Attention to Fires: Multi-Channel Deep Learning Models for Wildfire Severity Prediction

Wildfires are one of the natural hazards that the European Union is actively monitoring through the Copernicus EMS Earth observation program which continuously releases public information related to such catastrophic events. Such occurrences are the cause of both short- and long-term damages. Thus,...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 22; p. 11060
Main Authors Monaco, Simone, Greco, Salvatore, Farasin, Alessandro, Colomba, Luca, Apiletti, Daniele, Garza, Paolo, Cerquitelli, Tania, Baralis, Elena
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wildfires are one of the natural hazards that the European Union is actively monitoring through the Copernicus EMS Earth observation program which continuously releases public information related to such catastrophic events. Such occurrences are the cause of both short- and long-term damages. Thus, to limit their impact and plan the restoration process, a rapid intervention by authorities is needed, which can be enhanced by the use of satellite imagery and automatic burned area delineation methodologies, accelerating the response and the decision-making processes. In this context, we analyze the burned area severity estimation problem by exploiting a state-of-the-art deep learning framework. Experimental results compare different model architectures and loss functions on a very large real-world Sentinel2 satellite dataset. Furthermore, a novel multi-channel attention-based analysis is presented to uncover the prediction behaviour and provide model interpretability. A perturbation mechanism is applied to an attention-based DS-UNet to evaluate the contribution of different domain-driven groups of channels to the severity estimation problem.
AbstractList Wildfires are one of the natural hazards that the European Union is actively monitoring through the Copernicus EMS Earth observation program which continuously releases public information related to such catastrophic events. Such occurrences are the cause of both short- and long-term damages. Thus, to limit their impact and plan the restoration process, a rapid intervention by authorities is needed, which can be enhanced by the use of satellite imagery and automatic burned area delineation methodologies, accelerating the response and the decision-making processes. In this context, we analyze the burned area severity estimation problem by exploiting a state-of-the-art deep learning framework. Experimental results compare different model architectures and loss functions on a very large real-world Sentinel2 satellite dataset. Furthermore, a novel multi-channel attention-based analysis is presented to uncover the prediction behaviour and provide model interpretability. A perturbation mechanism is applied to an attention-based DS-UNet to evaluate the contribution of different domain-driven groups of channels to the severity estimation problem.
Author Baralis, Elena
Apiletti, Daniele
Cerquitelli, Tania
Farasin, Alessandro
Greco, Salvatore
Monaco, Simone
Colomba, Luca
Garza, Paolo
Author_xml – sequence: 1
  givenname: Simone
  orcidid: 0000-0003-4948-6120
  surname: Monaco
  fullname: Monaco, Simone
– sequence: 2
  givenname: Salvatore
  orcidid: 0000-0001-7239-9602
  surname: Greco
  fullname: Greco, Salvatore
– sequence: 3
  givenname: Alessandro
  orcidid: 0000-0001-9086-8679
  surname: Farasin
  fullname: Farasin, Alessandro
– sequence: 4
  givenname: Luca
  orcidid: 0000-0003-2911-4522
  surname: Colomba
  fullname: Colomba, Luca
– sequence: 5
  givenname: Daniele
  orcidid: 0000-0003-0538-9775
  surname: Apiletti
  fullname: Apiletti, Daniele
– sequence: 6
  givenname: Paolo
  orcidid: 0000-0002-1263-7522
  surname: Garza
  fullname: Garza, Paolo
– sequence: 7
  givenname: Tania
  orcidid: 0000-0002-9039-6226
  surname: Cerquitelli
  fullname: Cerquitelli, Tania
– sequence: 8
  givenname: Elena
  orcidid: 0000-0001-9231-467X
  surname: Baralis
  fullname: Baralis, Elena
BookMark eNptkVFrFDEQx4NUsNa--QECvrp2kuwmu76V02rhioJKH8NsMqk51mTN5oR-e_e8IkWclxmG3_8_w8xzdpJyIsZeCnij1AAXOM9CSCkEaHjCTiUY3ahWmJNH9TN2viw7WGMQqhdwym4va6VUY068Zn4VCy1v-c1-qrHZfMeUaOLviGa-JSwppjt-kz1NCw-58Ns4-bAq-Bf6RSXWe_65kI_u4PaCPQ04LXT-kM_Yt6v3Xzcfm-2nD9eby23jWqVqow2qwXiEjlzovPFibHs1GqOcBNn7EXRQwaPUvTNGhAG7IEfVtW6FZafVGbs--vqMOzuX-APLvc0Y7Z9GLncWS41uIosjGERNgyPRdgFxHLQgowDC2A79wevV0Wsu-eeelmp3eV_Sur6VGiSAMlKt1Osj5UpelkLh71QB9vAJ-_gTKy7_wV2seDhRLRin_4t-A8D_jNk
CitedBy_id crossref_primary_10_1017_eds_2023_26
crossref_primary_10_3390_rs14153632
crossref_primary_10_1016_j_geomat_2024_100008
crossref_primary_10_1109_ACCESS_2024_3515215
crossref_primary_10_1007_s00382_024_07481_y
crossref_primary_10_1016_j_mlwa_2023_100454
crossref_primary_10_1016_j_nhres_2024_12_001
crossref_primary_10_1016_j_procs_2023_08_173
crossref_primary_10_1109_ACCESS_2022_3205419
crossref_primary_10_17780_ksujes_1601614
crossref_primary_10_1016_j_jag_2024_104034
crossref_primary_10_1016_j_isprsjprs_2022_12_026
crossref_primary_10_3390_rs15051342
crossref_primary_10_1080_01431161_2023_2205981
crossref_primary_10_3390_fire6050192
crossref_primary_10_2139_ssrn_4132138
crossref_primary_10_3390_rs14030543
crossref_primary_10_1109_JSTARS_2024_3460531
crossref_primary_10_1016_j_scitotenv_2024_175914
Cites_doi 10.1016/S0034-4257(96)00067-3
10.1016/j.media.2017.07.005
10.1109/EE1.2018.8385269
10.3390/rs12152422
10.1007/978-3-030-00889-5_1
10.5937/jaes18-25495
10.1016/j.rse.2014.03.022
10.1109/JSTARS.2021.3093625
10.3390/rs12071128
10.3390/rs12050890
10.1109/MCSE.2007.55
10.1080/01431160600589179
10.3390/rs12122001
10.1109/TMI.2020.3035253
10.1016/j.rse.2007.01.017
10.1109/TPAMI.2016.2644615
10.1007/978-3-030-00063-9
10.3390/rs12010024
10.1109/CVPRW50498.2020.00183
10.3390/ecrs-2-05177
10.1109/BigData50022.2020.9377867
10.1007/978-3-319-10590-1_53
10.1016/j.scitotenv.2020.140160
10.1117/1.1631315
10.1007/978-3-319-24574-4_28
10.1016/j.foreco.2018.10.020
10.1109/TSMC.1979.4310076
10.1016/j.rse.2006.12.006
10.1109/LGRS.2005.858485
10.1109/TITS.2019.2911727
10.1109/MED51440.2021.9480226
10.1007/978-3-030-63625-8_23
10.1214/aoms/1177729694
10.1109/IGARSS.2019.8900399
10.1109/CVPR.2017.660
10.3390/app11157046
10.3390/app11052199
10.3390/rs9111193
10.1109/CVPR.2016.319
10.1016/j.isprsjprs.2018.11.026
10.1109/MWENT47943.2020.9067475
10.3390/app10124332
10.1145/3236009
10.1016/j.rse.2019.02.013
10.1145/2939672.2939778
10.1016/j.isprsjprs.2019.12.014
10.1109/CVPR.2016.273
10.1109/WACV.2018.00097
10.1038/s41586-020-2649-2
10.1109/ICCV.2017.74
10.1016/j.isprsjprs.2021.07.011
10.1038/s41598-019-56967-x
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app112211060
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_ab07aa6e9ce145faab961e7300fb4986
10_3390_app112211060
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c433t-67a397da05ecf5d7d1b483b773c2028db06f3fda268c771f9a5f2b354c5d72563
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:27:40 EDT 2025
Mon Jun 30 07:29:02 EDT 2025
Thu Apr 24 23:08:29 EDT 2025
Tue Jul 01 00:51:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-67a397da05ecf5d7d1b483b773c2028db06f3fda268c771f9a5f2b354c5d72563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9039-6226
0000-0003-2911-4522
0000-0001-9231-467X
0000-0002-1263-7522
0000-0003-4948-6120
0000-0003-0538-9775
0000-0001-7239-9602
0000-0001-9086-8679
OpenAccessLink https://doaj.org/article/ab07aa6e9ce145faab961e7300fb4986
PQID 2602003723
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_ab07aa6e9ce145faab961e7300fb4986
proquest_journals_2602003723
crossref_primary_10_3390_app112211060
crossref_citationtrail_10_3390_app112211060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Miller (ref_16) 2007; 109
ref_58
ref_13
Rouse (ref_19) 1974; 351
ref_57
Shapley (ref_64) 1953; 2
ref_12
ref_56
ref_11
ref_54
ref_52
ref_51
ref_15
ref_59
Li (ref_43) 2021; 179
Paszke (ref_74) 2019; 32
Litjens (ref_39) 2017; 42
Roy (ref_28) 2006; 3
ref_61
ref_60
Kullback (ref_81) 1951; 22
ref_25
ref_69
Llorens (ref_17) 2021; 95
Poursanidis (ref_80) 2019; 80
ref_67
ref_66
ref_65
ref_20
ref_63
Ban (ref_37) 2020; 10
ref_62
Badrinarayanan (ref_47) 2017; 39
Gu (ref_71) 2020; 40
Lestari (ref_6) 2020; 18
Rashkovetsky (ref_46) 2021; 14
ref_72
Loboda (ref_14) 2007; 109
ref_70
Otsu (ref_26) 1979; 9
Quintano (ref_32) 2016; 50
ref_36
Navarro (ref_29) 2017; 58
Keane (ref_34) 2006; Volume 64
ref_78
Castaldi (ref_24) 2019; 147
ref_33
ref_31
ref_75
Salehi (ref_23) 2019; 43
ref_30
Hardtke (ref_35) 2015; 38
Hunter (ref_77) 2007; 9
Klein (ref_9) 2019; 432
Sezgin (ref_27) 2004; 13
Gao (ref_18) 1996; 58
(ref_21) 2014; 148
ref_45
Xu (ref_73) 2006; 27
ref_44
ref_42
ref_41
ref_40
ref_1
ref_3
Jadon (ref_53) 2020; Volume 11318
Harris (ref_76) 2020; 585
ref_2
Dkhala (ref_22) 2020; 740
Candra (ref_79) 2020; Volume 500
Chuvieco (ref_8) 2019; 225
ref_49
ref_48
Francini (ref_10) 2021; 94
Pinto (ref_38) 2020; 160
Guidotti (ref_55) 2018; 51
ref_5
ref_4
Kamal (ref_68) 2019; 21
ref_7
References_xml – ident: ref_78
– volume: 58
  start-page: 257
  year: 1996
  ident: ref_18
  article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
– volume: Volume 11318
  start-page: 113180Q
  year: 2020
  ident: ref_53
  article-title: A comparative study of 2D image segmentation algorithms for traumatic brain lesions using CT data from the ProTECTIII multicenter clinical trial
  publication-title: Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications
– volume: 42
  start-page: 60
  year: 2017
  ident: ref_39
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: ref_15
  doi: 10.1109/EE1.2018.8385269
– ident: ref_13
  doi: 10.3390/rs12152422
– volume: 2
  start-page: 307
  year: 1953
  ident: ref_64
  article-title: A value for n-person games
  publication-title: Contrib. Theory Games
– ident: ref_67
  doi: 10.1007/978-3-030-00889-5_1
– volume: 38
  start-page: 25
  year: 2015
  ident: ref_35
  article-title: Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 18
  start-page: 207
  year: 2020
  ident: ref_6
  article-title: Machine learning approaches for burned area identification using Sentinel-2 in Central Kalimantan
  publication-title: J. Appl. Eng. Sci.
  doi: 10.5937/jaes18-25495
– volume: 148
  start-page: 124
  year: 2014
  ident: ref_21
  article-title: Potential of ESA’s Sentinel-2 for geological applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.022
– ident: ref_61
– ident: ref_1
– volume: 94
  start-page: 407
  year: 2021
  ident: ref_10
  article-title: Satellite open data to monitor forest damage caused by extreme climate-induced events: A case study of the Vaia storm in Northern Italy
  publication-title: For. Int. J. For. Res.
– volume: 14
  start-page: 7001
  year: 2021
  ident: ref_46
  article-title: Wildfire Detection from Multisensor Satellite Imagery Using Deep Semantic Segmentation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3093625
– ident: ref_44
  doi: 10.3390/rs12071128
– ident: ref_30
  doi: 10.3390/rs12050890
– volume: 80
  start-page: 58
  year: 2019
  ident: ref_80
  article-title: On the use of Sentinel-2 for coastal habitat mapping and satellite-derived bathymetry estimation using downscaled coastal aerosol band
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_4
– ident: ref_31
– volume: 32
  start-page: 8026
  year: 2019
  ident: ref_74
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 90
  year: 2007
  ident: ref_77
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– ident: ref_48
– ident: ref_69
– volume: 27
  start-page: 3025
  year: 2006
  ident: ref_73
  article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600589179
– ident: ref_45
  doi: 10.3390/rs12122001
– volume: 40
  start-page: 699
  year: 2020
  ident: ref_71
  article-title: CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3035253
– volume: 50
  start-page: 170
  year: 2016
  ident: ref_32
  article-title: SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 109
  start-page: 429
  year: 2007
  ident: ref_14
  article-title: Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.01.017
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_47
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref_66
– ident: ref_63
  doi: 10.1007/978-3-030-00063-9
– ident: ref_33
  doi: 10.3390/rs12010024
– ident: ref_41
  doi: 10.1109/CVPRW50498.2020.00183
– ident: ref_20
  doi: 10.3390/ecrs-2-05177
– ident: ref_72
– ident: ref_51
  doi: 10.1109/BigData50022.2020.9377867
– ident: ref_59
  doi: 10.1007/978-3-319-10590-1_53
– volume: 740
  start-page: 140160
  year: 2020
  ident: ref_22
  article-title: Hyperspectral field spectroscopy and SENTINEL-2 Multispectral data for minerals with high pollution potential content estimation and mapping
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140160
– volume: 13
  start-page: 146
  year: 2004
  ident: ref_27
  article-title: Survey over image thresholding techniques and quantitative performance evaluation
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.1631315
– ident: ref_42
  doi: 10.1007/978-3-319-24574-4_28
– volume: 432
  start-page: 840
  year: 2019
  ident: ref_9
  article-title: A nation-wide analysis of tree mortality under climate change: Forest loss and its causes in Israel 1948–2017
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2018.10.020
– volume: 95
  start-page: 102243
  year: 2021
  ident: ref_17
  article-title: A methodology to estimate forest fires burned areas and burn severity degrees using Sentinel-2 data. Application to the October 2017 fires in the Iberian Peninsula
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 62
  year: 1979
  ident: ref_26
  article-title: A Threshold Selection Method from Gray-Level Histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– ident: ref_3
– volume: 109
  start-page: 66
  year: 2007
  ident: ref_16
  article-title: Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.12.006
– volume: 3
  start-page: 112
  year: 2006
  ident: ref_28
  article-title: Remote sensing of fire severity: Assessing the performance of the normalized burn ratio
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.858485
– volume: 21
  start-page: 1467
  year: 2019
  ident: ref_68
  article-title: Automatic traffic sign detection and recognition using SegU-Net and a modified Tversky loss function with L1-constraint
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2911727
– volume: Volume 64
  start-page: LA-1-55
  year: 2006
  ident: ref_34
  article-title: Landscape assessment (LA)
  publication-title: FIREMON: Fire Effects Monitoring and Inventory System
– ident: ref_5
  doi: 10.1109/MED51440.2021.9480226
– volume: 43
  start-page: e2019430205
  year: 2019
  ident: ref_23
  article-title: Comparison of ASTER and Sentinel-2 spaceborne datasets for geological mapping: A case study from North-East Greenland
  publication-title: Geol. Surv. Den. Greenl. Bull.
– ident: ref_7
  doi: 10.1007/978-3-030-63625-8_23
– volume: Volume 500
  start-page: 012037
  year: 2020
  ident: ref_79
  article-title: Deforestation detection using multitemporal satellite images
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 22
  start-page: 79
  year: 1951
  ident: ref_81
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– ident: ref_25
  doi: 10.1109/IGARSS.2019.8900399
– ident: ref_49
  doi: 10.1109/CVPR.2017.660
– ident: ref_52
  doi: 10.3390/app11157046
– ident: ref_65
  doi: 10.3390/app11052199
– volume: 351
  start-page: 309
  year: 1974
  ident: ref_19
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: NASA Spec. Publ.
– ident: ref_36
  doi: 10.3390/rs9111193
– ident: ref_58
  doi: 10.1109/CVPR.2016.319
– ident: ref_75
– volume: 58
  start-page: 97
  year: 2017
  ident: ref_29
  article-title: Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 147
  start-page: 267
  year: 2019
  ident: ref_24
  article-title: Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.026
– ident: ref_54
– ident: ref_2
– ident: ref_11
  doi: 10.1109/MWENT47943.2020.9067475
– ident: ref_12
– ident: ref_50
  doi: 10.3390/app10124332
– volume: 51
  start-page: 1
  year: 2018
  ident: ref_55
  article-title: A Survey of Methods for Explaining Black Box Models
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3236009
– volume: 225
  start-page: 45
  year: 2019
  ident: ref_8
  article-title: Historical background and current developments for mapping burned area from satellite Earth observation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.013
– ident: ref_62
  doi: 10.1145/2939672.2939778
– volume: 160
  start-page: 260
  year: 2020
  ident: ref_38
  article-title: A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.12.014
– ident: ref_40
  doi: 10.1109/CVPR.2016.273
– ident: ref_57
  doi: 10.1109/WACV.2018.00097
– volume: 585
  start-page: 357
  year: 2020
  ident: ref_76
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– ident: ref_56
  doi: 10.1109/ICCV.2017.74
– ident: ref_70
– volume: 179
  start-page: 121
  year: 2021
  ident: ref_43
  article-title: Mapping salt marsh along coastal South Carolina using U-Net
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.07.011
– ident: ref_60
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_37
  article-title: Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56967-x
SSID ssj0000913810
Score 2.3427074
Snippet Wildfires are one of the natural hazards that the European Union is actively monitoring through the Copernicus EMS Earth observation program which continuously...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 11060
SubjectTerms Artificial intelligence
Decision making
Deep learning
deep neural networks
Environmental impact
Forest & brush fires
Machine learning
multi-channel attention-based analysis
Neural networks
Remote sensing
Satellites
Semantics
Vegetation
wildfire severity prediction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB614UIPCCiIlId8aCUqtGLX9q4dLghaIlQJhFoQ3FZ-5hIlaXb5_8xsnIBUlevu2AePZ_yNZ_wNwFfuVBGdsZlEF5lJ7WWmAwYr3HBttFOl7dIFN7fV9YP89VQ-pQu3JpVVLn1i56j91NEd-SnibqqjUlycz_5m1DWKsquphcZHWEMXrHUP1i6vbu9-r25ZiPVSF_mi4l1gfE95YYQYFPZ0rJSvZ1FH2f-PR-6OmeEmbCR8yC4WCt2CD2GyDZ_esAZuw1ayx4YdJ9Lo75_h8aJtF5WLrJ2yITqy5ox1r2szekAwCWP2M4QZS3yqI0ZN0MYNQ8zK0DP4iCPYn4AbG2E5u5tT_oZm24GH4dX9j-ssNU3InBSizSplEGJ4k5fBxdIrX1iphVVKOI5Ywtu8iiJ6wyvUBOppYMrIrSilQ2HEP2IXepPpJOwByyMGM9GhlTucI-AYHXgshBNCFZ7bPpwsl692iVGcGluMa4wsaLHrt4vdh28r6dmCSeM_cpekiZUM8V93H6bzUZ3MqTY2V8ZUYeBCIctojB1URSDu_WjlQFd9OFjqsU5G2dSvW-jL-7_3YZ1T6Ur35PAAeu38ORwi9mjtUdpgLzea2JQ
  priority: 102
  providerName: ProQuest
Title Attention to Fires: Multi-Channel Deep Learning Models for Wildfire Severity Prediction
URI https://www.proquest.com/docview/2602003723
https://doaj.org/article/ab07aa6e9ce145faab961e7300fb4986
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90vuiD6FSczpEHBUWKa5I2rW9-bIqgDD_Qt5KkiS-jG1v9_72knRZEfPG1XJJyd7n8jlx-B3BItQitlirgGCIDnuQ8SAwmK1TSRCZaRMpfF9w_xLcv_O4temu0-nI1YRU9cKW4M6n6QsrYpNqEPLJSqjQOjWNZt4qniSfbxjOvkUz5GJyGjrqqqnRnmNe7-2CEFi7d8WyU32eQp-r_EYn98TLcgPUaF5KL6n82YckUbVhrsAW2YbPeh3NyXJNFn2zB60VZVhWLpJyQIQaw-Tnxr2oD93CgMGNybcyU1Dyq78Q1PxvPCWJVghEhtziCPBl0aITjZDRz9zZutm14GQ6er26DullCoDljZRALidAil_3IaBvlIg8VT5gSgmmKGCJX_dgym0saowXQPqmMLFUs4hqFEfewHWgVk8LsAulbTGKsxt2tcQ6DYxJDbcg0YyLMqerA6UJ9ma6ZxF1Di3GGGYVTdtZUdgeOvqSnFYPGL3KXzhJfMo732n9Ab8hqb8j-8oYOdBd2zOrNOM8wZXMleIKyvf9YYx9WqSts8Q8Su9AqZx_mAJFJqXqwnAxverByOXgYPfa8S34Cf0_jIA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQSwv4QCUQikhsJ06QECqUZUsfQqIVvQU_e1ntbjdBiD_Fb2TGSbaVENx6TWwrGY8_z3jG3wA851ZlwWqTSITIRJZOJqVHZ4VrXurSqtzEcMHRcTE5lZ_P8rM1-D3chaG0ygETI1C7uaUz8tdod1MeleLi3eIioapRFF0dSmh0anHgf_1El615u7-H87vD-fjjyYdJ0lcVSKwUok0KpXEPdjrNvQ25Uy4zshRGKWE5brbOpEUQwWle4Kfij1Q6D9yIXFpsjAaCwHFvwE0cqyJnrxx_Wp3pEMdmmaVdfj2-TykKjQYNOVmRA_Ny54sFAv7C_7ipje_B3d4aZbud-mzAmp9twp0rHIWbsNGv_oa96CmqX96Hb7tt2-VJsnbOxgibzRsW7_ImdF1h5qdsz_sF69lbzxmVXJs2DC1khjjkAvZgXz0uI3QC2JclRYtotAdwei3CfAjrs_nMPwKWBnSdgkVMsTiGxz6l5yETVgiVOW5G8GoQX217_nIqozGt0Y8hYddXhT2CnVXrRcfb8Y9272kmVm2IbTs-mC_P637x1tqkSuvCV9ZnMg9am6rIPDH9ByOrshjB9jCPdQ8BTX2psI____oZ3JqcHB3Wh_vHB1twm1PSTLzsuA3r7fKHf4JWT2ueRlVj8P26dfsPav0T9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfxFbFs1X3wYIioclukk0Ekdbr0Vo9DrXYt7iffTnurpeI-K_51zmTbK4F0be-JrtLMjs7HzszvwF4wY1MvFE6SlFERmlh06hw6KxwxQtVGJnpNlzwaZIfn6UfzrPzDfjd18JQWmUvE1tBbReG7sj30e6mPCrJxb4PaRHT0fjd8jKiDlIUae3baXQscup-_UT3rX57MsK93uN8fPT1_XEUOgxEJhWiiXKpUB9bFWfO-MxKm-i0EFpKYTgqXqvj3AtvFc_xs_GnSpV5rkWWGhyMxoLAdW_BpiSvaACbh0eT6ef1DQ8hbhZJ3GXbC1HGFJNG84ZcrhYR80oPtu0C_tIGrYob34d7wTZlBx0zbcGGm2_D3WuIhduwFWRBzV4GwOpXD-DbQdN0WZOsWbAxCtH6DWsreyMqXpi7GRs5t2QBy_WCUQO2Wc3QXmYolazHGeyLw0OFLgGbrih2RKs9hLMbIecjGMwXc_cYWOzRkfIGJYzBNRzOKRz3iTBCyMRyPYTXPfkqE9DMqanGrEKvhohdXSf2EPbWo5cdisc_xh3STqzHEPZ2-2CxuqjCUa6UjqVSuSuNS9LMK6XLPHGE--91Whb5EHb7fayCQKirK_Z98v_Xz-E28nX18WRyugN3OGXQtJWPuzBoVj_cUzSBGv0s8BqD7zfN3n8Aw4oZiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+to+Fires%3A+Multi-Channel+Deep+Learning+Models+for+Wildfire+Severity+Prediction&rft.jtitle=Applied+sciences&rft.au=Simone+Monaco&rft.au=Salvatore+Greco&rft.au=Alessandro+Farasin&rft.au=Luca+Colomba&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=22&rft.spage=11060&rft_id=info:doi/10.3390%2Fapp112211060&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab07aa6e9ce145faab961e7300fb4986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon