A new model for evaluation of cavity shape and volume during Underground Coal Gasification process

Coal seams are converted to syngas by advanced thermo-chemical processes through Underground Coal Gasification (UCG) method. Inability to predict the shape and volume of the underground cavity is an important scientific gap in UCG method which is the main subject of this paper. For this purpose, fir...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 148; pp. 756 - 765
Main Authors Jowkar, Amin, Sereshki, Farhang, Najafi, Mehdi
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.04.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2018.01.188

Cover

Loading…
Abstract Coal seams are converted to syngas by advanced thermo-chemical processes through Underground Coal Gasification (UCG) method. Inability to predict the shape and volume of the underground cavity is an important scientific gap in UCG method which is the main subject of this paper. For this purpose, firstly, a series of equations are introduced to predict the cavity growth dimensions over time. Subsequently, these equations are extended in numerical simulation of the Computational Fluid Dynamics (CFD), incorporating the commercial COMSOL software. According to the simulation, the amount of oxidant necessary to convert a certain amount of coal (in the heterogeneous phase) is calculated. The model results indicated that the shape and volume of cavity could be predicted at the onset of the gasification process. The numerical results agreed well with the field data. •A new method for predicting cavity shape and volume has been presented.•The amount of coal burning in each UCG-panel is controlled.•Model predictions are in agreement with the results of UCG field data.•Primary and basic foundations for commercializing the UCG method has been presented by a new design.
AbstractList Coal seams are converted to syngas by advanced thermo-chemical processes through Underground Coal Gasification (UCG) method. Inability to predict the shape and volume of the underground cavity is an important scientific gap in UCG method which is the main subject of this paper. For this purpose, firstly, a series of equations are introduced to predict the cavity growth dimensions over time. Subsequently, these equations are extended in numerical simulation of the Computational Fluid Dynamics (CFD), incorporating the commercial COMSOL software. According to the simulation, the amount of oxidant necessary to convert a certain amount of coal (in the heterogeneous phase) is calculated. The model results indicated that the shape and volume of cavity could be predicted at the onset of the gasification process. The numerical results agreed well with the field data.
Coal seams are converted to syngas by advanced thermo-chemical processes through Underground Coal Gasification (UCG) method. Inability to predict the shape and volume of the underground cavity is an important scientific gap in UCG method which is the main subject of this paper. For this purpose, firstly, a series of equations are introduced to predict the cavity growth dimensions over time. Subsequently, these equations are extended in numerical simulation of the Computational Fluid Dynamics (CFD), incorporating the commercial COMSOL software. According to the simulation, the amount of oxidant necessary to convert a certain amount of coal (in the heterogeneous phase) is calculated. The model results indicated that the shape and volume of cavity could be predicted at the onset of the gasification process. The numerical results agreed well with the field data. •A new method for predicting cavity shape and volume has been presented.•The amount of coal burning in each UCG-panel is controlled.•Model predictions are in agreement with the results of UCG field data.•Primary and basic foundations for commercializing the UCG method has been presented by a new design.
Author Sereshki, Farhang
Jowkar, Amin
Najafi, Mehdi
Author_xml – sequence: 1
  givenname: Amin
  surname: Jowkar
  fullname: Jowkar, Amin
  email: amin_jowkar@yahoo.com
  organization: Department of Mining Eng., Petroleum, and Geophysics, Shahrood University of Technology, Shahrood, Iran
– sequence: 2
  givenname: Farhang
  surname: Sereshki
  fullname: Sereshki, Farhang
  email: fsereshki@shahroodut.ac.ir
  organization: Department of Mining Eng., Petroleum, and Geophysics, Shahrood University of Technology, Shahrood, Iran
– sequence: 3
  givenname: Mehdi
  surname: Najafi
  fullname: Najafi, Mehdi
  email: mehdinajafi@yazd.ac.ir
  organization: Department of Mining and Metallurgical Eng., Yazd University, Yazd, Iran
BookMark eNqFkDtv2zAURonAAeI8_kEGAlm6SOVTjw4FAiN1Cxjo0swERV4lNGTSJSUX_velqk4e2onD_c69_M4tWvngAaFHSkpKaPVxX4KH-HYuGaFNSWhJm-YKrWlT86KqG7lCa8IrUkgh2A26TWlPCJFN265R94w9_MKHYGHAfYgYTnqY9OiCx6HHRp_ceMbpXR8Ba2_xKQzTAbCdovNv-NXbfDeGKU82QQ94q5PrnVn4YwwGUrpH170eEjz8fe_Q65eXH5uvxe779tvmeVcYwflYSNtpIWshjKXcMAKNBCYMlcJWNaUiF4G-46QzvW3bvhXU5gZdVfOOatlJfoc-LHvz3Z8TpFEdXDIwDNpDmJJijFHChOBz9Okiug9T9Pl3ipGqmjW2c-rTkjIxpBShV8aNf6qNUbtBUaJm_WqvFv1q5hShKuvPsLiAj9EddDz_D_u8YJBNnRxElYwDb8C6CGZUNrh_L_gN9cKjmA
CitedBy_id crossref_primary_10_1021_acsomega_3c07686
crossref_primary_10_47480_isibted_816964
crossref_primary_10_1016_j_energy_2019_02_005
crossref_primary_10_1038_s41598_023_36937_0
crossref_primary_10_3390_en14175444
crossref_primary_10_1021_acs_energyfuels_8b03940
crossref_primary_10_1038_s41598_025_93611_3
crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_059
crossref_primary_10_1016_j_enconman_2020_113408
crossref_primary_10_1115_1_4045830
crossref_primary_10_1007_s40789_019_00288_x
crossref_primary_10_1016_j_energy_2024_130614
crossref_primary_10_1016_j_jclepro_2024_144083
crossref_primary_10_1155_2022_9264959
crossref_primary_10_3390_en15197373
crossref_primary_10_1016_j_energy_2022_126048
crossref_primary_10_1016_j_fuel_2024_130953
crossref_primary_10_1021_acsomega_1c05017
crossref_primary_10_1016_j_energy_2021_121626
crossref_primary_10_3390_en15239252
crossref_primary_10_3390_math10162835
Cites_doi 10.1016/j.coal.2014.06.009
10.1021/ef8001444
10.1115/1.3231316
10.1002/cjce.20496
10.1016/j.energy.2010.02.015
10.1007/s40789-015-0095-9
10.1021/ie00062a011
10.1016/j.fuel.2016.05.017
10.3390/en81112331
10.1016/j.energy.2011.08.037
10.1021/ie101307k
10.1021/ef050242q
10.1021/ef9013828
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Apr 1, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 1, 2018
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2018.01.188
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 765
ExternalDocumentID 10_1016_j_energy_2018_01_188
S0360544218302160
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c433t-5dba45744cd13c20e85e24c154d67114678efb30bcfd99f941d899b673b1a5b53
IEDL.DBID AIKHN
ISSN 0360-5442
IngestDate Fri Sep 05 09:58:29 EDT 2025
Wed Aug 13 06:37:22 EDT 2025
Tue Jul 01 00:53:14 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Fri Feb 23 02:33:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cavity volume
Underground coal gasification (UCG)
Cavity shape
COMSOL
Computational fluid dynamics (CFD)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-5dba45744cd13c20e85e24c154d67114678efb30bcfd99f941d899b673b1a5b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2066201895
PQPubID 2045484
PageCount 10
ParticipantIDs proquest_miscellaneous_2221024435
proquest_journals_2066201895
crossref_citationtrail_10_1016_j_energy_2018_01_188
crossref_primary_10_1016_j_energy_2018_01_188
elsevier_sciencedirect_doi_10_1016_j_energy_2018_01_188
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
2018-04-00
20180401
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Khan, Mmbaga, Shirazi, Liu, Gupta (bib5) 2015; 8
Hill, Thorsness (bib28) 1982; vol. 1
Harloff (bib9) 1983; 7
Britten, Thorsness (bib13) 1989; 13
2011.
Dinsmoor, Galland, Edgar (bib14) 1978; 30
(bib26) 2008
Burton, Friedmann, Upadhye (bib3) 2006
Nourozieh, Kariznovi, Chen, Abedi (bib10) 2010; 24
Park, Edgar (bib7) 1987; 26
Seifi, Chen, Abedi (bib20) 2011; 89
Prabu, Jayanti (bib19) 2011; 36
Akbarzadeh, Chalaturnyk (bib24) 2014; 131
Couch (bib2) 2009
Hsu (bib8) 1987; 109
Luo, Coertzen, Dumble (bib16) December 2009
Daggupati, Mandapati, Mahajani, Ganesh, Mathur, Sharma, Aghalayam (bib17) 2010; 35
Schrage (bib25) 2008
Sarraf Shirazi (bib21) 2012; 51
Najafi, Jalali, KhaloKakaie, Forouhandeh (bib22) 2015; 2
Perkins (bib11) 2005
Biezen, Bruining, Molenaar (bib12) January 1995
Samdani, Aghalayam, Ganesh, Sapru, Lohar, Mahajani (bib23) 2016; 181
Perkins, Sahajwalla (bib15) 2006; 20
Perkins, Sahajwalla (bib27) 2008; 22
Dai, Finkelman (bib1) 2017
2018.
Daggupati, Mandapati, Mahajani, Ganesh, Pal, Sharma, Aghalayam (bib18) 2011; 50
Nourozieh (10.1016/j.energy.2018.01.188_bib10) 2010; 24
Daggupati (10.1016/j.energy.2018.01.188_bib17) 2010; 35
Schrage (10.1016/j.energy.2018.01.188_bib25) 2008
(10.1016/j.energy.2018.01.188_bib26) 2008
Couch (10.1016/j.energy.2018.01.188_bib2) 2009
Dai (10.1016/j.energy.2018.01.188_bib1) 2017
Burton (10.1016/j.energy.2018.01.188_bib3) 2006
Hsu (10.1016/j.energy.2018.01.188_bib8) 1987; 109
Britten (10.1016/j.energy.2018.01.188_bib13) 1989; 13
Seifi (10.1016/j.energy.2018.01.188_bib20) 2011; 89
Perkins (10.1016/j.energy.2018.01.188_bib15) 2006; 20
Luo (10.1016/j.energy.2018.01.188_bib16) 2009
Akbarzadeh (10.1016/j.energy.2018.01.188_bib24) 2014; 131
Perkins (10.1016/j.energy.2018.01.188_bib27) 2008; 22
Khan (10.1016/j.energy.2018.01.188_bib5) 2015; 8
Prabu (10.1016/j.energy.2018.01.188_bib19) 2011; 36
Perkins (10.1016/j.energy.2018.01.188_bib11) 2005
Park (10.1016/j.energy.2018.01.188_bib7) 1987; 26
Sarraf Shirazi (10.1016/j.energy.2018.01.188_bib21) 2012; 51
Samdani (10.1016/j.energy.2018.01.188_bib23) 2016; 181
Harloff (10.1016/j.energy.2018.01.188_bib9) 1983; 7
Hill (10.1016/j.energy.2018.01.188_bib28) 1982; vol. 1
10.1016/j.energy.2018.01.188_bib6
Dinsmoor (10.1016/j.energy.2018.01.188_bib14) 1978; 30
Najafi (10.1016/j.energy.2018.01.188_bib22) 2015; 2
10.1016/j.energy.2018.01.188_bib4
Biezen (10.1016/j.energy.2018.01.188_bib12) 1995
Daggupati (10.1016/j.energy.2018.01.188_bib18) 2011; 50
References_xml – volume: 13
  year: 1989
  ident: bib13
  article-title: A model for cavity growth and resource recovery during underground coal gasification
  publication-title: In Situ (USA)
– volume: 51
  year: 2012
  ident: bib21
  article-title: CFD Simulation of underground coal gasification
  publication-title: In Master Abstract Inter
– reference: , 2011.
– volume: 36
  start-page: 5854
  year: 2011
  end-page: 5864
  ident: bib19
  article-title: Simulation of cavity formation in underground coal gasification using bore hole combustion experiments
  publication-title: Energy
– volume: 35
  start-page: 2374
  year: 2010
  end-page: 2386
  ident: bib17
  article-title: Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification
  publication-title: Energy
– volume: 131
  start-page: 126
  year: 2014
  end-page: 146
  ident: bib24
  article-title: Structural changes in coal at elevated temperature pertinent to underground coal gasification: a review
  publication-title: Int J Coal Geol
– year: 2008
  ident: bib25
  article-title: LINGO release 11.0. LINDO system
– volume: 20
  start-page: 596
  year: 2006
  end-page: 608
  ident: bib15
  article-title: A numerical study of the effects of operating conditions and coal properties on cavity growth in underground coal gasification
  publication-title: Energy Fuels
– start-page: 9
  year: December 2009
  end-page: 11
  ident: bib16
  article-title: Comparison of UCG cavity growth with CFD model predictions
  publication-title: Proceedings of the 7th international conference on CFD in the minerals and process industries CSIRO, melbourne, Australia
– year: 2006
  ident: bib3
  article-title: Best practices in underground coal gasification; Contract W-7405-Eng-48
– volume: 22
  start-page: 3902
  year: 2008
  end-page: 3914
  ident: bib27
  article-title: Steady-state model for estimating gas production from underground coal gasification
  publication-title: Energy Fuels
– volume: 7
  start-page: 410
  year: 1983
  end-page: 415
  ident: bib9
  article-title: Underground coal gasification cavity growth model
  publication-title: J Energy
– year: January 1995
  ident: bib12
  article-title: An integrated 3D model for underground coal gasification
  publication-title: SPE annual technical conference and exhibition
– year: 2009
  ident: bib2
  article-title: Underground coal gasification. IEA clean coal centre
– start-page: 257
  year: 2005
  ident: bib11
  article-title: Mathematical modelling of underground coal gasification
– volume: 89
  start-page: 1528
  year: 2011
  end-page: 1535
  ident: bib20
  article-title: Numerical simulation of underground coal gasification using the CRIP method
  publication-title: Can J Chem Eng
– volume: 30
  start-page: 695
  year: 1978
  end-page: 704
  ident: bib14
  article-title: The modeling of cavity formation during underground coal gasification
  publication-title: J Petrol Technol
– reference: , 2018.
– volume: 24
  start-page: 3540
  year: 2010
  end-page: 3550
  ident: bib10
  article-title: Simulation study of underground coal gasification in Alberta reservoirs: geological structure and process modeling
  publication-title: Energy Fuels
– volume: vol. 1
  year: 1982
  ident: bib28
  article-title: Summary report on the large block experiments in underground coal gasification, Tono basin, Washington
  publication-title: Experimental description and data analysis. UCRL, 53305, 29
– volume: 8
  start-page: 12603
  year: 2015
  end-page: 12668
  ident: bib5
  article-title: Modelling underground coal gasification—a review
  publication-title: Energies
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib1
  article-title: Coal geology in China: an overview
  publication-title: Int Geol Rev
– volume: 50
  start-page: 277
  year: 2011
  end-page: 290
  ident: bib18
  article-title: Compartment modeling for flow characterization of underground coal gasification cavity
  publication-title: Ind Eng Chem Res
– volume: 26
  start-page: 237
  year: 1987
  end-page: 246
  ident: bib7
  article-title: Modeling of early cavity growth for underground coal gasification
  publication-title: Ind Eng Chem Res
– volume: 109
  start-page: 11
  year: 1987
  ident: bib8
  article-title: Computer modeling of fixed bed underground coal gasification using the permeation method
  publication-title: J Energy Resour Technol
– volume: 2
  start-page: 318
  year: 2015
  end-page: 324
  ident: bib22
  article-title: Prediction of cavity growth rate during underground coal gasification using multiple regression analysis
  publication-title: International J Coal Sci Technol
– volume: 181
  start-page: 587
  year: 2016
  end-page: 599
  ident: bib23
  article-title: A process model for underground coal gasification–Part-II growth of outflow channel
  publication-title: Fuel
– year: 2008
  ident: bib26
  publication-title: COMSOL, A. COMSOL Multiphysics version 3.5, User’s guide and reference guide. COMSOL AB: Burlington, MA
– volume: 131
  start-page: 126
  year: 2014
  ident: 10.1016/j.energy.2018.01.188_bib24
  article-title: Structural changes in coal at elevated temperature pertinent to underground coal gasification: a review
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2014.06.009
– volume: 7
  start-page: 410
  issue: 5
  year: 1983
  ident: 10.1016/j.energy.2018.01.188_bib9
  article-title: Underground coal gasification cavity growth model
  publication-title: J Energy
– volume: 13
  issue: 1
  year: 1989
  ident: 10.1016/j.energy.2018.01.188_bib13
  article-title: A model for cavity growth and resource recovery during underground coal gasification
  publication-title: In Situ (USA)
– start-page: 1
  year: 2017
  ident: 10.1016/j.energy.2018.01.188_bib1
  article-title: Coal geology in China: an overview
  publication-title: Int Geol Rev
– year: 2008
  ident: 10.1016/j.energy.2018.01.188_bib25
– volume: 22
  start-page: 3902
  issue: 6
  year: 2008
  ident: 10.1016/j.energy.2018.01.188_bib27
  article-title: Steady-state model for estimating gas production from underground coal gasification
  publication-title: Energy Fuels
  doi: 10.1021/ef8001444
– start-page: 257
  year: 2005
  ident: 10.1016/j.energy.2018.01.188_bib11
– volume: 109
  start-page: 11
  year: 1987
  ident: 10.1016/j.energy.2018.01.188_bib8
  article-title: Computer modeling of fixed bed underground coal gasification using the permeation method
  publication-title: J Energy Resour Technol
  doi: 10.1115/1.3231316
– volume: 89
  start-page: 1528
  issue: 6
  year: 2011
  ident: 10.1016/j.energy.2018.01.188_bib20
  article-title: Numerical simulation of underground coal gasification using the CRIP method
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.20496
– volume: 35
  start-page: 2374
  issue: 6
  year: 2010
  ident: 10.1016/j.energy.2018.01.188_bib17
  article-title: Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification
  publication-title: Energy
  doi: 10.1016/j.energy.2010.02.015
– year: 2006
  ident: 10.1016/j.energy.2018.01.188_bib3
– volume: 2
  start-page: 318
  issue: 4
  year: 2015
  ident: 10.1016/j.energy.2018.01.188_bib22
  article-title: Prediction of cavity growth rate during underground coal gasification using multiple regression analysis
  publication-title: International J Coal Sci Technol
  doi: 10.1007/s40789-015-0095-9
– volume: 30
  start-page: 695
  issue: 05
  year: 1978
  ident: 10.1016/j.energy.2018.01.188_bib14
  article-title: The modeling of cavity formation during underground coal gasification
  publication-title: J Petrol Technol
– volume: 26
  start-page: 237
  issue: 2
  year: 1987
  ident: 10.1016/j.energy.2018.01.188_bib7
  article-title: Modeling of early cavity growth for underground coal gasification
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie00062a011
– year: 2008
  ident: 10.1016/j.energy.2018.01.188_bib26
– volume: 51
  issue: 03
  year: 2012
  ident: 10.1016/j.energy.2018.01.188_bib21
  article-title: CFD Simulation of underground coal gasification
  publication-title: In Master Abstract Inter
– volume: 181
  start-page: 587
  year: 2016
  ident: 10.1016/j.energy.2018.01.188_bib23
  article-title: A process model for underground coal gasification–Part-II growth of outflow channel
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.05.017
– volume: 8
  start-page: 12603
  issue: 11
  year: 2015
  ident: 10.1016/j.energy.2018.01.188_bib5
  article-title: Modelling underground coal gasification—a review
  publication-title: Energies
  doi: 10.3390/en81112331
– volume: 36
  start-page: 5854
  issue: 10
  year: 2011
  ident: 10.1016/j.energy.2018.01.188_bib19
  article-title: Simulation of cavity formation in underground coal gasification using bore hole combustion experiments
  publication-title: Energy
  doi: 10.1016/j.energy.2011.08.037
– volume: vol. 1
  year: 1982
  ident: 10.1016/j.energy.2018.01.188_bib28
  article-title: Summary report on the large block experiments in underground coal gasification, Tono basin, Washington
– year: 2009
  ident: 10.1016/j.energy.2018.01.188_bib2
– start-page: 9
  year: 2009
  ident: 10.1016/j.energy.2018.01.188_bib16
  article-title: Comparison of UCG cavity growth with CFD model predictions
– ident: 10.1016/j.energy.2018.01.188_bib6
– volume: 50
  start-page: 277
  issue: 1
  year: 2011
  ident: 10.1016/j.energy.2018.01.188_bib18
  article-title: Compartment modeling for flow characterization of underground coal gasification cavity
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie101307k
– volume: 20
  start-page: 596
  issue: 2
  year: 2006
  ident: 10.1016/j.energy.2018.01.188_bib15
  article-title: A numerical study of the effects of operating conditions and coal properties on cavity growth in underground coal gasification
  publication-title: Energy Fuels
  doi: 10.1021/ef050242q
– volume: 24
  start-page: 3540
  issue: 6
  year: 2010
  ident: 10.1016/j.energy.2018.01.188_bib10
  article-title: Simulation study of underground coal gasification in Alberta reservoirs: geological structure and process modeling
  publication-title: Energy Fuels
  doi: 10.1021/ef9013828
– ident: 10.1016/j.energy.2018.01.188_bib4
– year: 1995
  ident: 10.1016/j.energy.2018.01.188_bib12
  article-title: An integrated 3D model for underground coal gasification
SSID ssj0005899
Score 2.3644087
Snippet Coal seams are converted to syngas by advanced thermo-chemical processes through Underground Coal Gasification (UCG) method. Inability to predict the shape and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 756
SubjectTerms Cavity shape
Cavity volume
Chemical reactions
Coal
Coal gasification
Computational fluid dynamics
Computational fluid dynamics (CFD)
Computer applications
Computer simulation
computer software
COMSOL
equations
Fluid dynamics
fluid mechanics
gasification
Hydrodynamics
Mathematical models
Numerical prediction
Organic chemistry
oxidants
Oxidizing agents
Synthesis gas
Underground coal gasification (UCG)
Title A new model for evaluation of cavity shape and volume during Underground Coal Gasification process
URI https://dx.doi.org/10.1016/j.energy.2018.01.188
https://www.proquest.com/docview/2066201895
https://www.proquest.com/docview/2221024435
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QEuiBYqFkplJK5mk_iR-LhatWy7ag9ARW-W7TiiFcquyPbKb2cmTroCIVVCOUSxx07kyTyczDcD8KFELyAoIbmSQnMZg-Yucw2vChSmOleudPS94_JKL6_lxY262YPFiIWhsMpB9yed3mvroWU2rOZsc3s7-4K6F_0NSTYeDZXGfft-IYxWE9ifn6-WV7tIj6ovI0n0nAaMCLo-zCv2EDuK8aoof2fel2D5p4X6S1f3BujsBTwfPEc2Tw93AHuxPYSnI7C4O4Sj0x1oDQkHqe1egp8zdJ5ZX_SGoZPKdim-2bphwVH9CNZ9d5vIXFuzpLFYQjCyvjISgT-wZ7HGiT-5juKL0vhNAhq8guuz06-LJR9qK_AghdhyVXsnVSllqHMRiixWKhYyoENV65KQymUVGy8yH5ramMbIvMZV9LoUPnfKK3EEk3bdxtfAsK3BI3pjgtQ6GBdxEuPqLCqNs0xBjOtpw5B4nOpf_LBjhNmdTVywxAWb5Ra5MAX-MGqTEm88Ql-OrLJ_vEAWbcMjI49HztpBgDtLWe6JxqgpvH_oRtGj_ymujet7pClovyzR4Xzz3zd_C8_oKsUCHcNk-_M-vkM3Z-tP4MnHX_nJ8DLTefX52-o3miv_lg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hONALAlrUbaG4ElezyfqR5IhW0OV5KUjcLNtxVFCVXTXLld_OjJ0ARZWQqtzssRN54plx8n0zAAcFRgFeCcmVFJrL4DW3mW14OcHNVOfKFpa-d1xe6dmNPLtVtyswHbgwBKvsbX-y6dFa9y3jfjXHi7u78U-0vRhvSPLx6Kg0ntvXpBIF4foOH1_hPMpYRJKkOYkP_LkI8gqRYEcIr5Kyd-axAMs__dMbSx3dz8kmbPRxIztKj7YFK6HdhvWBVtxtw87xC2UNBfs9230Ed8QwdGax5A3DEJW9JPhm84Z5S9UjWPfLLgKzbc2SvWKJv8hiXSSifmDPdI4T_7AdoYvS-EWiGXyCm5Pj6-mM95UVuJdCLLmqnZWqkNLXufCTLJQqTKTHcKrWBfGUizI0TmTON3VVNZXMa1xFpwvhcqucEjuw2s7b8BkYtjV4BVdVXmrtKxtwksrWWVAaZxmBGNbT-D7tOFW_-G0GfNm9SVowpAWT5Qa1MAL-PGqR0m68I18MqjJ_vT4GPcM7I3cHzZp--3aGctyTTKVG8P25Gzce_U2xbZg_oMyETssSw80v_33zfVifXV9emIvTq_Ov8IF6EipoF1aXfx7CHgY8S_ctvtBPzsH-vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+model+for+evaluation+of+cavity+shape+and+volume+during+Underground+Coal+Gasification+process&rft.jtitle=Energy+%28Oxford%29&rft.au=Jowkar%2C+Amin&rft.au=Sereshki%2C+Farhang&rft.au=Najafi%2C+Mehdi&rft.date=2018-04-01&rft.issn=0360-5442&rft.volume=148+p.756-765&rft.spage=756&rft.epage=765&rft_id=info:doi/10.1016%2Fj.energy.2018.01.188&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon