Apple detection during different growth stages in orchards using the improved YOLO-V3 model

•Proposing an improved YOLO-V3 network processed by DenseNet method.•Realizing the detection of apples in three different growth stages in orchards.•Realizing real-time detection of apples in high resolution images.•Realizing the detection of apples under occlusion and overlap conditions. Real-time...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 157; pp. 417 - 426
Main Authors Tian, Yunong, Yang, Guodong, Wang, Zhe, Wang, Hao, Li, En, Liang, Zize
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Proposing an improved YOLO-V3 network processed by DenseNet method.•Realizing the detection of apples in three different growth stages in orchards.•Realizing real-time detection of apples in high resolution images.•Realizing the detection of apples under occlusion and overlap conditions. Real-time detection of apples in orchards is one of the most important methods for judging growth stages of apples and estimating yield. The size, colour, cluster density, and other growth characteristics of apples change as they grow. Traditional detection methods can only detect apples during a particular growth stage, but these methods cannot be adapted to different growth stages using the same model. We propose an improved YOLO-V3 model for detecting apples during different growth stages in orchards with fluctuating illumination, complex backgrounds, overlapping apples, and branches and leaves. Images of young apples, expanding apples, and ripe apples are initially collected. These images are subsequently augmented using rotation transformation, colour balance transformation, brightness transformation, and blur processing. The augmented images are used to create training sets. The DenseNet method is used to process feature layers with low resolution in the YOLO-V3 network. This effectively enhances feature propagation, promotes feature reuse, and improves network performance. After training the model, the performance of the trained model is tested on a test dataset. The test results show that the proposed YOLOV3-dense model is superior to the original YOLO-V3 model and the Faster R-CNN with VGG16 net model, which is the state-of-art fruit detection model. The average detection time of the model is 0.304s per frame at 3000 × 3000 resolution, which can provide real-time detection of apples in orchards. Moreover, the YOLOV3-dense model can effectively provide apple detection under overlapping apples and occlusion conditions, and can be applied in the actual environment of orchards.
AbstractList Real-time detection of apples in orchards is one of the most important methods for judging growth stages of apples and estimating yield. The size, colour, cluster density, and other growth characteristics of apples change as they grow. Traditional detection methods can only detect apples during a particular growth stage, but these methods cannot be adapted to different growth stages using the same model. We propose an improved YOLO-V3 model for detecting apples during different growth stages in orchards with fluctuating illumination, complex backgrounds, overlapping apples, and branches and leaves. Images of young apples, expanding apples, and ripe apples are initially collected. These images are subsequently augmented using rotation transformation, colour balance transformation, brightness transformation, and blur processing. The augmented images are used to create training sets. The DenseNet method is used to process feature layers with low resolution in the YOLO-V3 network. This effectively enhances feature propagation, promotes feature reuse, and improves network performance. After training the model, the performance of the trained model is tested on a test dataset. The test results show that the proposed YOLOV3-dense model is superior to the original YOLO-V3 model and the Faster R-CNN with VGG16 net model, which is the state-of-art fruit detection model. The average detection time of the model is 0.304 s per frame at 3000 x 3000 resolution, which can provide real-time detection of apples in orchards. Moreover, the YOLOV3-dense model can effectively provide apple detection under overlapping apples and occlusion conditions, and can be applied in the actual environment of orchards.
•Proposing an improved YOLO-V3 network processed by DenseNet method.•Realizing the detection of apples in three different growth stages in orchards.•Realizing real-time detection of apples in high resolution images.•Realizing the detection of apples under occlusion and overlap conditions. Real-time detection of apples in orchards is one of the most important methods for judging growth stages of apples and estimating yield. The size, colour, cluster density, and other growth characteristics of apples change as they grow. Traditional detection methods can only detect apples during a particular growth stage, but these methods cannot be adapted to different growth stages using the same model. We propose an improved YOLO-V3 model for detecting apples during different growth stages in orchards with fluctuating illumination, complex backgrounds, overlapping apples, and branches and leaves. Images of young apples, expanding apples, and ripe apples are initially collected. These images are subsequently augmented using rotation transformation, colour balance transformation, brightness transformation, and blur processing. The augmented images are used to create training sets. The DenseNet method is used to process feature layers with low resolution in the YOLO-V3 network. This effectively enhances feature propagation, promotes feature reuse, and improves network performance. After training the model, the performance of the trained model is tested on a test dataset. The test results show that the proposed YOLOV3-dense model is superior to the original YOLO-V3 model and the Faster R-CNN with VGG16 net model, which is the state-of-art fruit detection model. The average detection time of the model is 0.304s per frame at 3000 × 3000 resolution, which can provide real-time detection of apples in orchards. Moreover, the YOLOV3-dense model can effectively provide apple detection under overlapping apples and occlusion conditions, and can be applied in the actual environment of orchards.
Real-time detection of apples in orchards is one of the most important methods for judging growth stages of apples and estimating yield. The size, colour, cluster density, and other growth characteristics of apples change as they grow. Traditional detection methods can only detect apples during a particular growth stage, but these methods cannot be adapted to different growth stages using the same model. We propose an improved YOLO-V3 model for detecting apples during different growth stages in orchards with fluctuating illumination, complex backgrounds, overlapping apples, and branches and leaves. Images of young apples, expanding apples, and ripe apples are initially collected. These images are subsequently augmented using rotation transformation, colour balance transformation, brightness transformation, and blur processing. The augmented images are used to create training sets. The DenseNet method is used to process feature layers with low resolution in the YOLO-V3 network. This effectively enhances feature propagation, promotes feature reuse, and improves network performance. After training the model, the performance of the trained model is tested on a test dataset. The test results show that the proposed YOLOV3-dense model is superior to the original YOLO-V3 model and the Faster R-CNN with VGG16 net model, which is the state-of-art fruit detection model. The average detection time of the model is 0.304s per frame at 3000 × 3000 resolution, which can provide real-time detection of apples in orchards. Moreover, the YOLOV3-dense model can effectively provide apple detection under overlapping apples and occlusion conditions, and can be applied in the actual environment of orchards.
Author Wang, Zhe
Yang, Guodong
Liang, Zize
Tian, Yunong
Li, En
Wang, Hao
Author_xml – sequence: 1
  givenname: Yunong
  surname: Tian
  fullname: Tian, Yunong
– sequence: 2
  givenname: Guodong
  surname: Yang
  fullname: Yang, Guodong
– sequence: 3
  givenname: Zhe
  orcidid: 0000-0001-8766-9126
  surname: Wang
  fullname: Wang, Zhe
– sequence: 4
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
– sequence: 5
  givenname: En
  orcidid: 0000-0002-4412-2953
  surname: Li
  fullname: Li, En
  email: en.li@ia.ac.cn
– sequence: 6
  givenname: Zize
  surname: Liang
  fullname: Liang, Zize
BookMark eNqFkc-LGyEUx6Vkodlt_4MehF56mVSdGXV6KISl-wMCuYSFZQ9i9CUxzOhUnZT972vInvbQygN5-Pk-Hh-v0cwHDwh9oWRBCeXfjwsThlHvF4zQbkFoKfYBzakUrBKUiBmaF0xWlHfdR3Sd0pGUvpNijl6W49gDtpDBZBc8tlN0fo-t2-0ggs94H8OffMAp6z0k7DwO0Rx0tAlP6UzmA2A3jDGcwOLn9WpdPdV4CBb6T-hqp_sEn9_uG7S5-7W5fahW6_vH2-WqMk1d56qtpWiA0LZrDRWGSiPK0SC4aZiVtWxJw7cdMcJsmbat5Nvy2vGOEgYNqW_Qt8vYssPvCVJWg0sG-l57CFNSjDFKeC1EXdCv79BjmKIvyylGJedcctIUqrlQJoaUIuzUGN2g46uiRJ2Fq6O6CFdn4YrQUqzEfryLGZf1WWqO2vX_C_-8hKGIOjmIKhkH3oB1sfyMssH9e8BfkJWfHg
CitedBy_id crossref_primary_10_1016_j_compag_2022_107513
crossref_primary_10_1016_j_cej_2023_142674
crossref_primary_10_1007_s42979_023_02463_z
crossref_primary_10_3390_rs14174150
crossref_primary_10_3390_s19204599
crossref_primary_10_1049_ipr2_12171
crossref_primary_10_1109_ACCESS_2020_3003034
crossref_primary_10_4081_jae_2022_1471
crossref_primary_10_1109_ACCESS_2024_3422422
crossref_primary_10_29130_dubited_1214901
crossref_primary_10_3390_app14167195
crossref_primary_10_1007_s42979_024_03556_z
crossref_primary_10_34186_klujes_1560553
crossref_primary_10_1051_matecconf_202235503024
crossref_primary_10_1038_s41598_022_12732_1
crossref_primary_10_1016_j_compag_2022_106789
crossref_primary_10_36306_konjes_585000
crossref_primary_10_1016_j_compag_2022_106896
crossref_primary_10_1109_JIOT_2022_3162295
crossref_primary_10_1615_JFlowVisImageProc_2023050185
crossref_primary_10_1016_j_compag_2021_106398
crossref_primary_10_3390_rs16040723
crossref_primary_10_1049_ipr2_12181
crossref_primary_10_1049_ipr2_12182
crossref_primary_10_1016_j_compag_2021_106271
crossref_primary_10_1016_j_wasman_2021_10_016
crossref_primary_10_1007_s00170_022_08676_5
crossref_primary_10_3390_s20010002
crossref_primary_10_3390_agronomy14122783
crossref_primary_10_1111_jfpe_13952
crossref_primary_10_1016_j_biosystemseng_2020_07_007
crossref_primary_10_1007_s11042_023_14661_1
crossref_primary_10_3390_s20195670
crossref_primary_10_1007_s10015_024_00971_6
crossref_primary_10_3390_app13127070
crossref_primary_10_1590_1807_1929_agriambi_v28n9e277280
crossref_primary_10_1007_s10044_024_01222_x
crossref_primary_10_1016_j_cie_2022_108096
crossref_primary_10_3390_electronics13040773
crossref_primary_10_3389_fnbot_2024_1518878
crossref_primary_10_1016_j_procs_2022_01_135
crossref_primary_10_3390_agriculture11020131
crossref_primary_10_1088_1757_899X_787_1_012034
crossref_primary_10_17660_ActaHortic_2023_1360_6
crossref_primary_10_1109_TASE_2020_2964289
crossref_primary_10_3389_fpls_2021_622429
crossref_primary_10_3390_agronomy13082144
crossref_primary_10_1109_JSEN_2024_3393916
crossref_primary_10_3390_app13106296
crossref_primary_10_1109_ACCESS_2019_2948062
crossref_primary_10_1007_s42853_022_00166_6
crossref_primary_10_3390_agronomy14112614
crossref_primary_10_3389_fpls_2021_786702
crossref_primary_10_3390_rs14225853
crossref_primary_10_1016_j_atech_2023_100284
crossref_primary_10_3390_app14167295
crossref_primary_10_54097_fcis_v5i3_14021
crossref_primary_10_1016_j_micpro_2022_104573
crossref_primary_10_1109_ACCESS_2019_2962496
crossref_primary_10_55529_ijrise_32_46_53
crossref_primary_10_3390_rs13122288
crossref_primary_10_1002_eng2_70033
crossref_primary_10_1007_s11119_020_09754_y
crossref_primary_10_1016_j_biosystemseng_2019_11_017
crossref_primary_10_3390_s20174885
crossref_primary_10_3390_s24123858
crossref_primary_10_1016_j_compind_2022_103635
crossref_primary_10_1007_s11042_022_11905_4
crossref_primary_10_1016_j_compag_2021_106170
crossref_primary_10_1016_j_compag_2023_107909
crossref_primary_10_1016_j_neucom_2023_01_067
crossref_primary_10_1088_1755_1315_632_4_042004
crossref_primary_10_1007_s10694_023_01492_7
crossref_primary_10_1016_j_asoc_2025_112971
crossref_primary_10_2478_cait_2022_0007
crossref_primary_10_32604_cmc_2024_058409
crossref_primary_10_3390_agronomy12102555
crossref_primary_10_3390_agronomy13051419
crossref_primary_10_1016_j_ecoinf_2022_101886
crossref_primary_10_3390_agriculture13081527
crossref_primary_10_1590_1809_4430_eng_agric_v43n4e20230065_2023
crossref_primary_10_17660_ActaHortic_2024_1412_60
crossref_primary_10_3390_app11052238
crossref_primary_10_1016_j_postharvbio_2023_112587
crossref_primary_10_3390_agronomy12020319
crossref_primary_10_31202_ecjse_945167
crossref_primary_10_1016_j_measurement_2024_114786
crossref_primary_10_1109_LRA_2022_3188105
crossref_primary_10_1007_s00217_023_04319_5
crossref_primary_10_3390_s23010032
crossref_primary_10_1016_j_engappai_2023_106445
crossref_primary_10_1016_j_egyr_2020_09_002
crossref_primary_10_1016_j_atech_2025_100777
crossref_primary_10_1016_j_eswa_2022_119397
crossref_primary_10_1007_s11042_022_14188_x
crossref_primary_10_1016_j_aei_2023_101988
crossref_primary_10_3847_1538_4357_ad97ba
crossref_primary_10_1007_s42853_023_00184_y
crossref_primary_10_3390_agronomy14091934
crossref_primary_10_1016_j_compag_2022_106748
crossref_primary_10_3390_s24072283
crossref_primary_10_1088_1361_6501_ac82db
crossref_primary_10_1016_j_compag_2022_106974
crossref_primary_10_1016_j_compind_2024_104146
crossref_primary_10_1038_s41598_022_25260_9
crossref_primary_10_3390_agronomy11061210
crossref_primary_10_3390_rs12142229
crossref_primary_10_3390_app122211318
crossref_primary_10_3390_drones8100577
crossref_primary_10_1016_j_aei_2021_101456
crossref_primary_10_1016_j_autcon_2019_102967
crossref_primary_10_3390_w14081275
crossref_primary_10_1097_IAE_0000000000003434
crossref_primary_10_3390_s21020507
crossref_primary_10_1007_s11119_023_10098_6
crossref_primary_10_1021_acsami_1c11914
crossref_primary_10_3390_app13074160
crossref_primary_10_1016_j_compag_2022_106975
crossref_primary_10_1109_TIM_2020_3006324
crossref_primary_10_1007_s11042_022_13055_z
crossref_primary_10_1109_ACCESS_2021_3081562
crossref_primary_10_3389_fpls_2021_791256
crossref_primary_10_3390_app9194195
crossref_primary_10_3390_plants12173032
crossref_primary_10_3390_en17184731
crossref_primary_10_1016_j_compag_2021_106081
crossref_primary_10_1111_jfpe_13803
crossref_primary_10_3389_fmars_2024_1365155
crossref_primary_10_3390_agronomy12123054
crossref_primary_10_1109_JIOT_2022_3206388
crossref_primary_10_1007_s00521_021_06029_z
crossref_primary_10_3390_agriculture12081170
crossref_primary_10_46387_bjesr_1106501
crossref_primary_10_1007_s11119_023_10009_9
crossref_primary_10_1007_s00371_021_02164_9
crossref_primary_10_1016_j_postharvbio_2021_111808
crossref_primary_10_1109_ACCESS_2020_3040423
crossref_primary_10_3389_fpls_2023_1204569
crossref_primary_10_3390_electronics10050544
crossref_primary_10_1155_2022_4648105
crossref_primary_10_3390_s20123591
crossref_primary_10_1016_j_compag_2021_106092
crossref_primary_10_1186_s13007_021_00745_2
crossref_primary_10_3390_app13042691
crossref_primary_10_1007_s11042_023_16570_9
crossref_primary_10_1016_j_compag_2023_108072
crossref_primary_10_1016_j_atech_2024_100491
crossref_primary_10_1016_j_compag_2023_108196
crossref_primary_10_3390_agronomy12102483
crossref_primary_10_1016_j_jksuci_2020_08_010
crossref_primary_10_1007_s00521_024_10300_4
crossref_primary_10_1109_ACCESS_2021_3114503
crossref_primary_10_1155_2022_8457173
crossref_primary_10_3390_agriculture14112057
crossref_primary_10_1016_j_compag_2022_106715
crossref_primary_10_3390_electronics14030468
crossref_primary_10_1016_j_compag_2022_106716
crossref_primary_10_1016_j_compag_2020_105703
crossref_primary_10_1007_s11676_024_01754_2
crossref_primary_10_1016_j_compag_2022_106954
crossref_primary_10_1364_OE_484083
crossref_primary_10_1016_j_compag_2023_107637
crossref_primary_10_3389_fpls_2024_1492504
crossref_primary_10_1016_j_compag_2023_107759
crossref_primary_10_1016_j_compag_2022_107233
crossref_primary_10_1016_j_compag_2022_107234
crossref_primary_10_3390_app14135524
crossref_primary_10_3389_fcvm_2022_1000374
crossref_primary_10_1016_j_compag_2025_110246
crossref_primary_10_1371_journal_pone_0283801
crossref_primary_10_7717_peerj_cs_1558
crossref_primary_10_3390_agriculture14071059
crossref_primary_10_1016_j_fochx_2023_100733
crossref_primary_10_1016_j_aiia_2024_02_001
crossref_primary_10_1007_s11119_021_09808_9
crossref_primary_10_3390_agriculture13091814
crossref_primary_10_1016_j_compag_2023_107635
crossref_primary_10_1016_j_compag_2020_105284
crossref_primary_10_1155_2021_1205153
crossref_primary_10_1002_rob_22521
crossref_primary_10_3390_computers13030083
crossref_primary_10_3390_s21155116
crossref_primary_10_1016_j_compag_2022_107582
crossref_primary_10_1109_ACCESS_2020_2984556
crossref_primary_10_14775_ksmpe_2020_19_07_007
crossref_primary_10_1155_2019_3823515
crossref_primary_10_1117_1_JEI_33_3_033014
crossref_primary_10_62762_TIOT_2023_539452
crossref_primary_10_3389_fpls_2020_01086
crossref_primary_10_3390_app122412959
crossref_primary_10_3390_agronomy13071871
crossref_primary_10_1016_j_patcog_2020_107412
crossref_primary_10_1016_j_rineng_2024_103553
crossref_primary_10_3390_app13137501
crossref_primary_10_3390_rs14143481
crossref_primary_10_3390_s20061678
crossref_primary_10_3390_bdcc6030085
crossref_primary_10_1007_s00521_021_05982_z
crossref_primary_10_1177_15501477211007407
crossref_primary_10_3390_rs13214213
crossref_primary_10_1016_j_compag_2023_107765
crossref_primary_10_1007_s44196_023_00390_8
crossref_primary_10_1016_j_heliyon_2025_e42525
crossref_primary_10_1117_1_JEI_33_2_023026
crossref_primary_10_3390_computers13030071
crossref_primary_10_1080_09540091_2022_2051434
crossref_primary_10_1016_j_compag_2021_106560
crossref_primary_10_1038_s41438_021_00560_9
crossref_primary_10_1109_ACCESS_2021_3052240
crossref_primary_10_1145_3701985
crossref_primary_10_1016_j_compag_2021_106683
crossref_primary_10_3389_frobt_2021_626989
crossref_primary_10_1002_rob_22518
crossref_primary_10_3788_LOP221605
crossref_primary_10_1007_s11042_020_10475_7
crossref_primary_10_3390_horticulturae10030275
crossref_primary_10_1016_j_biosystemseng_2022_09_006
crossref_primary_10_3390_agriculture14122161
crossref_primary_10_1007_s11554_024_01543_4
crossref_primary_10_1007_s10163_024_01916_8
crossref_primary_10_1016_j_compag_2023_107854
crossref_primary_10_3390_agronomy14122931
crossref_primary_10_1016_j_compag_2022_107339
crossref_primary_10_33851_JMIS_2019_6_4_217
crossref_primary_10_3390_agronomy13061613
crossref_primary_10_3390_agriculture12070931
crossref_primary_10_1016_j_compag_2021_106450
crossref_primary_10_3389_fpls_2022_1040923
crossref_primary_10_1088_1742_6596_1952_2_022016
crossref_primary_10_3389_fpls_2022_965425
crossref_primary_10_3390_app13063861
crossref_primary_10_3390_agronomy13092339
crossref_primary_10_3390_agronomy13092217
crossref_primary_10_1016_j_compag_2025_110157
crossref_primary_10_3390_app122412817
crossref_primary_10_1038_s41598_024_76662_w
crossref_primary_10_1007_s00521_022_07437_5
crossref_primary_10_1016_j_wasman_2021_03_019
crossref_primary_10_1016_j_atech_2022_100099
crossref_primary_10_1016_j_ecoinf_2023_102196
crossref_primary_10_1177_1558925020908268
crossref_primary_10_1016_j_compag_2023_107741
crossref_primary_10_3390_land12020277
crossref_primary_10_1007_s11554_021_01178_9
crossref_primary_10_1016_j_fishres_2023_106710
crossref_primary_10_3390_s20247339
crossref_primary_10_1111_mice_13087
crossref_primary_10_1016_j_ecoinf_2024_102691
crossref_primary_10_1016_j_compag_2022_107432
crossref_primary_10_1371_journal_pone_0292600
crossref_primary_10_1109_ACCESS_2020_3021739
crossref_primary_10_1057_s41599_021_00792_z
crossref_primary_10_1364_AO_386903
crossref_primary_10_1016_j_biosystemseng_2020_12_002
crossref_primary_10_1177_1748006X21995388
crossref_primary_10_1016_j_measurement_2022_111959
crossref_primary_10_3390_rs13163095
crossref_primary_10_7717_peerj_cs_943
crossref_primary_10_3390_plants13233329
crossref_primary_10_1109_ACCESS_2024_3362230
crossref_primary_10_1016_j_atech_2023_100386
crossref_primary_10_3390_electronics12112448
crossref_primary_10_1038_s41598_024_67526_4
crossref_primary_10_1016_j_measurement_2024_115484
crossref_primary_10_3389_fpls_2023_1101943
crossref_primary_10_3390_rs13214486
crossref_primary_10_1016_j_compag_2022_106694
crossref_primary_10_1016_j_biosystemseng_2021_08_017
crossref_primary_10_3389_fpls_2022_1017803
crossref_primary_10_3390_rs14030638
crossref_primary_10_1142_S2196888820500219
crossref_primary_10_1016_j_biosystemseng_2021_08_015
crossref_primary_10_1155_2022_4037625
crossref_primary_10_3390_agriculture15050483
crossref_primary_10_1002_agj2_21651
crossref_primary_10_3390_horticulturae9111235
crossref_primary_10_3233_JIFS_232104
crossref_primary_10_1016_j_heliyon_2024_e29035
crossref_primary_10_1186_s43170_023_00193_z
crossref_primary_10_1007_s00371_020_01997_0
crossref_primary_10_4108_eetiot_4541
crossref_primary_10_35377_saucis___1170902
crossref_primary_10_3390_agriculture12122050
crossref_primary_10_1016_j_biosystemseng_2022_01_019
crossref_primary_10_1016_j_jag_2021_102456
crossref_primary_10_1007_s11694_023_02020_5
crossref_primary_10_1016_j_procs_2021_09_287
crossref_primary_10_3173_air_33_27
crossref_primary_10_32604_iasc_2023_040330
crossref_primary_10_1016_j_compag_2024_109077
crossref_primary_10_1016_j_agrcom_2024_100029
crossref_primary_10_1016_j_compag_2024_109199
crossref_primary_10_46604_ijeti_2022_8865
crossref_primary_10_1016_j_atech_2022_100042
crossref_primary_10_7735_ksmte_2023_32_2_101
crossref_primary_10_1109_TAFE_2024_3418818
crossref_primary_10_3390_s23156738
crossref_primary_10_3390_insects14020148
crossref_primary_10_1016_j_compag_2021_106135
crossref_primary_10_1016_j_compag_2023_107703
crossref_primary_10_1038_s41598_022_06181_z
crossref_primary_10_1177_09544062221128443
crossref_primary_10_48130_frures_0025_0006
crossref_primary_10_1016_j_compag_2023_107706
crossref_primary_10_1109_ACCESS_2023_3267483
crossref_primary_10_1007_s00138_022_01293_y
crossref_primary_10_1016_j_atech_2022_100166
crossref_primary_10_3390_plants12152883
crossref_primary_10_1007_s42979_023_02103_6
crossref_primary_10_3390_s22176325
crossref_primary_10_1007_s10846_024_02132_0
crossref_primary_10_3390_app13158840
crossref_primary_10_3390_agriculture12122039
crossref_primary_10_1364_JOSAA_459580
crossref_primary_10_3389_fpls_2022_942875
crossref_primary_10_3390_su15010820
crossref_primary_10_3233_JAD_210714
crossref_primary_10_1002_rob_22013
crossref_primary_10_3390_s24196347
crossref_primary_10_48175_IJARSCT_9693
crossref_primary_10_1002_rob_22377
crossref_primary_10_1007_s40747_021_00522_7
crossref_primary_10_3390_app11177960
crossref_primary_10_1016_j_jag_2024_103922
crossref_primary_10_1016_j_compag_2024_109819
crossref_primary_10_1088_1361_6501_acb075
crossref_primary_10_1109_ACCESS_2023_3309410
crossref_primary_10_1007_s11554_023_01281_z
crossref_primary_10_3390_agronomy13071901
crossref_primary_10_1016_j_biosystemseng_2020_03_008
crossref_primary_10_1016_j_fraope_2024_100165
crossref_primary_10_1134_S1054661821040192
crossref_primary_10_3390_en14113004
crossref_primary_10_3389_fpls_2022_839269
crossref_primary_10_1016_j_engappai_2024_109123
crossref_primary_10_1109_ACCESS_2022_3215639
crossref_primary_10_1016_j_compag_2020_105216
crossref_primary_10_1109_JLT_2021_3073225
crossref_primary_10_1016_j_compag_2020_105214
crossref_primary_10_1111_1750_3841_16237
crossref_primary_10_1007_s00371_023_02895_x
crossref_primary_10_3390_horticulturae10010040
crossref_primary_10_3389_fpls_2022_1099033
crossref_primary_10_1088_1742_6596_1748_4_042011
crossref_primary_10_3389_fpls_2023_1198650
crossref_primary_10_1049_cvi2_12146
crossref_primary_10_3390_s22072456
crossref_primary_10_4081_jae_2024_1594
crossref_primary_10_3390_electronics12153340
crossref_primary_10_1016_j_ecoinf_2024_102788
crossref_primary_10_1007_s11001_025_09567_6
crossref_primary_10_1016_j_heliyon_2024_e31868
crossref_primary_10_3390_agronomy12092081
crossref_primary_10_3390_agronomy14102395
crossref_primary_10_1016_j_aiia_2020_04_003
crossref_primary_10_1155_2019_7630926
crossref_primary_10_1016_j_compag_2024_108833
crossref_primary_10_3390_s24061866
crossref_primary_10_1016_j_compag_2024_108832
crossref_primary_10_1080_01140671_2024_2435450
crossref_primary_10_1177_17298806241278153
crossref_primary_10_3390_ani13071204
crossref_primary_10_3390_agronomy12061477
crossref_primary_10_3390_buildings12040452
crossref_primary_10_1088_1361_6501_ace124
crossref_primary_10_1016_j_compag_2022_107057
crossref_primary_10_1016_j_jksuci_2024_102220
crossref_primary_10_3390_electronics11193183
crossref_primary_10_3390_rs14133143
crossref_primary_10_1007_s00530_024_01529_z
crossref_primary_10_3389_fpls_2024_1451018
crossref_primary_10_1088_1742_6596_2868_1_012021
crossref_primary_10_35633_inmateh_73_07
crossref_primary_10_1007_s11119_024_10187_0
crossref_primary_10_4081_jae_2023_1301
crossref_primary_10_3390_machines10040254
crossref_primary_10_1002_rob_22230
crossref_primary_10_1364_OE_502163
crossref_primary_10_25092_baunfbed_878224
crossref_primary_10_1016_j_cosrev_2024_100694
crossref_primary_10_1002_rob_22224
crossref_primary_10_1016_j_cosrev_2024_100690
crossref_primary_10_3390_agronomy10111721
crossref_primary_10_3390_agronomy13071816
crossref_primary_10_3390_rs13224675
crossref_primary_10_3389_fpls_2023_1153505
crossref_primary_10_3390_agronomy14071593
crossref_primary_10_1109_ACCESS_2024_3374726
crossref_primary_10_3390_s20020504
crossref_primary_10_1016_j_mejo_2023_105805
crossref_primary_10_1016_j_compag_2020_105469
crossref_primary_10_1016_j_compag_2024_108972
crossref_primary_10_1016_j_compag_2024_108974
crossref_primary_10_32604_cmc_2025_059245
crossref_primary_10_1039_D2AY01526A
crossref_primary_10_1016_j_compag_2024_108926
crossref_primary_10_1080_21642583_2020_1824132
crossref_primary_10_1109_ACCESS_2022_3192467
crossref_primary_10_1016_j_compag_2022_107034
crossref_primary_10_1109_ACCESS_2022_3177196
crossref_primary_10_3390_agriculture12060856
crossref_primary_10_3390_electronics9060889
crossref_primary_10_3390_rs15061516
crossref_primary_10_3389_fpls_2022_868745
crossref_primary_10_1016_j_biosystemseng_2021_06_015
crossref_primary_10_1016_j_eswa_2021_116205
crossref_primary_10_3390_su142315892
crossref_primary_10_2139_ssrn_3959386
crossref_primary_10_1155_2024_6107765
crossref_primary_10_1016_j_compag_2021_106504
crossref_primary_10_18517_ijods_2_2_104_111_2021
crossref_primary_10_3390_s22010059
crossref_primary_10_1016_j_compag_2021_106503
crossref_primary_10_1109_ACCESS_2019_2962513
crossref_primary_10_3390_agronomy13051271
crossref_primary_10_1016_j_compag_2022_107029
crossref_primary_10_1016_j_ecoinf_2023_102217
crossref_primary_10_1109_TII_2020_3024578
crossref_primary_10_3390_agronomy13041042
crossref_primary_10_1016_j_compmedimag_2020_101732
crossref_primary_10_1016_j_biosystemseng_2020_04_015
crossref_primary_10_1155_2020_8870649
crossref_primary_10_1016_j_compag_2023_107682
crossref_primary_10_1016_j_compag_2025_110173
crossref_primary_10_3390_agriculture15050528
crossref_primary_10_1109_ACCESS_2022_3204762
crossref_primary_10_1007_s00521_024_10746_6
crossref_primary_10_3390_agronomy14102233
crossref_primary_10_1002_jsfa_13752
crossref_primary_10_3390_agriculture12101650
crossref_primary_10_1016_j_compag_2024_108826
crossref_primary_10_2139_ssrn_4089053
crossref_primary_10_3390_su15054341
crossref_primary_10_1109_TIM_2020_3031194
crossref_primary_10_3390_agronomy10071016
crossref_primary_10_3390_s21134442
crossref_primary_10_2139_ssrn_4022198
crossref_primary_10_3390_make5040083
crossref_primary_10_1080_03019233_2020_1816806
crossref_primary_10_3390_electronics8121504
crossref_primary_10_1038_s41598_024_61635_w
crossref_primary_10_1007_s40815_022_01267_2
crossref_primary_10_1016_j_compag_2024_108701
crossref_primary_10_3390_info13030153
crossref_primary_10_1016_j_compag_2024_108700
crossref_primary_10_2508_chikusan_95_229
crossref_primary_10_1016_j_patrec_2021_04_022
crossref_primary_10_3390_bdcc7010054
crossref_primary_10_1016_j_compag_2021_106533
crossref_primary_10_1007_s11042_022_12939_4
crossref_primary_10_1016_j_compag_2019_06_001
crossref_primary_10_1016_j_aej_2024_07_064
crossref_primary_10_1002_jbio_202200132
crossref_primary_10_1177_09544062221130928
crossref_primary_10_1016_j_compag_2020_105380
crossref_primary_10_1016_j_compag_2019_105192
crossref_primary_10_3847_1538_3881_ac3482
crossref_primary_10_3390_app13126880
crossref_primary_10_3934_mbe_2024104
crossref_primary_10_3390_agriculture12010009
crossref_primary_10_1016_j_compag_2025_110194
crossref_primary_10_1016_j_heliyon_2024_e26184
crossref_primary_10_3390_agronomy14040721
crossref_primary_10_1016_j_compag_2023_107780
crossref_primary_10_3934_mbe_2023011
crossref_primary_10_1016_j_compag_2023_107662
crossref_primary_10_3390_jmse9060636
crossref_primary_10_1016_j_atech_2021_100030
crossref_primary_10_1155_2021_9687950
crossref_primary_10_1080_00405000_2024_2426257
crossref_primary_10_1007_s12652_020_02170_0
crossref_primary_10_1186_s40494_023_00995_4
crossref_primary_10_3390_su15054329
crossref_primary_10_4081_jae_2024_1641
crossref_primary_10_1007_s11042_021_11146_x
crossref_primary_10_1038_s41598_024_74601_3
crossref_primary_10_29130_dubited_1075572
crossref_primary_10_1109_ACCESS_2019_2942144
crossref_primary_10_2478_msr_2022_0014
crossref_primary_10_2139_ssrn_4051459
crossref_primary_10_1007_s00371_021_02116_3
crossref_primary_10_1364_OL_510325
crossref_primary_10_1007_s12541_023_00911_7
crossref_primary_10_2139_ssrn_3917556
crossref_primary_10_1111_jfpe_13782
crossref_primary_10_1016_j_compag_2024_109534
crossref_primary_10_3390_agriculture13010124
crossref_primary_10_3233_IDA_220449
crossref_primary_10_1007_s11042_022_12999_6
crossref_primary_10_1016_j_compag_2023_108048
crossref_primary_10_1177_00405175221143742
crossref_primary_10_3390_computers13120336
crossref_primary_10_1016_j_compag_2022_106700
crossref_primary_10_1016_j_eja_2024_127191
crossref_primary_10_1016_j_iswa_2024_200325
crossref_primary_10_3390_electronics12081829
crossref_primary_10_7717_peerj_cs_2085
crossref_primary_10_1016_j_saa_2024_124266
crossref_primary_10_1186_s44147_022_00128_x
crossref_primary_10_3390_agronomy14092099
crossref_primary_10_3390_s23063336
crossref_primary_10_1155_2022_4325984
crossref_primary_10_3390_agriculture14010114
crossref_primary_10_1109_ACCESS_2019_2958614
crossref_primary_10_1016_j_compag_2023_108051
crossref_primary_10_1016_j_compag_2019_105165
crossref_primary_10_1016_j_compag_2020_105606
crossref_primary_10_3389_fpls_2024_1452502
crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_02021
crossref_primary_10_3389_fpls_2022_1016470
crossref_primary_10_1016_j_compag_2023_108298
crossref_primary_10_35633_inmateh_68_37
crossref_primary_10_1016_j_compag_2024_109523
crossref_primary_10_3389_fpls_2021_698474
crossref_primary_10_34133_plantphenomics_0165
crossref_primary_10_3390_biomimetics7010031
crossref_primary_10_1016_j_compag_2020_105751
crossref_primary_10_1007_s00521_024_10217_y
crossref_primary_10_3390_agronomy15030727
crossref_primary_10_1038_s41598_022_19932_9
crossref_primary_10_1016_j_compenvurbsys_2021_101692
crossref_primary_10_3390_agriculture14010126
crossref_primary_10_3390_rs12050894
crossref_primary_10_1177_02783649241227448
crossref_primary_10_3390_ai6020025
crossref_primary_10_3390_app13127146
crossref_primary_10_1016_j_compag_2023_108141
crossref_primary_10_1016_j_compag_2023_108022
crossref_primary_10_1016_j_compag_2020_105634
crossref_primary_10_3390_agronomy11030476
crossref_primary_10_1007_s11042_021_11560_1
crossref_primary_10_1007_s11042_022_12687_5
crossref_primary_10_3389_fncom_2023_1296897
crossref_primary_10_2139_ssrn_4495991
crossref_primary_10_3390_s23042037
crossref_primary_10_3390_rs16020359
crossref_primary_10_1016_j_biosystemseng_2021_03_012
crossref_primary_10_14801_jkiit_2020_18_2_1
crossref_primary_10_3390_horticulturae9101091
crossref_primary_10_1016_j_inpa_2022_12_001
crossref_primary_10_1155_2022_8924027
crossref_primary_10_1016_j_compag_2023_108035
crossref_primary_10_1049_iet_ipr_2020_1119
crossref_primary_10_1016_j_compag_2020_105742
crossref_primary_10_3390_app9193971
crossref_primary_10_1016_j_compag_2020_105504
crossref_primary_10_1007_s11042_023_15465_z
crossref_primary_10_1111_jfpe_13749
crossref_primary_10_1007_s13355_024_00873_w
crossref_primary_10_1111_jfpe_13866
crossref_primary_10_1016_j_fraope_2025_100243
crossref_primary_10_1061_JCCEE5_CPENG_5990
crossref_primary_10_1016_j_biosystemseng_2022_06_015
crossref_primary_10_1186_s13007_023_00985_4
crossref_primary_10_1016_j_compag_2020_105535
crossref_primary_10_34133_plantphenomics_0258
crossref_primary_10_1109_ACCESS_2023_3284472
crossref_primary_10_1007_s11063_023_11271_8
crossref_primary_10_1007_s11760_023_02710_z
crossref_primary_10_3390_fi14110323
crossref_primary_10_3390_su142215088
crossref_primary_10_1016_j_compag_2023_108369
crossref_primary_10_52810_TIOT_2021_100028
crossref_primary_10_1016_j_biosystemseng_2025_02_012
crossref_primary_10_3390_jmse10081143
crossref_primary_10_3390_s23125425
crossref_primary_10_1007_s11694_023_02246_3
crossref_primary_10_1016_j_compag_2025_109908
crossref_primary_10_1088_1742_6596_2678_1_012011
crossref_primary_10_3390_rs12010044
crossref_primary_10_1080_21642583_2021_1901156
crossref_primary_10_3390_agriculture14111905
crossref_primary_10_1111_jfpe_13998
crossref_primary_10_1155_2020_8859237
crossref_primary_10_1016_j_eswa_2022_118573
crossref_primary_10_3390_app14146287
crossref_primary_10_1016_j_eswa_2022_117247
crossref_primary_10_2514_1_I011075
crossref_primary_10_1155_2021_8325398
crossref_primary_10_3390_app142411829
crossref_primary_10_3390_app142210104
crossref_primary_10_1371_journal_pone_0250782
crossref_primary_10_3390_s25020547
crossref_primary_10_1007_s10489_022_03622_0
crossref_primary_10_1007_s12652_021_03584_0
crossref_primary_10_1016_j_chemolab_2024_105064
crossref_primary_10_1155_2021_8883015
crossref_primary_10_1016_j_chemolab_2024_105066
crossref_primary_10_1016_j_compag_2020_105643
crossref_primary_10_1007_s10846_021_01425_y
crossref_primary_10_1007_s11042_022_12962_5
crossref_primary_10_3390_f14020415
crossref_primary_10_1007_s11227_024_06487_x
crossref_primary_10_1109_ICJECE_2022_3154294
crossref_primary_10_1007_s10921_021_00835_0
crossref_primary_10_1088_1742_6596_1861_1_012050
crossref_primary_10_3390_agronomy14112650
crossref_primary_10_1016_j_aiia_2024_07_001
crossref_primary_10_3390_rs13010054
crossref_primary_10_1109_ACCESS_2021_3094201
crossref_primary_10_1109_ACCESS_2020_3000175
crossref_primary_10_1007_s11063_024_11536_w
crossref_primary_10_3390_agronomy14112643
crossref_primary_10_1002_rob_22147
crossref_primary_10_1002_rob_22268
crossref_primary_10_3233_JIFS_213251
crossref_primary_10_3390_ijms232113469
crossref_primary_10_1016_j_aiia_2020_09_002
crossref_primary_10_3390_buildings13061394
crossref_primary_10_1007_s11119_021_09846_3
crossref_primary_10_1016_j_biosystemseng_2021_10_004
crossref_primary_10_3390_rs12010182
crossref_primary_10_1016_j_compag_2023_108592
crossref_primary_10_1051_e3sconf_202341201083
crossref_primary_10_3390_agriculture12081104
crossref_primary_10_1016_j_compag_2023_108233
crossref_primary_10_1016_j_compag_2019_105108
crossref_primary_10_1016_j_compag_2020_105302
crossref_primary_10_1016_j_compag_2024_109625
crossref_primary_10_1016_j_compag_2025_109922
Cites_doi 10.1016/j.compag.2014.10.016
10.1016/j.compag.2011.05.007
10.1016/j.compag.2017.01.001
10.1016/j.compag.2011.11.007
10.1109/LRA.2017.2651944
10.3390/s16081222
10.1002/ird.2076
10.3390/s17040905
10.3390/s140712191
10.1007/978-3-319-00065-7_50
10.1111/exsy.12146
10.1016/j.patcog.2017.05.015
10.1016/j.compag.2018.02.027
10.1017/S2040470017000206
10.1016/j.compag.2016.06.022
10.1109/TPAMI.2016.2577031
10.1016/j.compind.2018.03.010
10.1016/j.compag.2018.02.016
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Feb 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 2019
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2019.01.012
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
EndPage 426
ExternalDocumentID 10_1016_j_compag_2019_01_012
S016816991831528X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7SC
7SP
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c433t-53874e01595c17c18c7777ae76c42d8385046b90c7cb2ad586b7ae969102e403
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Fri Jul 11 11:22:03 EDT 2025
Fri Jul 25 02:43:34 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Tue Jul 01 01:58:13 EDT 2025
Fri Feb 23 02:49:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Image augmentation
Real-time detection
Apple images acquisition
YOLOV3-dense
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-53874e01595c17c18c7777ae76c42d8385046b90c7cb2ad586b7ae969102e403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8766-9126
0000-0002-4412-2953
PQID 2186668604
PQPubID 2045491
PageCount 10
ParticipantIDs proquest_miscellaneous_2221063773
proquest_journals_2186668604
crossref_primary_10_1016_j_compag_2019_01_012
crossref_citationtrail_10_1016_j_compag_2019_01_012
elsevier_sciencedirect_doi_10_1016_j_compag_2019_01_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhao, Gong, Huang, Liu (b0130) 2016; 127
Chen, Skandan, Dcunha, Das, Okon, Qu, Taylor, Kumar (b0015) 2017; 2
Tyagi (b0105) 2016; 65
Dyrmann, Jørgensen, Midtiby (b0025) 2017; 8
Linker, Cohen, Naor (b0060) 2012; 81
Kamilaris, Prenafeta-Boldú (b0045) 2018; 147
Redmon, Divvala, Girshick, Farhadi (b0075) 2016
Zhang, Dong, Chen, Jia, Du, Muhammad, Wang (b0125) 2017
Redmon, Farhadi (b0085) 2018
Hamuda, Ginley, Glavin, Jones (b0030) 2018; 148
Lam (b0050) 2005
Wang, Nuske, Bergerman, Singh (b0110) 2013; 88
Bargoti, Underwood (b0010) 2016
Tang, Wang, Zhang, He, Xin, Xu (b0100) 2017; 135
Lee, Chan, Mayo, Remagnino (b0055) 2017; 71
Zhang, Phillips, Wang, Ji, Yang, Wu (b0120) 2016; 33
Redmon, Farhadi (b0080) 2017
Huang, Liu, Laurens, Weinberger (b0035) 2017
Rahnemoonfar, Sheppard (b0070) 2017; 17
Arribas, Sánchez-Ferrero, Ruiz-Ruiz, Gómez-Gil (b0005) 2011; 78
Yamamoto, Guo, Yoshioka, Ninomiya (b0115) 2014; 14
Simonyan, Zisserman (b0095) 2014
Dias, Tabb, Medeiros (b0020) 2018; 99
Inkyu, Ge, Feras, Ben, Tristan, Chris (b0040) 2016; 16
Ren, He, Girshick, Sun (b0090) 2016; 39
Lu, Sang (b0065) 2015; 110
Lu (10.1016/j.compag.2019.01.012_b0065) 2015; 110
Zhang (10.1016/j.compag.2019.01.012_b0125) 2017
Huang (10.1016/j.compag.2019.01.012_b0035) 2017
Yamamoto (10.1016/j.compag.2019.01.012_b0115) 2014; 14
Kamilaris (10.1016/j.compag.2019.01.012_b0045) 2018; 147
Inkyu (10.1016/j.compag.2019.01.012_b0040) 2016; 16
Rahnemoonfar (10.1016/j.compag.2019.01.012_b0070) 2017; 17
Lam (10.1016/j.compag.2019.01.012_b0050) 2005
Wang (10.1016/j.compag.2019.01.012_b0110) 2013; 88
Zhang (10.1016/j.compag.2019.01.012_b0120) 2016; 33
Dyrmann (10.1016/j.compag.2019.01.012_b0025) 2017; 8
Bargoti (10.1016/j.compag.2019.01.012_b0010) 2016
Linker (10.1016/j.compag.2019.01.012_b0060) 2012; 81
Zhao (10.1016/j.compag.2019.01.012_b0130) 2016; 127
Redmon (10.1016/j.compag.2019.01.012_b0075) 2016
Redmon (10.1016/j.compag.2019.01.012_b0085) 2018
Tang (10.1016/j.compag.2019.01.012_b0100) 2017; 135
Ren (10.1016/j.compag.2019.01.012_b0090) 2016; 39
Arribas (10.1016/j.compag.2019.01.012_b0005) 2011; 78
Chen (10.1016/j.compag.2019.01.012_b0015) 2017; 2
Hamuda (10.1016/j.compag.2019.01.012_b0030) 2018; 148
Dias (10.1016/j.compag.2019.01.012_b0020) 2018; 99
Simonyan (10.1016/j.compag.2019.01.012_b0095) 2014
Tyagi (10.1016/j.compag.2019.01.012_b0105) 2016; 65
Redmon (10.1016/j.compag.2019.01.012_b0080) 2017
Lee (10.1016/j.compag.2019.01.012_b0055) 2017; 71
References_xml – start-page: 134
  year: 2005
  end-page: 139
  ident: b0050
  article-title: Combining gray world and retinex theory for automatic white balance in digital photography
  publication-title: International Symposium on Consumer Electronics
– year: 2014
  ident: b0095
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Comput. Sci.
– start-page: 6517
  year: 2017
  end-page: 6525
  ident: b0080
  article-title: YOLO9000: Better, faster, stronger
  publication-title: IEEE conference on Computer Vision and Pattern Recognition
– volume: 16
  start-page: 1222
  year: 2016
  ident: b0040
  article-title: DeepFruits: a fruit detection system using deep neural networks
  publication-title: Sensors
– volume: 148
  start-page: 37
  year: 2018
  end-page: 44
  ident: b0030
  article-title: Improved image processing-based crop detection using kalman filtering and the hungarian algorithm
  publication-title: Comput. Electron. Agric.
– start-page: 1
  year: 2017
  end-page: 20
  ident: b0125
  article-title: Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation
  publication-title: Multimedia Tools Appl.
– volume: 65
  start-page: 388
  year: 2016
  end-page: 389
  ident: b0105
  article-title: Towards a second green revolution
  publication-title: Irrigation Drainage
– volume: 127
  start-page: 311
  year: 2016
  end-page: 323
  ident: b0130
  article-title: A review of key techniques of vision-based control for harvesting robot
  publication-title: Comput. Electron. Agric.
– volume: 71
  start-page: 1
  year: 2017
  end-page: 13
  ident: b0055
  article-title: How deep learning extracts and learns leaf features for plant classification
  publication-title: Pattern Recogn.
– year: 2018
  ident: b0085
  article-title: YOLOv3: An incremental improvement
  publication-title: IEEE conference on Computer Vision and Pattern Recognition
– volume: 81
  start-page: 45
  year: 2012
  end-page: 57
  ident: b0060
  article-title: Determination of the number of green apples in RGB images recorded in orchards
  publication-title: Comput. Electron. Agric.
– volume: 78
  start-page: 9
  year: 2011
  end-page: 18
  ident: b0005
  article-title: Leaf classification in sunflower crops by computer vision and neural networks
  publication-title: Comput. Electron. Agric.
– volume: 110
  start-page: 121
  year: 2015
  end-page: 130
  ident: b0065
  article-title: Detecting citrus fruits and occlusion recovery under natural illumination conditions
  publication-title: Comput. Electron. Agric.
– volume: 147
  start-page: 70
  year: 2018
  end-page: 90
  ident: b0045
  article-title: Deep learning in agriculture: a survey
  publication-title: Comput. Electron. Agric.
– start-page: 1
  year: 2016
  end-page: 8
  ident: b0010
  article-title: Deep fruit detection in orchards
  publication-title: Aust. Centre Field Robotics
– volume: 135
  start-page: 63
  year: 2017
  end-page: 70
  ident: b0100
  article-title: Weed identification based on K-means feature learning combined with convolutional neural network
  publication-title: Comput. Electron. Agric.
– volume: 39
  start-page: 1137
  year: 2016
  end-page: 1149
  ident: b0090
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Machine Intelligence
– volume: 2
  start-page: 781
  year: 2017
  end-page: 788
  ident: b0015
  article-title: Counting apples and oranges with deep learning: a data driven approach
  publication-title: IEEE Robotics Automation Lett.
– volume: 99
  start-page: 17
  year: 2018
  end-page: 28
  ident: b0020
  article-title: Apple flower detection using deep convolutional networks
  publication-title: Comput. Ind.
– volume: 8
  start-page: 842
  year: 2017
  end-page: 847
  ident: b0025
  article-title: RoboWeedSupport - detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network
  publication-title: Adv. Anim. Biosci.: Precision Agric.
– volume: 14
  start-page: 12191
  year: 2014
  end-page: 12206
  ident: b0115
  article-title: On plant detection of intact tomato fruits using image analysis and machine learning methods
  publication-title: Sensors
– volume: 88
  start-page: 745
  year: 2013
  end-page: 758
  ident: b0110
  article-title: Automated crop yield estimation for apple orchards
  publication-title: Exp. Robotics
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: b0035
  article-title: Densely connected convolutional networks
  publication-title: IEEE conference on Computer Vision and Pattern Recognition
– volume: 17
  start-page: 905
  year: 2017
  ident: b0070
  article-title: Deep count: fruit counting based on deep simulated learning
  publication-title: Sensors
– start-page: 779
  year: 2016
  end-page: 788
  ident: b0075
  article-title: You only look once: unified, real-time object detection
  publication-title: IEEE conference on Computer Vision and Pattern Recognition
– volume: 33
  start-page: 239
  year: 2016
  end-page: 253
  ident: b0120
  article-title: Fruit classification by biogeography-based optimization and feedforward neural network
  publication-title: Expert Syst. J. Knowledge Eng.
– volume: 110
  start-page: 121
  year: 2015
  ident: 10.1016/j.compag.2019.01.012_b0065
  article-title: Detecting citrus fruits and occlusion recovery under natural illumination conditions
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.10.016
– volume: 78
  start-page: 9
  year: 2011
  ident: 10.1016/j.compag.2019.01.012_b0005
  article-title: Leaf classification in sunflower crops by computer vision and neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2011.05.007
– volume: 135
  start-page: 63
  year: 2017
  ident: 10.1016/j.compag.2019.01.012_b0100
  article-title: Weed identification based on K-means feature learning combined with convolutional neural network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.01.001
– year: 2018
  ident: 10.1016/j.compag.2019.01.012_b0085
  article-title: YOLOv3: An incremental improvement
– volume: 81
  start-page: 45
  year: 2012
  ident: 10.1016/j.compag.2019.01.012_b0060
  article-title: Determination of the number of green apples in RGB images recorded in orchards
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2011.11.007
– volume: 2
  start-page: 781
  year: 2017
  ident: 10.1016/j.compag.2019.01.012_b0015
  article-title: Counting apples and oranges with deep learning: a data driven approach
  publication-title: IEEE Robotics Automation Lett.
  doi: 10.1109/LRA.2017.2651944
– volume: 16
  start-page: 1222
  year: 2016
  ident: 10.1016/j.compag.2019.01.012_b0040
  article-title: DeepFruits: a fruit detection system using deep neural networks
  publication-title: Sensors
  doi: 10.3390/s16081222
– volume: 65
  start-page: 388
  year: 2016
  ident: 10.1016/j.compag.2019.01.012_b0105
  article-title: Towards a second green revolution
  publication-title: Irrigation Drainage
  doi: 10.1002/ird.2076
– volume: 17
  start-page: 905
  year: 2017
  ident: 10.1016/j.compag.2019.01.012_b0070
  article-title: Deep count: fruit counting based on deep simulated learning
  publication-title: Sensors
  doi: 10.3390/s17040905
– volume: 14
  start-page: 12191
  year: 2014
  ident: 10.1016/j.compag.2019.01.012_b0115
  article-title: On plant detection of intact tomato fruits using image analysis and machine learning methods
  publication-title: Sensors
  doi: 10.3390/s140712191
– volume: 88
  start-page: 745
  year: 2013
  ident: 10.1016/j.compag.2019.01.012_b0110
  article-title: Automated crop yield estimation for apple orchards
  publication-title: Exp. Robotics
  doi: 10.1007/978-3-319-00065-7_50
– start-page: 2261
  year: 2017
  ident: 10.1016/j.compag.2019.01.012_b0035
  article-title: Densely connected convolutional networks
– volume: 33
  start-page: 239
  year: 2016
  ident: 10.1016/j.compag.2019.01.012_b0120
  article-title: Fruit classification by biogeography-based optimization and feedforward neural network
  publication-title: Expert Syst. J. Knowledge Eng.
  doi: 10.1111/exsy.12146
– start-page: 779
  year: 2016
  ident: 10.1016/j.compag.2019.01.012_b0075
  article-title: You only look once: unified, real-time object detection
– volume: 71
  start-page: 1
  year: 2017
  ident: 10.1016/j.compag.2019.01.012_b0055
  article-title: How deep learning extracts and learns leaf features for plant classification
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2017.05.015
– volume: 148
  start-page: 37
  year: 2018
  ident: 10.1016/j.compag.2019.01.012_b0030
  article-title: Improved image processing-based crop detection using kalman filtering and the hungarian algorithm
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.027
– volume: 8
  start-page: 842
  year: 2017
  ident: 10.1016/j.compag.2019.01.012_b0025
  article-title: RoboWeedSupport - detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network
  publication-title: Adv. Anim. Biosci.: Precision Agric.
  doi: 10.1017/S2040470017000206
– start-page: 1
  year: 2017
  ident: 10.1016/j.compag.2019.01.012_b0125
  article-title: Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation
  publication-title: Multimedia Tools Appl.
– volume: 127
  start-page: 311
  year: 2016
  ident: 10.1016/j.compag.2019.01.012_b0130
  article-title: A review of key techniques of vision-based control for harvesting robot
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.06.022
– start-page: 134
  year: 2005
  ident: 10.1016/j.compag.2019.01.012_b0050
  article-title: Combining gray world and retinex theory for automatic white balance in digital photography
– start-page: 6517
  year: 2017
  ident: 10.1016/j.compag.2019.01.012_b0080
  article-title: YOLO9000: Better, faster, stronger
– volume: 39
  start-page: 1137
  year: 2016
  ident: 10.1016/j.compag.2019.01.012_b0090
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Machine Intelligence
  doi: 10.1109/TPAMI.2016.2577031
– start-page: 1
  year: 2016
  ident: 10.1016/j.compag.2019.01.012_b0010
  article-title: Deep fruit detection in orchards
  publication-title: Aust. Centre Field Robotics
– volume: 99
  start-page: 17
  year: 2018
  ident: 10.1016/j.compag.2019.01.012_b0020
  article-title: Apple flower detection using deep convolutional networks
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.03.010
– year: 2014
  ident: 10.1016/j.compag.2019.01.012_b0095
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Comput. Sci.
– volume: 147
  start-page: 70
  year: 2018
  ident: 10.1016/j.compag.2019.01.012_b0045
  article-title: Deep learning in agriculture: a survey
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.016
SSID ssj0016987
Score 2.676042
Snippet •Proposing an improved YOLO-V3 network processed by DenseNet method.•Realizing the detection of apples in three different growth stages in orchards.•Realizing...
Real-time detection of apples in orchards is one of the most important methods for judging growth stages of apples and estimating yield. The size, colour,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 417
SubjectTerms Apple images acquisition
Apples
branches
Color
data collection
Deep learning
developmental stages
fruits
Image augmentation
leaves
lighting
Model testing
Occlusion
Orchards
Real time
Real-time detection
Training
Transformations
Variations
YOLOV3-dense
Title Apple detection during different growth stages in orchards using the improved YOLO-V3 model
URI https://dx.doi.org/10.1016/j.compag.2019.01.012
https://www.proquest.com/docview/2186668604
https://www.proquest.com/docview/2221063773
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbL9tIeym4fNG12UaFXNbYk63EMYUO6bZND05LSg4hlyetSnJA41_3tO5LtQAtLoMYXS2NsRtLoG_ubGYQ-aK-odykla-8l4QW1RGlXEKqF9BRWWBZzd36di9l3frvKVmdo0sfCBFplZ_tbmx6tddcy6rQ52lbV6BuAFZUKwDeKwSakViGCncswyz_eH2keIKDakGkB3hJI9-FzkeMVed5lIHjpmLwzpY9tT_8Y6rj7TC_Q8w424nH7ZpfozNUv0LNxuetSZ7iX6FcAlA4Xronsqhq3EYi4L4HS4BJc7uYOAx4s3R5XNd7s2qArHNjvJQYsiKv4kcEV-Ofiy4L8YDiWynmFltOb5WRGutIJxHLGGgJKltzBVq8zm0qbKivhWDspLKeFgiEAvzjXiZU2p-siUyKHXi0APFDHE_Yandeb2r1BOFOph3YvCg3QSqrcKs4S51XidQhSHSDWK8zYLq14qG7xx_T8sd-mVbMJajZJCicdIHK8a9um1TghL_uxMH9NDwOW_8Sdw37oTLc89yYU4hJCiYQP0PtjNyys8LdkXbvNAWQoeMOCScne_vfD36Gn4apleQ_RebM7uCsAMU1-HWfpNXoy_vR5Nn8Ahl3vxQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gF4mMaXKGxgJF6tJnbij8dq2tSxrnugoCIerMaxQxFKpy77_zk7TiWQ0CSiPMW2Ep3tu9_Fv7sD-Ki9Yt7ljK69l7SomaVKu5oyLaRnuMPKmLvzeiFmX4pPq3J1AGdDLEygVSbd3-v0qK3Tk0mS5uR2s5l8RrCicoH4RnE0Qmr1CA5DdqpyBIfTy6vZYn-YILTqo6YFOkw4YIigizSvSPVuAsdLx_ydOfuXhfpLV0cDdHEMRwk5kmn_cc_gwLXP4em02aXsGe4FfA-Y0pHadZFg1ZI-CJEMVVA60qDX3f0gCAkbd0c2Ldnu-rgrEgjwDUE4SDbxP4Orybeb-Q39ykmslvMSlhfny7MZTdUTqC047yjKWRYOrb0ubS5trqzEa-2ksAWrFc4CusaVzqy0FVvXpRIVtmqB-IG5IuOvYNRuW_caSKlyj8-9qDWiK6kqqwqeOa8yr0Oc6hj4IDBjU2bxUODilxkoZD9NL2YTxGyyHG82Brofddtn1nigvxzmwvyxQgwq_wdGngxTZ9IOvTOhFpcQSmTFGD7sm3FvhQOTdeu299iHoUMsuJT8zX-__D08ni2v52Z-ubh6C09CS0_6PoFRt7t3p4hpuupdWrO_AcOS8nY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Apple+detection+during+different+growth+stages+in+orchards+using+the+improved+YOLO-V3+model&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Tian%2C+Yunong&rft.au=Yang%2C+Guodong&rft.au=Wang%2C+Zhe&rft.au=Wang%2C+Hao&rft.date=2019-02-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=157&rft.spage=417&rft.epage=426&rft_id=info:doi/10.1016%2Fj.compag.2019.01.012&rft.externalDocID=S016816991831528X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon