Attention to Fires: Multi-Channel Deep Learning Models for Wildfire Severity Prediction
Wildfires are one of the natural hazards that the European Union is actively monitoring through the Copernicus EMS Earth observation program which continuously releases public information related to such catastrophic events. Such occurrences are the cause of both short- and long-term damages. Thus,...
Saved in:
Published in | Applied sciences Vol. 11; no. 22; p. 11060 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wildfires are one of the natural hazards that the European Union is actively monitoring through the Copernicus EMS Earth observation program which continuously releases public information related to such catastrophic events. Such occurrences are the cause of both short- and long-term damages. Thus, to limit their impact and plan the restoration process, a rapid intervention by authorities is needed, which can be enhanced by the use of satellite imagery and automatic burned area delineation methodologies, accelerating the response and the decision-making processes. In this context, we analyze the burned area severity estimation problem by exploiting a state-of-the-art deep learning framework. Experimental results compare different model architectures and loss functions on a very large real-world Sentinel2 satellite dataset. Furthermore, a novel multi-channel attention-based analysis is presented to uncover the prediction behaviour and provide model interpretability. A perturbation mechanism is applied to an attention-based DS-UNet to evaluate the contribution of different domain-driven groups of channels to the severity estimation problem. |
---|---|
AbstractList | Wildfires are one of the natural hazards that the European Union is actively monitoring through the Copernicus EMS Earth observation program which continuously releases public information related to such catastrophic events. Such occurrences are the cause of both short- and long-term damages. Thus, to limit their impact and plan the restoration process, a rapid intervention by authorities is needed, which can be enhanced by the use of satellite imagery and automatic burned area delineation methodologies, accelerating the response and the decision-making processes. In this context, we analyze the burned area severity estimation problem by exploiting a state-of-the-art deep learning framework. Experimental results compare different model architectures and loss functions on a very large real-world Sentinel2 satellite dataset. Furthermore, a novel multi-channel attention-based analysis is presented to uncover the prediction behaviour and provide model interpretability. A perturbation mechanism is applied to an attention-based DS-UNet to evaluate the contribution of different domain-driven groups of channels to the severity estimation problem. |
Author | Baralis, Elena Apiletti, Daniele Cerquitelli, Tania Farasin, Alessandro Greco, Salvatore Monaco, Simone Colomba, Luca Garza, Paolo |
Author_xml | – sequence: 1 givenname: Simone orcidid: 0000-0003-4948-6120 surname: Monaco fullname: Monaco, Simone – sequence: 2 givenname: Salvatore orcidid: 0000-0001-7239-9602 surname: Greco fullname: Greco, Salvatore – sequence: 3 givenname: Alessandro orcidid: 0000-0001-9086-8679 surname: Farasin fullname: Farasin, Alessandro – sequence: 4 givenname: Luca orcidid: 0000-0003-2911-4522 surname: Colomba fullname: Colomba, Luca – sequence: 5 givenname: Daniele orcidid: 0000-0003-0538-9775 surname: Apiletti fullname: Apiletti, Daniele – sequence: 6 givenname: Paolo orcidid: 0000-0002-1263-7522 surname: Garza fullname: Garza, Paolo – sequence: 7 givenname: Tania orcidid: 0000-0002-9039-6226 surname: Cerquitelli fullname: Cerquitelli, Tania – sequence: 8 givenname: Elena orcidid: 0000-0001-9231-467X surname: Baralis fullname: Baralis, Elena |
BookMark | eNptkVFrFDEQx4NUsNa--QECvrp2kuwmu76V02rhioJKH8NsMqk51mTN5oR-e_e8IkWclxmG3_8_w8xzdpJyIsZeCnij1AAXOM9CSCkEaHjCTiUY3ahWmJNH9TN2viw7WGMQqhdwym4va6VUY068Zn4VCy1v-c1-qrHZfMeUaOLviGa-JSwppjt-kz1NCw-58Ns4-bAq-Bf6RSXWe_65kI_u4PaCPQ04LXT-kM_Yt6v3Xzcfm-2nD9eby23jWqVqow2qwXiEjlzovPFibHs1GqOcBNn7EXRQwaPUvTNGhAG7IEfVtW6FZafVGbs--vqMOzuX-APLvc0Y7Z9GLncWS41uIosjGERNgyPRdgFxHLQgowDC2A79wevV0Wsu-eeelmp3eV_Sur6VGiSAMlKt1Osj5UpelkLh71QB9vAJ-_gTKy7_wV2seDhRLRin_4t-A8D_jNk |
CitedBy_id | crossref_primary_10_1017_eds_2023_26 crossref_primary_10_3390_rs14153632 crossref_primary_10_1016_j_geomat_2024_100008 crossref_primary_10_1109_ACCESS_2024_3515215 crossref_primary_10_1007_s00382_024_07481_y crossref_primary_10_1016_j_mlwa_2023_100454 crossref_primary_10_1016_j_nhres_2024_12_001 crossref_primary_10_1016_j_procs_2023_08_173 crossref_primary_10_1109_ACCESS_2022_3205419 crossref_primary_10_17780_ksujes_1601614 crossref_primary_10_1016_j_jag_2024_104034 crossref_primary_10_1016_j_isprsjprs_2022_12_026 crossref_primary_10_3390_rs15051342 crossref_primary_10_1080_01431161_2023_2205981 crossref_primary_10_3390_fire6050192 crossref_primary_10_2139_ssrn_4132138 crossref_primary_10_3390_rs14030543 crossref_primary_10_1109_JSTARS_2024_3460531 crossref_primary_10_1016_j_scitotenv_2024_175914 |
Cites_doi | 10.1016/S0034-4257(96)00067-3 10.1016/j.media.2017.07.005 10.1109/EE1.2018.8385269 10.3390/rs12152422 10.1007/978-3-030-00889-5_1 10.5937/jaes18-25495 10.1016/j.rse.2014.03.022 10.1109/JSTARS.2021.3093625 10.3390/rs12071128 10.3390/rs12050890 10.1109/MCSE.2007.55 10.1080/01431160600589179 10.3390/rs12122001 10.1109/TMI.2020.3035253 10.1016/j.rse.2007.01.017 10.1109/TPAMI.2016.2644615 10.1007/978-3-030-00063-9 10.3390/rs12010024 10.1109/CVPRW50498.2020.00183 10.3390/ecrs-2-05177 10.1109/BigData50022.2020.9377867 10.1007/978-3-319-10590-1_53 10.1016/j.scitotenv.2020.140160 10.1117/1.1631315 10.1007/978-3-319-24574-4_28 10.1016/j.foreco.2018.10.020 10.1109/TSMC.1979.4310076 10.1016/j.rse.2006.12.006 10.1109/LGRS.2005.858485 10.1109/TITS.2019.2911727 10.1109/MED51440.2021.9480226 10.1007/978-3-030-63625-8_23 10.1214/aoms/1177729694 10.1109/IGARSS.2019.8900399 10.1109/CVPR.2017.660 10.3390/app11157046 10.3390/app11052199 10.3390/rs9111193 10.1109/CVPR.2016.319 10.1016/j.isprsjprs.2018.11.026 10.1109/MWENT47943.2020.9067475 10.3390/app10124332 10.1145/3236009 10.1016/j.rse.2019.02.013 10.1145/2939672.2939778 10.1016/j.isprsjprs.2019.12.014 10.1109/CVPR.2016.273 10.1109/WACV.2018.00097 10.1038/s41586-020-2649-2 10.1109/ICCV.2017.74 10.1016/j.isprsjprs.2021.07.011 10.1038/s41598-019-56967-x |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app112211060 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_ab07aa6e9ce145faab961e7300fb4986 10_3390_app112211060 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c433t-67a397da05ecf5d7d1b483b773c2028db06f3fda268c771f9a5f2b354c5d72563 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:27:40 EDT 2025 Mon Jun 30 07:29:02 EDT 2025 Thu Apr 24 23:08:29 EDT 2025 Tue Jul 01 00:51:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-67a397da05ecf5d7d1b483b773c2028db06f3fda268c771f9a5f2b354c5d72563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9039-6226 0000-0003-2911-4522 0000-0001-9231-467X 0000-0002-1263-7522 0000-0003-4948-6120 0000-0003-0538-9775 0000-0001-7239-9602 0000-0001-9086-8679 |
OpenAccessLink | https://doaj.org/article/ab07aa6e9ce145faab961e7300fb4986 |
PQID | 2602003723 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab07aa6e9ce145faab961e7300fb4986 proquest_journals_2602003723 crossref_primary_10_3390_app112211060 crossref_citationtrail_10_3390_app112211060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Miller (ref_16) 2007; 109 ref_58 ref_13 Rouse (ref_19) 1974; 351 ref_57 Shapley (ref_64) 1953; 2 ref_12 ref_56 ref_11 ref_54 ref_52 ref_51 ref_15 ref_59 Li (ref_43) 2021; 179 Paszke (ref_74) 2019; 32 Litjens (ref_39) 2017; 42 Roy (ref_28) 2006; 3 ref_61 ref_60 Kullback (ref_81) 1951; 22 ref_25 ref_69 Llorens (ref_17) 2021; 95 Poursanidis (ref_80) 2019; 80 ref_67 ref_66 ref_65 ref_20 ref_63 Ban (ref_37) 2020; 10 ref_62 Badrinarayanan (ref_47) 2017; 39 Gu (ref_71) 2020; 40 Lestari (ref_6) 2020; 18 Rashkovetsky (ref_46) 2021; 14 ref_72 Loboda (ref_14) 2007; 109 ref_70 Otsu (ref_26) 1979; 9 Quintano (ref_32) 2016; 50 ref_36 Navarro (ref_29) 2017; 58 Keane (ref_34) 2006; Volume 64 ref_78 Castaldi (ref_24) 2019; 147 ref_33 ref_31 ref_75 Salehi (ref_23) 2019; 43 ref_30 Hardtke (ref_35) 2015; 38 Hunter (ref_77) 2007; 9 Klein (ref_9) 2019; 432 Sezgin (ref_27) 2004; 13 Gao (ref_18) 1996; 58 (ref_21) 2014; 148 ref_45 Xu (ref_73) 2006; 27 ref_44 ref_42 ref_41 ref_40 ref_1 ref_3 Jadon (ref_53) 2020; Volume 11318 Harris (ref_76) 2020; 585 ref_2 Dkhala (ref_22) 2020; 740 Candra (ref_79) 2020; Volume 500 Chuvieco (ref_8) 2019; 225 ref_49 ref_48 Francini (ref_10) 2021; 94 Pinto (ref_38) 2020; 160 Guidotti (ref_55) 2018; 51 ref_5 ref_4 Kamal (ref_68) 2019; 21 ref_7 |
References_xml | – ident: ref_78 – volume: 58 start-page: 257 year: 1996 ident: ref_18 article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00067-3 – volume: Volume 11318 start-page: 113180Q year: 2020 ident: ref_53 article-title: A comparative study of 2D image segmentation algorithms for traumatic brain lesions using CT data from the ProTECTIII multicenter clinical trial publication-title: Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications – volume: 42 start-page: 60 year: 2017 ident: ref_39 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – ident: ref_15 doi: 10.1109/EE1.2018.8385269 – ident: ref_13 doi: 10.3390/rs12152422 – volume: 2 start-page: 307 year: 1953 ident: ref_64 article-title: A value for n-person games publication-title: Contrib. Theory Games – ident: ref_67 doi: 10.1007/978-3-030-00889-5_1 – volume: 38 start-page: 25 year: 2015 ident: ref_35 article-title: Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 18 start-page: 207 year: 2020 ident: ref_6 article-title: Machine learning approaches for burned area identification using Sentinel-2 in Central Kalimantan publication-title: J. Appl. Eng. Sci. doi: 10.5937/jaes18-25495 – volume: 148 start-page: 124 year: 2014 ident: ref_21 article-title: Potential of ESA’s Sentinel-2 for geological applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.022 – ident: ref_61 – ident: ref_1 – volume: 94 start-page: 407 year: 2021 ident: ref_10 article-title: Satellite open data to monitor forest damage caused by extreme climate-induced events: A case study of the Vaia storm in Northern Italy publication-title: For. Int. J. For. Res. – volume: 14 start-page: 7001 year: 2021 ident: ref_46 article-title: Wildfire Detection from Multisensor Satellite Imagery Using Deep Semantic Segmentation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3093625 – ident: ref_44 doi: 10.3390/rs12071128 – ident: ref_30 doi: 10.3390/rs12050890 – volume: 80 start-page: 58 year: 2019 ident: ref_80 article-title: On the use of Sentinel-2 for coastal habitat mapping and satellite-derived bathymetry estimation using downscaled coastal aerosol band publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_4 – ident: ref_31 – volume: 32 start-page: 8026 year: 2019 ident: ref_74 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 90 year: 2007 ident: ref_77 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – ident: ref_48 – ident: ref_69 – volume: 27 start-page: 3025 year: 2006 ident: ref_73 article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600589179 – ident: ref_45 doi: 10.3390/rs12122001 – volume: 40 start-page: 699 year: 2020 ident: ref_71 article-title: CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3035253 – volume: 50 start-page: 170 year: 2016 ident: ref_32 article-title: SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 109 start-page: 429 year: 2007 ident: ref_14 article-title: Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.01.017 – volume: 39 start-page: 2481 year: 2017 ident: ref_47 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – ident: ref_66 – ident: ref_63 doi: 10.1007/978-3-030-00063-9 – ident: ref_33 doi: 10.3390/rs12010024 – ident: ref_41 doi: 10.1109/CVPRW50498.2020.00183 – ident: ref_20 doi: 10.3390/ecrs-2-05177 – ident: ref_72 – ident: ref_51 doi: 10.1109/BigData50022.2020.9377867 – ident: ref_59 doi: 10.1007/978-3-319-10590-1_53 – volume: 740 start-page: 140160 year: 2020 ident: ref_22 article-title: Hyperspectral field spectroscopy and SENTINEL-2 Multispectral data for minerals with high pollution potential content estimation and mapping publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140160 – volume: 13 start-page: 146 year: 2004 ident: ref_27 article-title: Survey over image thresholding techniques and quantitative performance evaluation publication-title: J. Electron. Imaging doi: 10.1117/1.1631315 – ident: ref_42 doi: 10.1007/978-3-319-24574-4_28 – volume: 432 start-page: 840 year: 2019 ident: ref_9 article-title: A nation-wide analysis of tree mortality under climate change: Forest loss and its causes in Israel 1948–2017 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2018.10.020 – volume: 95 start-page: 102243 year: 2021 ident: ref_17 article-title: A methodology to estimate forest fires burned areas and burn severity degrees using Sentinel-2 data. Application to the October 2017 fires in the Iberian Peninsula publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 9 start-page: 62 year: 1979 ident: ref_26 article-title: A Threshold Selection Method from Gray-Level Histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – ident: ref_3 – volume: 109 start-page: 66 year: 2007 ident: ref_16 article-title: Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.12.006 – volume: 3 start-page: 112 year: 2006 ident: ref_28 article-title: Remote sensing of fire severity: Assessing the performance of the normalized burn ratio publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.858485 – volume: 21 start-page: 1467 year: 2019 ident: ref_68 article-title: Automatic traffic sign detection and recognition using SegU-Net and a modified Tversky loss function with L1-constraint publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2911727 – volume: Volume 64 start-page: LA-1-55 year: 2006 ident: ref_34 article-title: Landscape assessment (LA) publication-title: FIREMON: Fire Effects Monitoring and Inventory System – ident: ref_5 doi: 10.1109/MED51440.2021.9480226 – volume: 43 start-page: e2019430205 year: 2019 ident: ref_23 article-title: Comparison of ASTER and Sentinel-2 spaceborne datasets for geological mapping: A case study from North-East Greenland publication-title: Geol. Surv. Den. Greenl. Bull. – ident: ref_7 doi: 10.1007/978-3-030-63625-8_23 – volume: Volume 500 start-page: 012037 year: 2020 ident: ref_79 article-title: Deforestation detection using multitemporal satellite images publication-title: IOP Conference Series: Earth and Environmental Science – volume: 22 start-page: 79 year: 1951 ident: ref_81 article-title: On information and sufficiency publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – ident: ref_25 doi: 10.1109/IGARSS.2019.8900399 – ident: ref_49 doi: 10.1109/CVPR.2017.660 – ident: ref_52 doi: 10.3390/app11157046 – ident: ref_65 doi: 10.3390/app11052199 – volume: 351 start-page: 309 year: 1974 ident: ref_19 article-title: Monitoring vegetation systems in the Great Plains with ERTS publication-title: NASA Spec. Publ. – ident: ref_36 doi: 10.3390/rs9111193 – ident: ref_58 doi: 10.1109/CVPR.2016.319 – ident: ref_75 – volume: 58 start-page: 97 year: 2017 ident: ref_29 article-title: Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 147 start-page: 267 year: 2019 ident: ref_24 article-title: Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.026 – ident: ref_54 – ident: ref_2 – ident: ref_11 doi: 10.1109/MWENT47943.2020.9067475 – ident: ref_12 – ident: ref_50 doi: 10.3390/app10124332 – volume: 51 start-page: 1 year: 2018 ident: ref_55 article-title: A Survey of Methods for Explaining Black Box Models publication-title: ACM Comput. Surv. doi: 10.1145/3236009 – volume: 225 start-page: 45 year: 2019 ident: ref_8 article-title: Historical background and current developments for mapping burned area from satellite Earth observation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.013 – ident: ref_62 doi: 10.1145/2939672.2939778 – volume: 160 start-page: 260 year: 2020 ident: ref_38 article-title: A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.12.014 – ident: ref_40 doi: 10.1109/CVPR.2016.273 – ident: ref_57 doi: 10.1109/WACV.2018.00097 – volume: 585 start-page: 357 year: 2020 ident: ref_76 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – ident: ref_56 doi: 10.1109/ICCV.2017.74 – ident: ref_70 – volume: 179 start-page: 121 year: 2021 ident: ref_43 article-title: Mapping salt marsh along coastal South Carolina using U-Net publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.07.011 – ident: ref_60 – volume: 10 start-page: 1 year: 2020 ident: ref_37 article-title: Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning publication-title: Sci. Rep. doi: 10.1038/s41598-019-56967-x |
SSID | ssj0000913810 |
Score | 2.3427074 |
Snippet | Wildfires are one of the natural hazards that the European Union is actively monitoring through the Copernicus EMS Earth observation program which continuously... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 11060 |
SubjectTerms | Artificial intelligence Decision making Deep learning deep neural networks Environmental impact Forest & brush fires Machine learning multi-channel attention-based analysis Neural networks Remote sensing Satellites Semantics Vegetation wildfire severity prediction |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB614UIPCCiIlId8aCUqtGLX9q4dLghaIlQJhFoQ3FZ-5hIlaXb5_8xsnIBUlevu2AePZ_yNZ_wNwFfuVBGdsZlEF5lJ7WWmAwYr3HBttFOl7dIFN7fV9YP89VQ-pQu3JpVVLn1i56j91NEd-SnibqqjUlycz_5m1DWKsquphcZHWEMXrHUP1i6vbu9-r25ZiPVSF_mi4l1gfE95YYQYFPZ0rJSvZ1FH2f-PR-6OmeEmbCR8yC4WCt2CD2GyDZ_esAZuw1ayx4YdJ9Lo75_h8aJtF5WLrJ2yITqy5ox1r2szekAwCWP2M4QZS3yqI0ZN0MYNQ8zK0DP4iCPYn4AbG2E5u5tT_oZm24GH4dX9j-ssNU3InBSizSplEGJ4k5fBxdIrX1iphVVKOI5Ywtu8iiJ6wyvUBOppYMrIrSilQ2HEP2IXepPpJOwByyMGM9GhlTucI-AYHXgshBNCFZ7bPpwsl692iVGcGluMa4wsaLHrt4vdh28r6dmCSeM_cpekiZUM8V93H6bzUZ3MqTY2V8ZUYeBCIctojB1URSDu_WjlQFd9OFjqsU5G2dSvW-jL-7_3YZ1T6Ur35PAAeu38ORwi9mjtUdpgLzea2JQ priority: 102 providerName: ProQuest |
Title | Attention to Fires: Multi-Channel Deep Learning Models for Wildfire Severity Prediction |
URI | https://www.proquest.com/docview/2602003723 https://doaj.org/article/ab07aa6e9ce145faab961e7300fb4986 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90vuiD6FSczpEHBUWKa5I2rW9-bIqgDD_Qt5KkiS-jG1v9_72knRZEfPG1XJJyd7n8jlx-B3BItQitlirgGCIDnuQ8SAwmK1TSRCZaRMpfF9w_xLcv_O4temu0-nI1YRU9cKW4M6n6QsrYpNqEPLJSqjQOjWNZt4qniSfbxjOvkUz5GJyGjrqqqnRnmNe7-2CEFi7d8WyU32eQp-r_EYn98TLcgPUaF5KL6n82YckUbVhrsAW2YbPeh3NyXJNFn2zB60VZVhWLpJyQIQaw-Tnxr2oD93CgMGNybcyU1Dyq78Q1PxvPCWJVghEhtziCPBl0aITjZDRz9zZutm14GQ6er26DullCoDljZRALidAil_3IaBvlIg8VT5gSgmmKGCJX_dgym0saowXQPqmMLFUs4hqFEfewHWgVk8LsAulbTGKsxt2tcQ6DYxJDbcg0YyLMqerA6UJ9ma6ZxF1Di3GGGYVTdtZUdgeOvqSnFYPGL3KXzhJfMo732n9Ab8hqb8j-8oYOdBd2zOrNOM8wZXMleIKyvf9YYx9WqSts8Q8Su9AqZx_mAJFJqXqwnAxverByOXgYPfa8S34Cf0_jIA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQSwv4QCUQikhsJ06QECqUZUsfQqIVvQU_e1ntbjdBiD_Fb2TGSbaVENx6TWwrGY8_z3jG3wA851ZlwWqTSITIRJZOJqVHZ4VrXurSqtzEcMHRcTE5lZ_P8rM1-D3chaG0ygETI1C7uaUz8tdod1MeleLi3eIioapRFF0dSmh0anHgf_1El615u7-H87vD-fjjyYdJ0lcVSKwUok0KpXEPdjrNvQ25Uy4zshRGKWE5brbOpEUQwWle4Kfij1Q6D9yIXFpsjAaCwHFvwE0cqyJnrxx_Wp3pEMdmmaVdfj2-TykKjQYNOVmRA_Ny54sFAv7C_7ipje_B3d4aZbud-mzAmp9twp0rHIWbsNGv_oa96CmqX96Hb7tt2-VJsnbOxgibzRsW7_ImdF1h5qdsz_sF69lbzxmVXJs2DC1khjjkAvZgXz0uI3QC2JclRYtotAdwei3CfAjrs_nMPwKWBnSdgkVMsTiGxz6l5yETVgiVOW5G8GoQX217_nIqozGt0Y8hYddXhT2CnVXrRcfb8Y9272kmVm2IbTs-mC_P637x1tqkSuvCV9ZnMg9am6rIPDH9ByOrshjB9jCPdQ8BTX2psI____oZ3JqcHB3Wh_vHB1twm1PSTLzsuA3r7fKHf4JWT2ueRlVj8P26dfsPav0T9w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfxFbFs1X3wYIioclukk0Ekdbr0Vo9DrXYt7iffTnurpeI-K_51zmTbK4F0be-JrtLMjs7HzszvwF4wY1MvFE6SlFERmlh06hw6KxwxQtVGJnpNlzwaZIfn6UfzrPzDfjd18JQWmUvE1tBbReG7sj30e6mPCrJxb4PaRHT0fjd8jKiDlIUae3baXQscup-_UT3rX57MsK93uN8fPT1_XEUOgxEJhWiiXKpUB9bFWfO-MxKm-i0EFpKYTgqXqvj3AtvFc_xs_GnSpV5rkWWGhyMxoLAdW_BpiSvaACbh0eT6ef1DQ8hbhZJ3GXbC1HGFJNG84ZcrhYR80oPtu0C_tIGrYob34d7wTZlBx0zbcGGm2_D3WuIhduwFWRBzV4GwOpXD-DbQdN0WZOsWbAxCtH6DWsreyMqXpi7GRs5t2QBy_WCUQO2Wc3QXmYolazHGeyLw0OFLgGbrih2RKs9hLMbIecjGMwXc_cYWOzRkfIGJYzBNRzOKRz3iTBCyMRyPYTXPfkqE9DMqanGrEKvhohdXSf2EPbWo5cdisc_xh3STqzHEPZ2-2CxuqjCUa6UjqVSuSuNS9LMK6XLPHGE--91Whb5EHb7fayCQKirK_Z98v_Xz-E28nX18WRyugN3OGXQtJWPuzBoVj_cUzSBGv0s8BqD7zfN3n8Aw4oZiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+to+Fires%3A+Multi-Channel+Deep+Learning+Models+for+Wildfire+Severity+Prediction&rft.jtitle=Applied+sciences&rft.au=Simone+Monaco&rft.au=Salvatore+Greco&rft.au=Alessandro+Farasin&rft.au=Luca+Colomba&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=22&rft.spage=11060&rft_id=info:doi/10.3390%2Fapp112211060&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab07aa6e9ce145faab961e7300fb4986 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |