Optimizing sEMG Gesture Recognition with Stacked Autoencoder Neural Network for Bionic Hand

This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robu...

Full description

Saved in:
Bibliographic Details
Published inMethodsX Vol. 14; p. 103207
Main Authors Yadav, Mr. Amol Pandurang, Patil, Dr. Sandip.R.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification.•Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components.•Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features.•Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation. [Display omitted]
AbstractList This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification. • Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components. • Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features. • Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation.
This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification.•Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components.•Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features.•Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation. [Display omitted]
This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification. • Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components. • Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features. • Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09. Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation. Image, graphical abstract
This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification.•Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components.•Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features.•Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation.This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification.•Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components.•Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features.•Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation.
ArticleNumber 103207
Author Yadav, Mr. Amol Pandurang
Patil, Dr. Sandip.R.
Author_xml – sequence: 1
  givenname: Mr. Amol Pandurang
  orcidid: 0000-0003-2228-6743
  surname: Yadav
  fullname: Yadav, Mr. Amol Pandurang
  email: amol.yadav@bharatividyapeeth.edu
  organization: All India Shri Shivaji Memorial Society's Institute Of Information Technology, India
– sequence: 2
  givenname: Dr. Sandip.R.
  surname: Patil
  fullname: Patil, Dr. Sandip.R.
  email: sandip.patil@bharatividyapeeth.edu
  organization: Bharati Vidyapeeth's College Of Engineering for Women, Pune, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40071216$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQtVARLUt_ABfkI5ddPLbjJOKASlW2lQqV-DhxsLzOZOttYm8dpwV-PV5SqvYCp7E97z2N573nZM8Hj4S8BLYABurNZtHjjwVnvMh3wVn5hBxwDsU8N2HvwXmfHA7DhjEGQgqQ_BnZl4yVwEEdkO8X2-R698v5NR1OPi7pEoc0RqSf0Ya1d8kFT29duqRfkrFX2NCjMQX0NjQY6Scco-lySbchXtE2RPo-E5ylp8Y3L8jT1nQDHt7VGfn24eTr8en8_GJ5dnx0PrdSiDQv2rpiq5WyUCkla8slryWHWqm2FVCLXKDmXJa7mWXVCChKowzj1oqmsrWYkbNJtwlmo7fR9Sb-1ME4_echxLU2MTnboQZjikrKpm4UyLybmrcMhcFSKMsktFnr3aS1HVc9NhZ9yj98JPq4492lXocbDVDVcjfujLy-U4jheszb1L0bLHad8RjGQWerGC8rIdn_oVAqIRXnO9VXD-e6H-ivkxkAE8DGMAwR23sIML0LjN7oHBi9C4yeApM5bycOZnduHEY9WJe9xcZFtCmvz_2D_RvUlcUP
Cites_doi 10.3390/sym12040541
10.3390/en14206540
10.3390/s24227147
10.35940/ijitee.J9137.0881019
10.1007/978-981-13-2517-5_42
10.1162/089976605774320557
10.1038/nature14539
10.1682/JRRD.2010.09.0177
ContentType Journal Article
Copyright 2025 The Author(s)
2025 The Author(s).
2025 The Author(s) 2025
Copyright_xml – notice: 2025 The Author(s)
– notice: 2025 The Author(s).
– notice: 2025 The Author(s) 2025
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.mex.2025.103207
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 2215-0161
ExternalDocumentID oai_doaj_org_article_1aa5844d9d61416192f0e3ae736c041f
PMC11894319
40071216
10_1016_j_mex_2025_103207
S221501612500055X
Genre Journal Article
GroupedDBID 0R~
4.4
457
53G
5VS
6I.
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
IXB
KQ8
M48
M~E
OK1
RIG
ROL
RPM
SSZ
AAYXX
CITATION
AACTN
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c433t-5f980bb6c186649c2429421966ff31936ff192247071248d3157a6a02cc3d8c93
IEDL.DBID M48
ISSN 2215-0161
IngestDate Wed Aug 27 01:27:26 EDT 2025
Thu Aug 21 18:34:47 EDT 2025
Fri Aug 22 20:31:22 EDT 2025
Fri Jul 11 10:10:00 EDT 2025
Fri Mar 14 02:02:20 EDT 2025
Thu Aug 07 06:25:42 EDT 2025
Sat Aug 30 17:14:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning, stacked neural networks
Ninapro Database
Feature Extraction
Real-world Applications, ADAMS
Rehabilitation technology
Hierarchical representation
Temporal Dependencies
MATLAB
Signal Processing
Surface electromyography (sEMG)
Performance Evaluation
Stacked autoencoder neural network (SAE)
Machine learning
Robustness
Gesture recognition, prosthetic control
Language English
License This is an open access article under the CC BY-NC-ND license.
2025 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-5f980bb6c186649c2429421966ff31936ff192247071248d3157a6a02cc3d8c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2228-6743
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.mex.2025.103207
PMID 40071216
PQID 3176346229
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1aa5844d9d61416192f0e3ae736c041f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11894319
proquest_miscellaneous_3200278340
proquest_miscellaneous_3176346229
pubmed_primary_40071216
crossref_primary_10_1016_j_mex_2025_103207
elsevier_sciencedirect_doi_10_1016_j_mex_2025_103207
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle MethodsX
PublicationTitleAlternate MethodsX
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Andrade, F. & Garcia Pereira, F. & Resende, Cassius & Cavalieri, Daniel. (2019). Improving sEMG-based hand gesture recognition using maximal overlap discrete wavelet transform and an autoencoder neural network.
W. Wei and L. Ren, ``From Unimodal to Multimodal: improving sEMG-based pattern recognition via deep generative models,'' arXiv preprint arXiv:2308.04091, 2023. Available
Zhang, Chen (bib0013) 2022
Lee (bib0015) 2021
LeCun, Bengio, Hinton (bib0004) 2015; 521
Varshney, Thakur, Jigyasu (bib0017) 2019; 8
bib22
.
Scheme, Englehart (bib0002) 2011; 48
Atzori, Gijsberts, Elsig, Mittaz Hager, Deriaz, van der Smagt, Castellini, Caputo, Müller (bib0003) 2012
Shams, Anis, El-Shahat (bib0016) 2021; 14
Fratti, Marini, Atzori, Müller, Tiengo, Bassetto (bib0018) 2024; 24
Phinyomark, Quaine, Charbonnier, Serviere, Tarpin-Bernard, Laurillau (bib0006) 2013; 14
Smith, Brown, Johnson (bib0012) 2023; 30
Arozi, Caesarendra, Ariyanto, Munadi, Setiawan, Glowacz (bib0014) 2020; 12
Boser, Guyon, Vapnik (bib0009) 1996; 5
Vijayakumar, D'Souza, Schaal (bib0011) 2006; 17
Shams (10.1016/j.mex.2025.103207_bib0016) 2021; 14
Smith (10.1016/j.mex.2025.103207_bib0012) 2023; 30
Lee (10.1016/j.mex.2025.103207_bib0015) 2021
Fratti (10.1016/j.mex.2025.103207_bib0018) 2024; 24
Zhang (10.1016/j.mex.2025.103207_bib0013) 2022
Boser (10.1016/j.mex.2025.103207_bib0009) 1996; 5
Atzori (10.1016/j.mex.2025.103207_bib0003) 2012
Phinyomark (10.1016/j.mex.2025.103207_bib0006) 2013; 14
Scheme (10.1016/j.mex.2025.103207_bib0002) 2011; 48
Varshney (10.1016/j.mex.2025.103207_bib0017) 2019; 8
10.1016/j.mex.2025.103207_bib0019
LeCun (10.1016/j.mex.2025.103207_bib0004) 2015; 521
Vijayakumar (10.1016/j.mex.2025.103207_bib0011) 2006; 17
Arozi (10.1016/j.mex.2025.103207_bib0014) 2020; 12
10.1016/j.mex.2025.103207_bib0001
References_xml – volume: 14
  start-page: 10482
  year: 2013
  end-page: 10505
  ident: bib0006
  article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness
  publication-title: Sensors
– volume: 17
  start-page: 2602
  year: 2006
  end-page: 2634
  ident: bib0011
  article-title: Incremental online learning in high dimensions
  publication-title: Neural Comput.
– volume: 48
  start-page: 643
  year: 2011
  end-page: 659
  ident: bib0002
  article-title: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use
  publication-title: J. Rehabil. Res. Dev.
– start-page: 456
  year: 2022
  end-page: 462
  ident: bib0013
  article-title: Stacked autoencoders for sEMG feature extraction
  publication-title: *Proceedings of the International Conference on Machine Learning*
– year: 2021
  ident: bib0015
  article-title: Gesture recognition using sEMG signals
– volume: 12
  start-page: 541
  year: 2020
  ident: bib0014
  article-title: Pattern recognition of single-channel sEMG signal using PCA and ANN method to classify nine hand movements
  publication-title: Symmetry.
– reference: W. Wei and L. Ren, ``From Unimodal to Multimodal: improving sEMG-based pattern recognition via deep generative models,'' arXiv preprint arXiv:2308.04091, 2023. Available:
– reference: .
– volume: 24
  start-page: 7147
  year: 2024
  ident: bib0018
  article-title: A multi-scale CNN for transfer learning in sEMG-based hand gesture recognition for prosthetic devices
  publication-title: Sensors
– volume: 8
  start-page: 1759
  year: 2019
  end-page: 1764
  ident: bib0017
  article-title: EMG signal based pattern recognition of grasping movement using MODWT DECOMPOSITION and weighted K- nearest neighbor
  publication-title: Int. J. Innovat. Technol. Explor. Eng
– year: 2012
  ident: bib0003
  article-title: Building the NINAPRO Database: a resource for the biorobotics community
  publication-title: Proceedings of Biomedical Robotics and Biomechatronics (BioRob), 2014 4th IEEE RAS and EMBS International Conference
– reference: Andrade, F. & Garcia Pereira, F. & Resende, Cassius & Cavalieri, Daniel. (2019). Improving sEMG-based hand gesture recognition using maximal overlap discrete wavelet transform and an autoencoder neural network.
– volume: 5
  year: 1996
  ident: bib0009
  article-title: A training algorithm for optimal margin classifier
  publication-title: Proceed. Fifth Annual ACM Workshop Computat. Learn. Theory
– ident: bib22
– volume: 30
  start-page: 1234
  year: 2023
  end-page: 1245
  ident: bib0012
  article-title: Deep learning approaches for gesture recognition using sEMG
  publication-title: *IEEE Transact. Neural Netw. Learn. Syst.*
– volume: 14
  start-page: 6540
  year: 2021
  ident: bib0016
  article-title: Denoising of heavily contaminated partial discharge signals in high-voltage cables using maximal overlap discrete wavelet transform
  publication-title: Energies
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0004
  article-title: Deep Learning
  publication-title: Nature
– volume: 30
  start-page: 1234
  issue: 5
  year: 2023
  ident: 10.1016/j.mex.2025.103207_bib0012
  article-title: Deep learning approaches for gesture recognition using sEMG
  publication-title: *IEEE Transact. Neural Netw. Learn. Syst.*
– volume: 12
  start-page: 541
  issue: 4
  year: 2020
  ident: 10.1016/j.mex.2025.103207_bib0014
  article-title: Pattern recognition of single-channel sEMG signal using PCA and ANN method to classify nine hand movements
  publication-title: Symmetry.
  doi: 10.3390/sym12040541
– volume: 14
  start-page: 6540
  year: 2021
  ident: 10.1016/j.mex.2025.103207_bib0016
  article-title: Denoising of heavily contaminated partial discharge signals in high-voltage cables using maximal overlap discrete wavelet transform
  publication-title: Energies
  doi: 10.3390/en14206540
– volume: 14
  start-page: 10482
  issue: 6
  year: 2013
  ident: 10.1016/j.mex.2025.103207_bib0006
  article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness
  publication-title: Sensors
– year: 2012
  ident: 10.1016/j.mex.2025.103207_bib0003
  article-title: Building the NINAPRO Database: a resource for the biorobotics community
– volume: 24
  start-page: 7147
  issue: 22
  year: 2024
  ident: 10.1016/j.mex.2025.103207_bib0018
  article-title: A multi-scale CNN for transfer learning in sEMG-based hand gesture recognition for prosthetic devices
  publication-title: Sensors
  doi: 10.3390/s24227147
– year: 2021
  ident: 10.1016/j.mex.2025.103207_bib0015
– volume: 8
  start-page: 1759
  year: 2019
  ident: 10.1016/j.mex.2025.103207_bib0017
  article-title: EMG signal based pattern recognition of grasping movement using MODWT DECOMPOSITION and weighted K- nearest neighbor
  publication-title: Int. J. Innovat. Technol. Explor. Eng
  doi: 10.35940/ijitee.J9137.0881019
– ident: 10.1016/j.mex.2025.103207_bib0001
  doi: 10.1007/978-981-13-2517-5_42
– volume: 17
  start-page: 2602
  year: 2006
  ident: 10.1016/j.mex.2025.103207_bib0011
  article-title: Incremental online learning in high dimensions
  publication-title: Neural Comput.
  doi: 10.1162/089976605774320557
– ident: 10.1016/j.mex.2025.103207_bib0019
– volume: 5
  year: 1996
  ident: 10.1016/j.mex.2025.103207_bib0009
  article-title: A training algorithm for optimal margin classifier
  publication-title: Proceed. Fifth Annual ACM Workshop Computat. Learn. Theory
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.mex.2025.103207_bib0004
  article-title: Deep Learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 456
  year: 2022
  ident: 10.1016/j.mex.2025.103207_bib0013
  article-title: Stacked autoencoders for sEMG feature extraction
– volume: 48
  start-page: 643
  year: 2011
  ident: 10.1016/j.mex.2025.103207_bib0002
  article-title: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2010.09.0177
SSID ssj0001343142
Score 2.3160737
Snippet This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103207
SubjectTerms computer software
Deep learning, stacked neural networks
discriminant analysis
domain
electromyography
Engineering
Feature Extraction
Gesture recognition, prosthetic control
Hierarchical representation
Machine learning
MATLAB
Ninapro Database
Performance Evaluation
prostheses
Real-world Applications, ADAMS
Rehabilitation technology
Robustness
Signal Processing
Stacked autoencoder neural network (SAE)
Surface electromyography (sEMG)
Temporal Dependencies
wavelet
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBcjh7LLWNt19fqBCjsVzGxJlq1jW9KEQloYCxR2EM6TTDOoU9IERv_6vmfZJWkhvfRksIVsvQ_9ftJ7fmLsZyZAgXcuhkxDTEYST2TlYl0iX1YmR6U32RbXejhWV7fZ7cpRX5QTFsoDB8H9SssSMVI54xBIUqL7VeJl6XOpIVFpRbMvYt7KYqrZXZEIjEp0Ycwmoeve_8f1oMjoP3NBx8euAFFTr38Nj97yzddpkys4dPmVfWkJJD8LH77NPvl6h22N2hD5Lvt7g5PA_fQJIYk_9kcDPsDel3PPf3epQrOa0-4rR56JLuz42XIxo3KWzs851erA3q9DcjhHRsvPaccW-LCs3Tc2vuz_uRjG7QkKMSgpF3FWmSKZTDRQWTtlAPHYKJyjtK4q9D2JFxSoUDkSDaEKJ9MsL1FNAkC6AozcY716Vvt9xnMnvQCD7AcKlUJhIJMgFbjEFxUkMmKnnTjtQyiUYbsMsn8WZW9J9jbIPmLnJPCXhlTjurmBmret5u17mo-Y6tRlW7oQaAB2Nd307pNOtRZdieIjZe1ny0eLVEpLpYUwG9qIJlYrVRKx78EcXkZBR8ynItURK9YMZW2Y60_q6V1T0huXeQYt1vz4CMEcsM803pDQdsh6i_nSHyF1WkyOGy95BoJOFBQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhh9JLaZs-3CZFhZ4KZm29bB2zIckSSAptAws9CO9Ibh2IHTa7UPrrOyPbadxCDj0Zy7JszYxmPmlGI8Y-aAEKgvcpaAMpCUm6krVPTYV4WdkCmR6jLS7M4lKdLfVyhx2Ne2EorHLQ_b1Oj9p6KJkN1JzdNM3si0BrRYBFUE5_rZeoh6Uq4ya-5fzPOotEExnP0KH6Kb0wOjdjmNd1-ImzRKFp97mgQ2XvmaeYxX9ipf5FoX8HU96zTidP2ZMBVvLD_s-fsZ3QPmePzgfH-R779glVw3XzCw0Vvz0-P-Wn2Pp2HfjnMYCoazmtyXJEnziwPT_cbjpKcunDmlMGD2z9og8Z54hz-ZzWcYEvqta_YJcnx1-PFulwrkIKSspNqmtbZquVAUp2pyyglbYKNZcxdY0jUuIFcZ9QBcIPoUovc11UyDwBIH0JVr5ku23XhteMF14GARYxEZQqh9KCliAV-CyUNWQyYR9HcrqbPn2GG-PKrhzS3hHtXU_7hM2J4HcVKfN1LOjW393AepdXFWIm5a1HYJHT9K_OgqxCIQ1kKq8TpkZ2uYkgYVPNQ99-P7LW4QAjr0nVhm576xBgGamMEPaBOiJ6cKXKEvaqF4e7XtDB87nITcLKiaBMujl90jY_YqJvnPxZlF775v_69JY9prs-sG2f7W7W23CAEGqzehfHyG9V4haF
  priority: 102
  providerName: Elsevier
Title Optimizing sEMG Gesture Recognition with Stacked Autoencoder Neural Network for Bionic Hand
URI https://dx.doi.org/10.1016/j.mex.2025.103207
https://www.ncbi.nlm.nih.gov/pubmed/40071216
https://www.proquest.com/docview/3176346229
https://www.proquest.com/docview/3200278340
https://pubmed.ncbi.nlm.nih.gov/PMC11894319
https://doaj.org/article/1aa5844d9d61416192f0e3ae736c041f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KBWkfRNuq60eJ0Cdhy26SzW4eRHrS9hSugnhw0IewN8nqid3VvTuo_vVO9qN2tfShL7uQTTYkM5P5ZTKZAThIOEp01oaYKAw9k4RzUdhQ5YSXpU6J6I23xZkaT-WHWTLbgD69VTeByxu3dj6f1LT-fnj589dbEvg3f321LtwlbfV44q-Qc3-3_B4pptQnNJh0aL8xuQjSlpL3Z5s3tRxopyaI_0BJ_Q9C__WlvKacTh7Cgw5VsqOWDR7Bhit3YPtarMEduD_pTtF34fwjrRMXi99UzpbHk1N2Sn2ta8c-9d5EVcm8gZYRFCUpt-xovap8xEvraubDeVBfZ63_OCPQy0beqItsnJd2D6Ynx5_fjcMuyUKIUohVmBQ6i-ZzhT7yndRIKltLWsaUKgoST0EvAoFcpoRFuMysiJM0J0pyRGEz1OIxbJZV6Z4CS61wHDUBJMxkjJnGRKCQaCOXFRiJAF73k2t-tLE0TO9k9s0QJYynhGkpEcDIT_9VRR8Guymo6i-mkyoT5zkBKGm1JZQR-71gETmRu1QojGRcBCB74pkOUbRIgX61uK3vVz2hDUmbP0LJS1etl4bQlhJSca5vqcOb41whowCetMxxNQqfhT7msQogG7DNYJjDL-XiaxP1m3aCmvhXP7t70-ew5UfZerq9gM1VvXYvCVOt5vuNLYKe72ej_UZq_gDVwSI0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxJuUl5HgghRt4lfiA4cutN2l3UWCVlqJg5u1HUilJtU-xONv8QeZyaM0IPWA1FOkxHLs8Xjms_15hpCXkllhvXOhlcqGqCThnOcuVBngZaETGPSabTFVoyPxfiZnG-RXdxcGaZWt7W9sem2t2zeDVpqDs6IYfGLgrRCwMIzpL-WsZVbu-x_fYN22fDN-B4P8irHdncO3o7BNLRBawfkqlLlOo_lcWYz3JrQFR6UFTF6l8hyUksMDoA8TCXhgJlLHY5lk0H5mLXepxQhMYPevAfpI0BqMZ8M_GzscfHKdtAcbGGILu9PUmld26r_DspRJvO7OMIvtBX9Ypw3oucV_Ye_f7M0L7nD3NrnV4li63YjqDtnw5V1yfdKe1N8jnz-ALTotfoJnpMudyR7dg9rXC08_doylqqS4CUwB7oIlcXR7vaowqqbzC4ohQ6D2acNRpwCs6RA3ji0dZaW7T46uRNoPyGZZlf4RoYnjnlkNIMymIraptpJbLqyLfJrbiAfkdSdOc9bE6zAdke3EgOwNyt40sg_IEAV-XhBDbdcvqsUX0-qaibMMQJpw2gGSiXG9mUeeZz7hykYizgMiuuEyPc2FqorL_v2iG1oDMxqPabLSV-ulAUSnuFCM6UvKsPrImIsoIA8bdTjvBWa6j1msApL2FKXXzf6XsvhaRxaH1aYG7dVb_9en5-TG6HByYA7G0_3H5CZ-aVh1T8jmarH2TwG_rebP6vlCyfFVT9DfxtJQnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+sEMG+Gesture+Recognition+with+Stacked+Autoencoder+Neural+Network+for+Bionic+Hand&rft.jtitle=MethodsX&rft.au=Yadav%2C+Mr.+Amol+Pandurang&rft.au=Patil%2C+Dr.+Sandip.R.&rft.date=2025-06-01&rft.pub=Elsevier&rft.eissn=2215-0161&rft.volume=14&rft_id=info:doi/10.1016%2Fj.mex.2025.103207&rft.externalDocID=PMC11894319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0161&client=summon