A new model for evaluation of cavity shape and volume during Underground Coal Gasification process
Coal seams are converted to syngas by advanced thermo-chemical processes through Underground Coal Gasification (UCG) method. Inability to predict the shape and volume of the underground cavity is an important scientific gap in UCG method which is the main subject of this paper. For this purpose, fir...
Saved in:
Published in | Energy (Oxford) Vol. 148; pp. 756 - 765 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.04.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5442 1873-6785 |
DOI | 10.1016/j.energy.2018.01.188 |
Cover
Loading…
Abstract | Coal seams are converted to syngas by advanced thermo-chemical processes through Underground Coal Gasification (UCG) method. Inability to predict the shape and volume of the underground cavity is an important scientific gap in UCG method which is the main subject of this paper. For this purpose, firstly, a series of equations are introduced to predict the cavity growth dimensions over time. Subsequently, these equations are extended in numerical simulation of the Computational Fluid Dynamics (CFD), incorporating the commercial COMSOL software. According to the simulation, the amount of oxidant necessary to convert a certain amount of coal (in the heterogeneous phase) is calculated. The model results indicated that the shape and volume of cavity could be predicted at the onset of the gasification process. The numerical results agreed well with the field data.
•A new method for predicting cavity shape and volume has been presented.•The amount of coal burning in each UCG-panel is controlled.•Model predictions are in agreement with the results of UCG field data.•Primary and basic foundations for commercializing the UCG method has been presented by a new design. |
---|---|
AbstractList | Coal seams are converted to syngas by advanced thermo-chemical processes through Underground Coal Gasification (UCG) method. Inability to predict the shape and volume of the underground cavity is an important scientific gap in UCG method which is the main subject of this paper. For this purpose, firstly, a series of equations are introduced to predict the cavity growth dimensions over time. Subsequently, these equations are extended in numerical simulation of the Computational Fluid Dynamics (CFD), incorporating the commercial COMSOL software. According to the simulation, the amount of oxidant necessary to convert a certain amount of coal (in the heterogeneous phase) is calculated. The model results indicated that the shape and volume of cavity could be predicted at the onset of the gasification process. The numerical results agreed well with the field data. Coal seams are converted to syngas by advanced thermo-chemical processes through Underground Coal Gasification (UCG) method. Inability to predict the shape and volume of the underground cavity is an important scientific gap in UCG method which is the main subject of this paper. For this purpose, firstly, a series of equations are introduced to predict the cavity growth dimensions over time. Subsequently, these equations are extended in numerical simulation of the Computational Fluid Dynamics (CFD), incorporating the commercial COMSOL software. According to the simulation, the amount of oxidant necessary to convert a certain amount of coal (in the heterogeneous phase) is calculated. The model results indicated that the shape and volume of cavity could be predicted at the onset of the gasification process. The numerical results agreed well with the field data. •A new method for predicting cavity shape and volume has been presented.•The amount of coal burning in each UCG-panel is controlled.•Model predictions are in agreement with the results of UCG field data.•Primary and basic foundations for commercializing the UCG method has been presented by a new design. |
Author | Sereshki, Farhang Jowkar, Amin Najafi, Mehdi |
Author_xml | – sequence: 1 givenname: Amin surname: Jowkar fullname: Jowkar, Amin email: amin_jowkar@yahoo.com organization: Department of Mining Eng., Petroleum, and Geophysics, Shahrood University of Technology, Shahrood, Iran – sequence: 2 givenname: Farhang surname: Sereshki fullname: Sereshki, Farhang email: fsereshki@shahroodut.ac.ir organization: Department of Mining Eng., Petroleum, and Geophysics, Shahrood University of Technology, Shahrood, Iran – sequence: 3 givenname: Mehdi surname: Najafi fullname: Najafi, Mehdi email: mehdinajafi@yazd.ac.ir organization: Department of Mining and Metallurgical Eng., Yazd University, Yazd, Iran |
BookMark | eNqFkDtv2zAURonAAeI8_kEGAlm6SOVTjw4FAiN1Cxjo0swERV4lNGTSJSUX_velqk4e2onD_c69_M4tWvngAaFHSkpKaPVxX4KH-HYuGaFNSWhJm-YKrWlT86KqG7lCa8IrUkgh2A26TWlPCJFN265R94w9_MKHYGHAfYgYTnqY9OiCx6HHRp_ceMbpXR8Ba2_xKQzTAbCdovNv-NXbfDeGKU82QQ94q5PrnVn4YwwGUrpH170eEjz8fe_Q65eXH5uvxe779tvmeVcYwflYSNtpIWshjKXcMAKNBCYMlcJWNaUiF4G-46QzvW3bvhXU5gZdVfOOatlJfoc-LHvz3Z8TpFEdXDIwDNpDmJJijFHChOBz9Okiug9T9Pl3ipGqmjW2c-rTkjIxpBShV8aNf6qNUbtBUaJm_WqvFv1q5hShKuvPsLiAj9EddDz_D_u8YJBNnRxElYwDb8C6CGZUNrh_L_gN9cKjmA |
CitedBy_id | crossref_primary_10_1021_acsomega_3c07686 crossref_primary_10_47480_isibted_816964 crossref_primary_10_1016_j_energy_2019_02_005 crossref_primary_10_1038_s41598_023_36937_0 crossref_primary_10_3390_en14175444 crossref_primary_10_1021_acs_energyfuels_8b03940 crossref_primary_10_1038_s41598_025_93611_3 crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_059 crossref_primary_10_1016_j_enconman_2020_113408 crossref_primary_10_1115_1_4045830 crossref_primary_10_1007_s40789_019_00288_x crossref_primary_10_1016_j_energy_2024_130614 crossref_primary_10_1016_j_jclepro_2024_144083 crossref_primary_10_1155_2022_9264959 crossref_primary_10_3390_en15197373 crossref_primary_10_1016_j_energy_2022_126048 crossref_primary_10_1016_j_fuel_2024_130953 crossref_primary_10_1021_acsomega_1c05017 crossref_primary_10_1016_j_energy_2021_121626 crossref_primary_10_3390_en15239252 crossref_primary_10_3390_math10162835 |
Cites_doi | 10.1016/j.coal.2014.06.009 10.1021/ef8001444 10.1115/1.3231316 10.1002/cjce.20496 10.1016/j.energy.2010.02.015 10.1007/s40789-015-0095-9 10.1021/ie00062a011 10.1016/j.fuel.2016.05.017 10.3390/en81112331 10.1016/j.energy.2011.08.037 10.1021/ie101307k 10.1021/ef050242q 10.1021/ef9013828 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Apr 1, 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Apr 1, 2018 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.energy.2018.01.188 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
EndPage | 765 |
ExternalDocumentID | 10_1016_j_energy_2018_01_188 S0360544218302160 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-5dba45744cd13c20e85e24c154d67114678efb30bcfd99f941d899b673b1a5b53 |
IEDL.DBID | AIKHN |
ISSN | 0360-5442 |
IngestDate | Fri Sep 05 09:58:29 EDT 2025 Wed Aug 13 06:37:22 EDT 2025 Tue Jul 01 00:53:14 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Fri Feb 23 02:33:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cavity volume Underground coal gasification (UCG) Cavity shape COMSOL Computational fluid dynamics (CFD) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-5dba45744cd13c20e85e24c154d67114678efb30bcfd99f941d899b673b1a5b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2066201895 |
PQPubID | 2045484 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2221024435 proquest_journals_2066201895 crossref_citationtrail_10_1016_j_energy_2018_01_188 crossref_primary_10_1016_j_energy_2018_01_188 elsevier_sciencedirect_doi_10_1016_j_energy_2018_01_188 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 2018-04-00 20180401 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Khan, Mmbaga, Shirazi, Liu, Gupta (bib5) 2015; 8 Hill, Thorsness (bib28) 1982; vol. 1 Harloff (bib9) 1983; 7 Britten, Thorsness (bib13) 1989; 13 2011. Dinsmoor, Galland, Edgar (bib14) 1978; 30 (bib26) 2008 Burton, Friedmann, Upadhye (bib3) 2006 Nourozieh, Kariznovi, Chen, Abedi (bib10) 2010; 24 Park, Edgar (bib7) 1987; 26 Seifi, Chen, Abedi (bib20) 2011; 89 Prabu, Jayanti (bib19) 2011; 36 Akbarzadeh, Chalaturnyk (bib24) 2014; 131 Couch (bib2) 2009 Hsu (bib8) 1987; 109 Luo, Coertzen, Dumble (bib16) December 2009 Daggupati, Mandapati, Mahajani, Ganesh, Mathur, Sharma, Aghalayam (bib17) 2010; 35 Schrage (bib25) 2008 Sarraf Shirazi (bib21) 2012; 51 Najafi, Jalali, KhaloKakaie, Forouhandeh (bib22) 2015; 2 Perkins (bib11) 2005 Biezen, Bruining, Molenaar (bib12) January 1995 Samdani, Aghalayam, Ganesh, Sapru, Lohar, Mahajani (bib23) 2016; 181 Perkins, Sahajwalla (bib15) 2006; 20 Perkins, Sahajwalla (bib27) 2008; 22 Dai, Finkelman (bib1) 2017 2018. Daggupati, Mandapati, Mahajani, Ganesh, Pal, Sharma, Aghalayam (bib18) 2011; 50 Nourozieh (10.1016/j.energy.2018.01.188_bib10) 2010; 24 Daggupati (10.1016/j.energy.2018.01.188_bib17) 2010; 35 Schrage (10.1016/j.energy.2018.01.188_bib25) 2008 (10.1016/j.energy.2018.01.188_bib26) 2008 Couch (10.1016/j.energy.2018.01.188_bib2) 2009 Dai (10.1016/j.energy.2018.01.188_bib1) 2017 Burton (10.1016/j.energy.2018.01.188_bib3) 2006 Hsu (10.1016/j.energy.2018.01.188_bib8) 1987; 109 Britten (10.1016/j.energy.2018.01.188_bib13) 1989; 13 Seifi (10.1016/j.energy.2018.01.188_bib20) 2011; 89 Perkins (10.1016/j.energy.2018.01.188_bib15) 2006; 20 Luo (10.1016/j.energy.2018.01.188_bib16) 2009 Akbarzadeh (10.1016/j.energy.2018.01.188_bib24) 2014; 131 Perkins (10.1016/j.energy.2018.01.188_bib27) 2008; 22 Khan (10.1016/j.energy.2018.01.188_bib5) 2015; 8 Prabu (10.1016/j.energy.2018.01.188_bib19) 2011; 36 Perkins (10.1016/j.energy.2018.01.188_bib11) 2005 Park (10.1016/j.energy.2018.01.188_bib7) 1987; 26 Sarraf Shirazi (10.1016/j.energy.2018.01.188_bib21) 2012; 51 Samdani (10.1016/j.energy.2018.01.188_bib23) 2016; 181 Harloff (10.1016/j.energy.2018.01.188_bib9) 1983; 7 Hill (10.1016/j.energy.2018.01.188_bib28) 1982; vol. 1 10.1016/j.energy.2018.01.188_bib6 Dinsmoor (10.1016/j.energy.2018.01.188_bib14) 1978; 30 Najafi (10.1016/j.energy.2018.01.188_bib22) 2015; 2 10.1016/j.energy.2018.01.188_bib4 Biezen (10.1016/j.energy.2018.01.188_bib12) 1995 Daggupati (10.1016/j.energy.2018.01.188_bib18) 2011; 50 |
References_xml | – volume: 13 year: 1989 ident: bib13 article-title: A model for cavity growth and resource recovery during underground coal gasification publication-title: In Situ (USA) – volume: 51 year: 2012 ident: bib21 article-title: CFD Simulation of underground coal gasification publication-title: In Master Abstract Inter – reference: , 2011. – volume: 36 start-page: 5854 year: 2011 end-page: 5864 ident: bib19 article-title: Simulation of cavity formation in underground coal gasification using bore hole combustion experiments publication-title: Energy – volume: 35 start-page: 2374 year: 2010 end-page: 2386 ident: bib17 article-title: Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification publication-title: Energy – volume: 131 start-page: 126 year: 2014 end-page: 146 ident: bib24 article-title: Structural changes in coal at elevated temperature pertinent to underground coal gasification: a review publication-title: Int J Coal Geol – year: 2008 ident: bib25 article-title: LINGO release 11.0. LINDO system – volume: 20 start-page: 596 year: 2006 end-page: 608 ident: bib15 article-title: A numerical study of the effects of operating conditions and coal properties on cavity growth in underground coal gasification publication-title: Energy Fuels – start-page: 9 year: December 2009 end-page: 11 ident: bib16 article-title: Comparison of UCG cavity growth with CFD model predictions publication-title: Proceedings of the 7th international conference on CFD in the minerals and process industries CSIRO, melbourne, Australia – year: 2006 ident: bib3 article-title: Best practices in underground coal gasification; Contract W-7405-Eng-48 – volume: 22 start-page: 3902 year: 2008 end-page: 3914 ident: bib27 article-title: Steady-state model for estimating gas production from underground coal gasification publication-title: Energy Fuels – volume: 7 start-page: 410 year: 1983 end-page: 415 ident: bib9 article-title: Underground coal gasification cavity growth model publication-title: J Energy – year: January 1995 ident: bib12 article-title: An integrated 3D model for underground coal gasification publication-title: SPE annual technical conference and exhibition – year: 2009 ident: bib2 article-title: Underground coal gasification. IEA clean coal centre – start-page: 257 year: 2005 ident: bib11 article-title: Mathematical modelling of underground coal gasification – volume: 89 start-page: 1528 year: 2011 end-page: 1535 ident: bib20 article-title: Numerical simulation of underground coal gasification using the CRIP method publication-title: Can J Chem Eng – volume: 30 start-page: 695 year: 1978 end-page: 704 ident: bib14 article-title: The modeling of cavity formation during underground coal gasification publication-title: J Petrol Technol – reference: , 2018. – volume: 24 start-page: 3540 year: 2010 end-page: 3550 ident: bib10 article-title: Simulation study of underground coal gasification in Alberta reservoirs: geological structure and process modeling publication-title: Energy Fuels – volume: vol. 1 year: 1982 ident: bib28 article-title: Summary report on the large block experiments in underground coal gasification, Tono basin, Washington publication-title: Experimental description and data analysis. UCRL, 53305, 29 – volume: 8 start-page: 12603 year: 2015 end-page: 12668 ident: bib5 article-title: Modelling underground coal gasification—a review publication-title: Energies – start-page: 1 year: 2017 end-page: 4 ident: bib1 article-title: Coal geology in China: an overview publication-title: Int Geol Rev – volume: 50 start-page: 277 year: 2011 end-page: 290 ident: bib18 article-title: Compartment modeling for flow characterization of underground coal gasification cavity publication-title: Ind Eng Chem Res – volume: 26 start-page: 237 year: 1987 end-page: 246 ident: bib7 article-title: Modeling of early cavity growth for underground coal gasification publication-title: Ind Eng Chem Res – volume: 109 start-page: 11 year: 1987 ident: bib8 article-title: Computer modeling of fixed bed underground coal gasification using the permeation method publication-title: J Energy Resour Technol – volume: 2 start-page: 318 year: 2015 end-page: 324 ident: bib22 article-title: Prediction of cavity growth rate during underground coal gasification using multiple regression analysis publication-title: International J Coal Sci Technol – volume: 181 start-page: 587 year: 2016 end-page: 599 ident: bib23 article-title: A process model for underground coal gasification–Part-II growth of outflow channel publication-title: Fuel – year: 2008 ident: bib26 publication-title: COMSOL, A. COMSOL Multiphysics version 3.5, User’s guide and reference guide. COMSOL AB: Burlington, MA – volume: 131 start-page: 126 year: 2014 ident: 10.1016/j.energy.2018.01.188_bib24 article-title: Structural changes in coal at elevated temperature pertinent to underground coal gasification: a review publication-title: Int J Coal Geol doi: 10.1016/j.coal.2014.06.009 – volume: 7 start-page: 410 issue: 5 year: 1983 ident: 10.1016/j.energy.2018.01.188_bib9 article-title: Underground coal gasification cavity growth model publication-title: J Energy – volume: 13 issue: 1 year: 1989 ident: 10.1016/j.energy.2018.01.188_bib13 article-title: A model for cavity growth and resource recovery during underground coal gasification publication-title: In Situ (USA) – start-page: 1 year: 2017 ident: 10.1016/j.energy.2018.01.188_bib1 article-title: Coal geology in China: an overview publication-title: Int Geol Rev – year: 2008 ident: 10.1016/j.energy.2018.01.188_bib25 – volume: 22 start-page: 3902 issue: 6 year: 2008 ident: 10.1016/j.energy.2018.01.188_bib27 article-title: Steady-state model for estimating gas production from underground coal gasification publication-title: Energy Fuels doi: 10.1021/ef8001444 – start-page: 257 year: 2005 ident: 10.1016/j.energy.2018.01.188_bib11 – volume: 109 start-page: 11 year: 1987 ident: 10.1016/j.energy.2018.01.188_bib8 article-title: Computer modeling of fixed bed underground coal gasification using the permeation method publication-title: J Energy Resour Technol doi: 10.1115/1.3231316 – volume: 89 start-page: 1528 issue: 6 year: 2011 ident: 10.1016/j.energy.2018.01.188_bib20 article-title: Numerical simulation of underground coal gasification using the CRIP method publication-title: Can J Chem Eng doi: 10.1002/cjce.20496 – volume: 35 start-page: 2374 issue: 6 year: 2010 ident: 10.1016/j.energy.2018.01.188_bib17 article-title: Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification publication-title: Energy doi: 10.1016/j.energy.2010.02.015 – year: 2006 ident: 10.1016/j.energy.2018.01.188_bib3 – volume: 2 start-page: 318 issue: 4 year: 2015 ident: 10.1016/j.energy.2018.01.188_bib22 article-title: Prediction of cavity growth rate during underground coal gasification using multiple regression analysis publication-title: International J Coal Sci Technol doi: 10.1007/s40789-015-0095-9 – volume: 30 start-page: 695 issue: 05 year: 1978 ident: 10.1016/j.energy.2018.01.188_bib14 article-title: The modeling of cavity formation during underground coal gasification publication-title: J Petrol Technol – volume: 26 start-page: 237 issue: 2 year: 1987 ident: 10.1016/j.energy.2018.01.188_bib7 article-title: Modeling of early cavity growth for underground coal gasification publication-title: Ind Eng Chem Res doi: 10.1021/ie00062a011 – year: 2008 ident: 10.1016/j.energy.2018.01.188_bib26 – volume: 51 issue: 03 year: 2012 ident: 10.1016/j.energy.2018.01.188_bib21 article-title: CFD Simulation of underground coal gasification publication-title: In Master Abstract Inter – volume: 181 start-page: 587 year: 2016 ident: 10.1016/j.energy.2018.01.188_bib23 article-title: A process model for underground coal gasification–Part-II growth of outflow channel publication-title: Fuel doi: 10.1016/j.fuel.2016.05.017 – volume: 8 start-page: 12603 issue: 11 year: 2015 ident: 10.1016/j.energy.2018.01.188_bib5 article-title: Modelling underground coal gasification—a review publication-title: Energies doi: 10.3390/en81112331 – volume: 36 start-page: 5854 issue: 10 year: 2011 ident: 10.1016/j.energy.2018.01.188_bib19 article-title: Simulation of cavity formation in underground coal gasification using bore hole combustion experiments publication-title: Energy doi: 10.1016/j.energy.2011.08.037 – volume: vol. 1 year: 1982 ident: 10.1016/j.energy.2018.01.188_bib28 article-title: Summary report on the large block experiments in underground coal gasification, Tono basin, Washington – year: 2009 ident: 10.1016/j.energy.2018.01.188_bib2 – start-page: 9 year: 2009 ident: 10.1016/j.energy.2018.01.188_bib16 article-title: Comparison of UCG cavity growth with CFD model predictions – ident: 10.1016/j.energy.2018.01.188_bib6 – volume: 50 start-page: 277 issue: 1 year: 2011 ident: 10.1016/j.energy.2018.01.188_bib18 article-title: Compartment modeling for flow characterization of underground coal gasification cavity publication-title: Ind Eng Chem Res doi: 10.1021/ie101307k – volume: 20 start-page: 596 issue: 2 year: 2006 ident: 10.1016/j.energy.2018.01.188_bib15 article-title: A numerical study of the effects of operating conditions and coal properties on cavity growth in underground coal gasification publication-title: Energy Fuels doi: 10.1021/ef050242q – volume: 24 start-page: 3540 issue: 6 year: 2010 ident: 10.1016/j.energy.2018.01.188_bib10 article-title: Simulation study of underground coal gasification in Alberta reservoirs: geological structure and process modeling publication-title: Energy Fuels doi: 10.1021/ef9013828 – ident: 10.1016/j.energy.2018.01.188_bib4 – year: 1995 ident: 10.1016/j.energy.2018.01.188_bib12 article-title: An integrated 3D model for underground coal gasification |
SSID | ssj0005899 |
Score | 2.3644087 |
Snippet | Coal seams are converted to syngas by advanced thermo-chemical processes through Underground Coal Gasification (UCG) method. Inability to predict the shape and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 756 |
SubjectTerms | Cavity shape Cavity volume Chemical reactions Coal Coal gasification Computational fluid dynamics Computational fluid dynamics (CFD) Computer applications Computer simulation computer software COMSOL equations Fluid dynamics fluid mechanics gasification Hydrodynamics Mathematical models Numerical prediction Organic chemistry oxidants Oxidizing agents Synthesis gas Underground coal gasification (UCG) |
Title | A new model for evaluation of cavity shape and volume during Underground Coal Gasification process |
URI | https://dx.doi.org/10.1016/j.energy.2018.01.188 https://www.proquest.com/docview/2066201895 https://www.proquest.com/docview/2221024435 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QEuiBYqFkplJK5mk_iR-LhatWy7ag9ARW-W7TiiFcquyPbKb2cmTroCIVVCOUSxx07kyTyczDcD8KFELyAoIbmSQnMZg-Yucw2vChSmOleudPS94_JKL6_lxY262YPFiIWhsMpB9yed3mvroWU2rOZsc3s7-4K6F_0NSTYeDZXGfft-IYxWE9ifn6-WV7tIj6ovI0n0nAaMCLo-zCv2EDuK8aoof2fel2D5p4X6S1f3BujsBTwfPEc2Tw93AHuxPYSnI7C4O4Sj0x1oDQkHqe1egp8zdJ5ZX_SGoZPKdim-2bphwVH9CNZ9d5vIXFuzpLFYQjCyvjISgT-wZ7HGiT-5juKL0vhNAhq8guuz06-LJR9qK_AghdhyVXsnVSllqHMRiixWKhYyoENV65KQymUVGy8yH5ramMbIvMZV9LoUPnfKK3EEk3bdxtfAsK3BI3pjgtQ6GBdxEuPqLCqNs0xBjOtpw5B4nOpf_LBjhNmdTVywxAWb5Ra5MAX-MGqTEm88Ql-OrLJ_vEAWbcMjI49HztpBgDtLWe6JxqgpvH_oRtGj_ymujet7pClovyzR4Xzz3zd_C8_oKsUCHcNk-_M-vkM3Z-tP4MnHX_nJ8DLTefX52-o3miv_lg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hONALAlrUbaG4ElezyfqR5IhW0OV5KUjcLNtxVFCVXTXLld_OjJ0ARZWQqtzssRN54plx8n0zAAcFRgFeCcmVFJrL4DW3mW14OcHNVOfKFpa-d1xe6dmNPLtVtyswHbgwBKvsbX-y6dFa9y3jfjXHi7u78U-0vRhvSPLx6Kg0ntvXpBIF4foOH1_hPMpYRJKkOYkP_LkI8gqRYEcIr5Kyd-axAMs__dMbSx3dz8kmbPRxIztKj7YFK6HdhvWBVtxtw87xC2UNBfs9230Ed8QwdGax5A3DEJW9JPhm84Z5S9UjWPfLLgKzbc2SvWKJv8hiXSSifmDPdI4T_7AdoYvS-EWiGXyCm5Pj6-mM95UVuJdCLLmqnZWqkNLXufCTLJQqTKTHcKrWBfGUizI0TmTON3VVNZXMa1xFpwvhcqucEjuw2s7b8BkYtjV4BVdVXmrtKxtwksrWWVAaZxmBGNbT-D7tOFW_-G0GfNm9SVowpAWT5Qa1MAL-PGqR0m68I18MqjJ_vT4GPcM7I3cHzZp--3aGctyTTKVG8P25Gzce_U2xbZg_oMyETssSw80v_33zfVifXV9emIvTq_Ov8IF6EipoF1aXfx7CHgY8S_ctvtBPzsH-vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+model+for+evaluation+of+cavity+shape+and+volume+during+Underground+Coal+Gasification+process&rft.jtitle=Energy+%28Oxford%29&rft.au=Jowkar%2C+Amin&rft.au=Sereshki%2C+Farhang&rft.au=Najafi%2C+Mehdi&rft.date=2018-04-01&rft.issn=0360-5442&rft.volume=148+p.756-765&rft.spage=756&rft.epage=765&rft_id=info:doi/10.1016%2Fj.energy.2018.01.188&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |