Improving Spaceborne GNSS-R Algal Bloom Detection with Meteorological Data
Algal bloom has become a serious environmental problem caused by the overgrowth of plankton in many waterbodies, and effective remote sensing methods for monitoring it are urgently needed. Global navigation satellite system-reflectometry (GNSS-R) has been developed rapidly in recent years, which off...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 12; p. 3122 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Algal bloom has become a serious environmental problem caused by the overgrowth of plankton in many waterbodies, and effective remote sensing methods for monitoring it are urgently needed. Global navigation satellite system-reflectometry (GNSS-R) has been developed rapidly in recent years, which offers a new perspective on algal bloom detection. When algal bloom emerges, the water surface will turn smoother, which can be detected by GNSS-R. In addition, meteorological parameters, such as temperature, wind speed and solar radiation, are generally regarded as the key factors in the formation of algal bloom. In this article, a new algal bloom detection method aided by machine learning and auxiliary meteorological data is established. This work employs the Cyclone GNSS (CYGNSS) data and the fifth generation European Reanalysis (ERA-5) data with the application of the random under sampling boost (RUSBoost) algorithm. Experiments were carried out for Taihu Lake, China, over the period of August 2018 to May 2022. During the evaluation stage, the test true positive rate (TPR) of 81.9%, true negative rate (TNR) of 82.9%, overall accuracy (OA) of 82.9% and the area under (receiver operating characteristic) curve (AUC) of 0.88 were achieved, with all the GNSS-R observables and meteorological factors being involved. Meanwhile, the contribution of each meteorological factor and the error sources were assessed, and the results indicate that temperature and solar radiation play a prominent role among other meteorological factors in this research. This work demonstrates the capability of CYGNSS as an effective tool for algal bloom detection and the inclusion of meteorological data for further enhanced performance. |
---|---|
AbstractList | Algal bloom has become a serious environmental problem caused by the overgrowth of plankton in many waterbodies, and effective remote sensing methods for monitoring it are urgently needed. Global navigation satellite system-reflectometry (GNSS-R) has been developed rapidly in recent years, which offers a new perspective on algal bloom detection. When algal bloom emerges, the water surface will turn smoother, which can be detected by GNSS-R. In addition, meteorological parameters, such as temperature, wind speed and solar radiation, are generally regarded as the key factors in the formation of algal bloom. In this article, a new algal bloom detection method aided by machine learning and auxiliary meteorological data is established. This work employs the Cyclone GNSS (CYGNSS) data and the fifth generation European Reanalysis (ERA-5) data with the application of the random under sampling boost (RUSBoost) algorithm. Experiments were carried out for Taihu Lake, China, over the period of August 2018 to May 2022. During the evaluation stage, the test true positive rate (TPR) of 81.9%, true negative rate (TNR) of 82.9%, overall accuracy (OA) of 82.9% and the area under (receiver operating characteristic) curve (AUC) of 0.88 were achieved, with all the GNSS-R observables and meteorological factors being involved. Meanwhile, the contribution of each meteorological factor and the error sources were assessed, and the results indicate that temperature and solar radiation play a prominent role among other meteorological factors in this research. This work demonstrates the capability of CYGNSS as an effective tool for algal bloom detection and the inclusion of meteorological data for further enhanced performance. |
Audience | Academic |
Author | Yan, Qingyun Zhen, Yinqing |
Author_xml | – sequence: 1 givenname: Yinqing surname: Zhen fullname: Zhen, Yinqing – sequence: 2 givenname: Qingyun orcidid: 0000-0001-6693-957X surname: Yan fullname: Yan, Qingyun |
BookMark | eNptkV1vVCEQhompibX2xl9wEm-Myal8ClyurdY1VRNXrwkHhpUN57ACq_HfS12jphEugOF5B2beh-hkyQsg9JjgC8Y0fl4qEYQyQuk9dEqxpCOnmp78s3-Azmvd4T4YIxrzU_R2Pe9L_haX7bDZWwdTLgsM1-83m_HjsEpbm4aXKed5uIIGrsW8DN9j-zK868dccsrb6DpzZZt9hO4Hmyqc_17P0OfXrz5dvhlvPlyvL1c3o-OMtVFoTDTDDLz2yltNJyW991JzypQDBkExEFg4zCfqpKcUJiL7HXZKBezZGVof8_psd2Zf4mzLD5NtNL8CuWyNLS26BMbBC-5pAOqC5I6EKejJETGJAACMip7r6TFXb8LXA9Rm5lgdpGQXyIdqGOa4_1oT3NEnd9BdPpSlV2qoolopzgTv1MWR6p0DE5eQW7GuTw9zdN2vEHt8JYUSUiouu-DZUeBKrrVA-FMRwebWVvPX1g7jO7CLzd660l-J6X-Sn5m0pE8 |
CitedBy_id | crossref_primary_10_3390_rs16071162 crossref_primary_10_1016_j_jag_2024_104253 crossref_primary_10_1016_j_jag_2024_104122 crossref_primary_10_1109_JSTARS_2024_3418429 crossref_primary_10_3390_rs16203915 |
Cites_doi | 10.3390/rs12223751 10.1109/TGRS.2022.3144289 10.1016/j.envpol.2005.08.042 10.1007/s00343-015-4019-8 10.1109/ACCESS.2020.3025302 10.1109/ACCESS.2019.2939649 10.1038/s41598-018-27127-4 10.5194/tc-14-2581-2020 10.1029/2018GL077905 10.1016/j.gsf.2015.07.003 10.1016/j.catena.2019.104446 10.1016/j.rse.2020.111944 10.1109/JSTARS.2017.2689009 10.3390/s8053240 10.1109/PIERS53385.2021.9694804 10.1007/s11356-013-2088-9 10.1016/S1001-0742(09)60205-9 10.1007/s11434-006-2005-4 10.1109/LGRS.2022.3227596 10.1109/JSTARS.2020.2966880 10.1007/s10661-011-2270-9 10.1029/2009JC005511 10.3390/w12041035 10.1002/2017GL074513 10.1002/lno.10802 10.1080/01431161.2018.1433343 10.1029/2020EA001506 10.3390/toxins7041374 10.3390/rs14030677 10.3390/rs13122248 10.1109/JSTARS.2019.2955175 10.1109/JSTARS.2016.2582690 10.1002/tox.20178 10.2112/JCOASTRES-D-11-00051.1 10.1109/JSTARS.2020.2968156 10.3390/rs15020297 10.1109/TSMCA.2009.2029559 10.3390/rs14133195 10.1088/1748-9326/abb10d 10.1023/A:1007601015854 10.1109/JSTARS.2018.2833075 10.3390/rs12040614 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15123122 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_ce64d2fe2cf74c1fbf9bc15b5feee325 A758577847 10_3390_rs15123122 |
GeographicLocations | China Taihu Lake |
GeographicLocations_xml | – name: China – name: Taihu Lake |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-59019303ed9d8da92b87ddd794238ce3ef83e505c04b2c7d22eb172380c88f0d3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:34:05 EDT 2025 Thu Jul 10 22:29:32 EDT 2025 Fri Jul 25 12:04:03 EDT 2025 Tue May 27 03:54:44 EDT 2025 Tue Jul 01 03:11:11 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-59019303ed9d8da92b87ddd794238ce3ef83e505c04b2c7d22eb172380c88f0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6693-957X |
OpenAccessLink | https://doaj.org/article/ce64d2fe2cf74c1fbf9bc15b5feee325 |
PQID | 2829884354 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ce64d2fe2cf74c1fbf9bc15b5feee325 proquest_miscellaneous_3040433910 proquest_journals_2829884354 gale_infotracacademiconefile_A758577847 crossref_primary_10_3390_rs15123122 crossref_citationtrail_10_3390_rs15123122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cheng (ref_2) 2006; 51 Xie (ref_1) 2014; 21 Papale (ref_12) 2008; 8 Zhu (ref_29) 2020; 13 Li (ref_13) 2017; 44 ref_32 Seiffert (ref_31) 2010; 40 ref_30 Yan (ref_42) 2016; 9 Wang (ref_10) 2015; 33 Cheng (ref_33) 2020; 188 Wu (ref_3) 2006; 21 ref_16 Reynolds (ref_19) 2020; 13 ref_38 ref_15 Tao (ref_34) 2012; 184 Lary (ref_26) 2016; 7 Hu (ref_4) 2010; 115 Qi (ref_44) 2018; 63 Wang (ref_8) 2019; 7 Cao (ref_39) 2020; 14 Ruf (ref_18) 2019; 12 Ghasemigoudarzi (ref_11) 2020; 8 Maxwell (ref_27) 2018; 39 Yan (ref_20) 2020; 247 Zhong (ref_35) 2010; 22 Yan (ref_14) 2020; 13 ref_23 ref_21 Ruf (ref_37) 2018; 8 Yan (ref_17) 2023; 20 Yan (ref_28) 2017; 10 Chew (ref_22) 2018; 45 Zou (ref_36) 2006; 141 Klemas (ref_7) 2012; 28 Hilborn (ref_5) 2015; 7 Ban (ref_24) 2022; 60 Loria (ref_41) 2021; 8 Zhang (ref_25) 2022; 13 Zhou (ref_43) 2020; 11 Provost (ref_45) 2000; 42 ref_9 Soares (ref_40) 2020; 15 ref_6 |
References_xml | – ident: ref_15 doi: 10.3390/rs12223751 – volume: 60 start-page: 5802911 year: 2022 ident: ref_24 article-title: Detection of Red Tide over Sea Surface Using GNSS-R Spaceborne Observations publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3144289 – ident: ref_32 – volume: 141 start-page: 201 year: 2006 ident: ref_36 article-title: Removal of cyanobacterial blooms in Taihu Lake using local soils. II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2005.08.042 – volume: 33 start-page: 139 year: 2015 ident: ref_10 article-title: Monitoring cyanobacteria-dominant algal blooms in eutrophicated Taihu Lake in China with synthetic aperture radar images publication-title: Chin. J. Oceanol. Limnol. doi: 10.1007/s00343-015-4019-8 – volume: 8 start-page: 171864 year: 2020 ident: ref_11 article-title: Flash flood detection from CYGNSS data using the RUSBoost algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025302 – volume: 7 start-page: 129136 year: 2019 ident: ref_8 article-title: SAR-to-optical image translation using supervised cycle-consistent adversarial networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939649 – volume: 8 start-page: 8782 year: 2018 ident: ref_37 article-title: A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation publication-title: Sci. Rep. doi: 10.1038/s41598-018-27127-4 – volume: 14 start-page: 2581 year: 2020 ident: ref_39 article-title: The ERA5-Land soil temperature bias in permafrost regions publication-title: Cryosphere doi: 10.5194/tc-14-2581-2020 – volume: 45 start-page: 4049 year: 2018 ident: ref_22 article-title: Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL077905 – volume: 7 start-page: 3 year: 2016 ident: ref_26 article-title: Machine learning in geosciences and remote sensing publication-title: Geosci. Front. doi: 10.1016/j.gsf.2015.07.003 – volume: 188 start-page: 104446 year: 2020 ident: ref_33 article-title: Effects of environmental change on subfossil Cladocera in the subtropical shallow freshwater East Taihu Lake, China publication-title: Catena doi: 10.1016/j.catena.2019.104446 – volume: 247 start-page: 111944 year: 2020 ident: ref_20 article-title: Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111944 – volume: 10 start-page: 3789 year: 2017 ident: ref_28 article-title: Neural Networks Based Sea Ice Detection and Concentration Retrieval from GNSS-R Delay-Doppler Maps publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2689009 – volume: 8 start-page: 3240 year: 2008 ident: ref_12 article-title: ASPIS, a flexible multispectral system for airborne remote sensing environmental applications publication-title: Sensors doi: 10.3390/s8053240 – ident: ref_30 doi: 10.1109/PIERS53385.2021.9694804 – volume: 21 start-page: 5465 year: 2014 ident: ref_1 article-title: Spatiotemporal distribution of water environmental capacity-a case study on the western areas of Taihu Lake in Jiangsu Province, China publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-2088-9 – volume: 22 start-page: 961 year: 2010 ident: ref_35 article-title: Seasonal variation of potential denitrification rates of surface sediment from Meiliang Bay, Taihu Lake, China publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(09)60205-9 – volume: 51 start-page: 1603 year: 2006 ident: ref_2 article-title: An analysis on the evolvement processes of lake eutrophication and their characteristics of the typical lakes in the middle and lower reaches of Yangtze River publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-006-2005-4 – volume: 20 start-page: 1500305 year: 2023 ident: ref_17 article-title: Inland Water Mapping Based on GA-LinkNet from CyGNSS Data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2022.3227596 – volume: 13 start-page: 577 year: 2020 ident: ref_14 article-title: Sea Ice Thickness Measurement Using Spaceborne GNSS-R: First Results with TechDemoSat-1 Data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.2966880 – volume: 184 start-page: 4367 year: 2012 ident: ref_34 article-title: Characterization of heavy metals in water and sediments in Taihu Lake, China publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-011-2270-9 – volume: 115 start-page: C04002 year: 2010 ident: ref_4 article-title: Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China publication-title: J. Geophys. Res. Ocean. doi: 10.1029/2009JC005511 – ident: ref_6 doi: 10.3390/w12041035 – volume: 44 start-page: 8369 year: 2017 ident: ref_13 article-title: First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074513 – volume: 63 start-page: 1711 year: 2018 ident: ref_44 article-title: Diurnal changes of cyanobacteria blooms in Taihu Lake as derived from GOCI observations publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10802 – volume: 39 start-page: 2784 year: 2018 ident: ref_27 article-title: Implementation of machine-learning classification in remote sensing: An applied review publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1433343 – volume: 8 start-page: e2020EA001506 year: 2021 ident: ref_41 article-title: Towards Wind Vector and Wave Height Retrievals Over Inland Waters Using CYGNSS publication-title: Earth Space Sci. doi: 10.1029/2020EA001506 – volume: 7 start-page: 1374 year: 2015 ident: ref_5 article-title: One health and cyanobacteria in freshwater systems: Animal illnesses and deaths are sentinel events for human health risks publication-title: Toxins doi: 10.3390/toxins7041374 – ident: ref_9 doi: 10.3390/rs14030677 – ident: ref_23 doi: 10.3390/rs13122248 – volume: 13 start-page: 217 year: 2020 ident: ref_29 article-title: Sensing Sea Ice Based on Doppler Spread Analysis of Spaceborne GNSS-R Data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2955175 – volume: 9 start-page: 4795 year: 2016 ident: ref_42 article-title: Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results from the U.K. TechDemoSat-1 Mission publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2582690 – volume: 21 start-page: 250 year: 2006 ident: ref_3 article-title: Evaluating genotoxicity associated with microcystin-LR and its risk to source water safety in Meiliang Bay, Taihu Lake publication-title: Environ. Toxicol. doi: 10.1002/tox.20178 – volume: 28 start-page: 34 year: 2012 ident: ref_7 article-title: Remote sensing of algal blooms: An overview with case studies publication-title: J. Coast. Res. doi: 10.2112/JCOASTRES-D-11-00051.1 – volume: 13 start-page: 708 year: 2020 ident: ref_19 article-title: Wind Speed Estimation from CYGNSS Using Artificial Neural Networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.2968156 – ident: ref_16 doi: 10.3390/rs15020297 – volume: 40 start-page: 185 year: 2010 ident: ref_31 article-title: RUSBoost: A hybrid approach to alleviating class imbalance publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. doi: 10.1109/TSMCA.2009.2029559 – ident: ref_38 doi: 10.3390/rs14133195 – volume: 15 start-page: 1040a2 year: 2020 ident: ref_40 article-title: Global offshore wind energy resources using the new ERA-5 reanalysis publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/abb10d – volume: 42 start-page: 203 year: 2000 ident: ref_45 article-title: Robust Classification for Imprecise Environments publication-title: Mach. Learn. doi: 10.1023/A:1007601015854 – volume: 11 start-page: 405 year: 2020 ident: ref_43 article-title: Analysis of the Causes of Cyanobacteria Bloom: A Review publication-title: J. Resour. Ecol. – volume: 13 start-page: 1 year: 2022 ident: ref_25 article-title: Feasibility study of spaceborne GNSS-R detection of algal blooms in Taihu Lake publication-title: J. Beijing Univ. Aeronaut. Astronaut. – volume: 12 start-page: 66 year: 2019 ident: ref_18 article-title: Development of the CYGNSS Geophysical Model Function for Wind Speed publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2833075 – ident: ref_21 doi: 10.3390/rs12040614 |
SSID | ssj0000331904 |
Score | 2.387739 |
Snippet | Algal bloom has become a serious environmental problem caused by the overgrowth of plankton in many waterbodies, and effective remote sensing methods for... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3122 |
SubjectTerms | Accuracy Algae algal bloom detection algal blooms Algorithms Aquatic ecosystems Artificial satellites in navigation Artificial satellites in remote sensing China CYGNSS Datasets Environmental monitoring Global navigation satellite system GNSS-R lakes Machine learning Meteorological data Meteorological parameters Methods Monitoring methods Plankton Radiation Remote sensing RUSBoost Satellite observation Satellites Solar radiation surface water Technology application temperature Water bloom Wind speed |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS-QwFA-uHnYvoq7i-EXEhcVDsU3SaXqSGT8RHBZHwVtokxc9SKsz9eB_73udTEVYPbYNJXnJ-0zy-zH2B9K8cMJBhKF8HClSqbKv0ojojjKdu8y1ON3Xo_7lnbq6T-9DwW0ajlXObWJrqF1tqUZ-RDt-WqNzV8fPLxGxRtHuaqDQ-MGW0ARrTL6WhmejfzddlSWWuMRiNcMllZjfH02m5ONkIsQnT9QC9n9llltfc77ClkOQyAezWV1lC1CtsZ-Br_zx7Te76moBfIxJL9mMCvjFaDyObviAdtP58AlDYn4KTXvWquJUcOXX-FhP5vaOnxZNsc7uzs9uTy6jwIoQWSVlE9Fl0RwdD7jcaVfkotSZcw71Cr2vBQleS8C4xsaqFDZzQqA5Jmqx2GrtYyc32GJVV7DJeEFg9gogj22qJFgMlsq-T7IEtPPOpz12OJeQsQEynJgrngymDiRN8yHNHjvo2j7PgDL-22pIgu5aELh1-6KePJigK8ZCXznhQVifKZv40uelTdIy9QAgBXbrL02TIRXE7tgi3CTAQRGYlRlQDpThyLIe25nPpAm6OTUfK6nH9rvPqFW0VVJUUL9OjYwJdUhiLLX1_S-22S8ioJ8dHtthi83kFXYxTGnKvbAW3wF71ObS priority: 102 providerName: ProQuest |
Title | Improving Spaceborne GNSS-R Algal Bloom Detection with Meteorological Data |
URI | https://www.proquest.com/docview/2829884354 https://www.proquest.com/docview/3040433910 https://doaj.org/article/ce64d2fe2cf74c1fbf9bc15b5feee325 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9swDCW69rBdiq3dMHddoGEDhh2M2pIcy8dkaVoUTVA0K9CbYEsUeiicInEP_fcjbSfrgA277GTY1kEiRfJRH48AXzArSi89xgTlk1izSVVDncVc7ig3hc99y9M9mw_Pb_TFbXb7rNQXnwnr6IE7wZ04HGovA0oXcu3SUIWicmlWZQERlWzZSynmPUumWh-saGoluuMjVZTXn6zWHNtUKuVvEagl6v-bO25jzPQ17PfgUIy6Tr2BHawP4GVfp_zu6RAutmsAYkHJLvuKGsXZfLGIr8WId9HF-J6gsJhg056xqgUvtIoZvS5XGz8nJmVTvoWb6emP7-dxXw0hdlqpJuZLogUFHPSFN74sZGVy7z3ZE0VdhwqDUUh4xiW6ki73UpIb5pJiiTMmJF69g916WeN7ECWT2GvEInGZVugIJFXDkOYpGh98yCL4tpGQdT1VOFesuLeUMrA07S9pRvB52_ahI8j4Y6sxC3rbgkmt2w-katur2v5L1RF8ZTVZNj3qjiv7GwQ0KCaxsiPOfXIaWR7B8UaTtrfJteU9Y2MIHuoIPm1_kzXxFklZ4_JxbVXCbEOKMNTR_-jxB3jF5em7o2XHsNusHvEjgZimGsALMz0bwN5oMrtc0HN8Or-6HrSz-CdkXPRJ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZRLxVNsW8AIEOIQNbGdjXOoqi3LdvvYPbCt1JtJ7DE9VEnZTYX6p_iNzORVIQG3HhNblj2el2fs-Rh7D3GaOeEgQFc-DBSJVD5UcUBwR4lOXeLqOt2z-XB6ro4v4os19qt7C0PXKjudWCtqV1qKke9Sxk9rNO5q__pHQKhRlF3tIDQatjiB2594ZFvtHY1xfz8IMfly9nkatKgCgVVSVgE9tkxRcYNLnXZZKnKdOOeQL9F6WZDgtQT0C2yocmETJwSqM4LmCq3WPnQSx33AHuJYKUmUnhz2MZ1QIkOHqqmCiu3h7nJFFlVGQvxh92p4gH8ZgdqyTR6zzdYl5aOGh56wNSieso0WHf3y9hk77iMPfIFHbNJQBfDD-WIRfOUjyt3zgyt0wPkYqvpmV8EpvMtn-FkuO-3Kx1mVPWfn90KtF2y9KAt4yXhGpfMVQBraWEmw6JrlQx8lEWjnnY8H7FNHIWPbAuWEk3Fl8KBC1DR31Bywd33f66Ysx197HRCh-x5USrv-US6_m1YyjYWhcsKDsD5RNvK5T3MbxXnsAUAKnNZH2iZDAo_TsVn7bgEXRaWzzIhOXAmuLBmwnW4nTasJVuaObwfsbd-MMkyJmayA8mZlZEg1jiR6blv_H-IN25iezU7N6dH8ZJs9EuhwNdfWdth6tbyBV-ggVfnrmis5-3bfYvAbKl4h2Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiKfYUsAIEOIQrWM7m-SA0C7bpQ-6qrpU6s0k9pgeqqTspkL9a_w6ZvKqkIBbj0ksyxnP45sZe4axNxClmZMOAoTyItAkUvlYRwG1O4qT1MWurtN9uBjvnuj90-h0g_3q7sLQscpOJ9aK2pWWYuQjyvglCRp3PfLtsYij2fzjxY-AOkhRprVrp9GwyAFc_UT3bf1hb4Z7_VbK-c7XT7tB22EgsFqpKqCLlykqcXCpS1yWyjyJnXPIo2jJLCjwiQLECFboXNrYSYmqjdp0CZskXjiF895imzF6RWLANqc7i6PjPsIjFLK30E1NVKVSMVqtyb6qUMo_rGDdLOBfJqG2c_P77F4LUPmk4agHbAOKh-xO2yv97OoR2-_jEHyJDjfpqwL458VyGRzzCWXy-fQc4TifQVWf8yo4BXv5IT6Wq07X8llWZY_ZyY3Q6wkbFGUBTxnPqJC-BkiFjbQCi0AtH_swDiFx3vloyN53FDK2LVdOXTPODbotRE1zTc0he92PvWiKdPx11JQI3Y-gwtr1i3L13bRyaiyMtZMepPWxtqHPfZrbMMojDwBK4rLe0TYZEn9cjs3aWwz4U1RIy0zI_4rxz-Ih2-520rR6YW2uuXjIXvWfUaIpTZMVUF6ujRJU8Ughjtv6_xQv2W0UAfNlb3HwjN2ViL6aM2zbbFCtLuE5oqUqf9GyJWffbloSfgNsaCdr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Spaceborne+GNSS-R+Algal+Bloom+Detection+with+Meteorological+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhen%2C+Yinqing&rft.au=Yan%2C+Qingyun&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=12&rft_id=info:doi/10.3390%2Frs15123122&rft.externalDocID=A758577847 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |