Optimizing sEMG Gesture Recognition with Stacked Autoencoder Neural Network for Bionic Hand
This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robu...
Saved in:
Published in | MethodsX Vol. 14; p. 103207 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification.•Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components.•Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features.•Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation.
[Display omitted] |
---|---|
AbstractList | This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification. • Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components. • Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features. • Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation. This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification.•Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components.•Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features.•Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation. [Display omitted] This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification. • Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components. • Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features. • Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09. Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation. Image, graphical abstract This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification.•Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components.•Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features.•Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation.This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification.•Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components.•Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features.•Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation. |
ArticleNumber | 103207 |
Author | Yadav, Mr. Amol Pandurang Patil, Dr. Sandip.R. |
Author_xml | – sequence: 1 givenname: Mr. Amol Pandurang orcidid: 0000-0003-2228-6743 surname: Yadav fullname: Yadav, Mr. Amol Pandurang email: amol.yadav@bharatividyapeeth.edu organization: All India Shri Shivaji Memorial Society's Institute Of Information Technology, India – sequence: 2 givenname: Dr. Sandip.R. surname: Patil fullname: Patil, Dr. Sandip.R. email: sandip.patil@bharatividyapeeth.edu organization: Bharati Vidyapeeth's College Of Engineering for Women, Pune, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40071216$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAQtVARLUt_ABfkI5ddPLbjJOKASlW2lQqV-DhxsLzOZOttYm8dpwV-PV5SqvYCp7E97z2N573nZM8Hj4S8BLYABurNZtHjjwVnvMh3wVn5hBxwDsU8N2HvwXmfHA7DhjEGQgqQ_BnZl4yVwEEdkO8X2-R698v5NR1OPi7pEoc0RqSf0Ya1d8kFT29duqRfkrFX2NCjMQX0NjQY6Scco-lySbchXtE2RPo-E5ylp8Y3L8jT1nQDHt7VGfn24eTr8en8_GJ5dnx0PrdSiDQv2rpiq5WyUCkla8slryWHWqm2FVCLXKDmXJa7mWXVCChKowzj1oqmsrWYkbNJtwlmo7fR9Sb-1ME4_echxLU2MTnboQZjikrKpm4UyLybmrcMhcFSKMsktFnr3aS1HVc9NhZ9yj98JPq4492lXocbDVDVcjfujLy-U4jheszb1L0bLHad8RjGQWerGC8rIdn_oVAqIRXnO9VXD-e6H-ivkxkAE8DGMAwR23sIML0LjN7oHBi9C4yeApM5bycOZnduHEY9WJe9xcZFtCmvz_2D_RvUlcUP |
Cites_doi | 10.3390/sym12040541 10.3390/en14206540 10.3390/s24227147 10.35940/ijitee.J9137.0881019 10.1007/978-981-13-2517-5_42 10.1162/089976605774320557 10.1038/nature14539 10.1682/JRRD.2010.09.0177 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) 2025 The Author(s). 2025 The Author(s) 2025 |
Copyright_xml | – notice: 2025 The Author(s) – notice: 2025 The Author(s). – notice: 2025 The Author(s) 2025 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.mex.2025.103207 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 2215-0161 |
ExternalDocumentID | oai_doaj_org_article_1aa5844d9d61416192f0e3ae736c041f PMC11894319 40071216 10_1016_j_mex_2025_103207 S221501612500055X |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 457 53G 5VS 6I. AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFJKZ AFPKN AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV EBS EJD FDB GROUPED_DOAJ HYE IPNFZ IXB KQ8 M48 M~E OK1 RIG ROL RPM SSZ AAYXX CITATION AACTN NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c433t-5f980bb6c186649c2429421966ff31936ff192247071248d3157a6a02cc3d8c93 |
IEDL.DBID | M48 |
ISSN | 2215-0161 |
IngestDate | Wed Aug 27 01:27:26 EDT 2025 Thu Aug 21 18:34:47 EDT 2025 Fri Aug 22 20:31:22 EDT 2025 Fri Jul 11 10:10:00 EDT 2025 Fri Mar 14 02:02:20 EDT 2025 Thu Aug 07 06:25:42 EDT 2025 Sat Aug 30 17:14:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning, stacked neural networks Ninapro Database Feature Extraction Real-world Applications, ADAMS Rehabilitation technology Hierarchical representation Temporal Dependencies MATLAB Signal Processing Surface electromyography (sEMG) Performance Evaluation Stacked autoencoder neural network (SAE) Machine learning Robustness Gesture recognition, prosthetic control |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2025 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-5f980bb6c186649c2429421966ff31936ff192247071248d3157a6a02cc3d8c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2228-6743 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.mex.2025.103207 |
PMID | 40071216 |
PQID | 3176346229 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1aa5844d9d61416192f0e3ae736c041f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11894319 proquest_miscellaneous_3200278340 proquest_miscellaneous_3176346229 pubmed_primary_40071216 crossref_primary_10_1016_j_mex_2025_103207 elsevier_sciencedirect_doi_10_1016_j_mex_2025_103207 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | MethodsX |
PublicationTitleAlternate | MethodsX |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Andrade, F. & Garcia Pereira, F. & Resende, Cassius & Cavalieri, Daniel. (2019). Improving sEMG-based hand gesture recognition using maximal overlap discrete wavelet transform and an autoencoder neural network. W. Wei and L. Ren, ``From Unimodal to Multimodal: improving sEMG-based pattern recognition via deep generative models,'' arXiv preprint arXiv:2308.04091, 2023. Available Zhang, Chen (bib0013) 2022 Lee (bib0015) 2021 LeCun, Bengio, Hinton (bib0004) 2015; 521 Varshney, Thakur, Jigyasu (bib0017) 2019; 8 bib22 . Scheme, Englehart (bib0002) 2011; 48 Atzori, Gijsberts, Elsig, Mittaz Hager, Deriaz, van der Smagt, Castellini, Caputo, Müller (bib0003) 2012 Shams, Anis, El-Shahat (bib0016) 2021; 14 Fratti, Marini, Atzori, Müller, Tiengo, Bassetto (bib0018) 2024; 24 Phinyomark, Quaine, Charbonnier, Serviere, Tarpin-Bernard, Laurillau (bib0006) 2013; 14 Smith, Brown, Johnson (bib0012) 2023; 30 Arozi, Caesarendra, Ariyanto, Munadi, Setiawan, Glowacz (bib0014) 2020; 12 Boser, Guyon, Vapnik (bib0009) 1996; 5 Vijayakumar, D'Souza, Schaal (bib0011) 2006; 17 Shams (10.1016/j.mex.2025.103207_bib0016) 2021; 14 Smith (10.1016/j.mex.2025.103207_bib0012) 2023; 30 Lee (10.1016/j.mex.2025.103207_bib0015) 2021 Fratti (10.1016/j.mex.2025.103207_bib0018) 2024; 24 Zhang (10.1016/j.mex.2025.103207_bib0013) 2022 Boser (10.1016/j.mex.2025.103207_bib0009) 1996; 5 Atzori (10.1016/j.mex.2025.103207_bib0003) 2012 Phinyomark (10.1016/j.mex.2025.103207_bib0006) 2013; 14 Scheme (10.1016/j.mex.2025.103207_bib0002) 2011; 48 Varshney (10.1016/j.mex.2025.103207_bib0017) 2019; 8 10.1016/j.mex.2025.103207_bib0019 LeCun (10.1016/j.mex.2025.103207_bib0004) 2015; 521 Vijayakumar (10.1016/j.mex.2025.103207_bib0011) 2006; 17 Arozi (10.1016/j.mex.2025.103207_bib0014) 2020; 12 10.1016/j.mex.2025.103207_bib0001 |
References_xml | – volume: 14 start-page: 10482 year: 2013 end-page: 10505 ident: bib0006 article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness publication-title: Sensors – volume: 17 start-page: 2602 year: 2006 end-page: 2634 ident: bib0011 article-title: Incremental online learning in high dimensions publication-title: Neural Comput. – volume: 48 start-page: 643 year: 2011 end-page: 659 ident: bib0002 article-title: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use publication-title: J. Rehabil. Res. Dev. – start-page: 456 year: 2022 end-page: 462 ident: bib0013 article-title: Stacked autoencoders for sEMG feature extraction publication-title: *Proceedings of the International Conference on Machine Learning* – year: 2021 ident: bib0015 article-title: Gesture recognition using sEMG signals – volume: 12 start-page: 541 year: 2020 ident: bib0014 article-title: Pattern recognition of single-channel sEMG signal using PCA and ANN method to classify nine hand movements publication-title: Symmetry. – reference: W. Wei and L. Ren, ``From Unimodal to Multimodal: improving sEMG-based pattern recognition via deep generative models,'' arXiv preprint arXiv:2308.04091, 2023. Available: – reference: . – volume: 24 start-page: 7147 year: 2024 ident: bib0018 article-title: A multi-scale CNN for transfer learning in sEMG-based hand gesture recognition for prosthetic devices publication-title: Sensors – volume: 8 start-page: 1759 year: 2019 end-page: 1764 ident: bib0017 article-title: EMG signal based pattern recognition of grasping movement using MODWT DECOMPOSITION and weighted K- nearest neighbor publication-title: Int. J. Innovat. Technol. Explor. Eng – year: 2012 ident: bib0003 article-title: Building the NINAPRO Database: a resource for the biorobotics community publication-title: Proceedings of Biomedical Robotics and Biomechatronics (BioRob), 2014 4th IEEE RAS and EMBS International Conference – reference: Andrade, F. & Garcia Pereira, F. & Resende, Cassius & Cavalieri, Daniel. (2019). Improving sEMG-based hand gesture recognition using maximal overlap discrete wavelet transform and an autoencoder neural network. – volume: 5 year: 1996 ident: bib0009 article-title: A training algorithm for optimal margin classifier publication-title: Proceed. Fifth Annual ACM Workshop Computat. Learn. Theory – ident: bib22 – volume: 30 start-page: 1234 year: 2023 end-page: 1245 ident: bib0012 article-title: Deep learning approaches for gesture recognition using sEMG publication-title: *IEEE Transact. Neural Netw. Learn. Syst.* – volume: 14 start-page: 6540 year: 2021 ident: bib0016 article-title: Denoising of heavily contaminated partial discharge signals in high-voltage cables using maximal overlap discrete wavelet transform publication-title: Energies – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0004 article-title: Deep Learning publication-title: Nature – volume: 30 start-page: 1234 issue: 5 year: 2023 ident: 10.1016/j.mex.2025.103207_bib0012 article-title: Deep learning approaches for gesture recognition using sEMG publication-title: *IEEE Transact. Neural Netw. Learn. Syst.* – volume: 12 start-page: 541 issue: 4 year: 2020 ident: 10.1016/j.mex.2025.103207_bib0014 article-title: Pattern recognition of single-channel sEMG signal using PCA and ANN method to classify nine hand movements publication-title: Symmetry. doi: 10.3390/sym12040541 – volume: 14 start-page: 6540 year: 2021 ident: 10.1016/j.mex.2025.103207_bib0016 article-title: Denoising of heavily contaminated partial discharge signals in high-voltage cables using maximal overlap discrete wavelet transform publication-title: Energies doi: 10.3390/en14206540 – volume: 14 start-page: 10482 issue: 6 year: 2013 ident: 10.1016/j.mex.2025.103207_bib0006 article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness publication-title: Sensors – year: 2012 ident: 10.1016/j.mex.2025.103207_bib0003 article-title: Building the NINAPRO Database: a resource for the biorobotics community – volume: 24 start-page: 7147 issue: 22 year: 2024 ident: 10.1016/j.mex.2025.103207_bib0018 article-title: A multi-scale CNN for transfer learning in sEMG-based hand gesture recognition for prosthetic devices publication-title: Sensors doi: 10.3390/s24227147 – year: 2021 ident: 10.1016/j.mex.2025.103207_bib0015 – volume: 8 start-page: 1759 year: 2019 ident: 10.1016/j.mex.2025.103207_bib0017 article-title: EMG signal based pattern recognition of grasping movement using MODWT DECOMPOSITION and weighted K- nearest neighbor publication-title: Int. J. Innovat. Technol. Explor. Eng doi: 10.35940/ijitee.J9137.0881019 – ident: 10.1016/j.mex.2025.103207_bib0001 doi: 10.1007/978-981-13-2517-5_42 – volume: 17 start-page: 2602 year: 2006 ident: 10.1016/j.mex.2025.103207_bib0011 article-title: Incremental online learning in high dimensions publication-title: Neural Comput. doi: 10.1162/089976605774320557 – ident: 10.1016/j.mex.2025.103207_bib0019 – volume: 5 year: 1996 ident: 10.1016/j.mex.2025.103207_bib0009 article-title: A training algorithm for optimal margin classifier publication-title: Proceed. Fifth Annual ACM Workshop Computat. Learn. Theory – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.mex.2025.103207_bib0004 article-title: Deep Learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 456 year: 2022 ident: 10.1016/j.mex.2025.103207_bib0013 article-title: Stacked autoencoders for sEMG feature extraction – volume: 48 start-page: 643 year: 2011 ident: 10.1016/j.mex.2025.103207_bib0002 article-title: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2010.09.0177 |
SSID | ssj0001343142 |
Score | 2.3160737 |
Snippet | This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 103207 |
SubjectTerms | computer software Deep learning, stacked neural networks discriminant analysis domain electromyography Engineering Feature Extraction Gesture recognition, prosthetic control Hierarchical representation Machine learning MATLAB Ninapro Database Performance Evaluation prostheses Real-world Applications, ADAMS Rehabilitation technology Robustness Signal Processing Stacked autoencoder neural network (SAE) Surface electromyography (sEMG) Temporal Dependencies wavelet |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBcjh7LLWNt19fqBCjsVzGxJlq1jW9KEQloYCxR2EM6TTDOoU9IERv_6vmfZJWkhvfRksIVsvQ_9ftJ7fmLsZyZAgXcuhkxDTEYST2TlYl0iX1YmR6U32RbXejhWV7fZ7cpRX5QTFsoDB8H9SssSMVI54xBIUqL7VeJl6XOpIVFpRbMvYt7KYqrZXZEIjEp0Ycwmoeve_8f1oMjoP3NBx8euAFFTr38Nj97yzddpkys4dPmVfWkJJD8LH77NPvl6h22N2hD5Lvt7g5PA_fQJIYk_9kcDPsDel3PPf3epQrOa0-4rR56JLuz42XIxo3KWzs851erA3q9DcjhHRsvPaccW-LCs3Tc2vuz_uRjG7QkKMSgpF3FWmSKZTDRQWTtlAPHYKJyjtK4q9D2JFxSoUDkSDaEKJ9MsL1FNAkC6AozcY716Vvt9xnMnvQCD7AcKlUJhIJMgFbjEFxUkMmKnnTjtQyiUYbsMsn8WZW9J9jbIPmLnJPCXhlTjurmBmret5u17mo-Y6tRlW7oQaAB2Nd307pNOtRZdieIjZe1ny0eLVEpLpYUwG9qIJlYrVRKx78EcXkZBR8ynItURK9YMZW2Y60_q6V1T0huXeQYt1vz4CMEcsM803pDQdsh6i_nSHyF1WkyOGy95BoJOFBQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhh9JLaZs-3CZFhZ4KZm29bB2zIckSSAptAws9CO9Ibh2IHTa7UPrrOyPbadxCDj0Zy7JszYxmPmlGI8Y-aAEKgvcpaAMpCUm6krVPTYV4WdkCmR6jLS7M4lKdLfVyhx2Ne2EorHLQ_b1Oj9p6KJkN1JzdNM3si0BrRYBFUE5_rZeoh6Uq4ya-5fzPOotEExnP0KH6Kb0wOjdjmNd1-ImzRKFp97mgQ2XvmaeYxX9ipf5FoX8HU96zTidP2ZMBVvLD_s-fsZ3QPmePzgfH-R779glVw3XzCw0Vvz0-P-Wn2Pp2HfjnMYCoazmtyXJEnziwPT_cbjpKcunDmlMGD2z9og8Z54hz-ZzWcYEvqta_YJcnx1-PFulwrkIKSspNqmtbZquVAUp2pyyglbYKNZcxdY0jUuIFcZ9QBcIPoUovc11UyDwBIH0JVr5ku23XhteMF14GARYxEZQqh9KCliAV-CyUNWQyYR9HcrqbPn2GG-PKrhzS3hHtXU_7hM2J4HcVKfN1LOjW393AepdXFWIm5a1HYJHT9K_OgqxCIQ1kKq8TpkZ2uYkgYVPNQ99-P7LW4QAjr0nVhm576xBgGamMEPaBOiJ6cKXKEvaqF4e7XtDB87nITcLKiaBMujl90jY_YqJvnPxZlF775v_69JY9prs-sG2f7W7W23CAEGqzehfHyG9V4haF priority: 102 providerName: Elsevier |
Title | Optimizing sEMG Gesture Recognition with Stacked Autoencoder Neural Network for Bionic Hand |
URI | https://dx.doi.org/10.1016/j.mex.2025.103207 https://www.ncbi.nlm.nih.gov/pubmed/40071216 https://www.proquest.com/docview/3176346229 https://www.proquest.com/docview/3200278340 https://pubmed.ncbi.nlm.nih.gov/PMC11894319 https://doaj.org/article/1aa5844d9d61416192f0e3ae736c041f |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KBWkfRNuq60eJ0Cdhy26SzW4eRHrS9hSugnhw0IewN8nqid3VvTuo_vVO9qN2tfShL7uQTTYkM5P5ZTKZAThIOEp01oaYKAw9k4RzUdhQ5YSXpU6J6I23xZkaT-WHWTLbgD69VTeByxu3dj6f1LT-fnj589dbEvg3f321LtwlbfV44q-Qc3-3_B4pptQnNJh0aL8xuQjSlpL3Z5s3tRxopyaI_0BJ_Q9C__WlvKacTh7Cgw5VsqOWDR7Bhit3YPtarMEduD_pTtF34fwjrRMXi99UzpbHk1N2Sn2ta8c-9d5EVcm8gZYRFCUpt-xovap8xEvraubDeVBfZ63_OCPQy0beqItsnJd2D6Ynx5_fjcMuyUKIUohVmBQ6i-ZzhT7yndRIKltLWsaUKgoST0EvAoFcpoRFuMysiJM0J0pyRGEz1OIxbJZV6Z4CS61wHDUBJMxkjJnGRKCQaCOXFRiJAF73k2t-tLE0TO9k9s0QJYynhGkpEcDIT_9VRR8Guymo6i-mkyoT5zkBKGm1JZQR-71gETmRu1QojGRcBCB74pkOUbRIgX61uK3vVz2hDUmbP0LJS1etl4bQlhJSca5vqcOb41whowCetMxxNQqfhT7msQogG7DNYJjDL-XiaxP1m3aCmvhXP7t70-ew5UfZerq9gM1VvXYvCVOt5vuNLYKe72ej_UZq_gDVwSI0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxJuUl5HgghRt4lfiA4cutN2l3UWCVlqJg5u1HUilJtU-xONv8QeZyaM0IPWA1FOkxHLs8Xjms_15hpCXkllhvXOhlcqGqCThnOcuVBngZaETGPSabTFVoyPxfiZnG-RXdxcGaZWt7W9sem2t2zeDVpqDs6IYfGLgrRCwMIzpL-WsZVbu-x_fYN22fDN-B4P8irHdncO3o7BNLRBawfkqlLlOo_lcWYz3JrQFR6UFTF6l8hyUksMDoA8TCXhgJlLHY5lk0H5mLXepxQhMYPevAfpI0BqMZ8M_GzscfHKdtAcbGGILu9PUmld26r_DspRJvO7OMIvtBX9Ypw3oucV_Ye_f7M0L7nD3NrnV4li63YjqDtnw5V1yfdKe1N8jnz-ALTotfoJnpMudyR7dg9rXC08_doylqqS4CUwB7oIlcXR7vaowqqbzC4ohQ6D2acNRpwCs6RA3ji0dZaW7T46uRNoPyGZZlf4RoYnjnlkNIMymIraptpJbLqyLfJrbiAfkdSdOc9bE6zAdke3EgOwNyt40sg_IEAV-XhBDbdcvqsUX0-qaibMMQJpw2gGSiXG9mUeeZz7hykYizgMiuuEyPc2FqorL_v2iG1oDMxqPabLSV-ulAUSnuFCM6UvKsPrImIsoIA8bdTjvBWa6j1msApL2FKXXzf6XsvhaRxaH1aYG7dVb_9en5-TG6HByYA7G0_3H5CZ-aVh1T8jmarH2TwG_rebP6vlCyfFVT9DfxtJQnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+sEMG+Gesture+Recognition+with+Stacked+Autoencoder+Neural+Network+for+Bionic+Hand&rft.jtitle=MethodsX&rft.au=Yadav%2C+Mr.+Amol+Pandurang&rft.au=Patil%2C+Dr.+Sandip.R.&rft.date=2025-06-01&rft.pub=Elsevier&rft.eissn=2215-0161&rft.volume=14&rft_id=info:doi/10.1016%2Fj.mex.2025.103207&rft.externalDocID=PMC11894319 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0161&client=summon |