Plasmonic field guided patterning of ordered colloidal nanostructures

Nano-patterned colloidal plasmonic metasurfaces are capable of manipulation of light at the subwavelength scale. However, achieving controllable lithography-free nano-patterning for colloidal metasurfaces still remains a major challenge, limiting their full potential in building advanced plasmonic d...

Full description

Saved in:
Bibliographic Details
Published inNanophotonics (Berlin, Germany) Vol. 8; no. 3; pp. 505 - 512
Main Authors Huang, Xiaoping, Chen, Kai, Qi, Mingxi, Zhang, Peifeng, Li, Yu, Winnerl, Stephan, Schneider, Harald, Yang, Yuanjie, Zhang, Shuang
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 26.03.2019
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nano-patterned colloidal plasmonic metasurfaces are capable of manipulation of light at the subwavelength scale. However, achieving controllable lithography-free nano-patterning for colloidal metasurfaces still remains a major challenge, limiting their full potential in building advanced plasmonic devices. Here, we demonstrate plasmonic field guided patterning (PFGP) of ordered colloidal metallic nano-patterns using orthogonal laser standing evanescent wave (LSEW) fields. We achieved colloidal silver nano-patterns with a large area of 30 mm in <10 min by using orthogonal LSEW fields with a non-focused ultralow fluence irradiation of 0.25 W cm . The underlying mechanism of the formation of the nano-patterns is the light-induced polarization of the nanoparticles (NPs), which leads to a dipole-dipole interaction for stabilizing the nano-pattern formation, as confirmed by polarization-dependent surface-enhanced Raman spectroscopy. This optical field-directed self-assembly of NPs opens an avenue for designing and fabricating reconfigurable colloidal nano-patterned metasurfaces in large areas.
AbstractList Nano-patterned colloidal plasmonic metasurfaces are capable of manipulation of light at the subwavelength scale. However, achieving controllable lithography-free nano-patterning for colloidal metasurfaces still remains a major challenge, limiting their full potential in building advanced plasmonic devices. Here, we demonstrate plasmonic field guided patterning (PFGP) of ordered colloidal metallic nano-patterns using orthogonal laser standing evanescent wave (LSEW) fields. We achieved colloidal silver nano-patterns with a large area of 30 mm2 in <10 min by using orthogonal LSEW fields with a non-focused ultralow fluence irradiation of 0.25 W cm−2. The underlying mechanism of the formation of the nano-patterns is the light-induced polarization of the nanoparticles (NPs), which leads to a dipole-dipole interaction for stabilizing the nano-pattern formation, as confirmed by polarization-dependent surface-enhanced Raman spectroscopy. This optical field-directed self-assembly of NPs opens an avenue for designing and fabricating reconfigurable colloidal nano-patterned metasurfaces in large areas.
Abstract Nano-patterned colloidal plasmonic metasurfaces are capable of manipulation of light at the subwavelength scale. However, achieving controllable lithography-free nano-patterning for colloidal metasurfaces still remains a major challenge, limiting their full potential in building advanced plasmonic devices. Here, we demonstrate plasmonic field guided patterning (PFGP) of ordered colloidal metallic nano-patterns using orthogonal laser standing evanescent wave (LSEW) fields. We achieved colloidal silver nano-patterns with a large area of 30 mm 2 in <10 min by using orthogonal LSEW fields with a non-focused ultralow fluence irradiation of 0.25 W cm −2 . The underlying mechanism of the formation of the nano-patterns is the light-induced polarization of the nanoparticles (NPs), which leads to a dipole-dipole interaction for stabilizing the nano-pattern formation, as confirmed by polarization-dependent surface-enhanced Raman spectroscopy. This optical field-directed self-assembly of NPs opens an avenue for designing and fabricating reconfigurable colloidal nano-patterned metasurfaces in large areas.
Nano-patterned colloidal plasmonic metasurfaces are capable of manipulation of light at the subwavelength scale. However, achieving controllable lithography-free nano-patterning for colloidal metasurfaces still remains a major challenge, limiting their full potential in building advanced plasmonic devices. Here, we demonstrate plasmonic field guided patterning (PFGP) of ordered colloidal metallic nano-patterns using orthogonal laser standing evanescent wave (LSEW) fields. We achieved colloidal silver nano-patterns with a large area of 30 mm in <10 min by using orthogonal LSEW fields with a non-focused ultralow fluence irradiation of 0.25 W cm . The underlying mechanism of the formation of the nano-patterns is the light-induced polarization of the nanoparticles (NPs), which leads to a dipole-dipole interaction for stabilizing the nano-pattern formation, as confirmed by polarization-dependent surface-enhanced Raman spectroscopy. This optical field-directed self-assembly of NPs opens an avenue for designing and fabricating reconfigurable colloidal nano-patterned metasurfaces in large areas.
Author Li, Yu
Zhang, Shuang
Chen, Kai
Huang, Xiaoping
Qi, Mingxi
Yang, Yuanjie
Zhang, Peifeng
Schneider, Harald
Winnerl, Stephan
Author_xml – sequence: 1
  givenname: Xiaoping
  orcidid: 0000-0002-1996-9335
  surname: Huang
  fullname: Huang, Xiaoping
  organization: Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
– sequence: 2
  givenname: Kai
  surname: Chen
  fullname: Chen, Kai
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 3
  givenname: Mingxi
  surname: Qi
  fullname: Qi, Mingxi
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 4
  givenname: Peifeng
  surname: Zhang
  fullname: Zhang, Peifeng
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 5
  givenname: Yu
  surname: Li
  fullname: Li, Yu
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 6
  givenname: Stephan
  surname: Winnerl
  fullname: Winnerl, Stephan
  organization: Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
– sequence: 7
  givenname: Harald
  surname: Schneider
  fullname: Schneider, Harald
  organization: Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
– sequence: 8
  givenname: Yuanjie
  surname: Yang
  fullname: Yang, Yuanjie
  email: dr.yang2003@uestc.edu.cn
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
– sequence: 9
  givenname: Shuang
  surname: Zhang
  fullname: Zhang, Shuang
  email: s.zhang@bham.ac.uk
  organization: School of Physics and Astronomy, University of Birmingham, Birmingham B5 2TT, UK
BookMark eNp1UEtLxDAQDrKC6-PuseC5mknaJD14kGV9gKAHPYfZPNYutVmTFvHfm7WynpzLfAzfY_iOyawPvSPkHOgl1FBf9diH7VvJKKiSMoADMmfQsFIJqGZ7TMUROUtpQ_M0DYdGzMnyucP0HvrWFL51nS3WY2udLbY4DC72bb8ugi9CtC7mqwldF1qLXbFLTEMczTBGl07JoccuubPffUJeb5cvi_vy8enuYXHzWJqK86Gs0TEQ0ltvFF2BqKVnlCmGwipRoYLaUECDDLnIBFpTrxizXFpfSSUZPyEPk68NuNHb2L5j_NIBW_1zCHGtMQ6t6ZyW1kju2KrKhlWTAVMShbc51wq3EtnrYvLaxvAxujToTRhjn9_XDJTkAFI0mUUnlokhpej8PhWo3nWvp-71rnu96z5LrifJJ3a5Q-vWcfzK4M__P6niNa35N-zxjk4
CitedBy_id crossref_primary_10_1515_nanoph_2021_0812
crossref_primary_10_1021_acsanm_3c04260
crossref_primary_10_1002_adfm_202104649
crossref_primary_10_1007_s00339_020_04240_8
crossref_primary_10_1016_j_physe_2023_115838
Cites_doi 10.1038/nature11615
10.1007/s10043-015-0027-3
10.1038/nmat2596
10.1038/ncomms8325
10.1016/j.optcom.2007.02.042
10.1021/acs.nanolett.7b02713
10.1002/adma.201602971
10.1103/RevModPhys.82.1767
10.1038/ncomms3891
10.1038/nphoton.2011.56
10.1038/nphoton.2014.247
10.1038/nmat3839
10.1038/lsa.2017.15
10.1126/science.aaf6644
10.1103/PhysRevLett.102.113602
10.1126/science.1210713
10.1103/PhysRevLett.24.156
10.1088/0034-4885/79/7/076401
10.1038/s41467-017-00166-7
10.1038/lsa.2017.39
10.1364/OL.11.000288
10.1038/nnano.2015.2
10.1038/ncomms12911
10.1021/nl901745a
10.1002/adma.201503281
10.1038/nphoton.2012.332
10.1002/adma.201401484
10.1126/science.1232009
10.1021/acs.nanolett.7b05128
10.1021/ja055633y
10.1038/nnano.2015.186
10.1039/C6NR01310D
10.1021/acs.nanolett.8b00020
ContentType Journal Article
Copyright 2019. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1515/nanoph-2018-0211
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
Solid State and Superconductivity Abstracts
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 512
ExternalDocumentID oai_doaj_org_article_7dc73e2b41ac49e2b287a6fd0b1d6eb6
10_1515_nanoph_2018_0211
10_1515_nanoph_2018_021183505
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11874102; 11474048; 11274058
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
AEJTT
AENEX
AFKRA
AFPKN
AHGSO
AIKXB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
F-.
GROUPED_DOAJ
HCIFZ
HZ~
O9-
OK1
P62
PIMPY
PROAC
QD8
SA.
AAYXX
CCPQU
CITATION
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c433t-5ae2167fdfc80b1657f20282a6d864a815c01aca2a3680b050f822d37df478723
IEDL.DBID DOA
ISSN 2192-8606
IngestDate Tue Oct 22 15:15:02 EDT 2024
Thu Oct 10 16:57:09 EDT 2024
Fri Aug 23 01:57:53 EDT 2024
Fri Nov 25 05:43:10 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This work is licensed under the Creative Commons Attribution 4.0 Public License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-5ae2167fdfc80b1657f20282a6d864a815c01aca2a3680b050f822d37df478723
ORCID 0000-0002-1996-9335
OpenAccessLink https://doaj.org/article/7dc73e2b41ac49e2b287a6fd0b1d6eb6
PQID 2187311769
PQPubID 2038884
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_7dc73e2b41ac49e2b287a6fd0b1d6eb6
proquest_journals_2187311769
crossref_primary_10_1515_nanoph_2018_0211
walterdegruyter_journals_10_1515_nanoph_2018_021183505
PublicationCentury 2000
PublicationDate 2019-03-26
PublicationDateYYYYMMDD 2019-03-26
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-26
  day: 26
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationYear 2019
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References Khorasaninejad, M; Chen, WT; Devlin, RC; Oh, J; Zhu, AY; Capasso, F (j_nanoph-2018-0211_ref_002) 2016; 352
Stewart, SW; Akselrod, GM; Smith, DR; Mikkelsen, MH (j_nanoph-2018-0211_ref_023) 2016; 29
Rozin, MJ; Rosen, DA; Dill, TJ; Tao, AR (j_nanoph-2018-0211_ref_012) 2015; 6
Ashkin, A (j_nanoph-2018-0211_ref_018) 1970; 24
Lim, DK; Jeon, KS; Kim, HM; Nam, JM; Suh, YD (j_nanoph-2018-0211_ref_030) 2010; 9
Wang, SM; Wu, PC; Su, VC (j_nanoph-2018-0211_ref_003) 2017; 8
Nan, F; Yan, ZJ (j_nanoph-2018-0211_ref_016) 2018; 18
Ashkin, A; Dziedzic, JM; Bjorkholm, JE; Chu, S (j_nanoph-2018-0211_ref_019) 1986; 11
Liu, LX; Zhang, XQ; Kenney, M (j_nanoph-2018-0211_ref_009) 2014; 26
Yu, NF; Capasso, F (j_nanoph-2018-0211_ref_007) 2014; 13
Alselrod, GM; Huang, JN; Hoang, TB (j_nanoph-2018-0211_ref_013) 2015; 27
Wang, H; Levin, CS; Halas, NJ (j_nanoph-2018-0211_ref_017) 2005; 127
Kim, JY; Kim, H; Kim, BH (j_nanoph-2018-0211_ref_022) 2016; 7
Dholakia, K; Zemánek, P (j_nanoph-2018-0211_ref_026) 2010; 82
Juan, ML; Righini, M; Quidant, R (j_nanoph-2018-0211_ref_020) 2011; 5
Chen, HT; Taylor, AJ; Yu, NF (j_nanoph-2018-0211_ref_008) 2016; 79
Min, CJ; Shen, Z; Shen, JF (j_nanoph-2018-0211_ref_034) 2013; 4
Brzobohatý, O; Karásek, V; Šiler, M; Chvátal, L; Čižmár, T; Zemánek, P (j_nanoph-2018-0211_ref_024) 2013; 7
Kildishev, AV; Boltasseva, A; Shalaev, VM (j_nanoph-2018-0211_ref_004) 2013; 339
Tumkur, T; Yang, X; Zhang, C (j_nanoph-2018-0211_ref_031) 2018; 18
Albaladejo, S; Marques, ML; Scheffold, F; Saenz, J (j_nanoph-2018-0211_ref_032) 2009; 9
Arbabi, A; Horie, Y; Bagheri, M; Faraon, A (j_nanoph-2018-0211_ref_010) 2015; 10
Siddique, RH; Mertens, J; Hölscher, H; Vignolini, S (j_nanoph-2018-0211_ref_014) 2017; 6
Zheng, GX; Mühlenbernd, H; Kenney, M; Li, GX; Zentgraf, T; Zhang, S (j_nanoph-2018-0211_ref_001) 2015; 10
Moreau, A; Ciracì, C; Mock, JJ (j_nanoph-2018-0211_ref_011) 2012; 492
Gargiulo, JL; Brick, T; Violi, IL (j_nanoph-2018-0211_ref_015) 2017; 17
Chvátal, L; Brzobohatý, O; Zemánek, P (j_nanoph-2018-0211_ref_025) 2015; 22
Meinzer, N; Barnes, WL; Hooper, IR (j_nanoph-2018-0211_ref_006) 2014; 8
Huang, XP; Chen, K; Qi, MX (j_nanoph-2018-0211_ref_028) 2016; 8
Yu, NF; Genevet, P; Kats, MA (j_nanoph-2018-0211_ref_005) 2011; 334
Kawalec, T; Józefowski, L; Fiutowski, J; Kasprowicz, MJ; Dohnalik, T (j_nanoph-2018-0211_ref_027) 2007; 274
Albaladejo, S; Marqués, MI; Laroche, M; Sáenz, JJ (j_nanoph-2018-0211_ref_033) 2009; 102
Gao, DL; Ding, WQ; Vesperinas, MN (j_nanoph-2018-0211_ref_021) 2017; 6
2024042217593784524_j_nanoph-2018-0211_ref_027_w2aab3b7c10b1b6b1ab1b5c27Aa
2024042217593784524_j_nanoph-2018-0211_ref_009_w2aab3b7c10b1b6b1ab1b5b9Aa
2024042217593784524_j_nanoph-2018-0211_ref_011_w2aab3b7c10b1b6b1ab1b5c11Aa
2024042217593784524_j_nanoph-2018-0211_ref_033_w2aab3b7c10b1b6b1ab1b5c33Aa
2024042217593784524_j_nanoph-2018-0211_ref_022_w2aab3b7c10b1b6b1ab1b5c22Aa
2024042217593784524_j_nanoph-2018-0211_ref_008_w2aab3b7c10b1b6b1ab1b5b8Aa
2024042217593784524_j_nanoph-2018-0211_ref_016_w2aab3b7c10b1b6b1ab1b5c16Aa
2024042217593784524_j_nanoph-2018-0211_ref_004_w2aab3b7c10b1b6b1ab1b5b4Aa
2024042217593784524_j_nanoph-2018-0211_ref_026_w2aab3b7c10b1b6b1ab1b5c26Aa
2024042217593784524_j_nanoph-2018-0211_ref_030_w2aab3b7c10b1b6b1ab1b5c30Aa
2024042217593784524_j_nanoph-2018-0211_ref_019_w2aab3b7c10b1b6b1ab1b5c19Aa
2024042217593784524_j_nanoph-2018-0211_ref_012_w2aab3b7c10b1b6b1ab1b5c12Aa
2024042217593784524_j_nanoph-2018-0211_ref_023_w2aab3b7c10b1b6b1ab1b5c23Aa
2024042217593784524_j_nanoph-2018-0211_ref_007_w2aab3b7c10b1b6b1ab1b5b7Aa
2024042217593784524_j_nanoph-2018-0211_ref_034_w2aab3b7c10b1b6b1ab1b5c34Aa
2024042217593784524_j_nanoph-2018-0211_ref_003_w2aab3b7c10b1b6b1ab1b5b3Aa
2024042217593784524_j_nanoph-2018-0211_ref_015_w2aab3b7c10b1b6b1ab1b5c15Aa
2024042217593784524_j_nanoph-2018-0211_ref_018_w2aab3b7c10b1b6b1ab1b5c18Aa
2024042217593784524_j_nanoph-2018-0211_ref_025_w2aab3b7c10b1b6b1ab1b5c25Aa
2024042217593784524_j_nanoph-2018-0211_ref_006_w2aab3b7c10b1b6b1ab1b5b6Aa
2024042217593784524_j_nanoph-2018-0211_ref_014_w2aab3b7c10b1b6b1ab1b5c14Aa
2024042217593784524_j_nanoph-2018-0211_ref_029_w2aab3b7c10b1b6b1ab1b5c29Aa
2024042217593784524_j_nanoph-2018-0211_ref_002_w2aab3b7c10b1b6b1ab1b5b2Aa
2024042217593784524_j_nanoph-2018-0211_ref_031_w2aab3b7c10b1b6b1ab1b5c31Aa
2024042217593784524_j_nanoph-2018-0211_ref_020_w2aab3b7c10b1b6b1ab1b5c20Aa
2024042217593784524_j_nanoph-2018-0211_ref_010_w2aab3b7c10b1b6b1ab1b5c10Aa
2024042217593784524_j_nanoph-2018-0211_ref_017_w2aab3b7c10b1b6b1ab1b5c17Aa
2024042217593784524_j_nanoph-2018-0211_ref_024_w2aab3b7c10b1b6b1ab1b5c24Aa
2024042217593784524_j_nanoph-2018-0211_ref_005_w2aab3b7c10b1b6b1ab1b5b5Aa
2024042217593784524_j_nanoph-2018-0211_ref_013_w2aab3b7c10b1b6b1ab1b5c13Aa
2024042217593784524_j_nanoph-2018-0211_ref_001_w2aab3b7c10b1b6b1ab1b5b1Aa
2024042217593784524_j_nanoph-2018-0211_ref_021_w2aab3b7c10b1b6b1ab1b5c21Aa
2024042217593784524_j_nanoph-2018-0211_ref_028_w2aab3b7c10b1b6b1ab1b5c28Aa
2024042217593784524_j_nanoph-2018-0211_ref_032_w2aab3b7c10b1b6b1ab1b5c32Aa
References_xml – volume: 334
  start-page: 333
  year: 2011
  end-page: 7
  ident: j_nanoph-2018-0211_ref_005
  article-title: Light propagation with phase discontinuities: generalized laws of reflection and refraction
  publication-title: Science
  contributor:
    fullname: Yu, NF; Genevet, P; Kats, MA
– volume: 102
  start-page: 113602
  year: 2009
  ident: j_nanoph-2018-0211_ref_033
  article-title: Scattering forces from the curl of the spin angular momentum of a light field
  publication-title: Phys Rev Lett
  contributor:
    fullname: Albaladejo, S; Marqués, MI; Laroche, M; Sáenz, JJ
– volume: 7
  start-page: 12911
  year: 2016
  ident: j_nanoph-2018-0211_ref_022
  article-title: Highly tunable refractive index visible-light metasurface from block copolymer self-assembly
  publication-title: Nat Commun
  contributor:
    fullname: Kim, JY; Kim, H; Kim, BH
– volume: 22
  start-page: 157
  year: 2015
  end-page: 61
  ident: j_nanoph-2018-0211_ref_025
  article-title: Binding of a pair of Au nanoparticles in a wide Gaussian standing wave
  publication-title: Opt Rev
  contributor:
    fullname: Chvátal, L; Brzobohatý, O; Zemánek, P
– volume: 9
  start-page: 3527
  year: 2009
  end-page: 31
  ident: j_nanoph-2018-0211_ref_032
  article-title: Giant enhanced diffusion of gold nanoparticles in optical vortex fields
  publication-title: Nano Lett
  contributor:
    fullname: Albaladejo, S; Marques, ML; Scheffold, F; Saenz, J
– volume: 8
  start-page: 889
  year: 2014
  end-page: 98
  ident: j_nanoph-2018-0211_ref_006
  article-title: Plasmonic meta-atoms and metasurfaces
  publication-title: Nat Photon
  contributor:
    fullname: Meinzer, N; Barnes, WL; Hooper, IR
– volume: 274
  start-page: 341
  year: 2007
  end-page: 6
  ident: j_nanoph-2018-0211_ref_027
  article-title: Spectroscopic measurements of the evanescent wave polarization state
  publication-title: Opt Commun
  contributor:
    fullname: Kawalec, T; Józefowski, L; Fiutowski, J; Kasprowicz, MJ; Dohnalik, T
– volume: 8
  start-page: 13342
  year: 2016
  end-page: 51
  ident: j_nanoph-2018-0211_ref_028
  article-title: Nanostructured grating patterns over a large area fabricated by optically directed assembly
  publication-title: Nanoscale
  contributor:
    fullname: Huang, XP; Chen, K; Qi, MX
– volume: 492
  start-page: 86
  year: 2012
  end-page: 9
  ident: j_nanoph-2018-0211_ref_011
  article-title: Controlled-reflectance surfaces with film-coupled colloidal nanoantennas
  publication-title: Nature
  contributor:
    fullname: Moreau, A; Ciracì, C; Mock, JJ
– volume: 18
  start-page: 1396
  year: 2018
  end-page: 401
  ident: j_nanoph-2018-0211_ref_016
  article-title: Probing spatiotemporal stability of optical matter by polarization modulation
  publication-title: Nano Lett
  contributor:
    fullname: Nan, F; Yan, ZJ
– volume: 6
  start-page: e17039
  year: 2017
  ident: j_nanoph-2018-0211_ref_021
  article-title: Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects
  publication-title: Light Sci Appl
  contributor:
    fullname: Gao, DL; Ding, WQ; Vesperinas, MN
– volume: 18
  start-page: 2040
  year: 2018
  end-page: 6
  ident: j_nanoph-2018-0211_ref_031
  article-title: Wavelength-dependent optical force imaging of bimetallic Al-Au heterodimers
  publication-title: Nano Lett
  contributor:
    fullname: Tumkur, T; Yang, X; Zhang, C
– volume: 26
  start-page: 5031
  year: 2014
  end-page: 6
  ident: j_nanoph-2018-0211_ref_009
  article-title: Broadband metasurfaces with simultaneous control of phase and amplitude
  publication-title: Adv Mater
  contributor:
    fullname: Liu, LX; Zhang, XQ; Kenney, M
– volume: 7
  start-page: 123
  year: 2013
  end-page: 7
  ident: j_nanoph-2018-0211_ref_024
  article-title: Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’
  publication-title: Nat Photon
  contributor:
    fullname: Brzobohatý, O; Karásek, V; Šiler, M; Chvátal, L; Čižmár, T; Zemánek, P
– volume: 17
  start-page: 5747
  year: 2017
  end-page: 55
  ident: j_nanoph-2018-0211_ref_015
  article-title: Understanding and reducing photothermal forces for the fabrication of Au nanoparticle dimers by optical printing
  publication-title: Nano Lett
  contributor:
    fullname: Gargiulo, JL; Brick, T; Violi, IL
– volume: 339
  start-page: 1232009
  year: 2013
  ident: j_nanoph-2018-0211_ref_004
  article-title: Planar photonics with metasurfaces
  publication-title: Science
  contributor:
    fullname: Kildishev, AV; Boltasseva, A; Shalaev, VM
– volume: 13
  start-page: 139
  year: 2014
  end-page: 50
  ident: j_nanoph-2018-0211_ref_007
  article-title: Flat optics with designer metasurfaces
  publication-title: Nat Mater
  contributor:
    fullname: Yu, NF; Capasso, F
– volume: 82
  start-page: 1767
  year: 2010
  ident: j_nanoph-2018-0211_ref_026
  article-title: Gripped by light: optical binding
  publication-title: Rev Mod Phys
  contributor:
    fullname: Dholakia, K; Zemánek, P
– volume: 10
  start-page: 937
  year: 2015
  end-page: 43
  ident: j_nanoph-2018-0211_ref_010
  article-title: Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission
  publication-title: Nat Nano
  contributor:
    fullname: Arbabi, A; Horie, Y; Bagheri, M; Faraon, A
– volume: 11
  start-page: 288
  year: 1986
  end-page: 90
  ident: j_nanoph-2018-0211_ref_019
  article-title: Observation of a single-beam gradient force optical trap for dielectric particles
  publication-title: Opt Lett
  contributor:
    fullname: Ashkin, A; Dziedzic, JM; Bjorkholm, JE; Chu, S
– volume: 6
  start-page: e17015
  year: 2017
  ident: j_nanoph-2018-0211_ref_014
  article-title: Scalable and controlled self-assembly of aluminum-based random plasmonic metasurfaces
  publication-title: Light Sci Appl
  contributor:
    fullname: Siddique, RH; Mertens, J; Hölscher, H; Vignolini, S
– volume: 5
  start-page: 349
  year: 2011
  end-page: 56
  ident: j_nanoph-2018-0211_ref_020
  article-title: Plasmon nano-optical tweezers
  publication-title: Nat Photonics
  contributor:
    fullname: Juan, ML; Righini, M; Quidant, R
– volume: 10
  start-page: 308
  year: 2015
  end-page: 12
  ident: j_nanoph-2018-0211_ref_001
  article-title: Metasurface holograms reaching 80% efficiency
  publication-title: Nat Nanotech
  contributor:
    fullname: Zheng, GX; Mühlenbernd, H; Kenney, M; Li, GX; Zentgraf, T; Zhang, S
– volume: 352
  start-page: 1190
  year: 2016
  end-page: 4
  ident: j_nanoph-2018-0211_ref_002
  article-title: Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging
  publication-title: Science
  contributor:
    fullname: Khorasaninejad, M; Chen, WT; Devlin, RC; Oh, J; Zhu, AY; Capasso, F
– volume: 4
  start-page: 2891
  year: 2013
  ident: j_nanoph-2018-0211_ref_034
  article-title: Focused plasmonic trapping of metallic particles
  publication-title: Nat Commun
  contributor:
    fullname: Min, CJ; Shen, Z; Shen, JF
– volume: 79
  start-page: 076401
  year: 2016
  ident: j_nanoph-2018-0211_ref_008
  article-title: A review of metasurfaces: physics and applications
  publication-title: Rep Prog Phys
  contributor:
    fullname: Chen, HT; Taylor, AJ; Yu, NF
– volume: 27
  start-page: 8028
  year: 2015
  end-page: 34
  ident: j_nanoph-2018-0211_ref_013
  article-title: Large-area metasurface perfect absorbers from visible to near-infrared
  publication-title: Adv Mater
  contributor:
    fullname: Alselrod, GM; Huang, JN; Hoang, TB
– volume: 9
  start-page: 60
  year: 2010
  end-page: 7
  ident: j_nanoph-2018-0211_ref_030
  article-title: Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection
  publication-title: Nat Mater
  contributor:
    fullname: Lim, DK; Jeon, KS; Kim, HM; Nam, JM; Suh, YD
– volume: 6
  start-page: 7325
  year: 2015
  ident: j_nanoph-2018-0211_ref_012
  article-title: Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared
  publication-title: Nat Commun
  contributor:
    fullname: Rozin, MJ; Rosen, DA; Dill, TJ; Tao, AR
– volume: 127
  start-page: 14992
  year: 2005
  end-page: 3
  ident: j_nanoph-2018-0211_ref_017
  article-title: Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates
  publication-title: Nano Lett J Am Chem Soc
  contributor:
    fullname: Wang, H; Levin, CS; Halas, NJ
– volume: 29
  start-page: 1602971
  year: 2016
  ident: j_nanoph-2018-0211_ref_023
  article-title: Toward multispectral imaging with colloidal metasurface pixels
  publication-title: Adv Mater
  contributor:
    fullname: Stewart, SW; Akselrod, GM; Smith, DR; Mikkelsen, MH
– volume: 8
  start-page: 187
  year: 2017
  ident: j_nanoph-2018-0211_ref_003
  article-title: Broadband achromatic optical metasurface devices
  publication-title: Nat Commun
  contributor:
    fullname: Wang, SM; Wu, PC; Su, VC
– volume: 24
  start-page: 156
  year: 1970
  end-page: 9
  ident: j_nanoph-2018-0211_ref_018
  article-title: Acceleration and trapping of particles by radiation pressure
  publication-title: Phys Rev Lett
  contributor:
    fullname: Ashkin, A
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_011_w2aab3b7c10b1b6b1ab1b5c11Aa
  doi: 10.1038/nature11615
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_025_w2aab3b7c10b1b6b1ab1b5c25Aa
  doi: 10.1007/s10043-015-0027-3
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_030_w2aab3b7c10b1b6b1ab1b5c30Aa
  doi: 10.1038/nmat2596
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_012_w2aab3b7c10b1b6b1ab1b5c12Aa
  doi: 10.1038/ncomms8325
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_027_w2aab3b7c10b1b6b1ab1b5c27Aa
  doi: 10.1016/j.optcom.2007.02.042
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_015_w2aab3b7c10b1b6b1ab1b5c15Aa
  doi: 10.1021/acs.nanolett.7b02713
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_023_w2aab3b7c10b1b6b1ab1b5c23Aa
  doi: 10.1002/adma.201602971
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_026_w2aab3b7c10b1b6b1ab1b5c26Aa
  doi: 10.1103/RevModPhys.82.1767
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_034_w2aab3b7c10b1b6b1ab1b5c34Aa
  doi: 10.1038/ncomms3891
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_020_w2aab3b7c10b1b6b1ab1b5c20Aa
  doi: 10.1038/nphoton.2011.56
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_006_w2aab3b7c10b1b6b1ab1b5b6Aa
  doi: 10.1038/nphoton.2014.247
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_007_w2aab3b7c10b1b6b1ab1b5b7Aa
  doi: 10.1038/nmat3839
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_014_w2aab3b7c10b1b6b1ab1b5c14Aa
  doi: 10.1038/lsa.2017.15
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_002_w2aab3b7c10b1b6b1ab1b5b2Aa
  doi: 10.1126/science.aaf6644
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_033_w2aab3b7c10b1b6b1ab1b5c33Aa
  doi: 10.1103/PhysRevLett.102.113602
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_005_w2aab3b7c10b1b6b1ab1b5b5Aa
  doi: 10.1126/science.1210713
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_018_w2aab3b7c10b1b6b1ab1b5c18Aa
  doi: 10.1103/PhysRevLett.24.156
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_008_w2aab3b7c10b1b6b1ab1b5b8Aa
  doi: 10.1088/0034-4885/79/7/076401
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_003_w2aab3b7c10b1b6b1ab1b5b3Aa
  doi: 10.1038/s41467-017-00166-7
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_021_w2aab3b7c10b1b6b1ab1b5c21Aa
  doi: 10.1038/lsa.2017.39
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_019_w2aab3b7c10b1b6b1ab1b5c19Aa
  doi: 10.1364/OL.11.000288
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_001_w2aab3b7c10b1b6b1ab1b5b1Aa
  doi: 10.1038/nnano.2015.2
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_022_w2aab3b7c10b1b6b1ab1b5c22Aa
  doi: 10.1038/ncomms12911
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_032_w2aab3b7c10b1b6b1ab1b5c32Aa
  doi: 10.1021/nl901745a
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_029_w2aab3b7c10b1b6b1ab1b5c29Aa
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_013_w2aab3b7c10b1b6b1ab1b5c13Aa
  doi: 10.1002/adma.201503281
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_024_w2aab3b7c10b1b6b1ab1b5c24Aa
  doi: 10.1038/nphoton.2012.332
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_009_w2aab3b7c10b1b6b1ab1b5b9Aa
  doi: 10.1002/adma.201401484
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_004_w2aab3b7c10b1b6b1ab1b5b4Aa
  doi: 10.1126/science.1232009
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_016_w2aab3b7c10b1b6b1ab1b5c16Aa
  doi: 10.1021/acs.nanolett.7b05128
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_017_w2aab3b7c10b1b6b1ab1b5c17Aa
  doi: 10.1021/ja055633y
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_010_w2aab3b7c10b1b6b1ab1b5c10Aa
  doi: 10.1038/nnano.2015.186
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_028_w2aab3b7c10b1b6b1ab1b5c28Aa
  doi: 10.1039/C6NR01310D
– ident: 2024042217593784524_j_nanoph-2018-0211_ref_031_w2aab3b7c10b1b6b1ab1b5c31Aa
  doi: 10.1021/acs.nanolett.8b00020
SSID ssj0000993196
Score 2.1615303
Snippet Nano-patterned colloidal plasmonic metasurfaces are capable of manipulation of light at the subwavelength scale. However, achieving controllable...
Abstract Nano-patterned colloidal plasmonic metasurfaces are capable of manipulation of light at the subwavelength scale. However, achieving controllable...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Publisher
StartPage 505
SubjectTerms Colloids
Dipole interactions
Evanescent waves
Fluence
Induced polarization
Nanoparticles
ordered colloidal nanostructures
Patterning
plasmonic field guided patterning
polarization stabilizing
Raman spectroscopy
Self-assembly
Silver
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-Ll58i-uLHrx4CDZpmjQnUVkRDyKi4C0kTbN6sF33gfjvnclmFQW9lTCEdGaS-SYzfCHk2HkIM0Jx6llQVDjLqRNOU6Ydh2iuShFil--tvH4UN0_lU7pwG6e2yvmZGA9q39V4R34KoUgVjCmpz4ZvFF-NwupqekJjkSxzJrBMu3zRv727_7plAfyDPoYvzAGUoRXA9VSrhDh-2tq2Gz6Do7CKQqxjP2JTpPD_gTtX32MF2zeD0fRjMq-YxkB0tU5WE4LMzmcm3yALTbtJ1hKazNJeHW-R_h0A41dkvs1im1o2mL54kBhGRk28Dsm6kEXqTRhFf-hePEyMy52xyk4hFd8mj1f9h8trmh5NoLUoigktbcOZVMGHusodk6UKHPMqK30lha1YWefM1pbbQoJAXuYBMIIvlA_I08OLHbLUdm2zSzLkhmFeKqVYEMwF3eRWV0Hn2uG2tT1yMleXGc64MQzmFKBaM1OtQdUaVG2PXKA-v-SQ1ToOdKOBSZvEKF-rouFOwAKFhg9I56wMHv7Dy8bJHjmYW8OkrTY2347RI_KXhb6l_loXANC83Pt_3n2yAvIaO8-4PCBLYILmEKDIxB0lf_sEVFjc3w
  priority: 102
  providerName: ProQuest
Title Plasmonic field guided patterning of ordered colloidal nanostructures
URI http://www.degruyter.com/doi/10.1515/nanoph-2018-0211
https://www.proquest.com/docview/2187311769
https://doaj.org/article/7dc73e2b41ac49e2b287a6fd0b1d6eb6
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSyQxEC123YsXXXeVHVeHPnjZQ7CTTied4yozDh4GkRW8haTT8QO2Z9AZxH9vVbrHVUH24q0JRSheVahXneIF4MAHLDNSCxZ41Ex6J5iX3jBuvMBqrksZ05TvVE0u5OllefniqS-aCevkgTvgDnWoddEIL7mrpcEPpPhOxZB7HlTjO7FtXr5opm473kO5RS_LIYVhFdL0_o4S6_dh69rZ_BoThFcMaxx_VZOSdP8rvrnxkG6uQ3N1t3xcrG5KUwEaf4WNnjlmvzuPt-BT036DzZ5FZv0Zvf8OozMkxH9J8TZL42nZ1fImoMU8KWnSb5BsFrMkuYmrlAezm4Abk7udmuwSW_BtuBiP_hxPWP9YAqtlUSxY6RrBlY4h1hVio0odBfVTToVKSVfxss4RQidcodAgL_OI3CAUOkTS5xHFDqy1s7b5ARlpwiC4WmseJffRNLkzVTS58XRc3QB-reCy804Tw1IvgdDaDlpL0FqCdgBHhOezHalZpwWMse1jbP8X4wHsraJh-yN2b5Gb6IJzrcwA1JsI_bN6zy8knnm5-xHO_YR13NXQXJpQe7CGgWr2kags_BA-V-OTIXw5Gk3PzocpQ58AbVPnow
link.rule.ids 315,786,790,870,2115,12792,21416,27955,27956,33406,33777,43633,43838,67513,69297
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOcClvMVCgRy4cLAaP2LHJwSoywKl4tBKvVl2HG97IFm6u6r675nxelsVCW6R5VjOPDKfPaNvAN6FiGFGGcEiT4ap4AULKljGbRAYzU2jUq7yPdKzE_XttDktF27LUla5_SfmH3UcO7oj38dQZCTnRtsPi9-MukZRdrW00LgL95TUkuy8nX65vmNB9EMWRv3lEMiwFsF6yVRiFN8f_DAuztBMeMsw0vFbkSkT-N9CnbuXOX8d-_nF-mq1zZfmMDR9BLsFP1YfNwp_DHf64Qk8LFiyKp66fAoHPxEW_yLe2yoXqVXz9XnEGYvMp0mXIdWYqky8iaNkDeN5xIVpuxtO2TUexJ_ByfTg-POMlZYJrFNSrljje8G1STF1bR24bkwSdKryOrZa-ZY3Xc1954WXGifUTZ0QIURpYiKWHiGfw84wDv0LqIgZhkdtjOFJ8ZBsX3vbJlvbQE7rJ_B-Ky632DBjODpRoGjdRrSOROtItBP4RPK8nkec1nlgvJi74iLOxM7IXgSFG1QWH_Aw53WK-B1R90FPYG-rDVccbeluzGIC-i8N3cz6174QftbNy_-v-xbuz45_HLrDr0ffX8EDfNdSDZrQe7CD6uhfIyhZhTfZ8v4AE4DeZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFAvlEcrtuWRAxcO0caOY8dHXsvyECC1SNwsO44XDiQr2FXVf9-ZJLs81F64Rc44cuah-caefAHYcx7TjFA89iyoWDjLYyecjpl2HLO5ykRounyv5PBWnN9ldwtwNPsWhtoqfTl6mv6ZtAypfV8XU9oom3MNYAbuV7aqx_doYpbHmKVYf-zDJ1hC9MvQ2ZcOhqc_r-dbLQiCyNG6Q8p_TX-TlBru_jeAc-V3c3Q9X9erDDRYhZUOOkYHra3XYKGs1uFLByOjLkifN-DkBhHxI1HeRk1_WjSaPniUGDdUmrQPEtUhajg3cZQcoX7w-GBabksnO8Ua_CvcDk5-HQ3j7m8JcSHSdBJntuRMquBDkSeOyUwFTgWVlT6XwuYsKxJmC8ttKlEgyZKA4MCnygci6OHpN1is6qrchIhIYZiXSikWBHNBl4nVedCJdhSvtgf7M3WZcUuKYaiYQNWaVrWGVGtItT04JH3O5YjOuhmon0amiw6jfKHSkjuBCxQaL7COszJ4fA8vSyd7sDWzhuli7NkgOFEpY0rqHsh3FnqR-t-6EHkm2fePTtyF5Zvjgbk8u7r4AZ_xnqa-NC63YBHtVG4jUJm4nc4R_wLjGeY8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmonic+field+guided+patterning+of+ordered+colloidal+nanostructures&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Huang+Xiaoping&rft.au=Chen+Kai&rft.au=Qi+Mingxi&rft.au=Zhang+Peifeng&rft.date=2019-03-26&rft.pub=De+Gruyter&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=8&rft.issue=3&rft.spage=505&rft.epage=512&rft_id=info:doi/10.1515%2Fnanoph-2018-0211&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7dc73e2b41ac49e2b287a6fd0b1d6eb6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8606&client=summon