Interfacial heat transport in nano-carbon assemblies
Although the individual one- and two-dimensional (1D and 2D) carbon nanostructures possess extremely high thermal conductivity, their macroscopic assemblies do not efficiently utilize it due to the larger interfacial contact thermal resistance. To improve the overall performance, the key is the inte...
Saved in:
Published in | Carbon (New York) Vol. 178; pp. 391 - 412 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
30.06.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the individual one- and two-dimensional (1D and 2D) carbon nanostructures possess extremely high thermal conductivity, their macroscopic assemblies do not efficiently utilize it due to the larger interfacial contact thermal resistance. To improve the overall performance, the key is the interfacial structure design to provide sufficient pathways for phonon transport with a limited sacrifice or damage to the inherent thermal properties of nanomaterials. Particularly, the resonance of low-frequency lattice vibrations is the most important mechanism for the reduction of the interfacial contact thermal resistance. Based on recent theoretical and experimental studies and observations on interfacial heat transport, we review here a fourfold set of transport problems in this field: (1) low-frequency phonons in 1D and 2D nanostructures for heat transport; (2) the mechanisms of interfacial thermal transport; (3) assembly structure design towards high utilization of the thermal conductivity from individual nanostructures; and (4) recent development of thermal conductivity measurement for individual and assembled nanomaterials.
[Display omitted]
•Low frequency phonons play important roles in thermal transport of nano-carbons.•Interfacial thermal transport is greatly determined by interfacial phonon coupling.•Recent progresses on the thermal conductivity of nano-carbon assemblies are reviewed.•Thermal conductivity measurement strategies and their related upgrades are discussed. |
---|---|
AbstractList | Although the individual one- and two-dimensional (1D and 2D) carbon nanostructures possess extremely high thermal conductivity, their macroscopic assemblies do not efficiently utilize it due to the larger interfacial contact thermal resistance. To improve the overall performance, the key is the interfacial structure design to provide sufficient pathways for phonon transport with a limited sacrifice or damage to the inherent thermal properties of nanomaterials. Particularly, the resonance of low-frequency lattice vibrations is the most important mechanism for the reduction of the interfacial contact thermal resistance. Based on recent theoretical and experimental studies and observations on interfacial heat transport, we review here a fourfold set of transport problems in this field: (1) low-frequency phonons in 1D and 2D nanostructures for heat transport; (2) the mechanisms of interfacial thermal transport; (3) assembly structure design towards high utilization of the thermal conductivity from individual nanostructures; and (4) recent development of thermal conductivity measurement for individual and assembled nanomaterials. Although the individual one- and two-dimensional (1D and 2D) carbon nanostructures possess extremely high thermal conductivity, their macroscopic assemblies do not efficiently utilize it due to the larger interfacial contact thermal resistance. To improve the overall performance, the key is the interfacial structure design to provide sufficient pathways for phonon transport with a limited sacrifice or damage to the inherent thermal properties of nanomaterials. Particularly, the resonance of low-frequency lattice vibrations is the most important mechanism for the reduction of the interfacial contact thermal resistance. Based on recent theoretical and experimental studies and observations on interfacial heat transport, we review here a fourfold set of transport problems in this field: (1) low-frequency phonons in 1D and 2D nanostructures for heat transport; (2) the mechanisms of interfacial thermal transport; (3) assembly structure design towards high utilization of the thermal conductivity from individual nanostructures; and (4) recent development of thermal conductivity measurement for individual and assembled nanomaterials. [Display omitted] •Low frequency phonons play important roles in thermal transport of nano-carbons.•Interfacial thermal transport is greatly determined by interfacial phonon coupling.•Recent progresses on the thermal conductivity of nano-carbon assemblies are reviewed.•Thermal conductivity measurement strategies and their related upgrades are discussed. |
Author | Qiu, Lin Guo, Zhixin Zhang, Xiaohua Li, Qingwen |
Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0003-3389-3741 surname: Qiu fullname: Qiu, Lin organization: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China – sequence: 2 givenname: Xiaohua orcidid: 0000-0001-9008-791X surname: Zhang fullname: Zhang, Xiaohua email: zhangxh@dhu.edu.cn organization: Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China – sequence: 3 givenname: Zhixin orcidid: 0000-0002-5654-9217 surname: Guo fullname: Guo, Zhixin organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, China – sequence: 4 givenname: Qingwen orcidid: 0000-0001-8081-786X surname: Li fullname: Li, Qingwen organization: Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China |
BookMark | eNqFkE1LAzEQhoNUsFX_gYcFL152zcdmm3gQpPhRKHjRc8hmZzHLNqlJKvjvTVlPPehlhhme92XmXaCZ8w4QuiK4Ipg0t0NldGi9qyimpMI0b_kJmhOxZCUTkszQHGMsyoZSdoYWMQ55rAWp56heuwSh18bqsfgAnYoUtIs7H1JhXeG08-VkXugYYduOFuIFOu31GOHyt5-j96fHt9VLuXl9Xq8eNqWpGUslp6ZnjTbQ5QqaN5q2TWuIBIx1QzrZ9VJqbjjIXtKOCrlkkretELipDe7YObqZfHfBf-4hJrW10cA4agd-HxXlnGK8ZEJk9PoIHfw-uHxdppiUTDSUZepuokzwMQbolbFJJ-td_tqOimB1CFQNavpZHQJVmOYtz-L6SLwLdqvD93-y-0kGOakvC0FFY8HlVGwAk1Tn7d8GP6dzkvo |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2023_125028 crossref_primary_10_1007_s10765_022_03022_z crossref_primary_10_1016_j_ijheatmasstransfer_2023_124056 crossref_primary_10_1016_j_compositesb_2022_110342 crossref_primary_10_1016_j_compositesb_2021_109435 crossref_primary_10_1615_IntJEnergeticMaterialsChemProp_v23_i6_30 crossref_primary_10_1016_j_icheatmasstransfer_2021_105526 crossref_primary_10_3390_nano12142378 crossref_primary_10_1016_j_apenergy_2024_125134 crossref_primary_10_1016_j_polymertesting_2021_107283 crossref_primary_10_1016_j_jmst_2022_12_038 crossref_primary_10_1007_s10765_022_03108_8 crossref_primary_10_1021_acs_jpcc_4c03868 crossref_primary_10_1007_s10765_022_03079_w crossref_primary_10_1016_j_carbon_2023_118040 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126639 crossref_primary_10_1021_acsnano_4c14128 crossref_primary_10_1016_S1872_5805_21_60092_6 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124123 crossref_primary_10_1016_j_egyr_2021_09_110 crossref_primary_10_1063_5_0244895 crossref_primary_10_1016_j_compositesb_2021_109205 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123012 crossref_primary_10_1080_09276440_2021_2024114 crossref_primary_10_1016_j_compositesb_2025_112359 crossref_primary_10_1016_j_coco_2021_101008 crossref_primary_10_1038_s41598_022_19755_8 crossref_primary_10_1063_5_0108739 crossref_primary_10_1016_j_ijthermalsci_2022_107621 crossref_primary_10_3390_nano12030367 crossref_primary_10_1016_j_apenergy_2025_125309 crossref_primary_10_3390_s21237968 crossref_primary_10_1002_slct_202203102 crossref_primary_10_1016_j_jmrt_2024_07_181 crossref_primary_10_3389_fther_2022_935616 crossref_primary_10_1016_j_apenergy_2022_120418 crossref_primary_10_1360_TB_2024_0653 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122533 crossref_primary_10_1021_acsanm_4c00411 crossref_primary_10_1016_j_apsusc_2023_157387 crossref_primary_10_1016_j_carbon_2024_118851 crossref_primary_10_1080_15440478_2022_2162653 crossref_primary_10_1016_j_solmat_2022_111739 crossref_primary_10_1016_j_carbon_2023_118219 crossref_primary_10_1080_09276440_2023_2179248 crossref_primary_10_1088_1361_6463_ac378f crossref_primary_10_1016_j_coco_2025_102282 crossref_primary_10_1360_TB_2022_0318 crossref_primary_10_1002_aoc_7013 crossref_primary_10_1016_j_est_2022_105807 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122216 crossref_primary_10_1126_sciadv_abn0939 crossref_primary_10_1007_s10765_021_02864_3 crossref_primary_10_1016_j_materresbull_2021_111676 crossref_primary_10_1021_acsami_2c02381 crossref_primary_10_3390_nano11092261 crossref_primary_10_1016_j_carbpol_2023_121742 crossref_primary_10_1002_pssb_202300381 crossref_primary_10_1007_s10765_022_02996_0 crossref_primary_10_3390_en15134685 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122280 crossref_primary_10_1016_j_cej_2023_148262 crossref_primary_10_1007_s11581_024_05743_7 crossref_primary_10_1103_PhysRevB_105_165406 |
Cites_doi | 10.1021/nl802737q 10.1063/1.4773462 10.1103/PhysRevLett.104.215902 10.1016/j.physleta.2011.11.016 10.1103/PhysRevE.57.2992 10.1002/adma.201601186 10.1103/PhysRevE.86.040101 10.1103/PhysRevB.81.155408 10.1038/srep11962 10.1016/j.compositesa.2016.08.035 10.3390/en12050796 10.1016/j.carbon.2018.09.073 10.1103/PhysRevE.81.061131 10.1103/RevModPhys.41.48 10.1103/PhysRevB.59.R2514 10.1021/nl101790k 10.1109/JQE.1972.1077175 10.1103/PhysRevB.76.035439 10.1038/nnano.2008.268 10.1016/j.physleta.2010.08.034 10.1016/j.ijthermalsci.2010.12.004 10.1038/am.2014.48 10.1016/j.ijheatmasstransfer.2013.11.065 10.1080/10893950390150467 10.1016/j.carbon.2018.09.034 10.1016/j.carbon.2017.03.030 10.1021/jp402509w 10.1016/j.nantod.2010.02.002 10.1016/j.cap.2005.01.053 10.1103/PhysRevB.66.165440 10.1016/j.physleta.2004.08.016 10.1063/1.2349601 10.1063/1.3435465 10.1021/nl3023274 10.1088/0953-8984/22/33/334215 10.1557/jmr.2013.380 10.1021/nn200181e 10.1016/j.ijheatmasstransfer.2009.03.011 10.1007/s10765-014-1651-z 10.1103/PhysRevB.99.045301 10.1002/smll.201801346 10.1103/PhysRevLett.95.065502 10.1016/j.carbon.2019.01.085 10.1063/1.4819911 10.1016/j.ijheatmasstransfer.2019.01.107 10.1021/jp411573c 10.1021/nl8030086 10.1088/0957-4484/21/28/285706 10.1016/j.applthermaleng.2018.06.049 10.1063/1.4745034 10.1063/1.2907977 10.1063/1.2779850 10.1038/srep21014 10.1016/S0921-4526(02)00898-0 10.1088/0957-4484/11/2/305 10.1063/1.3428464 10.1063/1.4737903 10.1088/1367-2630/15/10/105019 10.1126/science.aaa6502 10.1103/PhysRevB.97.155420 10.1016/j.carbon.2019.01.074 10.1021/acs.chemrev.5b00102 10.1088/1367-2630/5/1/148 10.1038/nmat2753 10.1063/1.3088924 10.1080/14786435.2012.737485 10.7498/aps.58.7809 10.1126/science.1225549 10.1039/C6NR06402G 10.1115/1.1597619 10.1143/JJAP.48.05EC07 10.1063/1.3136860 10.1016/j.corsci.2012.04.036 10.1023/A:1018721525900 10.1063/1.5052692 10.1103/PhysRevLett.78.1896 10.1021/acsphotonics.7b00815 10.1088/1361-6528/aacd7b 10.1016/j.joule.2018.01.006 10.1021/acs.jpcc.7b09643 10.1021/jp2086158 10.1103/PhysRevB.1.638 10.1103/PhysRevE.74.062101 10.3389/fenrg.2018.00028 10.1021/am3032772 10.1016/j.ijheatmasstransfer.2020.119565 10.1021/acsanm.9b01955 10.1021/nl200523f 10.1103/PhysRevLett.89.200601 10.1088/0957-4484/20/14/145702 10.1103/PhysRevLett.98.125503 10.1535/itj.0901.06 10.1063/1.127079 10.1007/s10765-011-1075-y 10.1063/1.3622300 10.1016/j.carbon.2014.07.064 10.1103/PhysRevB.84.075470 10.1007/s10934-011-9504-7 10.1002/adma.201902028 10.1063/1.3189087 10.1039/C5NR03579A 10.1103/RevModPhys.85.1295 10.1021/nl901988t 10.1103/PhysRevLett.87.215502 10.1063/1.4919792 10.1002/smll.201002198 10.1103/PhysRevB.88.035428 10.1016/j.carbon.2007.08.011 10.1103/PhysRevB.80.125407 10.1021/nl0731872 10.1103/RevModPhys.61.605 10.1016/j.carbon.2016.12.006 10.1088/1361-648X/ab285c 10.1038/nnano.2008.58 10.1016/j.carbon.2011.08.041 10.1021/nl102923q 10.1126/science.1101398 10.1103/PhysRevB.91.115426 10.1063/1.3169515 10.1016/j.carbon.2015.11.033 10.1021/am201330f 10.1103/PhysRevB.79.155413 10.1103/PhysRevB.82.205406 10.1103/PhysRevB.65.235412 10.1021/nl301230g 10.1103/PhysRevB.90.134312 10.1016/j.colsurfa.2013.12.083 10.1088/0957-4484/21/3/035709 10.1364/OE.23.010040 10.1021/acs.nanolett.6b01709 10.1103/PhysRevB.90.245429 10.1063/1.4732100 10.1021/am505173s 10.1103/PhysRevLett.84.4613 10.1021/nn9006237 10.1038/ncomms4689 10.1016/j.diamond.2005.08.041 10.1103/PhysRevB.82.161402 10.1063/1.127078 10.1103/PhysRevB.82.115427 10.1016/j.carbon.2017.03.011 10.1038/ncomms12854 10.1063/1.3246155 10.1063/1.3610498 10.1063/1.1146545 10.1063/1.2397008 10.1063/1.4991715 10.1021/nl060331v 10.1103/PhysRevB.93.125432 10.1073/pnas.1306175110 10.1016/j.carbon.2018.02.052 10.1016/S0040-6031(97)00201-3 10.1103/PhysRevB.84.075471 10.1063/1.3000441 10.1021/nl050714d 10.1063/1.353367 10.1021/acsanm.0c01265 10.1016/j.carbon.2016.03.003 10.1007/s10853-019-03368-0 10.1021/acsami.8b12480 10.1103/PhysRevB.69.073407 10.1103/PhysRevB.74.125403 10.1021/nl203060j 10.1016/j.carbon.2017.05.037 10.1002/smll.201401465 10.1016/j.mattod.2015.06.009 10.1016/j.carbon.2016.11.056 10.1002/adfm.201202638 10.1002/adma.200601748 10.1016/j.ijheatmasstransfer.2020.119751 10.1021/nn200847u 10.1038/nmat3064 10.1021/nl300662q 10.1080/15567265.2017.1313343 10.1039/C8RA09879D 10.1039/C5NR00564G 10.1063/1.3567415 10.1039/C7NR06667H 10.1039/C7NR01695F 10.1016/j.ijheatmasstransfer.2019.01.012 10.1103/PhysRevB.81.045413 10.1063/1.2036967 10.1016/j.applthermaleng.2018.09.084 10.1016/j.cap.2020.02.006 10.3389/fenrg.2018.00048 10.1103/PhysRevLett.102.105901 10.1103/RevModPhys.90.041002 10.1021/acsami.6b04114 10.1126/science.1228061 10.1021/am404594m 10.1016/j.nanoen.2018.03.075 10.1103/PhysRevB.5.4951 10.1063/1.3670011 10.1016/j.carbon.2013.05.030 10.1016/j.carbon.2015.10.046 10.1021/cg400767u 10.1115/1.2352778 10.1103/PhysRevB.71.085417 10.1016/j.ijheatmasstransfer.2018.05.011 10.1088/0022-3727/42/10/105502 10.1021/acsami.5b10173 10.1119/1.15177 10.1038/ncomms5709 10.1016/j.carbon.2010.06.063 10.1126/science.1184014 10.1016/j.applthermaleng.2016.10.109 10.3389/fmats.2018.00017 10.1007/s11051-011-0596-4 10.1155/2016/9174085 10.1038/srep15440 10.1103/PhysRevB.59.R9015 10.1038/s41598-017-01601-x 10.1063/1.1141498 10.7567/JJAP.57.02CB08 10.1021/am505484z 10.1016/j.carbon.2016.11.067 10.1126/science.255.5047.971 10.1016/j.carbon.2016.04.043 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jun 30, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jun 30, 2021 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.carbon.2021.02.105 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3891 |
EndPage | 412 |
ExternalDocumentID | 10_1016_j_carbon_2021_02_105 S0008622321003328 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TWZ XPP ZMT ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ IHE R2- RIG SEW SMS WUQ 7SR 8FD JG9 SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-52cf36aced36aea56a2b6bc19e00a61d9df99a5c5e9f92d2897395bb88064c0d3 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Mon Jul 21 09:35:35 EDT 2025 Fri Jul 25 06:18:12 EDT 2025 Thu Apr 24 23:09:01 EDT 2025 Tue Aug 05 03:08:29 EDT 2025 Fri Feb 23 02:41:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal conductivity Measurement methods Nano-carbon assembly Interfacial heat transport Low-frequency phonons |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-52cf36aced36aea56a2b6bc19e00a61d9df99a5c5e9f92d2897395bb88064c0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5654-9217 0000-0001-8081-786X 0000-0001-9008-791X 0000-0003-3389-3741 |
PQID | 2539938623 |
PQPubID | 2045273 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2552007388 proquest_journals_2539938623 crossref_citationtrail_10_1016_j_carbon_2021_02_105 crossref_primary_10_1016_j_carbon_2021_02_105 elsevier_sciencedirect_doi_10_1016_j_carbon_2021_02_105 |
PublicationCentury | 2000 |
PublicationDate | 2021-06-30 |
PublicationDateYYYYMMDD | 2021-06-30 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Carbon (New York) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Mayhew, Prakash (bib189) 2014; 115 Shi, Li, Yu, Jang, Kim, Yao, Kim, Majumdar (bib213) 2003; 125 Li, Liu, Fan (bib210) 2009; 9 Maruyama (bib11) 2002; 323 Zhong (bib78) 2010; 81 Cao, Guo, Xiang, Gong (bib74) 2012; 376 Zhong, Lukes (bib81) 2006; 74 Wang, Song, Liu, Wu, Fan (bib146) 2008; 19 Qiu, Zheng, Zhu, Tang, Yang, Hu, Wang, Li (bib228) 2015; 36 Zhang, Ma, Zang, Wang, Yang (bib69) 2018; 6 Wang, Qin, Buehler, Xu (bib109) 2016; 7 Norris, Smoyer, Duda, Hopkins (bib67) 2012; 134 Ujihara (bib202) 1972; 8 Ding, Pei, Jiang, Huang, Zhang (bib99) 2016; 96 Fox, Gaggini, Wangsani (bib178) 1987; 55 Nika, Ghosh, Pokatilov, Balandin (bib16) 2009; 94 Schmidt, Collins, Minnich, Chen (bib204) 2010; 107 Zhang, Li (bib12) 2005; 123 Li, Katakami, Ikuta, Kohno, Zhang, Takahashi (bib217) 2019; 141 Xu, Zhang, Suhir, Wang (bib137) 2006; 100 Hu, Padilla, Xu, Fisher, Goodson (bib222) 2006; 128 Di, Zhang, Yong, Zhang, Li, Li, Li (bib122) 2016; 28 Wang, Tang, Li, Zheng, Zhang, Zheng, Zhu, Jin, Yang, Gu (bib219) 2007; 91 Xu, Pereira, Wang, Wu, Zhang, Zhao, Bae, Bui, Xie, Thong, Hong, Loh, Donadio, Li, Özyilmaz (bib13) 2014; 5 Craddock, Burgess, Edrington, Weisenberger (bib186) 2017; 9 Hone, Llaguno, Nemes, Johnson, Fischer, Walters, Casavant, Schmidt, Smalley (bib144) 2000; 77 Xin, Yao, Sun, Scott, Shao, Wang, Lian (bib163) 2015; 349 Qiu, Zheng, Su, Tang (bib231) 2013; 34 Kim, Shi, Majumdar, McEuen (bib207) 2001; 87 Cho, Changjian, Hsiao, Lee, Huang (bib182) 2016; 90 Saviot (bib114) 2018; 97 Zaman, Li, Ikram, Li, Zhang, Guo (bib183) 2012; 61 Kumanek, Janas (bib28) 2019; 54 Volkov, Salaway, Zhigilei (bib177) 2013; 114 Zhang, Zhang, Liu, Fan (bib157) 2012; 12 Pereira, Savić, Donadio (bib6) 2013; 15 Nicklow, Wakabayashi, Smith (bib43) 1972; 5 Cocemasov, Nika, Balandin (bib46) 2015; 7 Sun, Kim, Kim (bib230) 2007; 78 Varshney, Lee, Li, Brown, Farmer, Voevodin, Roy (bib97) 2017; 114 Varshney, Lee, Brown, Farmer, Voevodin, Roy (bib98) 2018; 5 Bryning, Milkie, Islam, Hough, Kikkawa, Yodh (bib124) 2007; 19 Hu, Keblinski, Wang, Raravikar (bib82) 2008; 104 Chen, Gao, Yang, Dong, Huang, Li, Dong, Wang (bib181) 2018; 49 Duda, Smoyer, Norris, Hopkins (bib64) 2009; 95 Guo, Zhang, Gong (bib75) 2011; 84 Li, Xu, Yue, Yang, Wang (bib216) 2016; 103 Hsu, Pettes, Bushmaker, Aykol, Shi, Cronin (bib211) 2009; 9 Pettes, Ji, Ruoff, Shi (bib131) 2012; 12 Yang, Zhang, Li (bib7) 2010; 5 Xu, Gao (bib121) 2015; 18 Qiu, Guo, Kong, Tan, Liang, Wei, Tey, Feng, Zhang, Tay (bib172) 2019; 145 Evans, Shen, Keblinski (bib22) 2012; 100 Qiu, Guo, Yang, Ouyang, Feng, Zhang, Zhao, Zhang, Li (bib169) 2019; 145 Volkov, Zhigilei (bib175) 2010; 104 Zhao, Wang, Wu, Wang, Bi, Liang, Yang, Chen, Xu, Ni (bib108) 2015; 5 Di, Wang, Xing, Zhang, Zhang, Lu, Li, Zhu (bib120) 2014; 10 Smith, Benes, Luzzi, Fischer, Walters, Casavant, Schmidt, Smalley (bib156) 2000; 77 Koh, Lyons, Bae, Huang, Dorgan, Cahill, Pop (bib103) 2016; 16 Zhu (bib164) 2015 Huang, Kang (bib113) 2011; 110 Misak, Rutledge, Swenson, Mall (bib155) 2016; 2016 Lepri, Livi, Politi (bib9) 1997; 78 Lindsay, Broido, Mingo (bib18) 2010; 82 Liu, Ma, Zhang (bib117) 2011; 7 Jakubinek, White, Li, Jayasinghe, Cho, Schulz, Shanov (bib139) 2010; 48 Che, Çagin, Goddard (bib21) 2000; 11 Hart, Aggarwal, Lax (bib192) 1970; 1 Zheng, Huang, Li, Koh (bib102) 2018; 10 Mohammad Nejad, Bozorg Bigdeli, Srivastava, Fasano (bib27) 2019; 12 Chalopin, Volz, Mingo (bib174) 2009; 105 Birge, Dixon, Menon (bib227) 1997; 304–305 Hopkins, Norris, Stevens (bib65) 2008; 130 Marconnet, Panzer, Goodson (bib173) 2013; 85 Hopkins, Baraket, Barnat, Beechem, Kearney, Duda, Robinson, Walton (bib24) 2012; 12 Akoshima, Hata, Futaba, Mizuno, Baba, Yumura (bib140) 2009; 48 Pasieka, Hordy, Coulombe, Servio (bib184) 2013; 13 Ong, Pop (bib91) 2010; 81 Chen, Zhang, Cai, Jiang, Zheng, Zhao, Wei (bib88) 2017; 117 Ericson, Fan, Peng, Davis, Zhou, Sulpizio, Wang, Booker, Vavro, Guthy, Parra-Vasquez, Kim, Ramesh, Saini, Kittrell, Lavin, Schmidt, Adams, Billups, Pasquali, Hwang, Hauge, Fischer, Smalley (bib161) 2004; 305 Volkov, Zhigilei (bib176) 2012; 101 Liao, Alizadegan, Ong, Dutta, Xiong, Hsia, Pop (bib63) 2010; 82 Yang, Chou (bib112) 2011; 11 Yue, Ouyang, Hu (bib52) 2015; 5 Zhang, Tan, Smail, De Volder, Fleck, Boies (bib153) 2018; 29 Wang, Chen, Lin, Li, Li, Chen, Meng, Xing, Yao, Wong, Li (bib134) 2014; 6 Jiang, Qian, Yang (bib206) 2017; 88 Hu, Li, Zhao (bib10) 1998; 57 Tong, A (bib224) 2006; 77 Lindsay, Broido, Mingo (bib15) 2009; 80 Roberts, Walker (bib59) 2011; 50 Singh, Murthy, Fisher (bib72) 2011; 110 Yang, Yi, Yao, Li, Li (bib171) 2020; 3 Greaney, Grossman (bib94) 2007; 98 Damnjanović, Dobardžić, Milošević, Vuković, Nikolić (bib42) 2003; 5 Qiu, Zou, Wang, Feng, Zhang, Zhao, Zhang, Li (bib115) 2019; 141 Lin, Zou, Zhu, Feng, Zhang, Zhang (bib116) 2018; 141 Cong, Yu (bib58) 2014; 5 Perebeinos, Rotkin, Petrov, Avouris (bib104) 2009; 9 Yao, Wang, Li, Liu (bib45) 2005; 71 Chen, Chen, Di, Xu, Li, Li (bib149) 2012; 116 Cahill (bib226) 1990; 61 Cao, Yan, Xiao, Ding (bib14) 2004; 69 Li, Zhang, Takahashi (bib197) 2018; 125 Xing, Zhang, Chen, Chen, Li (bib150) 2013; 61 Lombard, Detcheverry, Merabia (bib70) 2014; 27 Chalin, Avramenko, Parmeggiani, Rochal (bib53) 2019; 31 Zhu, Wu, Lattery, Zheng, Wang (bib203) 2017; 21 Lippi, Livi (bib34) 2000; 100 Nika, Askerov, Balandin (bib40) 2012; 12 Wang, Xie, Bui, Liu, Ni, Li, Thong (bib190) 2011; 11 Duzynska, Taube, Korona, Judek, Zdrojek (bib152) 2015; 106 Xu, Fan, Wang, Zhang, Wang (bib194) 2020; 154 Ran, Guo, Hu, Wang (bib60) 2018; 6 Wu, Xu, Mu, Xie, Ling, Kong, Dresselhaus, Zhang (bib51) 2014; 118 Behabtu, Young, Tsentalovich, Kleinerman, Wang, Ma, Bengio, ter Waarbeek, de Jong, Hoogerwerf, Fairchild, Ferguson, Maruyama, Kono, Talmon, Cohen, Otto, Pasquali (bib162) 2013; 339 Lu, Nilsson, Fricke, Pekala (bib127) 1993; 73 Salaway, Zhigilei (bib220) 2014; 70 Feng, Feng, Zhang (bib125) 2012; 19 Yuan, Wang, Tan, Wang, Wang (bib195) 2017; 4 Hone, Whitney, Piskoti, Zettl (bib1) 1999; 59 Sahoo, Chitturi, Agarwal, Jiang, Katiyar (bib151) 2014; 6 Wang, Hu, Li (bib36) 2012; 86 Kong, Bodelot, Lebental, Lim, Shiau, Gusarov, Tan, Liang, Lu, Tan, Coquet, Tay (bib185) 2018; 132 Lu, Arduini-Schuster, Kuhn, Nilsson, Fricke, Pekala (bib126) 1992; 255 Fujii, Zhang, Xie, Ago, Takahashi, Ikuta, Abe, Shimizu (bib208) 2005; 95 Qiu, Ouyang, Feng, Zhang (bib191) 2018; 89 Yue, Huang, Wang (bib148) 2010; 374 Jakubinek, Johnson, White, Jayasinghe, Li, Cho, Schulz, Shanov (bib160) 2012; 50 Wang, Samani, Li, Dong, Zhang, Su, Chen, Chen, Huang, Yuan, Xu, Li, Leifer, Ye, Liu (bib26) 2018; 14 Hou, Cao, Guo (bib32) 2009; 58 Ghosh, Bao, Nika, Subrina, Pokatilov, Lau, Balandin (bib17) 2010; 9 Marconnet, Yamamoto, Panzer, Wardle, Goodson (bib141) 2011; 5 Namsani, Singh (bib101) 2018; 122 Yang, Xu, Zhang, Li (bib8) 2012; 2 Bougher, Taphouse, Cola (bib188) 2015 Xie, Xu, Xu, Wu, Deng, Wang (bib128) 2016; 98 Anindya, Islam, Park, Bhuiyan, Hashimoto (bib47) 2020; 20 Qiu, Wang, Tang, Zheng, Norris, Wen, Zhao, Zhang, Li (bib165) 2016; 105 Chen, Yang, Liu, Xu, Zhang, Zhuang, Ding, Huai, Zhang (bib93) 2019; 9 Wang, Song, Xu (bib107) 2014; 29 Harish, Orejon, Takata, Kohno (bib179) 2017; 114 Guo, Zhang, Gong (bib4) 2009; 95 Maruyama (bib29) 2003; 7 K (bib61) 1952; 22 Liu, Baimova, Reddy, Law, Dmitriev, Wu, Zhou (bib100) 2014; 6 Ivanov, Puretzky, Eres, Wang, Pan, Cui, Jin, Howe, Geohegan (bib135) 2006; 89 Mingo, Broido (bib30) 2005; 5 Zhang, Lu, Zhou, Li (bib123) 2020; 32 Choi, Poulikakos, Tharian, Sennhauser (bib218) 2006; 6 Berber, Kwon, Tománek (bib2) 2000; 84 Fu, Hansson, Liu, Chen, Zehri, Samani, Wang, Ni, Zhang, Zhang, Wang, Li, Lu, Sledzinska, Torres, Volz, Balandin, Xu, Liu (bib214) 2019; 7 Xu, Wang, David, Yue, Wang (bib198) 2015; 23 Cocemasov, Nika, Balandin (bib50) 2013; 88 Liang, Yao, Wang, Liu, Wong (bib133) 2011; 5 Koh, Bae, Cahill, Pop (bib205) 2010; 10 Balandin (bib5) 2011; 10 Chen, Gui, Wang, Li, Xiang, Wang, Wu, Xia, Zhou, Wang, Tang, Chen (bib180) 2012; 4 Liu, Fan, Mikhalchan, Tran, Jewell, Duong, Marconnet (bib166) 2016; 8 Chen, Jang, Xiao, Ishigami, Fuhrer (bib105) 2008; 3 Wang, Gu, Zhang, Song (bib212) 2009; 42 Meric, Han, Young, Ozyilmaz, Kim, Shepard (bib106) 2008; 3 Nika, Pokatilov, Askerov, Balandin (bib39) 2009; 79 Yang, Zhang, Chen, Yoon, Ahn, Wang, Zhou, Wang, Li (bib201) 2002; 66 Shaikh, Li, Lafdi, Huie (bib138) 2007; 45 Sääskilahti, Oksanen, Tulkki, Volz (bib85) 2014; 90 Feng, Zhu, Tang (bib90) 2018; 145 Yi, Lu, Zhang, Pan, Xie (bib221) 1999; 59 Zhao, Yan, Kumar, Wang, Porter, Priya (bib154) 2012; 112 Pollack (bib80) 1969; 41 Li, Xia, Zhang, Zhang, Li, Takahashi, Zhang (bib187) 2017; 9 Mohr, Maultzsch, Dobardžić, Reich, Milošević, Damnjanović, Bosak, Krisch, Thomsen (bib44) 2007; 76 Qiu, Wang, Su, Tang, Zheng, Zhu, Wang, Norris, Bradford, Zhu (bib86) 2016; 6 Liu, Baimova, Reddy, Dmitriev, Law, Feng, Zhou (bib84) 2014; 79 Li, Wei, Datta (bib89) 2017; 113 Ghosh, Calizo, Teweldebrhan, Pokatilov, Nika, Balandin, Bao, Miao, Lau (bib199) 2008; 92 Song, Liu, Liu, Wu, Cheng, Kang (bib23) 2018; 2 Panzer, Zhang, Mann, Hu, Pop, Dai, Goodson (bib143) 2008; 130 Qiu, Scheider, Radwan, Larkin, Saltonstall, Feng, Zhang, Norris (bib87) 2017; 120 Gspann, Juckes, Niven, Johnson, Elliott, White, Windle (bib167) 2017; 114 Zhang, Gu, Zhang, Ye, Gong (bib111) 2004; 331 Moon, Jeong, Kwun (bib229) 1996; 67 Yang, He, Puneet, Su, Skove, Gaillard, Tritt, Rao (bib147) 2010; 22 Sahoo, Gaur, Ahmadi, Guinel, Katiyar (bib193) 2013; 117 Xu, Buehler (bib96) 2009; 3 Gao, Qu, Yao (bib71) 2011; 110 Prasher, Hu, Chalopin, Mingo, Lofgreen, Volz, Cleri, Keblinski (bib95) 2009; 102 Zobeiri, Wang, Wang, Lin, Deng, Wang (bib196) 2019; 133 Seol, Jo, Moore, Lindsay, Aitken, Pettes, Li, Yao, Huang, Broido, Mingo, Ruoff, Shi (bib20) 2010; 328 Evans, Hu, Keblinski (bib31) 2010; 96 Gonnet, Liang, Choi, Kadambala, Zhang, Brooks, Wang, Kramer (bib145) 2006; 6 Aliev, Lima, Silverman, Baughman (bib223) 2010; 21 Hong, Li, Zeng, Zhang (bib92) 2015; 7 Zhong, Zhang, Ai, Zheng (bib73) 2011; 98 Samson, Machiroutu, Chang, Santos, Hermerding, Dani, Prasher, Song (bib136) 2005; 9 Cheng, Hu, Zhao, Qu (bib119) 2014; 6 Guo, Zhang, Zhai, Gong (bib79) 2010; 21 Narayan, Ramaswamy (bib37) 2002; 89 Cola, Xu, Fisher (bib Hopkins (10.1016/j.carbon.2021.02.105_bib65) 2008; 130 Cola (10.1016/j.carbon.2021.02.105_bib83) 2009; 52 Wang (10.1016/j.carbon.2021.02.105_bib219) 2007; 91 Qiu (10.1016/j.carbon.2021.02.105_bib231) 2013; 34 Mohr (10.1016/j.carbon.2021.02.105_bib44) 2007; 76 Chen (10.1016/j.carbon.2021.02.105_bib181) 2018; 49 Zhu (10.1016/j.carbon.2021.02.105_bib203) 2017; 21 Zhou (10.1016/j.carbon.2021.02.105_bib132) 2013; 23 Qiu (10.1016/j.carbon.2021.02.105_bib191) 2018; 89 Guo (10.1016/j.carbon.2021.02.105_bib75) 2011; 84 Cahill (10.1016/j.carbon.2021.02.105_bib226) 1990; 61 Liu (10.1016/j.carbon.2021.02.105_bib215) 2019; 135 Marconnet (10.1016/j.carbon.2021.02.105_bib141) 2011; 5 Liu (10.1016/j.carbon.2021.02.105_bib84) 2014; 79 Wang (10.1016/j.carbon.2021.02.105_bib190) 2011; 11 Nicklow (10.1016/j.carbon.2021.02.105_bib43) 1972; 5 Qiu (10.1016/j.carbon.2021.02.105_bib169) 2019; 145 Wang (10.1016/j.carbon.2021.02.105_bib26) 2018; 14 Li (10.1016/j.carbon.2021.02.105_bib209) 2009; 20 Shi (10.1016/j.carbon.2021.02.105_bib213) 2003; 125 Marconnet (10.1016/j.carbon.2021.02.105_bib173) 2013; 85 Cong (10.1016/j.carbon.2021.02.105_bib58) 2014; 5 Ran (10.1016/j.carbon.2021.02.105_bib60) 2018; 6 Ghosh (10.1016/j.carbon.2021.02.105_bib17) 2010; 9 Sahoo (10.1016/j.carbon.2021.02.105_bib151) 2014; 6 Qiu (10.1016/j.carbon.2021.02.105_bib165) 2016; 105 Zhang (10.1016/j.carbon.2021.02.105_bib153) 2018; 29 Ivanov (10.1016/j.carbon.2021.02.105_bib135) 2006; 89 Yang (10.1016/j.carbon.2021.02.105_bib7) 2010; 5 Thomas (10.1016/j.carbon.2021.02.105_bib33) 2010; 81 Jiang (10.1016/j.carbon.2021.02.105_bib206) 2017; 88 Howlader (10.1016/j.carbon.2021.02.105_bib57) 2018; 57 Liao (10.1016/j.carbon.2021.02.105_bib63) 2010; 82 Xu (10.1016/j.carbon.2021.02.105_bib121) 2015; 18 Hu (10.1016/j.carbon.2021.02.105_bib10) 1998; 57 Zheng (10.1016/j.carbon.2021.02.105_bib232) 2011; 13 Guo (10.1016/j.carbon.2021.02.105_bib4) 2009; 95 Lindsay (10.1016/j.carbon.2021.02.105_bib15) 2009; 80 Swartz (10.1016/j.carbon.2021.02.105_bib62) 1989; 61 Yue (10.1016/j.carbon.2021.02.105_bib148) 2010; 374 Ding (10.1016/j.carbon.2021.02.105_bib158) 2017; 9 Cheng (10.1016/j.carbon.2021.02.105_bib129) 2017; 7 Singh (10.1016/j.carbon.2021.02.105_bib72) 2011; 110 Che (10.1016/j.carbon.2021.02.105_bib21) 2000; 11 Popov (10.1016/j.carbon.2021.02.105_bib41) 2014; 90 Namsani (10.1016/j.carbon.2021.02.105_bib101) 2018; 122 Meric (10.1016/j.carbon.2021.02.105_bib106) 2008; 3 Li (10.1016/j.carbon.2021.02.105_bib187) 2017; 9 Li (10.1016/j.carbon.2021.02.105_bib89) 2017; 113 Liu (10.1016/j.carbon.2021.02.105_bib166) 2016; 8 Ujihara (10.1016/j.carbon.2021.02.105_bib202) 1972; 8 Nika (10.1016/j.carbon.2021.02.105_bib40) 2012; 12 Yang (10.1016/j.carbon.2021.02.105_bib201) 2002; 66 Li (10.1016/j.carbon.2021.02.105_bib168) 2020; 3 Wang (10.1016/j.carbon.2021.02.105_bib109) 2016; 7 Xie (10.1016/j.carbon.2021.02.105_bib128) 2016; 98 Evans (10.1016/j.carbon.2021.02.105_bib22) 2012; 100 Wang (10.1016/j.carbon.2021.02.105_bib107) 2014; 29 Kumanek (10.1016/j.carbon.2021.02.105_bib28) 2019; 54 Aliev (10.1016/j.carbon.2021.02.105_bib223) 2010; 21 Zhang (10.1016/j.carbon.2021.02.105_bib55) 2013; 93 Fox (10.1016/j.carbon.2021.02.105_bib178) 1987; 55 Lindsay (10.1016/j.carbon.2021.02.105_bib19) 2010; 82 Pereira (10.1016/j.carbon.2021.02.105_bib6) 2013; 15 Kim (10.1016/j.carbon.2021.02.105_bib207) 2001; 87 Li (10.1016/j.carbon.2021.02.105_bib210) 2009; 9 Evans (10.1016/j.carbon.2021.02.105_bib31) 2010; 96 Cho (10.1016/j.carbon.2021.02.105_bib182) 2016; 90 Yao (10.1016/j.carbon.2021.02.105_bib45) 2005; 71 Xin (10.1016/j.carbon.2021.02.105_bib163) 2015; 349 Gspann (10.1016/j.carbon.2021.02.105_bib167) 2017; 114 Lin (10.1016/j.carbon.2021.02.105_bib116) 2018; 141 Liu (10.1016/j.carbon.2021.02.105_bib117) 2011; 7 Ericson (10.1016/j.carbon.2021.02.105_bib161) 2004; 305 Li (10.1016/j.carbon.2021.02.105_bib217) 2019; 141 Roberts (10.1016/j.carbon.2021.02.105_bib59) 2011; 50 Anindya (10.1016/j.carbon.2021.02.105_bib47) 2020; 20 Smith (10.1016/j.carbon.2021.02.105_bib156) 2000; 77 Li (10.1016/j.carbon.2021.02.105_bib197) 2018; 125 Bougher (10.1016/j.carbon.2021.02.105_bib188) 2015 Hone (10.1016/j.carbon.2021.02.105_bib144) 2000; 77 Luckyanova (10.1016/j.carbon.2021.02.105_bib49) 2012; 338 Li (10.1016/j.carbon.2021.02.105_bib216) 2016; 103 Duda (10.1016/j.carbon.2021.02.105_bib64) 2009; 95 Hone (10.1016/j.carbon.2021.02.105_bib1) 1999; 59 Jakubinek (10.1016/j.carbon.2021.02.105_bib139) 2010; 48 Sugime (10.1016/j.carbon.2021.02.105_bib142) 2013; 103 Volkov (10.1016/j.carbon.2021.02.105_bib175) 2010; 104 Ahmed (10.1016/j.carbon.2021.02.105_bib225) 2006; 15 Birge (10.1016/j.carbon.2021.02.105_bib227) 1997; 304–305 Li (10.1016/j.carbon.2021.02.105_bib118) 2015; 115 Qiu (10.1016/j.carbon.2021.02.105_bib87) 2017; 120 Zhang (10.1016/j.carbon.2021.02.105_bib69) 2018; 6 Pollack (10.1016/j.carbon.2021.02.105_bib80) 1969; 41 Lombard (10.1016/j.carbon.2021.02.105_bib70) 2014; 27 Zhang (10.1016/j.carbon.2021.02.105_bib157) 2012; 12 Di (10.1016/j.carbon.2021.02.105_bib120) 2014; 10 Jakubinek (10.1016/j.carbon.2021.02.105_bib160) 2012; 50 Zhong (10.1016/j.carbon.2021.02.105_bib78) 2010; 81 Zhao (10.1016/j.carbon.2021.02.105_bib154) 2012; 112 Gao (10.1016/j.carbon.2021.02.105_bib71) 2011; 110 Cocemasov (10.1016/j.carbon.2021.02.105_bib50) 2013; 88 Salaway (10.1016/j.carbon.2021.02.105_bib220) 2014; 70 Sääskilahti (10.1016/j.carbon.2021.02.105_bib48) 2015; 91 Zhang (10.1016/j.carbon.2021.02.105_bib123) 2020; 32 Bryning (10.1016/j.carbon.2021.02.105_bib124) 2007; 19 Lepri (10.1016/j.carbon.2021.02.105_bib9) 1997; 78 Koh (10.1016/j.carbon.2021.02.105_bib103) 2016; 16 Volkov (10.1016/j.carbon.2021.02.105_bib176) 2012; 101 Qiu (10.1016/j.carbon.2021.02.105_bib170) 2020; 152 Hart (10.1016/j.carbon.2021.02.105_bib192) 1970; 1 Wang (10.1016/j.carbon.2021.02.105_bib212) 2009; 42 Samson (10.1016/j.carbon.2021.02.105_bib136) 2005; 9 Chalopin (10.1016/j.carbon.2021.02.105_bib174) 2009; 105 Qiu (10.1016/j.carbon.2021.02.105_bib115) 2019; 141 Xie (10.1016/j.carbon.2021.02.105_bib159) 2016; 8 Gonnet (10.1016/j.carbon.2021.02.105_bib145) 2006; 6 Liang (10.1016/j.carbon.2021.02.105_bib133) 2011; 5 Akoshima (10.1016/j.carbon.2021.02.105_bib140) 2009; 48 Hu (10.1016/j.carbon.2021.02.105_bib222) 2006; 128 Zhang (10.1016/j.carbon.2021.02.105_bib12) 2005; 123 Zhang (10.1016/j.carbon.2021.02.105_bib111) 2004; 331 Vallabhaneni (10.1016/j.carbon.2021.02.105_bib200) 2016; 93 Balandin (10.1016/j.carbon.2021.02.105_bib3) 2008; 8 Ghosh (10.1016/j.carbon.2021.02.105_bib199) 2008; 92 Mingo (10.1016/j.carbon.2021.02.105_bib30) 2005; 5 Lu (10.1016/j.carbon.2021.02.105_bib127) 1993; 73 Narayan (10.1016/j.carbon.2021.02.105_bib37) 2002; 89 Zhao (10.1016/j.carbon.2021.02.105_bib108) 2015; 5 Xu (10.1016/j.carbon.2021.02.105_bib194) 2020; 154 Norris (10.1016/j.carbon.2021.02.105_bib67) 2012; 134 Chen (10.1016/j.carbon.2021.02.105_bib180) 2012; 4 Gu (10.1016/j.carbon.2021.02.105_bib38) 2018; 90 Greaney (10.1016/j.carbon.2021.02.105_bib94) 2007; 98 Zhong (10.1016/j.carbon.2021.02.105_bib73) 2011; 98 Harish (10.1016/j.carbon.2021.02.105_bib179) 2017; 114 Zhong (10.1016/j.carbon.2021.02.105_bib81) 2006; 74 Di (10.1016/j.carbon.2021.02.105_bib122) 2016; 28 Berber (10.1016/j.carbon.2021.02.105_bib2) 2000; 84 Balandin (10.1016/j.carbon.2021.02.105_bib5) 2011; 10 Feng (10.1016/j.carbon.2021.02.105_bib66) 2019; 99 Sadeghi (10.1016/j.carbon.2021.02.105_bib76) 2013; 110 Xu (10.1016/j.carbon.2021.02.105_bib96) 2009; 3 Chalin (10.1016/j.carbon.2021.02.105_bib53) 2019; 31 Wang (10.1016/j.carbon.2021.02.105_bib134) 2014; 6 Yang (10.1016/j.carbon.2021.02.105_bib171) 2020; 3 K (10.1016/j.carbon.2021.02.105_bib61) 1952; 22 Guo (10.1016/j.carbon.2021.02.105_bib79) 2010; 21 Shaikh (10.1016/j.carbon.2021.02.105_bib138) 2007; 45 Yi (10.1016/j.carbon.2021.02.105_bib221) 1999; 59 Mayhew (10.1016/j.carbon.2021.02.105_bib189) 2014; 115 Zaman (10.1016/j.carbon.2021.02.105_bib183) 2012; 61 Feng (10.1016/j.carbon.2021.02.105_bib125) 2012; 19 Behabtu (10.1016/j.carbon.2021.02.105_bib162) 2013; 339 Lu (10.1016/j.carbon.2021.02.105_bib126) 1992; 255 Wang (10.1016/j.carbon.2021.02.105_bib110) 2016; 8 Choi (10.1016/j.carbon.2021.02.105_bib218) 2006; 6 Lippi (10.1016/j.carbon.2021.02.105_bib34) 2000; 100 Chen (10.1016/j.carbon.2021.02.105_bib105) 2008; 3 Volkov (10.1016/j.carbon.2021.02.105_bib177) 2013; 114 Ong (10.1016/j.carbon.2021.02.105_bib77) 2011; 84 Sääskilahti (10.1016/j.carbon.2021.02.105_bib85) 2014; 90 Hsu (10.1016/j.carbon.2021.02.105_bib211) 2009; 9 Suzuura (10.1016/j.carbon.2021.02.105_bib54) 2002; 65 Xu (10.1016/j.carbon.2021.02.105_bib13) 2014; 5 Liu (10.1016/j.carbon.2021.02.105_bib100) 2014; 6 Fu (10.1016/j.carbon.2021.02.105_bib214) 2019; 7 Misak (10.1016/j.carbon.2021.02.105_bib155) 2016; 2016 Varshney (10.1016/j.carbon.2021.02.105_bib98) 2018; 5 Nika (10.1016/j.carbon.2021.02.105_bib39) 2009; 79 Nika (10.1016/j.carbon.2021.02.105_bib16) 2009; 94 Chen (10.1016/j.carbon.2021.02.105_bib88) 2017; 117 Saviot (10.1016/j.carbon.2021.02.105_bib114) 2018; 97 Tong (10.1016/j.carbon.2021.02.105_bib224) 2006; 77 Panzer (10.1016/j.carbon.2021.02.105_bib143) 2008; 130 Craddock (10.1016/j.carbon.2021.02.105_bib186) 2017; 9 Sun (10.1016/j.carbon.2021.02.105_bib230) 2007; 78 Duzynska (10.1016/j.carbon.2021.02.105_bib152) 2015; 106 Xing (10.1016/j.carbon.2021.02.105_bib150) 2013; 61 Yue (10.1016/j.carbon.2021.02.105_bib52) 2015; 5 Yang (10.1016/j.carbon.2021.02.105_bib35) 2006; 74 Prasher (10.1016/j.carbon.2021.02.105_bib95) 2009; 102 Fujii (10.1016/j.carbon.2021.02.105_bib208) 2005; 95 Yang (10.1016/j.carbon.2021.02.105_bib8) 2012; 2 Ong (10.1016/j.carbon.2021.02.105_bib91) 2010; 81 Zhu (10.1016/j.carbon.2021.02.105_bib164) 2015 Hopkins (10.1016/j.carbon.2021.02.105_bib68) 2009; 106 Huang (10.1016/j.carbon.2021.02.105_bib113) 2011; 110 Yang (10.1016/j.carbon.2021.02.105_bib112) 2011; 11 Schmidt (10.1016/j.carbon.2021.02.105_bib204) 2010; 107 Zheng (10.1016/j.carbon.2021.02.105_bib102) 2018; 10 Ding (10.1016/j.carbon.2021.02.105_bib99) 2016; 96 Yang (10.1016/j.carbon.2021.02.105_bib147) 2010; 22 Chen (10.1016/j.carbon.2021.02.105_bib93) 2019; 9 Perebeinos (10.1016/j.carbon.2021.02.105_bi |
References_xml | – volume: 5 start-page: 2599 year: 2013 end-page: 2603 ident: bib25 article-title: Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering publication-title: ACS Appl. Mater. Interfaces – volume: 91 start-page: 123119 year: 2007 ident: bib219 article-title: Length-dependent thermal conductivity of an individual single-wall carbon nanotube publication-title: Appl. Phys. Lett. – volume: 4 start-page: 81 year: 2012 end-page: 86 ident: bib180 article-title: Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications publication-title: ACS Appl. Mater. Interfaces – volume: 88 year: 2017 ident: bib206 article-title: Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach publication-title: Rev. Sci. Instrum. – volume: 7 year: 2019 ident: bib214 article-title: Graphene related materials for thermal management publication-title: 2D Mater. – volume: 7 start-page: 41 year: 2003 end-page: 50 ident: bib29 article-title: A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube publication-title: Microscale Thermophys. Eng. – volume: 12 start-page: 796 year: 2019 ident: bib27 article-title: Heat transfer at the interface of graphene nanoribbons with different relative orientations and gaps publication-title: Energies – volume: 100 start-page: 1147 year: 2000 end-page: 1172 ident: bib34 article-title: Heat conduction in two-dimensional nonlinear lattices publication-title: J. Stat. Phys. – volume: 116 start-page: 3903 year: 2012 end-page: 3909 ident: bib149 article-title: Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials publication-title: J. Phys. Chem. C – volume: 57 start-page: 2992 year: 1998 end-page: 2995 ident: bib10 article-title: Heat conduction in one-dimensional chains publication-title: Phys. Rev. E – volume: 23 start-page: 10040 year: 2015 end-page: 10056 ident: bib198 article-title: Development of time-domain differential Raman for transient thermal probing of materials publication-title: Opt Express – volume: 61 start-page: 501 year: 2013 end-page: 506 ident: bib150 article-title: Enhancing buckypaper conductivity through co-deposition with copper nanowires publication-title: Carbon – volume: 71 year: 2005 ident: bib45 article-title: Thermal conduction of carbon nanotubes using molecular dynamics publication-title: Phys. Rev. B – volume: 86 year: 2012 ident: bib36 article-title: Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices publication-title: Phys. Rev. E – volume: 101 year: 2012 ident: bib176 article-title: Heat conduction in carbon nanotube materials: strong effect of intrinsic thermal conductivity of carbon nanotubes publication-title: Appl. Phys. Lett. – volume: 78 start-page: 1896 year: 1997 end-page: 1899 ident: bib9 article-title: Heat conduction in chains of nonlinear oscillators publication-title: Phys. Rev. Lett. – volume: 84 year: 2011 ident: bib75 article-title: Manipulating thermal conductivity through substrate coupling publication-title: Phys. Rev. B – volume: 74 start-page: 125403 year: 2006 ident: bib81 article-title: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling publication-title: Phys. Rev. B – volume: 7 start-page: 1439 year: 2017 ident: bib129 article-title: Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction publication-title: Sci. Rep. – volume: 3 start-page: 2149 year: 2020 end-page: 2155 ident: bib171 article-title: Thermally conductive graphene films for heat dissipation publication-title: ACS Appl. Nano Mater. – volume: 106 year: 2009 ident: bib68 article-title: Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces publication-title: J. Appl. Phys. – volume: 12 start-page: 4848 year: 2012 end-page: 4852 ident: bib157 article-title: High-density carbon nanotube buckypapers with superior transport and mechanical properties publication-title: Nano Lett. – volume: 135 start-page: 511 year: 2019 end-page: 516 ident: bib215 article-title: Differential laser flash Raman spectroscopy method for non-contact characterization of thermal transport properties of individual nanowires publication-title: Int. J. Heat Mass Tran. – volume: 82 start-page: 161402 year: 2010 ident: bib18 article-title: Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit publication-title: Phys. Rev. B – start-page: 919 year: 2015 end-page: 922 ident: bib164 article-title: Thermal property of carbon nanotube fibers from chemical vapor deposition synthesis publication-title: Proceedings of the 2015 International Conference on Materials, Environmental and Biological Engineering, Volume 10 of – volume: 61 start-page: 605 year: 1989 end-page: 668 ident: bib62 article-title: Thermal boundary resistance publication-title: Rev. Mod. Phys. – volume: 27 year: 2014 ident: bib70 article-title: Influence of the electron–phonon interfacial conductance on the thermal transport at metal/dielectric interfaces publication-title: J. Phys.:Condes. Matter – volume: 29 start-page: 362 year: 2014 end-page: 372 ident: bib107 article-title: Characterizing phonon thermal conduction in polycrystalline graphene publication-title: J. Mater. Res. – volume: 77 start-page: 104902 year: 2006 ident: bib224 article-title: Reexamining the 3-omega technique for thin film thermal characterization publication-title: Rev. Sci. Instrum. – volume: 28 start-page: 10529 year: 2016 end-page: 10538 ident: bib122 article-title: Carbon-nanotube fibers for wearable devices and smart textiles publication-title: Adv. Mater. – volume: 9 start-page: 75 year: 2005 end-page: 86 ident: bib136 article-title: Interface material selection and a thermal management technique in second-generation platforms built on intel centrino mobile technology publication-title: Intel Technol. J. – volume: 89 year: 2018 ident: bib191 article-title: Note: thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3ω method publication-title: Rev. Sci. Instrum. – volume: 112 year: 2012 ident: bib154 article-title: Thermal conductivity of self-assembled nano-structured ZnO bulk ceramics publication-title: J. Appl. Phys. – volume: 134 year: 2012 ident: bib67 article-title: Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials publication-title: J. Heat Tran. – volume: 130 year: 2008 ident: bib65 article-title: Influence of inelastic scattering at metal-dielectric interfaces publication-title: J. Heat Tran. – volume: 74 year: 2006 ident: bib35 article-title: Dimensional crossover of heat conduction in low dimensions publication-title: Phys. Rev. E – volume: 96 start-page: 888 year: 2016 end-page: 896 ident: bib99 article-title: Interfacial thermal conductance in graphene/MoS publication-title: Carbon – volume: 132 start-page: 359 year: 2018 end-page: 369 ident: bib185 article-title: Novel three-dimensional carbon nanotube networks as high performance thermal interface materials publication-title: Carbon – volume: 41 start-page: 48 year: 1969 end-page: 81 ident: bib80 article-title: Kapitza resistance publication-title: Rev. Mod. Phys. – volume: 91 start-page: 115426 year: 2015 ident: bib48 article-title: Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics publication-title: Phys. Rev. B – volume: 9 start-page: 590 year: 2009 end-page: 594 ident: bib211 article-title: Optical absorption and thermal transport of individual suspended carbon nanotube bundles publication-title: Nano Lett. – volume: 103 start-page: 101 year: 2016 end-page: 108 ident: bib216 article-title: Thermal characterization of carbon nanotube fiber by time-domain differential Raman publication-title: Carbon – volume: 20 start-page: 145702 year: 2009 ident: bib209 article-title: Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method publication-title: Nanotechnology – volume: 23 start-page: 2263 year: 2013 end-page: 2269 ident: bib132 article-title: Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage publication-title: Adv. Funct. Mater. – volume: 67 start-page: 29 year: 1996 end-page: 35 ident: bib229 article-title: The publication-title: Rev. Sci. Instrum. – volume: 5 start-page: 17 year: 2018 ident: bib98 article-title: Effect of length, diameter, chirality, deformation, and strain on contact thermal conductance between single-wall carbon nanotubes publication-title: Front. Mater. – volume: 7 start-page: 12854 year: 2016 ident: bib109 article-title: Intercalated water layers promote thermal dissipation at bio-nano interfaces publication-title: Nat. Commun. – volume: 120 start-page: 128 year: 2017 end-page: 136 ident: bib87 article-title: Thermal transport barrier in carbon nanotube array nano-thermal interface materials publication-title: Carbon – volume: 255 start-page: 971 year: 1992 end-page: 972 ident: bib126 article-title: Thermal conductivity of monolithic organic aerogels publication-title: Science – volume: 9 start-page: 10784 year: 2017 end-page: 10793 ident: bib187 article-title: Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method publication-title: Nanoscale – volume: 122 start-page: 2113 year: 2018 end-page: 2121 ident: bib101 article-title: Enhancement of thermal energy transport across the gold-graphene interface using nanoscale defects: a molecular dynamics study publication-title: J. Phys. Chem. C – volume: 5 start-page: 2392 year: 2011 end-page: 2401 ident: bib133 article-title: A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials publication-title: ACS Nano – volume: 61 start-page: 802 year: 1990 end-page: 808 ident: bib226 article-title: Thermal conductivity measurement from 30 to 750 K: the publication-title: Rev. Sci. Instrum. – volume: 8 start-page: 902 year: 2008 end-page: 907 ident: bib3 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Lett. – volume: 19 start-page: 661 year: 2007 end-page: 664 ident: bib124 article-title: Carbon nanotube Aerogels publication-title: Adv. Mater. – volume: 1 start-page: 638 year: 1970 end-page: 642 ident: bib192 article-title: Temperature dependence of Raman scattering in silicon publication-title: Phys. Rev. B – volume: 82 start-page: 115427 year: 2010 ident: bib19 article-title: Flexural phonons and thermal transport in graphene publication-title: Phys. Rev. B – volume: 141 start-page: 913 year: 2018 end-page: 920 ident: bib116 article-title: Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers publication-title: Appl. Therm. Eng. – volume: 118 start-page: 58 year: 2017 end-page: 65 ident: bib56 article-title: Structural characterization of carbon nanotubes via the vibrationaldensity of states publication-title: Carbon – volume: 100 year: 2006 ident: bib137 article-title: Thermal properties of carbon nanotube array used for integrated circuit cooling publication-title: J. Appl. Phys. – volume: 58 start-page: 7809 year: 2009 end-page: 7814 ident: bib32 article-title: Thermal conductivity of carbon nanotube: from ballistic to diffusive transport publication-title: Acta Phys. Sin. – volume: 7 start-page: 12851 year: 2015 end-page: 12859 ident: bib46 article-title: Engineering of the thermodynamic properties of bilayer graphene by atomic plane rotations: the role of the out-of-plane phonons publication-title: Nanoscale – volume: 84 year: 2011 ident: bib77 article-title: Effect of substrate modes on thermal transport in supported graphene publication-title: Phys. Rev. B – volume: 113 start-page: 274 year: 2017 end-page: 282 ident: bib89 article-title: Thermal characteristics of graphene nanoribbons endorsed by surface functionalization publication-title: Carbon – volume: 50 start-page: 244 year: 2012 end-page: 248 ident: bib160 article-title: Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns publication-title: Carbon – volume: 6 start-page: 28 year: 2018 ident: bib60 article-title: Interfacial phonon transport through Si/Ge multilayer film using Monte Carlo scheme with spectral transmissivity publication-title: Front. Energy Res. – volume: 349 start-page: 1083 year: 2015 end-page: 1087 ident: bib163 article-title: Highly thermally conductive and mechanically strong graphene fibers publication-title: Science – volume: 106 start-page: 183108 year: 2015 ident: bib152 article-title: Temperature-dependent thermal properties of single-walled carbon nanotube thin films publication-title: Appl. Phys. Lett. – volume: 34 start-page: 2261 year: 2013 end-page: 2275 ident: bib231 article-title: Design and application of a freestanding sensor based on publication-title: Int. J. Thermophys. – volume: 65 start-page: 235412 year: 2002 ident: bib54 article-title: Phonons and electron-phonon scattering in carbon nanotubes publication-title: Phys. Rev. B – volume: 2 start-page: 442 year: 2018 end-page: 463 ident: bib23 article-title: Two-dimensional materials for thermal management applications publication-title: Joule – volume: 445 start-page: 48 year: 2014 end-page: 53 ident: bib130 article-title: Thermal and electrical properties of graphene/carbon nanotube aerogels publication-title: Colloids Surf., A – volume: 21 year: 2010 ident: bib223 article-title: Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes publication-title: Nanotechnology – volume: 52 start-page: 3490 year: 2009 end-page: 3503 ident: bib83 article-title: Contact mechanics and thermal conductance of carbon nanotube array interfaces publication-title: Int. J. Heat Mass Tran. – volume: 95 start-page: 163103 year: 2009 ident: bib4 article-title: Thermal conductivity of graphene nanoribbons publication-title: Appl. Phys. Lett. – volume: 123 start-page: 114714 year: 2005 ident: bib12 article-title: Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature publication-title: J. Chem. Phys. – volume: 21 start-page: 177 year: 2017 end-page: 198 ident: bib203 article-title: The ultrafast laser pump-probe technique for thermal characterization of materials with micro/nanostructures publication-title: Nanoscale Microscale Thermophys. Eng. – volume: 5 start-page: 148 year: 2003 ident: bib42 article-title: Lattice dynamics and symmetry of double wall carbon nanotubes publication-title: New J. Phys. – volume: 95 year: 2005 ident: bib208 article-title: Measuring the thermal conductivity of a single carbon nanotube publication-title: Phys. Rev. Lett. – volume: 133 start-page: 1074 year: 2019 end-page: 1085 ident: bib196 article-title: Frequency-domain energy transport state-resolved Raman for measuring the thermal conductivity of suspended nm-thick MoSe publication-title: Int. J. Heat Mass Tran. – volume: 93 start-page: 125432 year: 2016 ident: bib200 article-title: Reliability of Raman measurements of thermal conductivity of single-layer graphene due to selective electron-phonon coupling: a first-principles study publication-title: Phys. Rev. B – volume: 125 start-page: 881 year: 2003 end-page: 888 ident: bib213 article-title: Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device publication-title: J. Heat Tran. – volume: 8 start-page: 1970 year: 2016 end-page: 1976 ident: bib110 article-title: Water intercalation for seamless, electrically insulating, and thermally transparent interfaces publication-title: ACS Appl. Mater. Interfaces – volume: 110 year: 2011 ident: bib113 article-title: Acoustic vibrations of a circular nanowire by considering the effect of surface publication-title: J. Appl. Phys. – volume: 82 start-page: 205406 year: 2010 ident: bib63 article-title: Thermal dissipation and variability in electrical breakdown of carbon nanotube devices publication-title: Phys. Rev. B – volume: 32 start-page: 1902028 year: 2020 ident: bib123 article-title: Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics publication-title: Adv. Mater. – volume: 110 start-page: 124314 year: 2011 ident: bib71 article-title: Interfacial thermal resistance between metallic carbon nanotube and Cu substrate publication-title: J. Appl. Phys. – volume: 6 start-page: 48 year: 2018 ident: bib69 article-title: A modified theoretical model to accurately account for interfacial roughness in predicting the interfacial thermal conductance publication-title: Front. Energy Res. – volume: 128 start-page: 1109 year: 2006 end-page: 1113 ident: bib222 article-title: 3-Omega measurements of vertically oriented carbon nanotubes on silicon publication-title: J. Heat Trans-T ASME – volume: 6 start-page: 21014 year: 2016 ident: bib86 article-title: Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film publication-title: Sci. Rep. – volume: 6 start-page: 18180 year: 2014 end-page: 18188 ident: bib100 article-title: Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 2959 year: 2012 end-page: 2964 ident: bib131 article-title: Thermal transport in three-Dimensional foam architectures of few-layer graphene and ultrathin graphite publication-title: Nano Lett. – volume: 16 start-page: 6014 year: 2016 end-page: 6020 ident: bib103 article-title: Role of remote interfacial phonon (RIP) scattering in heat transport across graphene/SiO publication-title: Nano Lett. – volume: 98 start-page: 113107 year: 2011 ident: bib73 article-title: Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study publication-title: Appl. Phys. Lett. – volume: 2 year: 2012 ident: bib8 article-title: Thermal transport in nanostructures publication-title: AIP Adv. – volume: 3 start-page: 2767 year: 2009 end-page: 2775 ident: bib96 article-title: Nanoengineering heat transfer performance at carbon nanotube interfaces publication-title: ACS Nano – volume: 114 start-page: 104301 year: 2013 ident: bib177 article-title: Atomistic simulations, mesoscopic modeling, and theoretical analysis of thermal conductivity of bundles composed of carbon nanotubes publication-title: J. Appl. Phys. – volume: 85 start-page: 1295 year: 2013 end-page: 1326 ident: bib173 article-title: Thermal conduction phenomena in carbon nanotubes and related nanostructured materials publication-title: Rev. Mod. Phys. – volume: 49 start-page: 86 year: 2018 end-page: 94 ident: bib181 article-title: Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting publication-title: Nano Energy – volume: 19 year: 2008 ident: bib146 article-title: Highly oriented carbon nanotube papers made of aligned carbon nanotubes publication-title: Nanotechnology – volume: 11 start-page: 113 year: 2011 end-page: 118 ident: bib190 article-title: Thermal transport in suspended and supported few-layer graphene publication-title: Nano Lett. – volume: 57 year: 2018 ident: bib57 article-title: Vacancy and curvature effects on the phonon properties of single wall carbon nanotube publication-title: Jpn. J. Appl. Phys. – volume: 12 start-page: 590 year: 2012 end-page: 595 ident: bib24 article-title: Manipulating thermal conductance at metal-graphene contacts via chemical functionalization publication-title: Nano Lett. – volume: 54 start-page: 7397 year: 2019 end-page: 7427 ident: bib28 article-title: Thermal conductivity of carbon nanotube networks: a review publication-title: J. Mater. Sci. – volume: 10 start-page: 569 year: 2011 end-page: 581 ident: bib5 article-title: Thermal properties of graphene and nanostructured carbon materials publication-title: Nat. Mater. – volume: 61 start-page: 134 year: 2012 end-page: 142 ident: bib183 article-title: Morphology, thermal response and anti-ablation performance of 3D-four directional pitch-based carbon/carbon composites publication-title: Corrosion Sci. – volume: 115 start-page: 174306 year: 2014 ident: bib189 article-title: Thermal conductivity of high performance carbon nanotube yarn-like fibers publication-title: Appl. Phys. Lett. – volume: 59 start-page: R9015 year: 1999 end-page: R9018 ident: bib221 article-title: Linear specific heat of carbon nanotubes publication-title: Phys. Rev. B – volume: 99 year: 2019 ident: bib66 article-title: Unexpected high inelastic phonon transport across solid-solid interface: modal nonequilibrium molecular dynamics simulations and Landauer analysis publication-title: Phys. Rev. B – volume: 145 start-page: 725 year: 2019 end-page: 733 ident: bib172 article-title: Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials publication-title: Carbon – volume: 152 start-page: 119565 year: 2020 ident: bib170 article-title: Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites publication-title: Int. J. Heat Mass Tran. – volume: 145 start-page: 650 year: 2019 end-page: 657 ident: bib169 article-title: Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances publication-title: Carbon – volume: 110 year: 2011 ident: bib72 article-title: Mechanism of thermal conductivity reduction in few-layer graphene publication-title: J. Appl. Phys. – volume: 98 start-page: 125503 year: 2007 ident: bib94 article-title: Nanomechanical energy transfer and resonance effects in single-walled carbon nanotubes publication-title: Phys. Rev. Lett. – volume: 19 start-page: 551 year: 2012 end-page: 556 ident: bib125 article-title: Thermal conductivity of low density carbon aerogels publication-title: J. Porous Mater. – volume: 36 start-page: 2523 year: 2015 end-page: 2534 ident: bib228 article-title: Thermal transport in high-strength polymethacrylimide (PMI) foam insulations publication-title: Int. J. Thermophys. – volume: 31 start-page: 425302 year: 2019 ident: bib53 article-title: Low-frequency phonon dynamics and related thermal properties of axially stressed single-walled carbon nanotubes publication-title: J. Phys. Condens. Matter – volume: 9 start-page: 312 year: 2009 end-page: 316 ident: bib104 article-title: The effects of substrate phonon mode scattering on transport in carbon nanotubes publication-title: Nano Lett. – volume: 80 start-page: 125407 year: 2009 ident: bib15 article-title: Lattice thermal conductivity of single-walled carbon nanotubes: beyond the relaxation time approximation and phonon-phonon scattering selection rules publication-title: Phys. Rev. B – volume: 92 start-page: 151911 year: 2008 ident: bib199 article-title: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits publication-title: Appl. Phys. Lett. – volume: 90 start-page: 678 year: 2016 end-page: 686 ident: bib182 article-title: Three-dimensional carbon nanotube based polymer composites for thermal management publication-title: Compos. Part A – volume: 13 start-page: 6887 year: 2011 end-page: 6893 ident: bib232 article-title: Thermal conductivity and thermal diffusivity of SiO publication-title: J. Nanopart. Res. – volume: 95 year: 2009 ident: bib64 article-title: Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials publication-title: Appl. Phys. Lett. – volume: 15 start-page: 389 year: 2006 end-page: 393 ident: bib225 article-title: Xtending the publication-title: Diam. Relat. Mater. – volume: 376 start-page: 525 year: 2012 end-page: 528 ident: bib74 article-title: Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons publication-title: Phys. Lett. A – volume: 118 start-page: 3636 year: 2014 end-page: 3643 ident: bib51 article-title: Observation of low-frequency combination and overtone Raman modes in misoriented graphene publication-title: J. Phys. Chem. C – volume: 90 start-page: 134312 year: 2014 ident: bib85 article-title: Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces publication-title: Phys. Rev. B – volume: 103 year: 2013 ident: bib142 article-title: Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports publication-title: Appl. Phys. Lett. – volume: 18 start-page: 480 year: 2015 end-page: 492 ident: bib121 article-title: Graphene fiber: a new trend in carbon fibers publication-title: Mater. Today – volume: 81 start-page: 155408 year: 2010 ident: bib91 article-title: Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO publication-title: Phys. Rev. B – volume: 96 start-page: 203112 year: 2010 ident: bib31 article-title: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination publication-title: Appl. Phys. Lett. – volume: 3 start-page: 6061 year: 2020 end-page: 6070 ident: bib168 article-title: Incorporating Ag nanowires into graphene nanosheets for enhanced thermal conductivity: implications for thermal management publication-title: ACS Appl. Nano Mater. – volume: 114 start-page: 15 year: 2017 end-page: 22 ident: bib97 article-title: Understanding thermal conductance across multi-wall carbon nanotube contacts: role of nanotube curvature publication-title: Carbon – volume: 73 start-page: 581 year: 1993 end-page: 584 ident: bib127 article-title: Thermal and electrical conductivity of monolithic carbon aerogels publication-title: J. Appl. Phys. – volume: 6 start-page: 1589 year: 2006 end-page: 1593 ident: bib218 article-title: Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method publication-title: Nano Lett. – volume: 331 start-page: 332 year: 2004 end-page: 336 ident: bib111 article-title: Structures and properties of Ni nanowires publication-title: Phys. Lett. A – volume: 70 start-page: 954 year: 2014 end-page: 964 ident: bib220 article-title: Molecular dynamics simulations of thermal conductivity of carbon nanotubes: resolving the effects of computational parameters publication-title: Int. J. Heat Mass Tran. – volume: 100 start-page: 261908 year: 2012 ident: bib22 article-title: Inter-tube thermal conductance in carbon nanotubes arrays and bundles: effects of contact area and pressure publication-title: Appl. Phys. Lett. – volume: 81 year: 2010 ident: bib78 article-title: Different thermal conductance of the inter- and intrachain interactions in a double-stranded molecular structure publication-title: Phys. Rev. E – volume: 9 start-page: 3805 year: 2009 end-page: 3809 ident: bib210 article-title: Thermal boundary resistances of carbon nanotubes in contact with metals and polymers publication-title: Nano Lett. – volume: 110 start-page: 16321 year: 2013 end-page: 16326 ident: bib76 article-title: Phonon-interface scattering in multilayer grapheneon an amorphous support publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 7 start-page: 1504 year: 2011 end-page: 1520 ident: bib117 article-title: Macroscopic carbon nanotube Assemblies: preparation, properties, and potential applications publication-title: Small – volume: 11 start-page: 65 year: 2000 end-page: 69 ident: bib21 article-title: Thermal conductivity of carbon nanotubes publication-title: Nanotechnology – volume: 14 start-page: 1801346 year: 2018 ident: bib26 article-title: Tailoring the thermal and mechanical properties of graphene film by structural engineering publication-title: Small – volume: 154 start-page: 119751 year: 2020 ident: bib194 article-title: Raman-based nanoscale thermal transport characterization: a critical review publication-title: Int. J. Heat Mass Tran. – volume: 79 start-page: 155413 year: 2009 ident: bib39 article-title: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering publication-title: Phys. Rev. B – volume: 323 start-page: 193 year: 2002 end-page: 195 ident: bib11 article-title: A molecular dynamics simulation of heat conduction in finite length SWNTs publication-title: Physica B – volume: 8 start-page: 17581 year: 2016 end-page: 17597 ident: bib159 article-title: Switch on the high thermal conductivity of graphene paper publication-title: Nanoscale – volume: 89 start-page: 200601 year: 2002 ident: bib37 article-title: Anomalous heat conduction in one-dimensional momentum-conserving systems publication-title: Phys. Rev. Lett. – volume: 45 start-page: 2608 year: 2007 end-page: 2613 ident: bib138 article-title: Thermal conductivity of an aligned carbon nanotube array publication-title: Carbon – volume: 84 start-page: 4613 year: 2000 end-page: 4616 ident: bib2 article-title: Unusually high thermal conductivity of carbon nanotubes publication-title: Phys. Rev. Lett. – volume: 5 start-page: 4818 year: 2011 end-page: 4825 ident: bib141 article-title: Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density publication-title: ACS Nano – volume: 339 start-page: 182 year: 2013 end-page: 186 ident: bib162 article-title: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity publication-title: Science – volume: 69 year: 2004 ident: bib14 article-title: Thermal conductivity of zigzag single-walled carbon nanotubes: role of the umklapp process publication-title: Phys. Rev. B – volume: 10 start-page: 4363 year: 2010 end-page: 4368 ident: bib205 article-title: Heat conduction across monolayer and few-layer graphenes publication-title: Nano Lett. – volume: 117 start-page: 9042 year: 2013 end-page: 9047 ident: bib193 article-title: Temperature-dependent Raman studies and thermal conductivity of few-layer MoS publication-title: J. Phys. Chem. C – volume: 102 start-page: 105901 year: 2009 ident: bib95 article-title: Turning carbon nanotubes from exceptional heat conductors into insulators publication-title: Phys. Rev. Lett. – volume: 6 start-page: 539 year: 2014 end-page: 544 ident: bib134 article-title: Crack-free and scalable transfer of carbon nanotube Arrays into flexible and highly thermal conductive composite film publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 3238 year: 2012 end-page: 3244 ident: bib40 article-title: Anomalous size dependence of the thermal conductivity of graphene ribbons publication-title: Nano Lett. – volume: 5 start-page: 4951 year: 1972 end-page: 4962 ident: bib43 article-title: Lattice dynamics of pyrolytic graphite publication-title: Phys. Rev. B – volume: 9 start-page: 16871 year: 2017 end-page: 16878 ident: bib158 article-title: An ultrahigh thermal conductive graphene flexible paper publication-title: Nanoscale – volume: 22 start-page: 687 year: 1952 end-page: 704 ident: bib61 article-title: Teploobmen mezhdu tverdym telom I geliem-II publication-title: Z. Eksp. Teor. Fiz. – volume: 93 start-page: 922 year: 2013 end-page: 948 ident: bib55 article-title: Dynamical phenomena in fast sliding nanotube models publication-title: Philos. Mag. – volume: 48 start-page: 3947 year: 2010 end-page: 3952 ident: bib139 article-title: Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays publication-title: Carbon – volume: 117 start-page: 399 year: 2017 end-page: 410 ident: bib88 article-title: Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures publication-title: Carbon – volume: 105 start-page: 248 year: 2016 end-page: 259 ident: bib165 article-title: Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers publication-title: Carbon – volume: 78 start-page: 45 year: 2007 ident: bib230 article-title: 3omega method to measure thermal properties of electrically conducting small-volume liquid publication-title: Rev. Sci. Instrum. – volume: 5 start-page: 85 year: 2010 end-page: 90 ident: bib7 article-title: Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires publication-title: Nano Today – volume: 338 start-page: 936 year: 2012 end-page: 939 ident: bib49 article-title: Coherent phonon heat conduction in superlattices publication-title: Science – volume: 76 year: 2007 ident: bib44 article-title: Phonon dispersion of graphite by inelastic x-ray scattering publication-title: Phys. Rev. B – volume: 50 start-page: 648 year: 2011 end-page: 662 ident: bib59 article-title: A review of thermal rectification observations and models in solid materials publication-title: Int. J. Therm. Sci. – volume: 21 start-page: 285706 year: 2010 ident: bib79 article-title: The intriguing thermal conductivity of ice nanotubes publication-title: Nanotechnology – volume: 8 start-page: 17461 year: 2016 end-page: 17471 ident: bib166 article-title: Continuous carbon nanotube-based fibers and films for applications requiring enhanced heat dissipation publication-title: ACS Appl. Mater. Interfaces – volume: 90 year: 2018 ident: bib38 article-title: Colloquium: phononic thermal properties of two-dimensional materials publication-title: Rev. Mod. Phys. – volume: 125 start-page: 1230 year: 2018 end-page: 1239 ident: bib197 article-title: Variable-spot-size laser-flash Raman method to measure in-plane and interfacial thermal properties of 2D van der Waals heterostructures publication-title: Int. J. Heat Mass Tran. – volume: 5 start-page: 1121 year: 2005 end-page: 1225 ident: bib30 article-title: Length dependence of carbon nanotube thermal conductivity and the “problem of long waves” publication-title: Nano Lett. – volume: 105 year: 2009 ident: bib174 article-title: Upper bound to the thermal conductivity of carbon nanotube pellets publication-title: J. Appl. Phys. – volume: 77 start-page: 663 year: 2000 end-page: 665 ident: bib156 article-title: Structural anisotropy of magnetically aligned single wall carbon nanotube films publication-title: Appl. Phys. Lett. – volume: 97 start-page: 155420 year: 2018 ident: bib114 article-title: Vibrations of single-crystal gold nanorods and nanowires publication-title: Phys. Rev. B – volume: 130 year: 2008 ident: bib143 article-title: Thermal properties of metal-coated vertically aligned single-wall nanotube Arrays publication-title: J. Heat Tran. – volume: 141 start-page: 92 year: 2019 end-page: 98 ident: bib217 article-title: Thermal characterization of carbon nanotube fiber by time-domain differential Raman publication-title: Carbon – volume: 5 start-page: 11962 year: 2015 ident: bib108 article-title: Defect-engineered heat transport in graphene: a route to high efficient thermal rectification publication-title: Sci. Rep. – volume: 59 start-page: R2514 year: 1999 end-page: R2516 ident: bib1 article-title: Thermal conductivity of single-walled carbon nanotubes publication-title: Phys. Rev. B – volume: 5 start-page: 3689 year: 2014 ident: bib13 article-title: Length-dependent thermal conductivity in suspended single-layer graphene publication-title: Nat. Commun. – volume: 81 year: 2010 ident: bib33 article-title: Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes publication-title: Phys. Rev. B – start-page: IPACK2015 year: 2015 end-page: 48587 ident: bib188 article-title: Characterization of carbon nanotube forest interfaces using time domain thermoreflectance publication-title: Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, San Francisco, California, USA – volume: 107 start-page: 104907 year: 2010 ident: bib204 article-title: Thermal conductance and phonon transmissivity of metal–graphite interfaces publication-title: J. Appl. Phys. – volume: 145 start-page: 667 year: 2018 end-page: 673 ident: bib90 article-title: Dependence of carbon nanotube array-silicon interface thermal conductance on array arrangement and filling fraction publication-title: Appl. Therm. Eng. – volume: 6 start-page: e113 year: 2014 ident: bib119 article-title: Graphene fiber: a new material platform for unique applications publication-title: NPG Asia Mater. – volume: 4 start-page: 3115 year: 2017 end-page: 3129 ident: bib195 article-title: Energy transport state resolved Raman for probing interface energy transport and hot carrier diffusion in few-layered MoS publication-title: ACS Photonics – volume: 104 start-page: 215902 year: 2010 ident: bib175 article-title: Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials publication-title: Phys. Rev. Lett. – volume: 8 start-page: 567 year: 1972 end-page: 568 ident: bib202 article-title: Reflectivity of metals at high temperatures publication-title: IEEE J. Quant. Electron. – volume: 22 start-page: 334215 year: 2010 ident: bib147 article-title: Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper publication-title: J. Phys. Condens. Matter – volume: 10 start-page: 35487 year: 2018 end-page: 35494 ident: bib102 article-title: Achieving huge thermal conductance of metallic nitride on graphene through enhanced elastic and inelastic phonon transmission publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 105019 year: 2013 ident: bib6 article-title: Thermal conductivity of one-, two- and three-dimensional sp publication-title: New J. Phys. – volume: 9 start-page: 555 year: 2010 end-page: 558 ident: bib17 article-title: Dimensional crossover of thermal transport in few-layer graphene publication-title: Nat. Mater. – volume: 29 start-page: 365708 year: 2018 ident: bib153 article-title: High-fidelity characterization on anisotropic thermal conductivity of carbon nanotube sheets and on their effects of thermal enhancement of nanocomposites publication-title: Nanotechnology – volume: 114 start-page: 1240 year: 2017 end-page: 1246 ident: bib179 article-title: Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions publication-title: Appl. Therm. Eng. – volume: 9 year: 2017 ident: bib186 article-title: Method for direct measurement of on-axis carbon fiber thermal diffusivity using the laser flash technique publication-title: J. Therm. Sci. Eng. Appl. – volume: 3 start-page: 206 year: 2008 end-page: 209 ident: bib105 article-title: Intrinsic and extrinsic performance limits of graphene devices on SiO publication-title: Nat. Nanotechnol. – volume: 374 start-page: 4144 year: 2010 end-page: 4151 ident: bib148 article-title: Thermal transport in multiwall carbon nanotube buckypapers publication-title: Phys. Lett. A – volume: 87 start-page: 215502 year: 2001 ident: bib207 article-title: Thermal transport measurements of individual multiwalled nanotubes publication-title: Phys. Rev. Lett. – volume: 115 start-page: 7046 year: 2015 end-page: 7117 ident: bib118 article-title: Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene publication-title: Chem. Rev. – volume: 10 start-page: 4606 year: 2014 end-page: 4625 ident: bib120 article-title: Dry-processable carbon nanotubes for functional devices and composites publication-title: Small – volume: 94 start-page: 203103 year: 2009 ident: bib16 article-title: Lattice thermal conductivity of graphene flakes: comparison with bulk graphite publication-title: Appl. Phys. Lett. – volume: 20 start-page: 572 year: 2020 end-page: 581 ident: bib47 article-title: Interlayer vacancy effects on the phonon modes in AB stacked bilayergraphene nanoribbon publication-title: Curr. Appl. Phys. – volume: 2016 start-page: 9174085 year: 2016 ident: bib155 article-title: Thermal transport properties of dry spun carbon nanotube sheets publication-title: J. Nanomater. – volume: 48 year: 2009 ident: bib140 article-title: Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method publication-title: Jpn. J. Appl. Phys. – volume: 5 start-page: 15440 year: 2015 ident: bib52 article-title: Diameter dependence of lattice thermal conductivity of single- walled carbon nanotubes: study from ab initio publication-title: Sci. Rep. – volume: 98 start-page: 381 year: 2016 end-page: 390 ident: bib128 article-title: Interface-mediated extremely low thermal conductivity of graphene aerogel publication-title: Carbon – volume: 104 year: 2008 ident: bib82 article-title: Interfacial thermal conductance between silicon and a vertical carbon nanotube publication-title: J. Appl. Phys. – volume: 9 start-page: 4563 year: 2019 end-page: 4570 ident: bib93 article-title: Enhanced thermal conductance at the graphene–water interface based on functionalized alkane chains publication-title: RSC Adv. – volume: 114 start-page: 160 year: 2017 end-page: 168 ident: bib167 article-title: High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology publication-title: Carbon – volume: 66 start-page: 165440 year: 2002 ident: bib201 article-title: Thermal conductivity of multiwalled carbon nanotubes publication-title: Phys. Rev. B – volume: 77 start-page: 666 year: 2000 end-page: 668 ident: bib144 article-title: Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films publication-title: Appl. Phys. Lett. – volume: 89 start-page: 223110 year: 2006 ident: bib135 article-title: Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays publication-title: Appl. Phys. Lett. – volume: 55 start-page: 272 year: 1987 end-page: 274 ident: bib178 article-title: Measurement of the thermal conductivity of liquids using a transient hot wire technique publication-title: Am. J. Phys. – volume: 141 start-page: 497 year: 2019 end-page: 505 ident: bib115 article-title: Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity publication-title: Carbon – volume: 42 start-page: 105502 year: 2009 ident: bib212 article-title: Thermal conductivity measurement of an individual fibre using a T type probe method publication-title: J. Phys. D Appl. Phys. – volume: 13 start-page: 4017 year: 2013 end-page: 4024 ident: bib184 article-title: Measuring the effect of multi-Wall carbon nanotubes on tetrahydrofuran-water hydrate front velocities using thermal imaging publication-title: Cryst. Growth Des. – volume: 5 start-page: 4709 year: 2014 ident: bib58 article-title: Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers publication-title: Nat. Commun. – volume: 88 year: 2013 ident: bib50 article-title: Phonons in twisted bilayer graphene publication-title: Phys. Rev. B – volume: 6 start-page: 119 year: 2006 end-page: 122 ident: bib145 article-title: Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites publication-title: Curr. Appl. Phys. – volume: 79 start-page: 236 year: 2014 end-page: 244 ident: bib84 article-title: Interface thermal conductance and rectification in hybrid graphene/silicene monolayer publication-title: Carbon – volume: 328 start-page: 213 year: 2010 end-page: 216 ident: bib20 article-title: Two-dimensional phonon transport in supported graphene publication-title: Science – volume: 304–305 start-page: 51 year: 1997 end-page: 66 ident: bib227 article-title: Specific heat spectroscopy: origins, status and applications of the publication-title: Thermochim. Acta – volume: 90 start-page: 245429 year: 2014 ident: bib41 article-title: Low-frequency phonons of few-layer graphene within a tight-binding model publication-title: Phys. Rev. B – volume: 3 start-page: 654 year: 2008 end-page: 659 ident: bib106 article-title: Current saturation in zero-bandgap, top-gated graphene field-effect transistors publication-title: Nat. Nanotechnol. – volume: 11 start-page: 2618 year: 2011 end-page: 2621 ident: bib112 article-title: Lattice vibrational modes and their frequency shifts in semiconductor nanowires publication-title: Nano Lett. – volume: 7 start-page: 6286 year: 2015 end-page: 6294 ident: bib92 article-title: Tuning thermal contact conductance at graphene–copper interface via surface nanoengineering publication-title: Nanoscale – volume: 305 start-page: 1447 year: 2004 end-page: 1450 ident: bib161 article-title: Macroscopic, neat, single-walled carbon nanotube fibers publication-title: Science – volume: 6 start-page: 19958 year: 2014 end-page: 19965 ident: bib151 article-title: Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 590 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib211 article-title: Optical absorption and thermal transport of individual suspended carbon nanotube bundles publication-title: Nano Lett. doi: 10.1021/nl802737q – volume: 2 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib8 article-title: Thermal transport in nanostructures publication-title: AIP Adv. doi: 10.1063/1.4773462 – volume: 104 start-page: 215902 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib175 article-title: Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.215902 – volume: 376 start-page: 525 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib74 article-title: Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2011.11.016 – volume: 57 start-page: 2992 year: 1998 ident: 10.1016/j.carbon.2021.02.105_bib10 article-title: Heat conduction in one-dimensional chains publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.57.2992 – volume: 28 start-page: 10529 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib122 article-title: Carbon-nanotube fibers for wearable devices and smart textiles publication-title: Adv. Mater. doi: 10.1002/adma.201601186 – volume: 86 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib36 article-title: Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.040101 – volume: 81 start-page: 155408 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib91 article-title: Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.155408 – volume: 5 start-page: 11962 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib108 article-title: Defect-engineered heat transport in graphene: a route to high efficient thermal rectification publication-title: Sci. Rep. doi: 10.1038/srep11962 – volume: 90 start-page: 678 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib182 article-title: Three-dimensional carbon nanotube based polymer composites for thermal management publication-title: Compos. Part A doi: 10.1016/j.compositesa.2016.08.035 – volume: 12 start-page: 796 year: 2019 ident: 10.1016/j.carbon.2021.02.105_bib27 article-title: Heat transfer at the interface of graphene nanoribbons with different relative orientations and gaps publication-title: Energies doi: 10.3390/en12050796 – volume: 141 start-page: 497 year: 2019 ident: 10.1016/j.carbon.2021.02.105_bib115 article-title: Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity publication-title: Carbon doi: 10.1016/j.carbon.2018.09.073 – volume: 81 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib78 article-title: Different thermal conductance of the inter- and intrachain interactions in a double-stranded molecular structure publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.061131 – volume: 41 start-page: 48 year: 1969 ident: 10.1016/j.carbon.2021.02.105_bib80 article-title: Kapitza resistance publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.41.48 – volume: 59 start-page: R2514 year: 1999 ident: 10.1016/j.carbon.2021.02.105_bib1 article-title: Thermal conductivity of single-walled carbon nanotubes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.R2514 – start-page: IPACK2015 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib188 article-title: Characterization of carbon nanotube forest interfaces using time domain thermoreflectance – volume: 10 start-page: 4363 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib205 article-title: Heat conduction across monolayer and few-layer graphenes publication-title: Nano Lett. doi: 10.1021/nl101790k – volume: 8 start-page: 567 year: 1972 ident: 10.1016/j.carbon.2021.02.105_bib202 article-title: Reflectivity of metals at high temperatures publication-title: IEEE J. Quant. Electron. doi: 10.1109/JQE.1972.1077175 – volume: 76 year: 2007 ident: 10.1016/j.carbon.2021.02.105_bib44 article-title: Phonon dispersion of graphite by inelastic x-ray scattering publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.035439 – volume: 7 year: 2019 ident: 10.1016/j.carbon.2021.02.105_bib214 article-title: Graphene related materials for thermal management publication-title: 2D Mater. – volume: 3 start-page: 654 year: 2008 ident: 10.1016/j.carbon.2021.02.105_bib106 article-title: Current saturation in zero-bandgap, top-gated graphene field-effect transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.268 – volume: 374 start-page: 4144 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib148 article-title: Thermal transport in multiwall carbon nanotube buckypapers publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2010.08.034 – volume: 50 start-page: 648 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib59 article-title: A review of thermal rectification observations and models in solid materials publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2010.12.004 – volume: 6 start-page: e113 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib119 article-title: Graphene fiber: a new material platform for unique applications publication-title: NPG Asia Mater. doi: 10.1038/am.2014.48 – volume: 70 start-page: 954 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib220 article-title: Molecular dynamics simulations of thermal conductivity of carbon nanotubes: resolving the effects of computational parameters publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2013.11.065 – volume: 7 start-page: 41 year: 2003 ident: 10.1016/j.carbon.2021.02.105_bib29 article-title: A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube publication-title: Microscale Thermophys. Eng. doi: 10.1080/10893950390150467 – volume: 141 start-page: 92 year: 2019 ident: 10.1016/j.carbon.2021.02.105_bib217 article-title: Thermal characterization of carbon nanotube fiber by time-domain differential Raman publication-title: Carbon doi: 10.1016/j.carbon.2018.09.034 – volume: 118 start-page: 58 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib56 article-title: Structural characterization of carbon nanotubes via the vibrationaldensity of states publication-title: Carbon doi: 10.1016/j.carbon.2017.03.030 – volume: 117 start-page: 9042 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib193 article-title: Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2 publication-title: J. Phys. Chem. C doi: 10.1021/jp402509w – volume: 5 start-page: 85 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib7 article-title: Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires publication-title: Nano Today doi: 10.1016/j.nantod.2010.02.002 – volume: 6 start-page: 119 year: 2006 ident: 10.1016/j.carbon.2021.02.105_bib145 article-title: Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2005.01.053 – volume: 66 start-page: 165440 year: 2002 ident: 10.1016/j.carbon.2021.02.105_bib201 article-title: Thermal conductivity of multiwalled carbon nanotubes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.165440 – volume: 331 start-page: 332 year: 2004 ident: 10.1016/j.carbon.2021.02.105_bib111 article-title: Structures and properties of Ni nanowires publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2004.08.016 – volume: 77 start-page: 104902 year: 2006 ident: 10.1016/j.carbon.2021.02.105_bib224 article-title: Reexamining the 3-omega technique for thin film thermal characterization publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2349601 – volume: 78 start-page: 45 year: 2007 ident: 10.1016/j.carbon.2021.02.105_bib230 article-title: 3omega method to measure thermal properties of electrically conducting small-volume liquid publication-title: Rev. Sci. Instrum. – volume: 96 start-page: 203112 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib31 article-title: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination publication-title: Appl. Phys. Lett. doi: 10.1063/1.3435465 – volume: 12 start-page: 4848 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib157 article-title: High-density carbon nanotube buckypapers with superior transport and mechanical properties publication-title: Nano Lett. doi: 10.1021/nl3023274 – volume: 22 start-page: 334215 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib147 article-title: Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/22/33/334215 – volume: 29 start-page: 362 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib107 article-title: Characterizing phonon thermal conduction in polycrystalline graphene publication-title: J. Mater. Res. doi: 10.1557/jmr.2013.380 – volume: 5 start-page: 2392 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib133 article-title: A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials publication-title: ACS Nano doi: 10.1021/nn200181e – volume: 52 start-page: 3490 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib83 article-title: Contact mechanics and thermal conductance of carbon nanotube array interfaces publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2009.03.011 – volume: 36 start-page: 2523 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib228 article-title: Thermal transport in high-strength polymethacrylimide (PMI) foam insulations publication-title: Int. J. Thermophys. doi: 10.1007/s10765-014-1651-z – volume: 99 year: 2019 ident: 10.1016/j.carbon.2021.02.105_bib66 article-title: Unexpected high inelastic phonon transport across solid-solid interface: modal nonequilibrium molecular dynamics simulations and Landauer analysis publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.045301 – volume: 14 start-page: 1801346 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib26 article-title: Tailoring the thermal and mechanical properties of graphene film by structural engineering publication-title: Small doi: 10.1002/smll.201801346 – volume: 95 year: 2005 ident: 10.1016/j.carbon.2021.02.105_bib208 article-title: Measuring the thermal conductivity of a single carbon nanotube publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.065502 – volume: 145 start-page: 725 year: 2019 ident: 10.1016/j.carbon.2021.02.105_bib172 article-title: Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials publication-title: Carbon doi: 10.1016/j.carbon.2019.01.085 – volume: 114 start-page: 104301 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib177 article-title: Atomistic simulations, mesoscopic modeling, and theoretical analysis of thermal conductivity of bundles composed of carbon nanotubes publication-title: J. Appl. Phys. doi: 10.1063/1.4819911 – volume: 135 start-page: 511 year: 2019 ident: 10.1016/j.carbon.2021.02.105_bib215 article-title: Differential laser flash Raman spectroscopy method for non-contact characterization of thermal transport properties of individual nanowires publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.01.107 – volume: 118 start-page: 3636 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib51 article-title: Observation of low-frequency combination and overtone Raman modes in misoriented graphene publication-title: J. Phys. Chem. C doi: 10.1021/jp411573c – volume: 9 start-page: 312 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib104 article-title: The effects of substrate phonon mode scattering on transport in carbon nanotubes publication-title: Nano Lett. doi: 10.1021/nl8030086 – volume: 21 start-page: 285706 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib79 article-title: The intriguing thermal conductivity of ice nanotubes publication-title: Nanotechnology doi: 10.1088/0957-4484/21/28/285706 – volume: 141 start-page: 913 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib116 article-title: Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.06.049 – volume: 112 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib154 article-title: Thermal conductivity of self-assembled nano-structured ZnO bulk ceramics publication-title: J. Appl. Phys. doi: 10.1063/1.4745034 – volume: 92 start-page: 151911 year: 2008 ident: 10.1016/j.carbon.2021.02.105_bib199 article-title: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits publication-title: Appl. Phys. Lett. doi: 10.1063/1.2907977 – volume: 91 start-page: 123119 year: 2007 ident: 10.1016/j.carbon.2021.02.105_bib219 article-title: Length-dependent thermal conductivity of an individual single-wall carbon nanotube publication-title: Appl. Phys. Lett. doi: 10.1063/1.2779850 – volume: 6 start-page: 21014 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib86 article-title: Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film publication-title: Sci. Rep. doi: 10.1038/srep21014 – volume: 323 start-page: 193 year: 2002 ident: 10.1016/j.carbon.2021.02.105_bib11 article-title: A molecular dynamics simulation of heat conduction in finite length SWNTs publication-title: Physica B doi: 10.1016/S0921-4526(02)00898-0 – volume: 11 start-page: 65 year: 2000 ident: 10.1016/j.carbon.2021.02.105_bib21 article-title: Thermal conductivity of carbon nanotubes publication-title: Nanotechnology doi: 10.1088/0957-4484/11/2/305 – volume: 107 start-page: 104907 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib204 article-title: Thermal conductance and phonon transmissivity of metal–graphite interfaces publication-title: J. Appl. Phys. doi: 10.1063/1.3428464 – volume: 134 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib67 article-title: Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials publication-title: J. Heat Tran. – volume: 101 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib176 article-title: Heat conduction in carbon nanotube materials: strong effect of intrinsic thermal conductivity of carbon nanotubes publication-title: Appl. Phys. Lett. doi: 10.1063/1.4737903 – volume: 15 start-page: 105019 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib6 article-title: Thermal conductivity of one-, two- and three-dimensional sp2 carbon publication-title: New J. Phys. doi: 10.1088/1367-2630/15/10/105019 – volume: 349 start-page: 1083 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib163 article-title: Highly thermally conductive and mechanically strong graphene fibers publication-title: Science doi: 10.1126/science.aaa6502 – volume: 97 start-page: 155420 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib114 article-title: Vibrations of single-crystal gold nanorods and nanowires publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.155420 – volume: 145 start-page: 650 year: 2019 ident: 10.1016/j.carbon.2021.02.105_bib169 article-title: Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances publication-title: Carbon doi: 10.1016/j.carbon.2019.01.074 – volume: 115 start-page: 7046 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib118 article-title: Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00102 – volume: 5 start-page: 148 year: 2003 ident: 10.1016/j.carbon.2021.02.105_bib42 article-title: Lattice dynamics and symmetry of double wall carbon nanotubes publication-title: New J. Phys. doi: 10.1088/1367-2630/5/1/148 – volume: 9 start-page: 555 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib17 article-title: Dimensional crossover of thermal transport in few-layer graphene publication-title: Nat. Mater. doi: 10.1038/nmat2753 – volume: 105 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib174 article-title: Upper bound to the thermal conductivity of carbon nanotube pellets publication-title: J. Appl. Phys. doi: 10.1063/1.3088924 – volume: 93 start-page: 922 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib55 article-title: Dynamical phenomena in fast sliding nanotube models publication-title: Philos. Mag. doi: 10.1080/14786435.2012.737485 – volume: 22 start-page: 687 year: 1952 ident: 10.1016/j.carbon.2021.02.105_bib61 article-title: Teploobmen mezhdu tverdym telom I geliem-II publication-title: Z. Eksp. Teor. Fiz. – volume: 58 start-page: 7809 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib32 article-title: Thermal conductivity of carbon nanotube: from ballistic to diffusive transport publication-title: Acta Phys. Sin. doi: 10.7498/aps.58.7809 – volume: 338 start-page: 936 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib49 article-title: Coherent phonon heat conduction in superlattices publication-title: Science doi: 10.1126/science.1225549 – volume: 8 start-page: 17581 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib159 article-title: Switch on the high thermal conductivity of graphene paper publication-title: Nanoscale doi: 10.1039/C6NR06402G – volume: 125 start-page: 881 year: 2003 ident: 10.1016/j.carbon.2021.02.105_bib213 article-title: Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device publication-title: J. Heat Tran. doi: 10.1115/1.1597619 – volume: 48 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib140 article-title: Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.48.05EC07 – volume: 94 start-page: 203103 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib16 article-title: Lattice thermal conductivity of graphene flakes: comparison with bulk graphite publication-title: Appl. Phys. Lett. doi: 10.1063/1.3136860 – volume: 61 start-page: 134 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib183 article-title: Morphology, thermal response and anti-ablation performance of 3D-four directional pitch-based carbon/carbon composites publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2012.04.036 – volume: 100 start-page: 1147 year: 2000 ident: 10.1016/j.carbon.2021.02.105_bib34 article-title: Heat conduction in two-dimensional nonlinear lattices publication-title: J. Stat. Phys. doi: 10.1023/A:1018721525900 – volume: 89 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib191 article-title: Note: thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3ω method publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5052692 – volume: 78 start-page: 1896 year: 1997 ident: 10.1016/j.carbon.2021.02.105_bib9 article-title: Heat conduction in chains of nonlinear oscillators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1896 – volume: 4 start-page: 3115 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib195 article-title: Energy transport state resolved Raman for probing interface energy transport and hot carrier diffusion in few-layered MoS2 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00815 – volume: 29 start-page: 365708 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib153 article-title: High-fidelity characterization on anisotropic thermal conductivity of carbon nanotube sheets and on their effects of thermal enhancement of nanocomposites publication-title: Nanotechnology doi: 10.1088/1361-6528/aacd7b – volume: 2 start-page: 442 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib23 article-title: Two-dimensional materials for thermal management applications publication-title: Joule doi: 10.1016/j.joule.2018.01.006 – volume: 122 start-page: 2113 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib101 article-title: Enhancement of thermal energy transport across the gold-graphene interface using nanoscale defects: a molecular dynamics study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b09643 – volume: 116 start-page: 3903 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib149 article-title: Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials publication-title: J. Phys. Chem. C doi: 10.1021/jp2086158 – volume: 9 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib186 article-title: Method for direct measurement of on-axis carbon fiber thermal diffusivity using the laser flash technique publication-title: J. Therm. Sci. Eng. Appl. – volume: 1 start-page: 638 year: 1970 ident: 10.1016/j.carbon.2021.02.105_bib192 article-title: Temperature dependence of Raman scattering in silicon publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.1.638 – volume: 74 year: 2006 ident: 10.1016/j.carbon.2021.02.105_bib35 article-title: Dimensional crossover of heat conduction in low dimensions publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.062101 – volume: 6 start-page: 28 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib60 article-title: Interfacial phonon transport through Si/Ge multilayer film using Monte Carlo scheme with spectral transmissivity publication-title: Front. Energy Res. doi: 10.3389/fenrg.2018.00028 – volume: 5 start-page: 2599 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib25 article-title: Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3032772 – volume: 152 start-page: 119565 year: 2020 ident: 10.1016/j.carbon.2021.02.105_bib170 article-title: Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2020.119565 – volume: 3 start-page: 2149 year: 2020 ident: 10.1016/j.carbon.2021.02.105_bib171 article-title: Thermally conductive graphene films for heat dissipation publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01955 – volume: 11 start-page: 2618 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib112 article-title: Lattice vibrational modes and their frequency shifts in semiconductor nanowires publication-title: Nano Lett. doi: 10.1021/nl200523f – volume: 89 start-page: 200601 year: 2002 ident: 10.1016/j.carbon.2021.02.105_bib37 article-title: Anomalous heat conduction in one-dimensional momentum-conserving systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.200601 – volume: 20 start-page: 145702 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib209 article-title: Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method publication-title: Nanotechnology doi: 10.1088/0957-4484/20/14/145702 – volume: 98 start-page: 125503 year: 2007 ident: 10.1016/j.carbon.2021.02.105_bib94 article-title: Nanomechanical energy transfer and resonance effects in single-walled carbon nanotubes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.125503 – volume: 9 start-page: 75 year: 2005 ident: 10.1016/j.carbon.2021.02.105_bib136 article-title: Interface material selection and a thermal management technique in second-generation platforms built on intel centrino mobile technology publication-title: Intel Technol. J. doi: 10.1535/itj.0901.06 – volume: 77 start-page: 666 year: 2000 ident: 10.1016/j.carbon.2021.02.105_bib144 article-title: Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films publication-title: Appl. Phys. Lett. doi: 10.1063/1.127079 – volume: 34 start-page: 2261 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib231 article-title: Design and application of a freestanding sensor based on 3ωtechnique for thermal-conductivity measurement of solids, liquids, and nanopowders publication-title: Int. J. Thermophys. doi: 10.1007/s10765-011-1075-y – volume: 110 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib72 article-title: Mechanism of thermal conductivity reduction in few-layer graphene publication-title: J. Appl. Phys. doi: 10.1063/1.3622300 – volume: 79 start-page: 236 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib84 article-title: Interface thermal conductance and rectification in hybrid graphene/silicene monolayer publication-title: Carbon doi: 10.1016/j.carbon.2014.07.064 – volume: 84 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib75 article-title: Manipulating thermal conductivity through substrate coupling publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.075470 – volume: 130 year: 2008 ident: 10.1016/j.carbon.2021.02.105_bib143 article-title: Thermal properties of metal-coated vertically aligned single-wall nanotube Arrays publication-title: J. Heat Tran. – volume: 19 start-page: 551 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib125 article-title: Thermal conductivity of low density carbon aerogels publication-title: J. Porous Mater. doi: 10.1007/s10934-011-9504-7 – volume: 115 start-page: 174306 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib189 article-title: Thermal conductivity of high performance carbon nanotube yarn-like fibers publication-title: Appl. Phys. Lett. – start-page: 919 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib164 article-title: Thermal property of carbon nanotube fibers from chemical vapor deposition synthesis – volume: 32 start-page: 1902028 year: 2020 ident: 10.1016/j.carbon.2021.02.105_bib123 article-title: Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics publication-title: Adv. Mater. doi: 10.1002/adma.201902028 – volume: 95 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib64 article-title: Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials publication-title: Appl. Phys. Lett. doi: 10.1063/1.3189087 – volume: 7 start-page: 12851 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib46 article-title: Engineering of the thermodynamic properties of bilayer graphene by atomic plane rotations: the role of the out-of-plane phonons publication-title: Nanoscale doi: 10.1039/C5NR03579A – volume: 85 start-page: 1295 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib173 article-title: Thermal conduction phenomena in carbon nanotubes and related nanostructured materials publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1295 – volume: 9 start-page: 3805 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib210 article-title: Thermal boundary resistances of carbon nanotubes in contact with metals and polymers publication-title: Nano Lett. doi: 10.1021/nl901988t – volume: 87 start-page: 215502 year: 2001 ident: 10.1016/j.carbon.2021.02.105_bib207 article-title: Thermal transport measurements of individual multiwalled nanotubes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.215502 – volume: 130 year: 2008 ident: 10.1016/j.carbon.2021.02.105_bib65 article-title: Influence of inelastic scattering at metal-dielectric interfaces publication-title: J. Heat Tran. – volume: 106 start-page: 183108 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib152 article-title: Temperature-dependent thermal properties of single-walled carbon nanotube thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.4919792 – volume: 7 start-page: 1504 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib117 article-title: Macroscopic carbon nanotube Assemblies: preparation, properties, and potential applications publication-title: Small doi: 10.1002/smll.201002198 – volume: 88 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib50 article-title: Phonons in twisted bilayer graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.035428 – volume: 45 start-page: 2608 year: 2007 ident: 10.1016/j.carbon.2021.02.105_bib138 article-title: Thermal conductivity of an aligned carbon nanotube array publication-title: Carbon doi: 10.1016/j.carbon.2007.08.011 – volume: 80 start-page: 125407 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib15 article-title: Lattice thermal conductivity of single-walled carbon nanotubes: beyond the relaxation time approximation and phonon-phonon scattering selection rules publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.125407 – volume: 8 start-page: 902 year: 2008 ident: 10.1016/j.carbon.2021.02.105_bib3 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Lett. doi: 10.1021/nl0731872 – volume: 61 start-page: 605 year: 1989 ident: 10.1016/j.carbon.2021.02.105_bib62 article-title: Thermal boundary resistance publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.61.605 – volume: 27 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib70 article-title: Influence of the electron–phonon interfacial conductance on the thermal transport at metal/dielectric interfaces publication-title: J. Phys.:Condes. Matter – volume: 114 start-page: 160 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib167 article-title: High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology publication-title: Carbon doi: 10.1016/j.carbon.2016.12.006 – volume: 31 start-page: 425302 year: 2019 ident: 10.1016/j.carbon.2021.02.105_bib53 article-title: Low-frequency phonon dynamics and related thermal properties of axially stressed single-walled carbon nanotubes publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab285c – volume: 3 start-page: 206 year: 2008 ident: 10.1016/j.carbon.2021.02.105_bib105 article-title: Intrinsic and extrinsic performance limits of graphene devices on SiO2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.58 – volume: 50 start-page: 244 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib160 article-title: Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns publication-title: Carbon doi: 10.1016/j.carbon.2011.08.041 – volume: 11 start-page: 113 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib190 article-title: Thermal transport in suspended and supported few-layer graphene publication-title: Nano Lett. doi: 10.1021/nl102923q – volume: 305 start-page: 1447 year: 2004 ident: 10.1016/j.carbon.2021.02.105_bib161 article-title: Macroscopic, neat, single-walled carbon nanotube fibers publication-title: Science doi: 10.1126/science.1101398 – volume: 91 start-page: 115426 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib48 article-title: Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.115426 – volume: 106 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib68 article-title: Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces publication-title: J. Appl. Phys. doi: 10.1063/1.3169515 – volume: 98 start-page: 381 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib128 article-title: Interface-mediated extremely low thermal conductivity of graphene aerogel publication-title: Carbon doi: 10.1016/j.carbon.2015.11.033 – volume: 4 start-page: 81 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib180 article-title: Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am201330f – volume: 79 start-page: 155413 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib39 article-title: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.155413 – volume: 82 start-page: 205406 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib63 article-title: Thermal dissipation and variability in electrical breakdown of carbon nanotube devices publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.205406 – volume: 65 start-page: 235412 year: 2002 ident: 10.1016/j.carbon.2021.02.105_bib54 article-title: Phonons and electron-phonon scattering in carbon nanotubes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.235412 – volume: 12 start-page: 3238 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib40 article-title: Anomalous size dependence of the thermal conductivity of graphene ribbons publication-title: Nano Lett. doi: 10.1021/nl301230g – volume: 90 start-page: 134312 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib85 article-title: Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.134312 – volume: 445 start-page: 48 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib130 article-title: Thermal and electrical properties of graphene/carbon nanotube aerogels publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2013.12.083 – volume: 21 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib223 article-title: Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes publication-title: Nanotechnology doi: 10.1088/0957-4484/21/3/035709 – volume: 23 start-page: 10040 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib198 article-title: Development of time-domain differential Raman for transient thermal probing of materials publication-title: Opt Express doi: 10.1364/OE.23.010040 – volume: 16 start-page: 6014 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib103 article-title: Role of remote interfacial phonon (RIP) scattering in heat transport across graphene/SiO2 interfaces publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01709 – volume: 90 start-page: 245429 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib41 article-title: Low-frequency phonons of few-layer graphene within a tight-binding model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.245429 – volume: 100 start-page: 261908 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib22 article-title: Inter-tube thermal conductance in carbon nanotubes arrays and bundles: effects of contact area and pressure publication-title: Appl. Phys. Lett. doi: 10.1063/1.4732100 – volume: 6 start-page: 18180 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib100 article-title: Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505173s – volume: 84 start-page: 4613 year: 2000 ident: 10.1016/j.carbon.2021.02.105_bib2 article-title: Unusually high thermal conductivity of carbon nanotubes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.4613 – volume: 3 start-page: 2767 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib96 article-title: Nanoengineering heat transfer performance at carbon nanotube interfaces publication-title: ACS Nano doi: 10.1021/nn9006237 – volume: 5 start-page: 3689 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib13 article-title: Length-dependent thermal conductivity in suspended single-layer graphene publication-title: Nat. Commun. doi: 10.1038/ncomms4689 – volume: 15 start-page: 389 year: 2006 ident: 10.1016/j.carbon.2021.02.105_bib225 article-title: Xtending the 3ω-method to the MHz range for thermal conductivity measurements of diamond thin films publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2005.08.041 – volume: 82 start-page: 161402 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib18 article-title: Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.161402 – volume: 77 start-page: 663 year: 2000 ident: 10.1016/j.carbon.2021.02.105_bib156 article-title: Structural anisotropy of magnetically aligned single wall carbon nanotube films publication-title: Appl. Phys. Lett. doi: 10.1063/1.127078 – volume: 82 start-page: 115427 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib19 article-title: Flexural phonons and thermal transport in graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.115427 – volume: 117 start-page: 399 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib88 article-title: Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures publication-title: Carbon doi: 10.1016/j.carbon.2017.03.011 – volume: 7 start-page: 12854 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib109 article-title: Intercalated water layers promote thermal dissipation at bio-nano interfaces publication-title: Nat. Commun. doi: 10.1038/ncomms12854 – volume: 95 start-page: 163103 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib4 article-title: Thermal conductivity of graphene nanoribbons publication-title: Appl. Phys. Lett. doi: 10.1063/1.3246155 – volume: 110 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib113 article-title: Acoustic vibrations of a circular nanowire by considering the effect of surface publication-title: J. Appl. Phys. doi: 10.1063/1.3610498 – volume: 67 start-page: 29 year: 1996 ident: 10.1016/j.carbon.2021.02.105_bib229 article-title: The 3ωtechnique for measuring dynamic specific heat and thermal conductivity of a liquid or solid publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1146545 – volume: 89 start-page: 223110 year: 2006 ident: 10.1016/j.carbon.2021.02.105_bib135 article-title: Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays publication-title: Appl. Phys. Lett. doi: 10.1063/1.2397008 – volume: 88 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib206 article-title: Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4991715 – volume: 6 start-page: 1589 year: 2006 ident: 10.1016/j.carbon.2021.02.105_bib218 article-title: Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method publication-title: Nano Lett. doi: 10.1021/nl060331v – volume: 93 start-page: 125432 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib200 article-title: Reliability of Raman measurements of thermal conductivity of single-layer graphene due to selective electron-phonon coupling: a first-principles study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.125432 – volume: 110 start-page: 16321 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib76 article-title: Phonon-interface scattering in multilayer grapheneon an amorphous support publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1306175110 – volume: 132 start-page: 359 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib185 article-title: Novel three-dimensional carbon nanotube networks as high performance thermal interface materials publication-title: Carbon doi: 10.1016/j.carbon.2018.02.052 – volume: 304–305 start-page: 51 year: 1997 ident: 10.1016/j.carbon.2021.02.105_bib227 article-title: Specific heat spectroscopy: origins, status and applications of the 3ωmethod publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(97)00201-3 – volume: 84 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib77 article-title: Effect of substrate modes on thermal transport in supported graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.075471 – volume: 103 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib142 article-title: Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports publication-title: Appl. Phys. Lett. – volume: 104 year: 2008 ident: 10.1016/j.carbon.2021.02.105_bib82 article-title: Interfacial thermal conductance between silicon and a vertical carbon nanotube publication-title: J. Appl. Phys. doi: 10.1063/1.3000441 – volume: 5 start-page: 1121 year: 2005 ident: 10.1016/j.carbon.2021.02.105_bib30 article-title: Length dependence of carbon nanotube thermal conductivity and the “problem of long waves” publication-title: Nano Lett. doi: 10.1021/nl050714d – volume: 73 start-page: 581 year: 1993 ident: 10.1016/j.carbon.2021.02.105_bib127 article-title: Thermal and electrical conductivity of monolithic carbon aerogels publication-title: J. Appl. Phys. doi: 10.1063/1.353367 – volume: 3 start-page: 6061 year: 2020 ident: 10.1016/j.carbon.2021.02.105_bib168 article-title: Incorporating Ag nanowires into graphene nanosheets for enhanced thermal conductivity: implications for thermal management publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c01265 – volume: 103 start-page: 101 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib216 article-title: Thermal characterization of carbon nanotube fiber by time-domain differential Raman publication-title: Carbon doi: 10.1016/j.carbon.2016.03.003 – volume: 54 start-page: 7397 year: 2019 ident: 10.1016/j.carbon.2021.02.105_bib28 article-title: Thermal conductivity of carbon nanotube networks: a review publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-03368-0 – volume: 10 start-page: 35487 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib102 article-title: Achieving huge thermal conductance of metallic nitride on graphene through enhanced elastic and inelastic phonon transmission publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12480 – volume: 69 year: 2004 ident: 10.1016/j.carbon.2021.02.105_bib14 article-title: Thermal conductivity of zigzag single-walled carbon nanotubes: role of the umklapp process publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.073407 – volume: 74 start-page: 125403 year: 2006 ident: 10.1016/j.carbon.2021.02.105_bib81 article-title: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.125403 – volume: 12 start-page: 590 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib24 article-title: Manipulating thermal conductance at metal-graphene contacts via chemical functionalization publication-title: Nano Lett. doi: 10.1021/nl203060j – volume: 120 start-page: 128 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib87 article-title: Thermal transport barrier in carbon nanotube array nano-thermal interface materials publication-title: Carbon doi: 10.1016/j.carbon.2017.05.037 – volume: 10 start-page: 4606 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib120 article-title: Dry-processable carbon nanotubes for functional devices and composites publication-title: Small doi: 10.1002/smll.201401465 – volume: 18 start-page: 480 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib121 article-title: Graphene fiber: a new trend in carbon fibers publication-title: Mater. Today doi: 10.1016/j.mattod.2015.06.009 – volume: 114 start-page: 15 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib97 article-title: Understanding thermal conductance across multi-wall carbon nanotube contacts: role of nanotube curvature publication-title: Carbon doi: 10.1016/j.carbon.2016.11.056 – volume: 23 start-page: 2263 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib132 article-title: Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202638 – volume: 19 start-page: 661 year: 2007 ident: 10.1016/j.carbon.2021.02.105_bib124 article-title: Carbon nanotube Aerogels publication-title: Adv. Mater. doi: 10.1002/adma.200601748 – volume: 154 start-page: 119751 year: 2020 ident: 10.1016/j.carbon.2021.02.105_bib194 article-title: Raman-based nanoscale thermal transport characterization: a critical review publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2020.119751 – volume: 5 start-page: 4818 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib141 article-title: Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density publication-title: ACS Nano doi: 10.1021/nn200847u – volume: 10 start-page: 569 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib5 article-title: Thermal properties of graphene and nanostructured carbon materials publication-title: Nat. Mater. doi: 10.1038/nmat3064 – volume: 12 start-page: 2959 year: 2012 ident: 10.1016/j.carbon.2021.02.105_bib131 article-title: Thermal transport in three-Dimensional foam architectures of few-layer graphene and ultrathin graphite publication-title: Nano Lett. doi: 10.1021/nl300662q – volume: 21 start-page: 177 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib203 article-title: The ultrafast laser pump-probe technique for thermal characterization of materials with micro/nanostructures publication-title: Nanoscale Microscale Thermophys. Eng. doi: 10.1080/15567265.2017.1313343 – volume: 9 start-page: 4563 year: 2019 ident: 10.1016/j.carbon.2021.02.105_bib93 article-title: Enhanced thermal conductance at the graphene–water interface based on functionalized alkane chains publication-title: RSC Adv. doi: 10.1039/C8RA09879D – volume: 7 start-page: 6286 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib92 article-title: Tuning thermal contact conductance at graphene–copper interface via surface nanoengineering publication-title: Nanoscale doi: 10.1039/C5NR00564G – volume: 98 start-page: 113107 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib73 article-title: Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study publication-title: Appl. Phys. Lett. doi: 10.1063/1.3567415 – volume: 9 start-page: 16871 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib158 article-title: An ultrahigh thermal conductive graphene flexible paper publication-title: Nanoscale doi: 10.1039/C7NR06667H – volume: 9 start-page: 10784 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib187 article-title: Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method publication-title: Nanoscale doi: 10.1039/C7NR01695F – volume: 133 start-page: 1074 year: 2019 ident: 10.1016/j.carbon.2021.02.105_bib196 article-title: Frequency-domain energy transport state-resolved Raman for measuring the thermal conductivity of suspended nm-thick MoSe2 publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.01.012 – volume: 81 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib33 article-title: Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.045413 – volume: 123 start-page: 114714 year: 2005 ident: 10.1016/j.carbon.2021.02.105_bib12 article-title: Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature publication-title: J. Chem. Phys. doi: 10.1063/1.2036967 – volume: 145 start-page: 667 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib90 article-title: Dependence of carbon nanotube array-silicon interface thermal conductance on array arrangement and filling fraction publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.09.084 – volume: 20 start-page: 572 year: 2020 ident: 10.1016/j.carbon.2021.02.105_bib47 article-title: Interlayer vacancy effects on the phonon modes in AB stacked bilayergraphene nanoribbon publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2020.02.006 – volume: 6 start-page: 48 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib69 article-title: A modified theoretical model to accurately account for interfacial roughness in predicting the interfacial thermal conductance publication-title: Front. Energy Res. doi: 10.3389/fenrg.2018.00048 – volume: 102 start-page: 105901 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib95 article-title: Turning carbon nanotubes from exceptional heat conductors into insulators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.105901 – volume: 90 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib38 article-title: Colloquium: phononic thermal properties of two-dimensional materials publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.041002 – volume: 8 start-page: 17461 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib166 article-title: Continuous carbon nanotube-based fibers and films for applications requiring enhanced heat dissipation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04114 – volume: 19 year: 2008 ident: 10.1016/j.carbon.2021.02.105_bib146 article-title: Highly oriented carbon nanotube papers made of aligned carbon nanotubes publication-title: Nanotechnology – volume: 339 start-page: 182 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib162 article-title: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity publication-title: Science doi: 10.1126/science.1228061 – volume: 6 start-page: 539 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib134 article-title: Crack-free and scalable transfer of carbon nanotube Arrays into flexible and highly thermal conductive composite film publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am404594m – volume: 49 start-page: 86 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib181 article-title: Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.075 – volume: 5 start-page: 4951 year: 1972 ident: 10.1016/j.carbon.2021.02.105_bib43 article-title: Lattice dynamics of pyrolytic graphite publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.5.4951 – volume: 100 year: 2006 ident: 10.1016/j.carbon.2021.02.105_bib137 article-title: Thermal properties of carbon nanotube array used for integrated circuit cooling publication-title: J. Appl. Phys. – volume: 110 start-page: 124314 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib71 article-title: Interfacial thermal resistance between metallic carbon nanotube and Cu substrate publication-title: J. Appl. Phys. doi: 10.1063/1.3670011 – volume: 61 start-page: 501 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib150 article-title: Enhancing buckypaper conductivity through co-deposition with copper nanowires publication-title: Carbon doi: 10.1016/j.carbon.2013.05.030 – volume: 96 start-page: 888 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib99 article-title: Interfacial thermal conductance in graphene/MoS2 heterostructures publication-title: Carbon doi: 10.1016/j.carbon.2015.10.046 – volume: 13 start-page: 4017 year: 2013 ident: 10.1016/j.carbon.2021.02.105_bib184 article-title: Measuring the effect of multi-Wall carbon nanotubes on tetrahydrofuran-water hydrate front velocities using thermal imaging publication-title: Cryst. Growth Des. doi: 10.1021/cg400767u – volume: 128 start-page: 1109 year: 2006 ident: 10.1016/j.carbon.2021.02.105_bib222 article-title: 3-Omega measurements of vertically oriented carbon nanotubes on silicon publication-title: J. Heat Trans-T ASME doi: 10.1115/1.2352778 – volume: 71 year: 2005 ident: 10.1016/j.carbon.2021.02.105_bib45 article-title: Thermal conduction of carbon nanotubes using molecular dynamics publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.085417 – volume: 125 start-page: 1230 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib197 article-title: Variable-spot-size laser-flash Raman method to measure in-plane and interfacial thermal properties of 2D van der Waals heterostructures publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.05.011 – volume: 42 start-page: 105502 year: 2009 ident: 10.1016/j.carbon.2021.02.105_bib212 article-title: Thermal conductivity measurement of an individual fibre using a T type probe method publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/42/10/105502 – volume: 8 start-page: 1970 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib110 article-title: Water intercalation for seamless, electrically insulating, and thermally transparent interfaces publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10173 – volume: 55 start-page: 272 year: 1987 ident: 10.1016/j.carbon.2021.02.105_bib178 article-title: Measurement of the thermal conductivity of liquids using a transient hot wire technique publication-title: Am. J. Phys. doi: 10.1119/1.15177 – volume: 5 start-page: 4709 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib58 article-title: Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers publication-title: Nat. Commun. doi: 10.1038/ncomms5709 – volume: 48 start-page: 3947 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib139 article-title: Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays publication-title: Carbon doi: 10.1016/j.carbon.2010.06.063 – volume: 328 start-page: 213 year: 2010 ident: 10.1016/j.carbon.2021.02.105_bib20 article-title: Two-dimensional phonon transport in supported graphene publication-title: Science doi: 10.1126/science.1184014 – volume: 114 start-page: 1240 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib179 article-title: Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.10.109 – volume: 5 start-page: 17 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib98 article-title: Effect of length, diameter, chirality, deformation, and strain on contact thermal conductance between single-wall carbon nanotubes publication-title: Front. Mater. doi: 10.3389/fmats.2018.00017 – volume: 13 start-page: 6887 year: 2011 ident: 10.1016/j.carbon.2021.02.105_bib232 article-title: Thermal conductivity and thermal diffusivity of SiO2 nanopowder publication-title: J. Nanopart. Res. doi: 10.1007/s11051-011-0596-4 – volume: 2016 start-page: 9174085 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib155 article-title: Thermal transport properties of dry spun carbon nanotube sheets publication-title: J. Nanomater. doi: 10.1155/2016/9174085 – volume: 5 start-page: 15440 year: 2015 ident: 10.1016/j.carbon.2021.02.105_bib52 article-title: Diameter dependence of lattice thermal conductivity of single- walled carbon nanotubes: study from ab initio publication-title: Sci. Rep. doi: 10.1038/srep15440 – volume: 59 start-page: R9015 year: 1999 ident: 10.1016/j.carbon.2021.02.105_bib221 article-title: Linear specific heat of carbon nanotubes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.R9015 – volume: 7 start-page: 1439 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib129 article-title: Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction publication-title: Sci. Rep. doi: 10.1038/s41598-017-01601-x – volume: 61 start-page: 802 year: 1990 ident: 10.1016/j.carbon.2021.02.105_bib226 article-title: Thermal conductivity measurement from 30 to 750 K: the 3ωmethod publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1141498 – volume: 57 year: 2018 ident: 10.1016/j.carbon.2021.02.105_bib57 article-title: Vacancy and curvature effects on the phonon properties of single wall carbon nanotube publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.57.02CB08 – volume: 6 start-page: 19958 year: 2014 ident: 10.1016/j.carbon.2021.02.105_bib151 article-title: Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505484z – volume: 113 start-page: 274 year: 2017 ident: 10.1016/j.carbon.2021.02.105_bib89 article-title: Thermal characteristics of graphene nanoribbons endorsed by surface functionalization publication-title: Carbon doi: 10.1016/j.carbon.2016.11.067 – volume: 255 start-page: 971 year: 1992 ident: 10.1016/j.carbon.2021.02.105_bib126 article-title: Thermal conductivity of monolithic organic aerogels publication-title: Science doi: 10.1126/science.255.5047.971 – volume: 105 start-page: 248 year: 2016 ident: 10.1016/j.carbon.2021.02.105_bib165 article-title: Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers publication-title: Carbon doi: 10.1016/j.carbon.2016.04.043 |
SSID | ssj0004814 |
Score | 2.573704 |
SecondaryResourceType | review_article |
Snippet | Although the individual one- and two-dimensional (1D and 2D) carbon nanostructures possess extremely high thermal conductivity, their macroscopic assemblies do... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 391 |
SubjectTerms | Assemblies Carbon heat tolerance Heat transfer Interfacial heat transport Lattice vibration Low-frequency phonons Measurement methods Nano-carbon assembly Nanomaterials Nanostructure Nanostructured materials Phonons Studies Thermal conductivity Thermal resistance Thermal utilization Thermodynamic properties |
Title | Interfacial heat transport in nano-carbon assemblies |
URI | https://dx.doi.org/10.1016/j.carbon.2021.02.105 https://www.proquest.com/docview/2539938623 https://www.proquest.com/docview/2552007388 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jPuiL-InTOSr4Wpc2ado8juGYintysLeQr8JE27F1r_7t5tpmogiCL4UkFxoul8slufsdQreS5XkkcRIya3RIbc5CaVxRcm5S5Xao2MB9x_OMTef0cZEsOmjsY2HArbLV_Y1Or7V1WzNsuTlcLZcQ4wvmeAxBKJiQGAJ-KU1Byu8-vtw8aNbge8MzP1D78Lnax0vLtSoBBTWukTsjSGL3-_b0Q1HXu8_kCB22ZmMwakZ2jDq2OEH7Y5-t7RTR-movl3ADHoCCDSoPWx4si6CQRRk24wicuWzflbM9N2doPrl_GU_DNiNCqCkhlTs16pww6XjjvlYmTMaKKR1xi7FkkeEm51wmOrE8d1x2hyl4h1PKLVJGNTbkHHWLsrAXKLAZ0SZOFDZU0owlXGllM0DLISrDHPcQ8YwQuoULh6wVb8L7hb2KZtgC2Cdw7GqTHgp3vVYNXMYf9Knnsfg27cJp9D969v2UiHbZbUQMOLvESQXpoZtds5sJeAWRhS23QANIUynJsst___wKHUCp8Rvso2613tprZ5xUalBL3wDtjR6eprNPkaHjmw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5096AX8Ymrq1bwWkyTJtscl0Xp-tiTgreQV2FFW9H6_830oSiC4KWQx9AwSWYmycw3AGdaFEWiCY-FdzZOfSFi7UJRS-kmJmgo6vC-43Yh8vv06oE_rMCsj4VBt8pO9rcyvZHWXc15x83zl-USY3zRHKcYhEIYo9kqDBGdig9gOJ1f54uv8MishfjGl34k6CPoGjcvq19NhUCotAHvTDCP3e8a6oesbhTQ5SZsdJZjNG0HtwUrvtyGtVmfsG0H0uZ2r9B4CR6hjI3qHrk8WpZRqcsqbscRBYvZP5tgfr7twv3lxd0sj7ukCLFNGavDwdEWTOjAnvD1mgtNjTA2kZ4QLRInXSGl5pZ7WQRGh_MUPsUZE_apSC1xbA8GZVX6fYh8xqyj3BCX6jQTXBprfIaAOcxkRJIRsJ4RynaI4Zi44kn1rmGPqh22QvYpQkMtH0H8SfXSImb80X_S81h9m3kVhPoflON-SlS3894URahdFhYGG8HpZ3OYCXwI0aWv3rEPgk1NWJYd_PvnJ7CW393eqJv54voQ1rGldSMcw6B-ffdHwVapzXG3Fj8AaFbmTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+heat+transport+in+nano-carbon+assemblies&rft.jtitle=Carbon+%28New+York%29&rft.au=Qiu%2C+Lin&rft.au=Zhang%2C+Xiaohua&rft.au=Guo%2C+Zhixin&rft.au=Li%2C+Qingwen&rft.date=2021-06-30&rft.pub=Elsevier+Ltd&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=178&rft.spage=391&rft.epage=412&rft_id=info:doi/10.1016%2Fj.carbon.2021.02.105&rft.externalDocID=S0008622321003328 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |