Apple detection during different growth stages in orchards using the improved YOLO-V3 model
•Proposing an improved YOLO-V3 network processed by DenseNet method.•Realizing the detection of apples in three different growth stages in orchards.•Realizing real-time detection of apples in high resolution images.•Realizing the detection of apples under occlusion and overlap conditions. Real-time...
Saved in:
Published in | Computers and electronics in agriculture Vol. 157; pp. 417 - 426 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Proposing an improved YOLO-V3 network processed by DenseNet method.•Realizing the detection of apples in three different growth stages in orchards.•Realizing real-time detection of apples in high resolution images.•Realizing the detection of apples under occlusion and overlap conditions.
Real-time detection of apples in orchards is one of the most important methods for judging growth stages of apples and estimating yield. The size, colour, cluster density, and other growth characteristics of apples change as they grow. Traditional detection methods can only detect apples during a particular growth stage, but these methods cannot be adapted to different growth stages using the same model. We propose an improved YOLO-V3 model for detecting apples during different growth stages in orchards with fluctuating illumination, complex backgrounds, overlapping apples, and branches and leaves. Images of young apples, expanding apples, and ripe apples are initially collected. These images are subsequently augmented using rotation transformation, colour balance transformation, brightness transformation, and blur processing. The augmented images are used to create training sets. The DenseNet method is used to process feature layers with low resolution in the YOLO-V3 network. This effectively enhances feature propagation, promotes feature reuse, and improves network performance. After training the model, the performance of the trained model is tested on a test dataset. The test results show that the proposed YOLOV3-dense model is superior to the original YOLO-V3 model and the Faster R-CNN with VGG16 net model, which is the state-of-art fruit detection model. The average detection time of the model is 0.304s per frame at 3000 × 3000 resolution, which can provide real-time detection of apples in orchards. Moreover, the YOLOV3-dense model can effectively provide apple detection under overlapping apples and occlusion conditions, and can be applied in the actual environment of orchards. |
---|---|
AbstractList | Real-time detection of apples in orchards is one of the most important methods for judging growth stages of apples and estimating yield. The size, colour, cluster density, and other growth characteristics of apples change as they grow. Traditional detection methods can only detect apples during a particular growth stage, but these methods cannot be adapted to different growth stages using the same model. We propose an improved YOLO-V3 model for detecting apples during different growth stages in orchards with fluctuating illumination, complex backgrounds, overlapping apples, and branches and leaves. Images of young apples, expanding apples, and ripe apples are initially collected. These images are subsequently augmented using rotation transformation, colour balance transformation, brightness transformation, and blur processing. The augmented images are used to create training sets. The DenseNet method is used to process feature layers with low resolution in the YOLO-V3 network. This effectively enhances feature propagation, promotes feature reuse, and improves network performance. After training the model, the performance of the trained model is tested on a test dataset. The test results show that the proposed YOLOV3-dense model is superior to the original YOLO-V3 model and the Faster R-CNN with VGG16 net model, which is the state-of-art fruit detection model. The average detection time of the model is 0.304 s per frame at 3000 x 3000 resolution, which can provide real-time detection of apples in orchards. Moreover, the YOLOV3-dense model can effectively provide apple detection under overlapping apples and occlusion conditions, and can be applied in the actual environment of orchards. •Proposing an improved YOLO-V3 network processed by DenseNet method.•Realizing the detection of apples in three different growth stages in orchards.•Realizing real-time detection of apples in high resolution images.•Realizing the detection of apples under occlusion and overlap conditions. Real-time detection of apples in orchards is one of the most important methods for judging growth stages of apples and estimating yield. The size, colour, cluster density, and other growth characteristics of apples change as they grow. Traditional detection methods can only detect apples during a particular growth stage, but these methods cannot be adapted to different growth stages using the same model. We propose an improved YOLO-V3 model for detecting apples during different growth stages in orchards with fluctuating illumination, complex backgrounds, overlapping apples, and branches and leaves. Images of young apples, expanding apples, and ripe apples are initially collected. These images are subsequently augmented using rotation transformation, colour balance transformation, brightness transformation, and blur processing. The augmented images are used to create training sets. The DenseNet method is used to process feature layers with low resolution in the YOLO-V3 network. This effectively enhances feature propagation, promotes feature reuse, and improves network performance. After training the model, the performance of the trained model is tested on a test dataset. The test results show that the proposed YOLOV3-dense model is superior to the original YOLO-V3 model and the Faster R-CNN with VGG16 net model, which is the state-of-art fruit detection model. The average detection time of the model is 0.304s per frame at 3000 × 3000 resolution, which can provide real-time detection of apples in orchards. Moreover, the YOLOV3-dense model can effectively provide apple detection under overlapping apples and occlusion conditions, and can be applied in the actual environment of orchards. Real-time detection of apples in orchards is one of the most important methods for judging growth stages of apples and estimating yield. The size, colour, cluster density, and other growth characteristics of apples change as they grow. Traditional detection methods can only detect apples during a particular growth stage, but these methods cannot be adapted to different growth stages using the same model. We propose an improved YOLO-V3 model for detecting apples during different growth stages in orchards with fluctuating illumination, complex backgrounds, overlapping apples, and branches and leaves. Images of young apples, expanding apples, and ripe apples are initially collected. These images are subsequently augmented using rotation transformation, colour balance transformation, brightness transformation, and blur processing. The augmented images are used to create training sets. The DenseNet method is used to process feature layers with low resolution in the YOLO-V3 network. This effectively enhances feature propagation, promotes feature reuse, and improves network performance. After training the model, the performance of the trained model is tested on a test dataset. The test results show that the proposed YOLOV3-dense model is superior to the original YOLO-V3 model and the Faster R-CNN with VGG16 net model, which is the state-of-art fruit detection model. The average detection time of the model is 0.304s per frame at 3000 × 3000 resolution, which can provide real-time detection of apples in orchards. Moreover, the YOLOV3-dense model can effectively provide apple detection under overlapping apples and occlusion conditions, and can be applied in the actual environment of orchards. |
Author | Wang, Zhe Yang, Guodong Liang, Zize Tian, Yunong Li, En Wang, Hao |
Author_xml | – sequence: 1 givenname: Yunong surname: Tian fullname: Tian, Yunong – sequence: 2 givenname: Guodong surname: Yang fullname: Yang, Guodong – sequence: 3 givenname: Zhe orcidid: 0000-0001-8766-9126 surname: Wang fullname: Wang, Zhe – sequence: 4 givenname: Hao surname: Wang fullname: Wang, Hao – sequence: 5 givenname: En orcidid: 0000-0002-4412-2953 surname: Li fullname: Li, En email: en.li@ia.ac.cn – sequence: 6 givenname: Zize surname: Liang fullname: Liang, Zize |
BookMark | eNqFkc-LGyEUx6Vkodlt_4MehF56mVSdGXV6KISl-wMCuYSFZQ9i9CUxzOhUnZT972vInvbQygN5-Pk-Hh-v0cwHDwh9oWRBCeXfjwsThlHvF4zQbkFoKfYBzakUrBKUiBmaF0xWlHfdR3Sd0pGUvpNijl6W49gDtpDBZBc8tlN0fo-t2-0ggs94H8OffMAp6z0k7DwO0Rx0tAlP6UzmA2A3jDGcwOLn9WpdPdV4CBb6T-hqp_sEn9_uG7S5-7W5fahW6_vH2-WqMk1d56qtpWiA0LZrDRWGSiPK0SC4aZiVtWxJw7cdMcJsmbat5Nvy2vGOEgYNqW_Qt8vYssPvCVJWg0sG-l57CFNSjDFKeC1EXdCv79BjmKIvyylGJedcctIUqrlQJoaUIuzUGN2g46uiRJ2Fq6O6CFdn4YrQUqzEfryLGZf1WWqO2vX_C_-8hKGIOjmIKhkH3oB1sfyMssH9e8BfkJWfHg |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_107513 crossref_primary_10_1016_j_cej_2023_142674 crossref_primary_10_1007_s42979_023_02463_z crossref_primary_10_3390_rs14174150 crossref_primary_10_3390_s19204599 crossref_primary_10_1049_ipr2_12171 crossref_primary_10_1109_ACCESS_2020_3003034 crossref_primary_10_4081_jae_2022_1471 crossref_primary_10_1109_ACCESS_2024_3422422 crossref_primary_10_29130_dubited_1214901 crossref_primary_10_3390_app14167195 crossref_primary_10_1007_s42979_024_03556_z crossref_primary_10_34186_klujes_1560553 crossref_primary_10_1051_matecconf_202235503024 crossref_primary_10_1038_s41598_022_12732_1 crossref_primary_10_1016_j_compag_2022_106789 crossref_primary_10_36306_konjes_585000 crossref_primary_10_1016_j_compag_2022_106896 crossref_primary_10_1109_JIOT_2022_3162295 crossref_primary_10_1615_JFlowVisImageProc_2023050185 crossref_primary_10_1016_j_compag_2021_106398 crossref_primary_10_3390_rs16040723 crossref_primary_10_1049_ipr2_12181 crossref_primary_10_1049_ipr2_12182 crossref_primary_10_1016_j_compag_2021_106271 crossref_primary_10_1016_j_wasman_2021_10_016 crossref_primary_10_1007_s00170_022_08676_5 crossref_primary_10_3390_s20010002 crossref_primary_10_3390_agronomy14122783 crossref_primary_10_1111_jfpe_13952 crossref_primary_10_1016_j_biosystemseng_2020_07_007 crossref_primary_10_1007_s11042_023_14661_1 crossref_primary_10_3390_s20195670 crossref_primary_10_1007_s10015_024_00971_6 crossref_primary_10_3390_app13127070 crossref_primary_10_1590_1807_1929_agriambi_v28n9e277280 crossref_primary_10_1007_s10044_024_01222_x crossref_primary_10_1016_j_cie_2022_108096 crossref_primary_10_3390_electronics13040773 crossref_primary_10_3389_fnbot_2024_1518878 crossref_primary_10_1016_j_procs_2022_01_135 crossref_primary_10_3390_agriculture11020131 crossref_primary_10_1088_1757_899X_787_1_012034 crossref_primary_10_17660_ActaHortic_2023_1360_6 crossref_primary_10_1109_TASE_2020_2964289 crossref_primary_10_3389_fpls_2021_622429 crossref_primary_10_3390_agronomy13082144 crossref_primary_10_1109_JSEN_2024_3393916 crossref_primary_10_3390_app13106296 crossref_primary_10_1109_ACCESS_2019_2948062 crossref_primary_10_1007_s42853_022_00166_6 crossref_primary_10_3390_agronomy14112614 crossref_primary_10_3389_fpls_2021_786702 crossref_primary_10_3390_rs14225853 crossref_primary_10_1016_j_atech_2023_100284 crossref_primary_10_3390_app14167295 crossref_primary_10_54097_fcis_v5i3_14021 crossref_primary_10_1016_j_micpro_2022_104573 crossref_primary_10_1109_ACCESS_2019_2962496 crossref_primary_10_55529_ijrise_32_46_53 crossref_primary_10_3390_rs13122288 crossref_primary_10_1002_eng2_70033 crossref_primary_10_1007_s11119_020_09754_y crossref_primary_10_1016_j_biosystemseng_2019_11_017 crossref_primary_10_3390_s20174885 crossref_primary_10_3390_s24123858 crossref_primary_10_1016_j_compind_2022_103635 crossref_primary_10_1007_s11042_022_11905_4 crossref_primary_10_1016_j_compag_2021_106170 crossref_primary_10_1016_j_compag_2023_107909 crossref_primary_10_1016_j_neucom_2023_01_067 crossref_primary_10_1088_1755_1315_632_4_042004 crossref_primary_10_1007_s10694_023_01492_7 crossref_primary_10_1016_j_asoc_2025_112971 crossref_primary_10_2478_cait_2022_0007 crossref_primary_10_32604_cmc_2024_058409 crossref_primary_10_3390_agronomy12102555 crossref_primary_10_3390_agronomy13051419 crossref_primary_10_1016_j_ecoinf_2022_101886 crossref_primary_10_3390_agriculture13081527 crossref_primary_10_1590_1809_4430_eng_agric_v43n4e20230065_2023 crossref_primary_10_17660_ActaHortic_2024_1412_60 crossref_primary_10_3390_app11052238 crossref_primary_10_1016_j_postharvbio_2023_112587 crossref_primary_10_3390_agronomy12020319 crossref_primary_10_31202_ecjse_945167 crossref_primary_10_1016_j_measurement_2024_114786 crossref_primary_10_1109_LRA_2022_3188105 crossref_primary_10_1007_s00217_023_04319_5 crossref_primary_10_3390_s23010032 crossref_primary_10_1016_j_engappai_2023_106445 crossref_primary_10_1016_j_egyr_2020_09_002 crossref_primary_10_1016_j_atech_2025_100777 crossref_primary_10_1016_j_eswa_2022_119397 crossref_primary_10_1007_s11042_022_14188_x crossref_primary_10_1016_j_aei_2023_101988 crossref_primary_10_3847_1538_4357_ad97ba crossref_primary_10_1007_s42853_023_00184_y crossref_primary_10_3390_agronomy14091934 crossref_primary_10_1016_j_compag_2022_106748 crossref_primary_10_3390_s24072283 crossref_primary_10_1088_1361_6501_ac82db crossref_primary_10_1016_j_compag_2022_106974 crossref_primary_10_1016_j_compind_2024_104146 crossref_primary_10_1038_s41598_022_25260_9 crossref_primary_10_3390_agronomy11061210 crossref_primary_10_3390_rs12142229 crossref_primary_10_3390_app122211318 crossref_primary_10_3390_drones8100577 crossref_primary_10_1016_j_aei_2021_101456 crossref_primary_10_1016_j_autcon_2019_102967 crossref_primary_10_3390_w14081275 crossref_primary_10_1097_IAE_0000000000003434 crossref_primary_10_3390_s21020507 crossref_primary_10_1007_s11119_023_10098_6 crossref_primary_10_1021_acsami_1c11914 crossref_primary_10_3390_app13074160 crossref_primary_10_1016_j_compag_2022_106975 crossref_primary_10_1109_TIM_2020_3006324 crossref_primary_10_1007_s11042_022_13055_z crossref_primary_10_1109_ACCESS_2021_3081562 crossref_primary_10_3389_fpls_2021_791256 crossref_primary_10_3390_app9194195 crossref_primary_10_3390_plants12173032 crossref_primary_10_3390_en17184731 crossref_primary_10_1016_j_compag_2021_106081 crossref_primary_10_1111_jfpe_13803 crossref_primary_10_3389_fmars_2024_1365155 crossref_primary_10_3390_agronomy12123054 crossref_primary_10_1109_JIOT_2022_3206388 crossref_primary_10_1007_s00521_021_06029_z crossref_primary_10_3390_agriculture12081170 crossref_primary_10_46387_bjesr_1106501 crossref_primary_10_1007_s11119_023_10009_9 crossref_primary_10_1007_s00371_021_02164_9 crossref_primary_10_1016_j_postharvbio_2021_111808 crossref_primary_10_1109_ACCESS_2020_3040423 crossref_primary_10_3389_fpls_2023_1204569 crossref_primary_10_3390_electronics10050544 crossref_primary_10_1155_2022_4648105 crossref_primary_10_3390_s20123591 crossref_primary_10_1016_j_compag_2021_106092 crossref_primary_10_1186_s13007_021_00745_2 crossref_primary_10_3390_app13042691 crossref_primary_10_1007_s11042_023_16570_9 crossref_primary_10_1016_j_compag_2023_108072 crossref_primary_10_1016_j_atech_2024_100491 crossref_primary_10_1016_j_compag_2023_108196 crossref_primary_10_3390_agronomy12102483 crossref_primary_10_1016_j_jksuci_2020_08_010 crossref_primary_10_1007_s00521_024_10300_4 crossref_primary_10_1109_ACCESS_2021_3114503 crossref_primary_10_1155_2022_8457173 crossref_primary_10_3390_agriculture14112057 crossref_primary_10_1016_j_compag_2022_106715 crossref_primary_10_3390_electronics14030468 crossref_primary_10_1016_j_compag_2022_106716 crossref_primary_10_1016_j_compag_2020_105703 crossref_primary_10_1007_s11676_024_01754_2 crossref_primary_10_1016_j_compag_2022_106954 crossref_primary_10_1364_OE_484083 crossref_primary_10_1016_j_compag_2023_107637 crossref_primary_10_3389_fpls_2024_1492504 crossref_primary_10_1016_j_compag_2023_107759 crossref_primary_10_1016_j_compag_2022_107233 crossref_primary_10_1016_j_compag_2022_107234 crossref_primary_10_3390_app14135524 crossref_primary_10_3389_fcvm_2022_1000374 crossref_primary_10_1016_j_compag_2025_110246 crossref_primary_10_1371_journal_pone_0283801 crossref_primary_10_7717_peerj_cs_1558 crossref_primary_10_3390_agriculture14071059 crossref_primary_10_1016_j_fochx_2023_100733 crossref_primary_10_1016_j_aiia_2024_02_001 crossref_primary_10_1007_s11119_021_09808_9 crossref_primary_10_3390_agriculture13091814 crossref_primary_10_1016_j_compag_2023_107635 crossref_primary_10_1016_j_compag_2020_105284 crossref_primary_10_1155_2021_1205153 crossref_primary_10_1002_rob_22521 crossref_primary_10_3390_computers13030083 crossref_primary_10_3390_s21155116 crossref_primary_10_1016_j_compag_2022_107582 crossref_primary_10_1109_ACCESS_2020_2984556 crossref_primary_10_14775_ksmpe_2020_19_07_007 crossref_primary_10_1155_2019_3823515 crossref_primary_10_1117_1_JEI_33_3_033014 crossref_primary_10_62762_TIOT_2023_539452 crossref_primary_10_3389_fpls_2020_01086 crossref_primary_10_3390_app122412959 crossref_primary_10_3390_agronomy13071871 crossref_primary_10_1016_j_patcog_2020_107412 crossref_primary_10_1016_j_rineng_2024_103553 crossref_primary_10_3390_app13137501 crossref_primary_10_3390_rs14143481 crossref_primary_10_3390_s20061678 crossref_primary_10_3390_bdcc6030085 crossref_primary_10_1007_s00521_021_05982_z crossref_primary_10_1177_15501477211007407 crossref_primary_10_3390_rs13214213 crossref_primary_10_1016_j_compag_2023_107765 crossref_primary_10_1007_s44196_023_00390_8 crossref_primary_10_1016_j_heliyon_2025_e42525 crossref_primary_10_1117_1_JEI_33_2_023026 crossref_primary_10_3390_computers13030071 crossref_primary_10_1080_09540091_2022_2051434 crossref_primary_10_1016_j_compag_2021_106560 crossref_primary_10_1038_s41438_021_00560_9 crossref_primary_10_1109_ACCESS_2021_3052240 crossref_primary_10_1145_3701985 crossref_primary_10_1016_j_compag_2021_106683 crossref_primary_10_3389_frobt_2021_626989 crossref_primary_10_1002_rob_22518 crossref_primary_10_3788_LOP221605 crossref_primary_10_1007_s11042_020_10475_7 crossref_primary_10_3390_horticulturae10030275 crossref_primary_10_1016_j_biosystemseng_2022_09_006 crossref_primary_10_3390_agriculture14122161 crossref_primary_10_1007_s11554_024_01543_4 crossref_primary_10_1007_s10163_024_01916_8 crossref_primary_10_1016_j_compag_2023_107854 crossref_primary_10_3390_agronomy14122931 crossref_primary_10_1016_j_compag_2022_107339 crossref_primary_10_33851_JMIS_2019_6_4_217 crossref_primary_10_3390_agronomy13061613 crossref_primary_10_3390_agriculture12070931 crossref_primary_10_1016_j_compag_2021_106450 crossref_primary_10_3389_fpls_2022_1040923 crossref_primary_10_1088_1742_6596_1952_2_022016 crossref_primary_10_3389_fpls_2022_965425 crossref_primary_10_3390_app13063861 crossref_primary_10_3390_agronomy13092339 crossref_primary_10_3390_agronomy13092217 crossref_primary_10_1016_j_compag_2025_110157 crossref_primary_10_3390_app122412817 crossref_primary_10_1038_s41598_024_76662_w crossref_primary_10_1007_s00521_022_07437_5 crossref_primary_10_1016_j_wasman_2021_03_019 crossref_primary_10_1016_j_atech_2022_100099 crossref_primary_10_1016_j_ecoinf_2023_102196 crossref_primary_10_1177_1558925020908268 crossref_primary_10_1016_j_compag_2023_107741 crossref_primary_10_3390_land12020277 crossref_primary_10_1007_s11554_021_01178_9 crossref_primary_10_1016_j_fishres_2023_106710 crossref_primary_10_3390_s20247339 crossref_primary_10_1111_mice_13087 crossref_primary_10_1016_j_ecoinf_2024_102691 crossref_primary_10_1016_j_compag_2022_107432 crossref_primary_10_1371_journal_pone_0292600 crossref_primary_10_1109_ACCESS_2020_3021739 crossref_primary_10_1057_s41599_021_00792_z crossref_primary_10_1364_AO_386903 crossref_primary_10_1016_j_biosystemseng_2020_12_002 crossref_primary_10_1177_1748006X21995388 crossref_primary_10_1016_j_measurement_2022_111959 crossref_primary_10_3390_rs13163095 crossref_primary_10_7717_peerj_cs_943 crossref_primary_10_3390_plants13233329 crossref_primary_10_1109_ACCESS_2024_3362230 crossref_primary_10_1016_j_atech_2023_100386 crossref_primary_10_3390_electronics12112448 crossref_primary_10_1038_s41598_024_67526_4 crossref_primary_10_1016_j_measurement_2024_115484 crossref_primary_10_3389_fpls_2023_1101943 crossref_primary_10_3390_rs13214486 crossref_primary_10_1016_j_compag_2022_106694 crossref_primary_10_1016_j_biosystemseng_2021_08_017 crossref_primary_10_3389_fpls_2022_1017803 crossref_primary_10_3390_rs14030638 crossref_primary_10_1142_S2196888820500219 crossref_primary_10_1016_j_biosystemseng_2021_08_015 crossref_primary_10_1155_2022_4037625 crossref_primary_10_3390_agriculture15050483 crossref_primary_10_1002_agj2_21651 crossref_primary_10_3390_horticulturae9111235 crossref_primary_10_3233_JIFS_232104 crossref_primary_10_1016_j_heliyon_2024_e29035 crossref_primary_10_1186_s43170_023_00193_z crossref_primary_10_1007_s00371_020_01997_0 crossref_primary_10_4108_eetiot_4541 crossref_primary_10_35377_saucis___1170902 crossref_primary_10_3390_agriculture12122050 crossref_primary_10_1016_j_biosystemseng_2022_01_019 crossref_primary_10_1016_j_jag_2021_102456 crossref_primary_10_1007_s11694_023_02020_5 crossref_primary_10_1016_j_procs_2021_09_287 crossref_primary_10_3173_air_33_27 crossref_primary_10_32604_iasc_2023_040330 crossref_primary_10_1016_j_compag_2024_109077 crossref_primary_10_1016_j_agrcom_2024_100029 crossref_primary_10_1016_j_compag_2024_109199 crossref_primary_10_46604_ijeti_2022_8865 crossref_primary_10_1016_j_atech_2022_100042 crossref_primary_10_7735_ksmte_2023_32_2_101 crossref_primary_10_1109_TAFE_2024_3418818 crossref_primary_10_3390_s23156738 crossref_primary_10_3390_insects14020148 crossref_primary_10_1016_j_compag_2021_106135 crossref_primary_10_1016_j_compag_2023_107703 crossref_primary_10_1038_s41598_022_06181_z crossref_primary_10_1177_09544062221128443 crossref_primary_10_48130_frures_0025_0006 crossref_primary_10_1016_j_compag_2023_107706 crossref_primary_10_1109_ACCESS_2023_3267483 crossref_primary_10_1007_s00138_022_01293_y crossref_primary_10_1016_j_atech_2022_100166 crossref_primary_10_3390_plants12152883 crossref_primary_10_1007_s42979_023_02103_6 crossref_primary_10_3390_s22176325 crossref_primary_10_1007_s10846_024_02132_0 crossref_primary_10_3390_app13158840 crossref_primary_10_3390_agriculture12122039 crossref_primary_10_1364_JOSAA_459580 crossref_primary_10_3389_fpls_2022_942875 crossref_primary_10_3390_su15010820 crossref_primary_10_3233_JAD_210714 crossref_primary_10_1002_rob_22013 crossref_primary_10_3390_s24196347 crossref_primary_10_48175_IJARSCT_9693 crossref_primary_10_1002_rob_22377 crossref_primary_10_1007_s40747_021_00522_7 crossref_primary_10_3390_app11177960 crossref_primary_10_1016_j_jag_2024_103922 crossref_primary_10_1016_j_compag_2024_109819 crossref_primary_10_1088_1361_6501_acb075 crossref_primary_10_1109_ACCESS_2023_3309410 crossref_primary_10_1007_s11554_023_01281_z crossref_primary_10_3390_agronomy13071901 crossref_primary_10_1016_j_biosystemseng_2020_03_008 crossref_primary_10_1016_j_fraope_2024_100165 crossref_primary_10_1134_S1054661821040192 crossref_primary_10_3390_en14113004 crossref_primary_10_3389_fpls_2022_839269 crossref_primary_10_1016_j_engappai_2024_109123 crossref_primary_10_1109_ACCESS_2022_3215639 crossref_primary_10_1016_j_compag_2020_105216 crossref_primary_10_1109_JLT_2021_3073225 crossref_primary_10_1016_j_compag_2020_105214 crossref_primary_10_1111_1750_3841_16237 crossref_primary_10_1007_s00371_023_02895_x crossref_primary_10_3390_horticulturae10010040 crossref_primary_10_3389_fpls_2022_1099033 crossref_primary_10_1088_1742_6596_1748_4_042011 crossref_primary_10_3389_fpls_2023_1198650 crossref_primary_10_1049_cvi2_12146 crossref_primary_10_3390_s22072456 crossref_primary_10_4081_jae_2024_1594 crossref_primary_10_3390_electronics12153340 crossref_primary_10_1016_j_ecoinf_2024_102788 crossref_primary_10_1007_s11001_025_09567_6 crossref_primary_10_1016_j_heliyon_2024_e31868 crossref_primary_10_3390_agronomy12092081 crossref_primary_10_3390_agronomy14102395 crossref_primary_10_1016_j_aiia_2020_04_003 crossref_primary_10_1155_2019_7630926 crossref_primary_10_1016_j_compag_2024_108833 crossref_primary_10_3390_s24061866 crossref_primary_10_1016_j_compag_2024_108832 crossref_primary_10_1080_01140671_2024_2435450 crossref_primary_10_1177_17298806241278153 crossref_primary_10_3390_ani13071204 crossref_primary_10_3390_agronomy12061477 crossref_primary_10_3390_buildings12040452 crossref_primary_10_1088_1361_6501_ace124 crossref_primary_10_1016_j_compag_2022_107057 crossref_primary_10_1016_j_jksuci_2024_102220 crossref_primary_10_3390_electronics11193183 crossref_primary_10_3390_rs14133143 crossref_primary_10_1007_s00530_024_01529_z crossref_primary_10_3389_fpls_2024_1451018 crossref_primary_10_1088_1742_6596_2868_1_012021 crossref_primary_10_35633_inmateh_73_07 crossref_primary_10_1007_s11119_024_10187_0 crossref_primary_10_4081_jae_2023_1301 crossref_primary_10_3390_machines10040254 crossref_primary_10_1002_rob_22230 crossref_primary_10_1364_OE_502163 crossref_primary_10_25092_baunfbed_878224 crossref_primary_10_1016_j_cosrev_2024_100694 crossref_primary_10_1002_rob_22224 crossref_primary_10_1016_j_cosrev_2024_100690 crossref_primary_10_3390_agronomy10111721 crossref_primary_10_3390_agronomy13071816 crossref_primary_10_3390_rs13224675 crossref_primary_10_3389_fpls_2023_1153505 crossref_primary_10_3390_agronomy14071593 crossref_primary_10_1109_ACCESS_2024_3374726 crossref_primary_10_3390_s20020504 crossref_primary_10_1016_j_mejo_2023_105805 crossref_primary_10_1016_j_compag_2020_105469 crossref_primary_10_1016_j_compag_2024_108972 crossref_primary_10_1016_j_compag_2024_108974 crossref_primary_10_32604_cmc_2025_059245 crossref_primary_10_1039_D2AY01526A crossref_primary_10_1016_j_compag_2024_108926 crossref_primary_10_1080_21642583_2020_1824132 crossref_primary_10_1109_ACCESS_2022_3192467 crossref_primary_10_1016_j_compag_2022_107034 crossref_primary_10_1109_ACCESS_2022_3177196 crossref_primary_10_3390_agriculture12060856 crossref_primary_10_3390_electronics9060889 crossref_primary_10_3390_rs15061516 crossref_primary_10_3389_fpls_2022_868745 crossref_primary_10_1016_j_biosystemseng_2021_06_015 crossref_primary_10_1016_j_eswa_2021_116205 crossref_primary_10_3390_su142315892 crossref_primary_10_2139_ssrn_3959386 crossref_primary_10_1155_2024_6107765 crossref_primary_10_1016_j_compag_2021_106504 crossref_primary_10_18517_ijods_2_2_104_111_2021 crossref_primary_10_3390_s22010059 crossref_primary_10_1016_j_compag_2021_106503 crossref_primary_10_1109_ACCESS_2019_2962513 crossref_primary_10_3390_agronomy13051271 crossref_primary_10_1016_j_compag_2022_107029 crossref_primary_10_1016_j_ecoinf_2023_102217 crossref_primary_10_1109_TII_2020_3024578 crossref_primary_10_3390_agronomy13041042 crossref_primary_10_1016_j_compmedimag_2020_101732 crossref_primary_10_1016_j_biosystemseng_2020_04_015 crossref_primary_10_1155_2020_8870649 crossref_primary_10_1016_j_compag_2023_107682 crossref_primary_10_1016_j_compag_2025_110173 crossref_primary_10_3390_agriculture15050528 crossref_primary_10_1109_ACCESS_2022_3204762 crossref_primary_10_1007_s00521_024_10746_6 crossref_primary_10_3390_agronomy14102233 crossref_primary_10_1002_jsfa_13752 crossref_primary_10_3390_agriculture12101650 crossref_primary_10_1016_j_compag_2024_108826 crossref_primary_10_2139_ssrn_4089053 crossref_primary_10_3390_su15054341 crossref_primary_10_1109_TIM_2020_3031194 crossref_primary_10_3390_agronomy10071016 crossref_primary_10_3390_s21134442 crossref_primary_10_2139_ssrn_4022198 crossref_primary_10_3390_make5040083 crossref_primary_10_1080_03019233_2020_1816806 crossref_primary_10_3390_electronics8121504 crossref_primary_10_1038_s41598_024_61635_w crossref_primary_10_1007_s40815_022_01267_2 crossref_primary_10_1016_j_compag_2024_108701 crossref_primary_10_3390_info13030153 crossref_primary_10_1016_j_compag_2024_108700 crossref_primary_10_2508_chikusan_95_229 crossref_primary_10_1016_j_patrec_2021_04_022 crossref_primary_10_3390_bdcc7010054 crossref_primary_10_1016_j_compag_2021_106533 crossref_primary_10_1007_s11042_022_12939_4 crossref_primary_10_1016_j_compag_2019_06_001 crossref_primary_10_1016_j_aej_2024_07_064 crossref_primary_10_1002_jbio_202200132 crossref_primary_10_1177_09544062221130928 crossref_primary_10_1016_j_compag_2020_105380 crossref_primary_10_1016_j_compag_2019_105192 crossref_primary_10_3847_1538_3881_ac3482 crossref_primary_10_3390_app13126880 crossref_primary_10_3934_mbe_2024104 crossref_primary_10_3390_agriculture12010009 crossref_primary_10_1016_j_compag_2025_110194 crossref_primary_10_1016_j_heliyon_2024_e26184 crossref_primary_10_3390_agronomy14040721 crossref_primary_10_1016_j_compag_2023_107780 crossref_primary_10_3934_mbe_2023011 crossref_primary_10_1016_j_compag_2023_107662 crossref_primary_10_3390_jmse9060636 crossref_primary_10_1016_j_atech_2021_100030 crossref_primary_10_1155_2021_9687950 crossref_primary_10_1080_00405000_2024_2426257 crossref_primary_10_1007_s12652_020_02170_0 crossref_primary_10_1186_s40494_023_00995_4 crossref_primary_10_3390_su15054329 crossref_primary_10_4081_jae_2024_1641 crossref_primary_10_1007_s11042_021_11146_x crossref_primary_10_1038_s41598_024_74601_3 crossref_primary_10_29130_dubited_1075572 crossref_primary_10_1109_ACCESS_2019_2942144 crossref_primary_10_2478_msr_2022_0014 crossref_primary_10_2139_ssrn_4051459 crossref_primary_10_1007_s00371_021_02116_3 crossref_primary_10_1364_OL_510325 crossref_primary_10_1007_s12541_023_00911_7 crossref_primary_10_2139_ssrn_3917556 crossref_primary_10_1111_jfpe_13782 crossref_primary_10_1016_j_compag_2024_109534 crossref_primary_10_3390_agriculture13010124 crossref_primary_10_3233_IDA_220449 crossref_primary_10_1007_s11042_022_12999_6 crossref_primary_10_1016_j_compag_2023_108048 crossref_primary_10_1177_00405175221143742 crossref_primary_10_3390_computers13120336 crossref_primary_10_1016_j_compag_2022_106700 crossref_primary_10_1016_j_eja_2024_127191 crossref_primary_10_1016_j_iswa_2024_200325 crossref_primary_10_3390_electronics12081829 crossref_primary_10_7717_peerj_cs_2085 crossref_primary_10_1016_j_saa_2024_124266 crossref_primary_10_1186_s44147_022_00128_x crossref_primary_10_3390_agronomy14092099 crossref_primary_10_3390_s23063336 crossref_primary_10_1155_2022_4325984 crossref_primary_10_3390_agriculture14010114 crossref_primary_10_1109_ACCESS_2019_2958614 crossref_primary_10_1016_j_compag_2023_108051 crossref_primary_10_1016_j_compag_2019_105165 crossref_primary_10_1016_j_compag_2020_105606 crossref_primary_10_3389_fpls_2024_1452502 crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_02021 crossref_primary_10_3389_fpls_2022_1016470 crossref_primary_10_1016_j_compag_2023_108298 crossref_primary_10_35633_inmateh_68_37 crossref_primary_10_1016_j_compag_2024_109523 crossref_primary_10_3389_fpls_2021_698474 crossref_primary_10_34133_plantphenomics_0165 crossref_primary_10_3390_biomimetics7010031 crossref_primary_10_1016_j_compag_2020_105751 crossref_primary_10_1007_s00521_024_10217_y crossref_primary_10_3390_agronomy15030727 crossref_primary_10_1038_s41598_022_19932_9 crossref_primary_10_1016_j_compenvurbsys_2021_101692 crossref_primary_10_3390_agriculture14010126 crossref_primary_10_3390_rs12050894 crossref_primary_10_1177_02783649241227448 crossref_primary_10_3390_ai6020025 crossref_primary_10_3390_app13127146 crossref_primary_10_1016_j_compag_2023_108141 crossref_primary_10_1016_j_compag_2023_108022 crossref_primary_10_1016_j_compag_2020_105634 crossref_primary_10_3390_agronomy11030476 crossref_primary_10_1007_s11042_021_11560_1 crossref_primary_10_1007_s11042_022_12687_5 crossref_primary_10_3389_fncom_2023_1296897 crossref_primary_10_2139_ssrn_4495991 crossref_primary_10_3390_s23042037 crossref_primary_10_3390_rs16020359 crossref_primary_10_1016_j_biosystemseng_2021_03_012 crossref_primary_10_14801_jkiit_2020_18_2_1 crossref_primary_10_3390_horticulturae9101091 crossref_primary_10_1016_j_inpa_2022_12_001 crossref_primary_10_1155_2022_8924027 crossref_primary_10_1016_j_compag_2023_108035 crossref_primary_10_1049_iet_ipr_2020_1119 crossref_primary_10_1016_j_compag_2020_105742 crossref_primary_10_3390_app9193971 crossref_primary_10_1016_j_compag_2020_105504 crossref_primary_10_1007_s11042_023_15465_z crossref_primary_10_1111_jfpe_13749 crossref_primary_10_1007_s13355_024_00873_w crossref_primary_10_1111_jfpe_13866 crossref_primary_10_1016_j_fraope_2025_100243 crossref_primary_10_1061_JCCEE5_CPENG_5990 crossref_primary_10_1016_j_biosystemseng_2022_06_015 crossref_primary_10_1186_s13007_023_00985_4 crossref_primary_10_1016_j_compag_2020_105535 crossref_primary_10_34133_plantphenomics_0258 crossref_primary_10_1109_ACCESS_2023_3284472 crossref_primary_10_1007_s11063_023_11271_8 crossref_primary_10_1007_s11760_023_02710_z crossref_primary_10_3390_fi14110323 crossref_primary_10_3390_su142215088 crossref_primary_10_1016_j_compag_2023_108369 crossref_primary_10_52810_TIOT_2021_100028 crossref_primary_10_1016_j_biosystemseng_2025_02_012 crossref_primary_10_3390_jmse10081143 crossref_primary_10_3390_s23125425 crossref_primary_10_1007_s11694_023_02246_3 crossref_primary_10_1016_j_compag_2025_109908 crossref_primary_10_1088_1742_6596_2678_1_012011 crossref_primary_10_3390_rs12010044 crossref_primary_10_1080_21642583_2021_1901156 crossref_primary_10_3390_agriculture14111905 crossref_primary_10_1111_jfpe_13998 crossref_primary_10_1155_2020_8859237 crossref_primary_10_1016_j_eswa_2022_118573 crossref_primary_10_3390_app14146287 crossref_primary_10_1016_j_eswa_2022_117247 crossref_primary_10_2514_1_I011075 crossref_primary_10_1155_2021_8325398 crossref_primary_10_3390_app142411829 crossref_primary_10_3390_app142210104 crossref_primary_10_1371_journal_pone_0250782 crossref_primary_10_3390_s25020547 crossref_primary_10_1007_s10489_022_03622_0 crossref_primary_10_1007_s12652_021_03584_0 crossref_primary_10_1016_j_chemolab_2024_105064 crossref_primary_10_1155_2021_8883015 crossref_primary_10_1016_j_chemolab_2024_105066 crossref_primary_10_1016_j_compag_2020_105643 crossref_primary_10_1007_s10846_021_01425_y crossref_primary_10_1007_s11042_022_12962_5 crossref_primary_10_3390_f14020415 crossref_primary_10_1007_s11227_024_06487_x crossref_primary_10_1109_ICJECE_2022_3154294 crossref_primary_10_1007_s10921_021_00835_0 crossref_primary_10_1088_1742_6596_1861_1_012050 crossref_primary_10_3390_agronomy14112650 crossref_primary_10_1016_j_aiia_2024_07_001 crossref_primary_10_3390_rs13010054 crossref_primary_10_1109_ACCESS_2021_3094201 crossref_primary_10_1109_ACCESS_2020_3000175 crossref_primary_10_1007_s11063_024_11536_w crossref_primary_10_3390_agronomy14112643 crossref_primary_10_1002_rob_22147 crossref_primary_10_1002_rob_22268 crossref_primary_10_3233_JIFS_213251 crossref_primary_10_3390_ijms232113469 crossref_primary_10_1016_j_aiia_2020_09_002 crossref_primary_10_3390_buildings13061394 crossref_primary_10_1007_s11119_021_09846_3 crossref_primary_10_1016_j_biosystemseng_2021_10_004 crossref_primary_10_3390_rs12010182 crossref_primary_10_1016_j_compag_2023_108592 crossref_primary_10_1051_e3sconf_202341201083 crossref_primary_10_3390_agriculture12081104 crossref_primary_10_1016_j_compag_2023_108233 crossref_primary_10_1016_j_compag_2019_105108 crossref_primary_10_1016_j_compag_2020_105302 crossref_primary_10_1016_j_compag_2024_109625 crossref_primary_10_1016_j_compag_2025_109922 |
Cites_doi | 10.1016/j.compag.2014.10.016 10.1016/j.compag.2011.05.007 10.1016/j.compag.2017.01.001 10.1016/j.compag.2011.11.007 10.1109/LRA.2017.2651944 10.3390/s16081222 10.1002/ird.2076 10.3390/s17040905 10.3390/s140712191 10.1007/978-3-319-00065-7_50 10.1111/exsy.12146 10.1016/j.patcog.2017.05.015 10.1016/j.compag.2018.02.027 10.1017/S2040470017000206 10.1016/j.compag.2016.06.022 10.1109/TPAMI.2016.2577031 10.1016/j.compind.2018.03.010 10.1016/j.compag.2018.02.016 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Feb 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Feb 2019 |
DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
DOI | 10.1016/j.compag.2019.01.012 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-7107 |
EndPage | 426 |
ExternalDocumentID | 10_1016_j_compag_2019_01_012 S016816991831528X |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7SC 7SP 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-53874e01595c17c18c7777ae76c42d8385046b90c7cb2ad586b7ae969102e403 |
IEDL.DBID | .~1 |
ISSN | 0168-1699 |
IngestDate | Fri Jul 11 11:22:03 EDT 2025 Fri Jul 25 02:43:34 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Tue Jul 01 01:58:13 EDT 2025 Fri Feb 23 02:49:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Image augmentation Real-time detection Apple images acquisition YOLOV3-dense |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-53874e01595c17c18c7777ae76c42d8385046b90c7cb2ad586b7ae969102e403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8766-9126 0000-0002-4412-2953 |
PQID | 2186668604 |
PQPubID | 2045491 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2221063773 proquest_journals_2186668604 crossref_primary_10_1016_j_compag_2019_01_012 crossref_citationtrail_10_1016_j_compag_2019_01_012 elsevier_sciencedirect_doi_10_1016_j_compag_2019_01_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Zhao, Gong, Huang, Liu (b0130) 2016; 127 Chen, Skandan, Dcunha, Das, Okon, Qu, Taylor, Kumar (b0015) 2017; 2 Tyagi (b0105) 2016; 65 Dyrmann, Jørgensen, Midtiby (b0025) 2017; 8 Linker, Cohen, Naor (b0060) 2012; 81 Kamilaris, Prenafeta-Boldú (b0045) 2018; 147 Redmon, Divvala, Girshick, Farhadi (b0075) 2016 Zhang, Dong, Chen, Jia, Du, Muhammad, Wang (b0125) 2017 Redmon, Farhadi (b0085) 2018 Hamuda, Ginley, Glavin, Jones (b0030) 2018; 148 Lam (b0050) 2005 Wang, Nuske, Bergerman, Singh (b0110) 2013; 88 Bargoti, Underwood (b0010) 2016 Tang, Wang, Zhang, He, Xin, Xu (b0100) 2017; 135 Lee, Chan, Mayo, Remagnino (b0055) 2017; 71 Zhang, Phillips, Wang, Ji, Yang, Wu (b0120) 2016; 33 Redmon, Farhadi (b0080) 2017 Huang, Liu, Laurens, Weinberger (b0035) 2017 Rahnemoonfar, Sheppard (b0070) 2017; 17 Arribas, Sánchez-Ferrero, Ruiz-Ruiz, Gómez-Gil (b0005) 2011; 78 Yamamoto, Guo, Yoshioka, Ninomiya (b0115) 2014; 14 Simonyan, Zisserman (b0095) 2014 Dias, Tabb, Medeiros (b0020) 2018; 99 Inkyu, Ge, Feras, Ben, Tristan, Chris (b0040) 2016; 16 Ren, He, Girshick, Sun (b0090) 2016; 39 Lu, Sang (b0065) 2015; 110 Lu (10.1016/j.compag.2019.01.012_b0065) 2015; 110 Zhang (10.1016/j.compag.2019.01.012_b0125) 2017 Huang (10.1016/j.compag.2019.01.012_b0035) 2017 Yamamoto (10.1016/j.compag.2019.01.012_b0115) 2014; 14 Kamilaris (10.1016/j.compag.2019.01.012_b0045) 2018; 147 Inkyu (10.1016/j.compag.2019.01.012_b0040) 2016; 16 Rahnemoonfar (10.1016/j.compag.2019.01.012_b0070) 2017; 17 Lam (10.1016/j.compag.2019.01.012_b0050) 2005 Wang (10.1016/j.compag.2019.01.012_b0110) 2013; 88 Zhang (10.1016/j.compag.2019.01.012_b0120) 2016; 33 Dyrmann (10.1016/j.compag.2019.01.012_b0025) 2017; 8 Bargoti (10.1016/j.compag.2019.01.012_b0010) 2016 Linker (10.1016/j.compag.2019.01.012_b0060) 2012; 81 Zhao (10.1016/j.compag.2019.01.012_b0130) 2016; 127 Redmon (10.1016/j.compag.2019.01.012_b0075) 2016 Redmon (10.1016/j.compag.2019.01.012_b0085) 2018 Tang (10.1016/j.compag.2019.01.012_b0100) 2017; 135 Ren (10.1016/j.compag.2019.01.012_b0090) 2016; 39 Arribas (10.1016/j.compag.2019.01.012_b0005) 2011; 78 Chen (10.1016/j.compag.2019.01.012_b0015) 2017; 2 Hamuda (10.1016/j.compag.2019.01.012_b0030) 2018; 148 Dias (10.1016/j.compag.2019.01.012_b0020) 2018; 99 Simonyan (10.1016/j.compag.2019.01.012_b0095) 2014 Tyagi (10.1016/j.compag.2019.01.012_b0105) 2016; 65 Redmon (10.1016/j.compag.2019.01.012_b0080) 2017 Lee (10.1016/j.compag.2019.01.012_b0055) 2017; 71 |
References_xml | – start-page: 134 year: 2005 end-page: 139 ident: b0050 article-title: Combining gray world and retinex theory for automatic white balance in digital photography publication-title: International Symposium on Consumer Electronics – year: 2014 ident: b0095 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Comput. Sci. – start-page: 6517 year: 2017 end-page: 6525 ident: b0080 article-title: YOLO9000: Better, faster, stronger publication-title: IEEE conference on Computer Vision and Pattern Recognition – volume: 16 start-page: 1222 year: 2016 ident: b0040 article-title: DeepFruits: a fruit detection system using deep neural networks publication-title: Sensors – volume: 148 start-page: 37 year: 2018 end-page: 44 ident: b0030 article-title: Improved image processing-based crop detection using kalman filtering and the hungarian algorithm publication-title: Comput. Electron. Agric. – start-page: 1 year: 2017 end-page: 20 ident: b0125 article-title: Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation publication-title: Multimedia Tools Appl. – volume: 65 start-page: 388 year: 2016 end-page: 389 ident: b0105 article-title: Towards a second green revolution publication-title: Irrigation Drainage – volume: 127 start-page: 311 year: 2016 end-page: 323 ident: b0130 article-title: A review of key techniques of vision-based control for harvesting robot publication-title: Comput. Electron. Agric. – volume: 71 start-page: 1 year: 2017 end-page: 13 ident: b0055 article-title: How deep learning extracts and learns leaf features for plant classification publication-title: Pattern Recogn. – year: 2018 ident: b0085 article-title: YOLOv3: An incremental improvement publication-title: IEEE conference on Computer Vision and Pattern Recognition – volume: 81 start-page: 45 year: 2012 end-page: 57 ident: b0060 article-title: Determination of the number of green apples in RGB images recorded in orchards publication-title: Comput. Electron. Agric. – volume: 78 start-page: 9 year: 2011 end-page: 18 ident: b0005 article-title: Leaf classification in sunflower crops by computer vision and neural networks publication-title: Comput. Electron. Agric. – volume: 110 start-page: 121 year: 2015 end-page: 130 ident: b0065 article-title: Detecting citrus fruits and occlusion recovery under natural illumination conditions publication-title: Comput. Electron. Agric. – volume: 147 start-page: 70 year: 2018 end-page: 90 ident: b0045 article-title: Deep learning in agriculture: a survey publication-title: Comput. Electron. Agric. – start-page: 1 year: 2016 end-page: 8 ident: b0010 article-title: Deep fruit detection in orchards publication-title: Aust. Centre Field Robotics – volume: 135 start-page: 63 year: 2017 end-page: 70 ident: b0100 article-title: Weed identification based on K-means feature learning combined with convolutional neural network publication-title: Comput. Electron. Agric. – volume: 39 start-page: 1137 year: 2016 end-page: 1149 ident: b0090 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Machine Intelligence – volume: 2 start-page: 781 year: 2017 end-page: 788 ident: b0015 article-title: Counting apples and oranges with deep learning: a data driven approach publication-title: IEEE Robotics Automation Lett. – volume: 99 start-page: 17 year: 2018 end-page: 28 ident: b0020 article-title: Apple flower detection using deep convolutional networks publication-title: Comput. Ind. – volume: 8 start-page: 842 year: 2017 end-page: 847 ident: b0025 article-title: RoboWeedSupport - detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network publication-title: Adv. Anim. Biosci.: Precision Agric. – volume: 14 start-page: 12191 year: 2014 end-page: 12206 ident: b0115 article-title: On plant detection of intact tomato fruits using image analysis and machine learning methods publication-title: Sensors – volume: 88 start-page: 745 year: 2013 end-page: 758 ident: b0110 article-title: Automated crop yield estimation for apple orchards publication-title: Exp. Robotics – start-page: 2261 year: 2017 end-page: 2269 ident: b0035 article-title: Densely connected convolutional networks publication-title: IEEE conference on Computer Vision and Pattern Recognition – volume: 17 start-page: 905 year: 2017 ident: b0070 article-title: Deep count: fruit counting based on deep simulated learning publication-title: Sensors – start-page: 779 year: 2016 end-page: 788 ident: b0075 article-title: You only look once: unified, real-time object detection publication-title: IEEE conference on Computer Vision and Pattern Recognition – volume: 33 start-page: 239 year: 2016 end-page: 253 ident: b0120 article-title: Fruit classification by biogeography-based optimization and feedforward neural network publication-title: Expert Syst. J. Knowledge Eng. – volume: 110 start-page: 121 year: 2015 ident: 10.1016/j.compag.2019.01.012_b0065 article-title: Detecting citrus fruits and occlusion recovery under natural illumination conditions publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.10.016 – volume: 78 start-page: 9 year: 2011 ident: 10.1016/j.compag.2019.01.012_b0005 article-title: Leaf classification in sunflower crops by computer vision and neural networks publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2011.05.007 – volume: 135 start-page: 63 year: 2017 ident: 10.1016/j.compag.2019.01.012_b0100 article-title: Weed identification based on K-means feature learning combined with convolutional neural network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.01.001 – year: 2018 ident: 10.1016/j.compag.2019.01.012_b0085 article-title: YOLOv3: An incremental improvement – volume: 81 start-page: 45 year: 2012 ident: 10.1016/j.compag.2019.01.012_b0060 article-title: Determination of the number of green apples in RGB images recorded in orchards publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2011.11.007 – volume: 2 start-page: 781 year: 2017 ident: 10.1016/j.compag.2019.01.012_b0015 article-title: Counting apples and oranges with deep learning: a data driven approach publication-title: IEEE Robotics Automation Lett. doi: 10.1109/LRA.2017.2651944 – volume: 16 start-page: 1222 year: 2016 ident: 10.1016/j.compag.2019.01.012_b0040 article-title: DeepFruits: a fruit detection system using deep neural networks publication-title: Sensors doi: 10.3390/s16081222 – volume: 65 start-page: 388 year: 2016 ident: 10.1016/j.compag.2019.01.012_b0105 article-title: Towards a second green revolution publication-title: Irrigation Drainage doi: 10.1002/ird.2076 – volume: 17 start-page: 905 year: 2017 ident: 10.1016/j.compag.2019.01.012_b0070 article-title: Deep count: fruit counting based on deep simulated learning publication-title: Sensors doi: 10.3390/s17040905 – volume: 14 start-page: 12191 year: 2014 ident: 10.1016/j.compag.2019.01.012_b0115 article-title: On plant detection of intact tomato fruits using image analysis and machine learning methods publication-title: Sensors doi: 10.3390/s140712191 – volume: 88 start-page: 745 year: 2013 ident: 10.1016/j.compag.2019.01.012_b0110 article-title: Automated crop yield estimation for apple orchards publication-title: Exp. Robotics doi: 10.1007/978-3-319-00065-7_50 – start-page: 2261 year: 2017 ident: 10.1016/j.compag.2019.01.012_b0035 article-title: Densely connected convolutional networks – volume: 33 start-page: 239 year: 2016 ident: 10.1016/j.compag.2019.01.012_b0120 article-title: Fruit classification by biogeography-based optimization and feedforward neural network publication-title: Expert Syst. J. Knowledge Eng. doi: 10.1111/exsy.12146 – start-page: 779 year: 2016 ident: 10.1016/j.compag.2019.01.012_b0075 article-title: You only look once: unified, real-time object detection – volume: 71 start-page: 1 year: 2017 ident: 10.1016/j.compag.2019.01.012_b0055 article-title: How deep learning extracts and learns leaf features for plant classification publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2017.05.015 – volume: 148 start-page: 37 year: 2018 ident: 10.1016/j.compag.2019.01.012_b0030 article-title: Improved image processing-based crop detection using kalman filtering and the hungarian algorithm publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.027 – volume: 8 start-page: 842 year: 2017 ident: 10.1016/j.compag.2019.01.012_b0025 article-title: RoboWeedSupport - detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network publication-title: Adv. Anim. Biosci.: Precision Agric. doi: 10.1017/S2040470017000206 – start-page: 1 year: 2017 ident: 10.1016/j.compag.2019.01.012_b0125 article-title: Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation publication-title: Multimedia Tools Appl. – volume: 127 start-page: 311 year: 2016 ident: 10.1016/j.compag.2019.01.012_b0130 article-title: A review of key techniques of vision-based control for harvesting robot publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.06.022 – start-page: 134 year: 2005 ident: 10.1016/j.compag.2019.01.012_b0050 article-title: Combining gray world and retinex theory for automatic white balance in digital photography – start-page: 6517 year: 2017 ident: 10.1016/j.compag.2019.01.012_b0080 article-title: YOLO9000: Better, faster, stronger – volume: 39 start-page: 1137 year: 2016 ident: 10.1016/j.compag.2019.01.012_b0090 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Machine Intelligence doi: 10.1109/TPAMI.2016.2577031 – start-page: 1 year: 2016 ident: 10.1016/j.compag.2019.01.012_b0010 article-title: Deep fruit detection in orchards publication-title: Aust. Centre Field Robotics – volume: 99 start-page: 17 year: 2018 ident: 10.1016/j.compag.2019.01.012_b0020 article-title: Apple flower detection using deep convolutional networks publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.03.010 – year: 2014 ident: 10.1016/j.compag.2019.01.012_b0095 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Comput. Sci. – volume: 147 start-page: 70 year: 2018 ident: 10.1016/j.compag.2019.01.012_b0045 article-title: Deep learning in agriculture: a survey publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.016 |
SSID | ssj0016987 |
Score | 2.676042 |
Snippet | •Proposing an improved YOLO-V3 network processed by DenseNet method.•Realizing the detection of apples in three different growth stages in orchards.•Realizing... Real-time detection of apples in orchards is one of the most important methods for judging growth stages of apples and estimating yield. The size, colour,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 417 |
SubjectTerms | Apple images acquisition Apples branches Color data collection Deep learning developmental stages fruits Image augmentation leaves lighting Model testing Occlusion Orchards Real time Real-time detection Training Transformations Variations YOLOV3-dense |
Title | Apple detection during different growth stages in orchards using the improved YOLO-V3 model |
URI | https://dx.doi.org/10.1016/j.compag.2019.01.012 https://www.proquest.com/docview/2186668604 https://www.proquest.com/docview/2221063773 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbL9tIeym4fNG12UaFXNbYk63EMYUO6bZND05LSg4hlyetSnJA41_3tO5LtQAtLoMYXS2NsRtLoG_ubGYQ-aK-odykla-8l4QW1RGlXEKqF9BRWWBZzd36di9l3frvKVmdo0sfCBFplZ_tbmx6tddcy6rQ52lbV6BuAFZUKwDeKwSakViGCncswyz_eH2keIKDakGkB3hJI9-FzkeMVed5lIHjpmLwzpY9tT_8Y6rj7TC_Q8w424nH7ZpfozNUv0LNxuetSZ7iX6FcAlA4Xronsqhq3EYi4L4HS4BJc7uYOAx4s3R5XNd7s2qArHNjvJQYsiKv4kcEV-Ofiy4L8YDiWynmFltOb5WRGutIJxHLGGgJKltzBVq8zm0qbKivhWDspLKeFgiEAvzjXiZU2p-siUyKHXi0APFDHE_Yandeb2r1BOFOph3YvCg3QSqrcKs4S51XidQhSHSDWK8zYLq14qG7xx_T8sd-mVbMJajZJCicdIHK8a9um1TghL_uxMH9NDwOW_8Sdw37oTLc89yYU4hJCiYQP0PtjNyys8LdkXbvNAWQoeMOCScne_vfD36Gn4apleQ_RebM7uCsAMU1-HWfpNXoy_vR5Nn8Ahl3vxQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gF4mMaXKGxgJF6tJnbij8dq2tSxrnugoCIerMaxQxFKpy77_zk7TiWQ0CSiPMW2Ep3tu9_Fv7sD-Ki9Yt7ljK69l7SomaVKu5oyLaRnuMPKmLvzeiFmX4pPq3J1AGdDLEygVSbd3-v0qK3Tk0mS5uR2s5l8RrCicoH4RnE0Qmr1CA5DdqpyBIfTy6vZYn-YILTqo6YFOkw4YIigizSvSPVuAsdLx_ydOfuXhfpLV0cDdHEMRwk5kmn_cc_gwLXP4em02aXsGe4FfA-Y0pHadZFg1ZI-CJEMVVA60qDX3f0gCAkbd0c2Ldnu-rgrEgjwDUE4SDbxP4Orybeb-Q39ykmslvMSlhfny7MZTdUTqC047yjKWRYOrb0ubS5trqzEa-2ksAWrFc4CusaVzqy0FVvXpRIVtmqB-IG5IuOvYNRuW_caSKlyj8-9qDWiK6kqqwqeOa8yr0Oc6hj4IDBjU2bxUODilxkoZD9NL2YTxGyyHG82Brofddtn1nigvxzmwvyxQgwq_wdGngxTZ9IOvTOhFpcQSmTFGD7sm3FvhQOTdeu299iHoUMsuJT8zX-__D08ni2v52Z-ubh6C09CS0_6PoFRt7t3p4hpuupdWrO_AcOS8nY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Apple+detection+during+different+growth+stages+in+orchards+using+the+improved+YOLO-V3+model&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Tian%2C+Yunong&rft.au=Yang%2C+Guodong&rft.au=Wang%2C+Zhe&rft.au=Wang%2C+Hao&rft.date=2019-02-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=157&rft.spage=417&rft.epage=426&rft_id=info:doi/10.1016%2Fj.compag.2019.01.012&rft.externalDocID=S016816991831528X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |