b2) 1985; 55
See LAMMPS interface in
Podryabinkin, Shapeev (b16) 2017; 140
Zhang, Han, Wang, Car, E (b7) 2018; 120
.
Kresse, Furthmüller (b21) 1996; 54
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mane, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viegas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b13) 2016
See
Ceriotti, More, Manolopoulos (b15) 2014; 185
Giannozzi, Andreussi, Brumme, Bunau, Nardelli, Calandra, Car, Cavazzoni, Ceresoli, Cococcioni (b22) 2017; 29
Bartók, Payne, Kondor, Csányi (b4) 2010; 104
Pizzi, Cepellotti, Sabatini, Marzari, Kozinsky (b42) 2016; 111
Marx, Hutter (b3) 2009
Hutter, Iannuzzi, Schiffmann, Vandevondele (b24) 2014; 4
He, Zhang, Ren, Sun (b30) 2016
Plimpton (b14) 1995; 117
Perdew, Burke, Ernzerhof (b28) 1996; 77
Triftshäuser (b34) 1975; 12
Artrith, Urban (b9) 2016; 114
Han, Zhang, Car, E (b6) 2018; 23
10.1016/j.cpc.2020.107206_b19
Perdew (10.1016/j.cpc.2020.107206_b28) 1996; 77
10.1016/j.cpc.2020.107206_b38
Podryabinkin (10.1016/j.cpc.2020.107206_b16) 2017; 140
Stobbs (10.1016/j.cpc.2020.107206_b36) 1971; 24
Marx (10.1016/j.cpc.2020.107206_b3) 2009
Monkhorst (10.1016/j.cpc.2020.107206_b29) 1976; 13
Kresse (10.1016/j.cpc.2020.107206_b20) 1996; 6
Pizzi (10.1016/j.cpc.2020.107206_b42) 2016; 111
Yao (10.1016/j.cpc.2020.107206_b12) 2018; 9
Car (10.1016/j.cpc.2020.107206_b2) 1985; 55
Behler (10.1016/j.cpc.2020.107206_b5) 2007; 98
Han (10.1016/j.cpc.2020.107206_b6) 2018; 23
Wang (10.1016/j.cpc.2020.107206_b10) 2018; 228
Schutt (10.1016/j.cpc.2020.107206_b11) 2018; 15
10.1016/j.cpc.2020.107206_b41
Zhang (10.1016/j.cpc.2020.107206_b7) 2018; 120
10.1016/j.cpc.2020.107206_b25
He (10.1016/j.cpc.2020.107206_b30) 2016
Giannozzi (10.1016/j.cpc.2020.107206_b22) 2017; 29
10.1016/j.cpc.2020.107206_b26
10.1016/j.cpc.2020.107206_b27
Lejaeghere (10.1016/j.cpc.2020.107206_b33) 2014; 39
Triftshäuser (10.1016/j.cpc.2020.107206_b34) 1975; 12
Zhang (10.1016/j.cpc.2020.107206_b8) 2018
Baskes (10.1016/j.cpc.2020.107206_b40) 1992; 46
Bartók (10.1016/j.cpc.2020.107206_b4) 2010; 104
Kohn (10.1016/j.cpc.2020.107206_b1) 1965; 140
Abadi (10.1016/j.cpc.2020.107206_b13) 2016
Zhang (10.1016/j.cpc.2020.107206_b18) 2019; 3
Artrith (10.1016/j.cpc.2020.107206_b9) 2016; 114
Ceriotti (10.1016/j.cpc.2020.107206_b15) 2014; 185
Medvedev (10.1016/j.cpc.2020.107206_b32) 1989
Smith (10.1016/j.cpc.2020.107206_b17) 2018; 148
Kresse (10.1016/j.cpc.2020.107206_b21) 1996; 54
Overton Jr (10.1016/j.cpc.2020.107206_b35) 1955; 98
Nicklow (10.1016/j.cpc.2020.107206_b39) 1967; 164
Hutter (10.1016/j.cpc.2020.107206_b24) 2014; 4
Togo (10.1016/j.cpc.2020.107206_b37) 2015; 108
Plimpton (10.1016/j.cpc.2020.107206_b14) 1995; 117
Frisch (10.1016/j.cpc.2020.107206_b23) 2016
10.1016/j.cpc.2020.107206_b31
References_xml – volume: 54
  start-page: 11169
  year: 1996
  ident: b21
  publication-title: Phys. Rev. B
– volume: 185
  start-page: 1019
  year: 2014
  end-page: 1026
  ident: b15
  publication-title: Comput. Phys. Comm.
– reference: for code implementation.
– reference: See LAMMPS interface in
– volume: 23
  start-page: 629
  year: 2018
  end-page: 639
  ident: b6
  publication-title: Commun. Comput. Phys.
– start-page: 4441
  year: 2018
  end-page: 4451
  ident: b8
  publication-title: Advances in Neural Information Processing Systems, Vol. 31
– volume: 24
  start-page: 1365
  year: 1971
  end-page: 1381
  ident: b36
  publication-title: Phil. Mag.
– reference: See
– volume: 39
  start-page: 1
  year: 2014
  end-page: 24
  ident: b33
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 120
  start-page: 143001
  year: 2018
  ident: b7
  publication-title: Phys. Rev. Lett.
– year: 1989
  ident: b32
  article-title: CODATA Key Values for Thermodynamics
– volume: 12
  start-page: 4634
  year: 1975
  ident: b34
  publication-title: Phys. Rev. B
– reference: for phonon calculations using phonopy.
– volume: 15
  start-page: 448
  year: 2018
  end-page: 455
  ident: b11
  publication-title: J. Chem. Theory Comput.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: b20
  publication-title: Comput. Mater. Sci.
– volume: 98
  start-page: 969
  year: 1955
  ident: b35
  publication-title: Phys. Rev.
– volume: 228
  start-page: 178
  year: 2018
  end-page: 184
  ident: b10
  publication-title: Comput. Phys. Comm.
– volume: 3
  start-page: 023804
  year: 2019
  ident: b18
  publication-title: Phys. Rev. Mater.
– volume: 164
  start-page: 922
  year: 1967
  ident: b39
  publication-title: Phys. Rev.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: b28
  publication-title: Phys. Rev. Lett.
– year: 2016
  ident: b23
  article-title: Gaussian16 Revision C.01
– year: 2009
  ident: b3
  article-title: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
– volume: 148
  start-page: 241733
  year: 2018
  ident: b17
  publication-title: J. Chem. Phys.
– volume: 104
  start-page: 136403
  year: 2010
  ident: b4
  publication-title: Phys. Rev. Lett.
– volume: 98
  start-page: 146401
  year: 2007
  ident: b5
  publication-title: Phys. Rev. Lett.
– reference: .
– reference: D. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Proceedings of the International Conference on Learning Representations (ICLR), 2015.
– volume: 140
  start-page: 171
  year: 2017
  end-page: 180
  ident: b16
  publication-title: Comput. Mater. Sci.
– year: 2016
  ident: b13
  article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems
– volume: 108
  start-page: 1
  year: 2015
  end-page: 5
  ident: b37
  publication-title: Scr. Mater.
– volume: 114
  start-page: 135
  year: 2016
  end-page: 150
  ident: b9
  publication-title: Comput. Mater. Sci.
– volume: 111
  start-page: 218
  year: 2016
  end-page: 230
  ident: b42
  publication-title: Comput. Mater. Sci.
– volume: 55
  start-page: 2471
  year: 1985
  ident: b2
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 5188
  year: 1976
  ident: b29
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 2261
  year: 2018
  end-page: 2269
  ident: b12
  publication-title: Chem. Sci.
– volume: 46
  start-page: 2727
  year: 1992
  ident: b40
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 15
  year: 2014
  end-page: 25
  ident: b24
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 29
  start-page: 465901
  year: 2017
  ident: b22
  publication-title: J. Phys.: Condens. Matter
– year: 2016
  ident: b30
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 140
  start-page: A1133
  year: 1965
  ident: b1
  publication-title: Phys. Rev.
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: b14
  publication-title: J. Comput. Phys.
– volume: 104
  start-page: 136403
  issue: 13
  year: 2010
  ident: 10.1016/j.cpc.2020.107206_b4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.136403
– volume: 185
  start-page: 1019
  year: 2014
  ident: 10.1016/j.cpc.2020.107206_b15
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2013.10.027
– volume: 117
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.cpc.2020.107206_b14
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 54
  start-page: 11169
  issue: 16
  year: 1996
  ident: 10.1016/j.cpc.2020.107206_b21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 55
  start-page: 2471
  issue: 22
  year: 1985
  ident: 10.1016/j.cpc.2020.107206_b2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.2471
– volume: 164
  start-page: 922
  issue: 3
  year: 1967
  ident: 10.1016/j.cpc.2020.107206_b39
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.164.922
– volume: 24
  start-page: 1365
  issue: 192
  year: 1971
  ident: 10.1016/j.cpc.2020.107206_b36
  publication-title: Phil. Mag.
  doi: 10.1080/14786437108217418
– ident: 10.1016/j.cpc.2020.107206_b38
– volume: 6
  start-page: 15
  issue: 1
  year: 1996
  ident: 10.1016/j.cpc.2020.107206_b20
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– ident: 10.1016/j.cpc.2020.107206_b19
– volume: 98
  start-page: 969
  issue: 4
  year: 1955
  ident: 10.1016/j.cpc.2020.107206_b35
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.98.969
– year: 2016
  ident: 10.1016/j.cpc.2020.107206_b13
– volume: 3
  start-page: 023804
  issue: 2
  year: 2019
  ident: 10.1016/j.cpc.2020.107206_b18
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.023804
– volume: 13
  start-page: 5188
  issue: 12
  year: 1976
  ident: 10.1016/j.cpc.2020.107206_b29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– year: 2009
  ident: 10.1016/j.cpc.2020.107206_b3
– volume: 108
  start-page: 1
  year: 2015
  ident: 10.1016/j.cpc.2020.107206_b37
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.07.021
– volume: 9
  start-page: 2261
  issue: 8
  year: 2018
  ident: 10.1016/j.cpc.2020.107206_b12
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04934J
– ident: 10.1016/j.cpc.2020.107206_b26
– year: 2016
  ident: 10.1016/j.cpc.2020.107206_b23
– volume: 111
  start-page: 218
  year: 2016
  ident: 10.1016/j.cpc.2020.107206_b42
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.09.013
– volume: 140
  start-page: A1133
  issue: 4A
  year: 1965
  ident: 10.1016/j.cpc.2020.107206_b1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 23
  start-page: 629
  issue: 3
  year: 2018
  ident: 10.1016/j.cpc.2020.107206_b6
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2017-0213
– volume: 140
  start-page: 171
  year: 2017
  ident: 10.1016/j.cpc.2020.107206_b16
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.08.031
– volume: 4
  start-page: 15
  issue: 1
  year: 2014
  ident: 10.1016/j.cpc.2020.107206_b24
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1159
– volume: 120
  start-page: 143001
  year: 2018
  ident: 10.1016/j.cpc.2020.107206_b7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.143001
– volume: 39
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.cpc.2020.107206_b33
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408436.2013.772503
– ident: 10.1016/j.cpc.2020.107206_b41
– volume: 148
  start-page: 241733
  issue: 24
  year: 2018
  ident: 10.1016/j.cpc.2020.107206_b17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5023802
– volume: 46
  start-page: 2727
  issue: 5
  year: 1992
  ident: 10.1016/j.cpc.2020.107206_b40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.2727
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.cpc.2020.107206_b28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– start-page: 4441
  year: 2018
  ident: 10.1016/j.cpc.2020.107206_b8
– ident: 10.1016/j.cpc.2020.107206_b31
– volume: 228
  start-page: 178
  year: 2018
  ident: 10.1016/j.cpc.2020.107206_b10
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2018.03.016
– year: 2016
  ident: 10.1016/j.cpc.2020.107206_b30
– volume: 98
  start-page: 146401
  issue: 14
  year: 2007
  ident: 10.1016/j.cpc.2020.107206_b5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.146401
– ident: 10.1016/j.cpc.2020.107206_b25
– ident: 10.1016/j.cpc.2020.107206_b27
– year: 1989
  ident: 10.1016/j.cpc.2020.107206_b32
– volume: 29
  start-page: 465901
  issue: 46
  year: 2017
  ident: 10.1016/j.cpc.2020.107206_b22
  publication-title: J. Phys.: Condens. Matter
– volume: 12
  start-page: 4634
  issue: 11
  year: 1975
  ident: 10.1016/j.cpc.2020.107206_b34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.12.4634
– volume: 114
  start-page: 135
  year: 2016
  ident: 10.1016/j.cpc.2020.107206_b9
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.11.047
– volume: 15
  start-page: 448
  issue: 1
  year: 2018
  ident: 10.1016/j.cpc.2020.107206_b11
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00908
SSID ssj0007793
Score 2.713025
Snippet In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 107206
SubjectTerms Concurrent learning
Deep learning
Many-body potential energy
Title DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models
URI https://dx.doi.org/10.1016/j.cpc.2020.107206
https://www.osti.gov/biblio/1631382
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrFWyx48CbFpstl0vZXaWi0WEYu9hWQfpVLa2Marv92ZZOMDpAcvCQk7SZidzMyy33xDyIUQnoqlhszNCO4wTxtHyATbvYAvZGDW2sVq5IcRH4zZ_SSYVEi3rIVBWKX1_YVPz721vdO02mymsxnW-OL-ZBB4LrJGBROsYGchWvnVxzfMIwwt8S74Gxxd7mzmGC-ZIouhh9ehh02P_o5N1SX8bj_CTn-P7Np8kXaKT9onFb04INs5blOuD8nbzaNz2xtd0w6Fha0syJaobQUxpek8zjArpXCgkOrRac4yjZNBl4au9HyGpVNUaZ1-S2FkUzRdZogkgpfrvD6Q5k1z1kdk3O89dweO7aLgSOb7mcONCH1YtEHcaQeJdNuGh5hkBbinGQvZUpq5Mo4NlwqygVBzk_AE_I7wjPZM4h-T6mK50CeExp4yLWO4CtqCKZEgAtUPdIvHLgulEDXilvqLpKUYx04X86jEkr1GoPIIVR4VKq-Ryy-RtODX2DSYlZMS_TKSCPz_JrE6TiCKIDGuRAQRyEAmigSMp_97aJ3s4FWBBTwj1Wz1rs8hP8mSRm6ADbLVuRsORngePr0MPwG2deQ2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gxujF-IyIjz14MqmUdnfLeiMIogLxAAm3pt3uEgyBCvXqb3emD9HEcPDSpI9pm9ntzNfsN98QciOlEwVKA3IzUljM0caSKsR2LxALGUxrbWM1cn8guiP2PObjEmkVtTBIq8xjfxbT02idH6nl3qzF0ynW-OL6JOeOjapRfLxFthl8vtjG4O5zzfPwvFx5FwIOXl4sbaYkLxWjjKGD-56DXY_-Tk7lBXxvP_JO54Ds54CRNrN3OiQlPT8iOylxU62OyfvDq_XYHtzTJoU_W5WpLdG8F8SExrMgQVhKYUMB69FJKjONo0EXhi71bIq1UzTSOl5bYWqLaLxIkEoED9dpgSBNu-asTsio0x62ulbeRsFSzHUTSxjpufDXBomnwUNlN4zwEGVxXNQMpKpHmtkqCIxQEcABTwsTihACj3SMdkzonpLyfDHXZ4QGTmTqxoiINySLZIgUVJfrughs5ikpK8Qu_OerXGMcW13M_IJM9uaDy310uZ-5vEJuv03iTGBj08WsGBT_1yzxIQFsMqviAKIJKuMqpBCBDUBRVGA8_99Nr8lud9jv-b2nwUuV7OGZjBh4QcrJ8kNfAlhJwqt0Mn4B4OTkIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DP-GEN%3A+A+concurrent+learning+platform+for+the+generation+of+reliable+deep+learning+based+potential+energy+models&rft.jtitle=Computer+physics+communications&rft.au=Zhang%2C+Yuzhi&rft.au=Wang%2C+Haidi&rft.au=Chen%2C+Weijie&rft.au=Zeng%2C+Jinzhe&rft.date=2020-08-01&rft.pub=Elsevier&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=253&rft.issue=C&rft_id=info:doi/10.1016%2Fj.cpc.2020.107206&rft.externalDocID=1631382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon