Interfacial heat transport in nano-carbon assemblies

Although the individual one- and two-dimensional (1D and 2D) carbon nanostructures possess extremely high thermal conductivity, their macroscopic assemblies do not efficiently utilize it due to the larger interfacial contact thermal resistance. To improve the overall performance, the key is the inte...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 178; pp. 391 - 412
Main Authors Qiu, Lin, Zhang, Xiaohua, Guo, Zhixin, Li, Qingwen
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 30.06.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the individual one- and two-dimensional (1D and 2D) carbon nanostructures possess extremely high thermal conductivity, their macroscopic assemblies do not efficiently utilize it due to the larger interfacial contact thermal resistance. To improve the overall performance, the key is the interfacial structure design to provide sufficient pathways for phonon transport with a limited sacrifice or damage to the inherent thermal properties of nanomaterials. Particularly, the resonance of low-frequency lattice vibrations is the most important mechanism for the reduction of the interfacial contact thermal resistance. Based on recent theoretical and experimental studies and observations on interfacial heat transport, we review here a fourfold set of transport problems in this field: (1) low-frequency phonons in 1D and 2D nanostructures for heat transport; (2) the mechanisms of interfacial thermal transport; (3) assembly structure design towards high utilization of the thermal conductivity from individual nanostructures; and (4) recent development of thermal conductivity measurement for individual and assembled nanomaterials. [Display omitted] •Low frequency phonons play important roles in thermal transport of nano-carbons.•Interfacial thermal transport is greatly determined by interfacial phonon coupling.•Recent progresses on the thermal conductivity of nano-carbon assemblies are reviewed.•Thermal conductivity measurement strategies and their related upgrades are discussed.
AbstractList Although the individual one- and two-dimensional (1D and 2D) carbon nanostructures possess extremely high thermal conductivity, their macroscopic assemblies do not efficiently utilize it due to the larger interfacial contact thermal resistance. To improve the overall performance, the key is the interfacial structure design to provide sufficient pathways for phonon transport with a limited sacrifice or damage to the inherent thermal properties of nanomaterials. Particularly, the resonance of low-frequency lattice vibrations is the most important mechanism for the reduction of the interfacial contact thermal resistance. Based on recent theoretical and experimental studies and observations on interfacial heat transport, we review here a fourfold set of transport problems in this field: (1) low-frequency phonons in 1D and 2D nanostructures for heat transport; (2) the mechanisms of interfacial thermal transport; (3) assembly structure design towards high utilization of the thermal conductivity from individual nanostructures; and (4) recent development of thermal conductivity measurement for individual and assembled nanomaterials.
Although the individual one- and two-dimensional (1D and 2D) carbon nanostructures possess extremely high thermal conductivity, their macroscopic assemblies do not efficiently utilize it due to the larger interfacial contact thermal resistance. To improve the overall performance, the key is the interfacial structure design to provide sufficient pathways for phonon transport with a limited sacrifice or damage to the inherent thermal properties of nanomaterials. Particularly, the resonance of low-frequency lattice vibrations is the most important mechanism for the reduction of the interfacial contact thermal resistance. Based on recent theoretical and experimental studies and observations on interfacial heat transport, we review here a fourfold set of transport problems in this field: (1) low-frequency phonons in 1D and 2D nanostructures for heat transport; (2) the mechanisms of interfacial thermal transport; (3) assembly structure design towards high utilization of the thermal conductivity from individual nanostructures; and (4) recent development of thermal conductivity measurement for individual and assembled nanomaterials. [Display omitted] •Low frequency phonons play important roles in thermal transport of nano-carbons.•Interfacial thermal transport is greatly determined by interfacial phonon coupling.•Recent progresses on the thermal conductivity of nano-carbon assemblies are reviewed.•Thermal conductivity measurement strategies and their related upgrades are discussed.
Author Qiu, Lin
Guo, Zhixin
Zhang, Xiaohua
Li, Qingwen
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0003-3389-3741
  surname: Qiu
  fullname: Qiu, Lin
  organization: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
– sequence: 2
  givenname: Xiaohua
  orcidid: 0000-0001-9008-791X
  surname: Zhang
  fullname: Zhang, Xiaohua
  email: zhangxh@dhu.edu.cn
  organization: Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
– sequence: 3
  givenname: Zhixin
  orcidid: 0000-0002-5654-9217
  surname: Guo
  fullname: Guo, Zhixin
  organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, China
– sequence: 4
  givenname: Qingwen
  orcidid: 0000-0001-8081-786X
  surname: Li
  fullname: Li, Qingwen
  organization: Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
BookMark eNqFkE1LAzEQhoNUsFX_gYcFL152zcdmm3gQpPhRKHjRc8hmZzHLNqlJKvjvTVlPPehlhhme92XmXaCZ8w4QuiK4Ipg0t0NldGi9qyimpMI0b_kJmhOxZCUTkszQHGMsyoZSdoYWMQ55rAWp56heuwSh18bqsfgAnYoUtIs7H1JhXeG08-VkXugYYduOFuIFOu31GOHyt5-j96fHt9VLuXl9Xq8eNqWpGUslp6ZnjTbQ5QqaN5q2TWuIBIx1QzrZ9VJqbjjIXtKOCrlkkretELipDe7YObqZfHfBf-4hJrW10cA4agd-HxXlnGK8ZEJk9PoIHfw-uHxdppiUTDSUZepuokzwMQbolbFJJ-td_tqOimB1CFQNavpZHQJVmOYtz-L6SLwLdqvD93-y-0kGOakvC0FFY8HlVGwAk1Tn7d8GP6dzkvo
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2023_125028
crossref_primary_10_1007_s10765_022_03022_z
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124056
crossref_primary_10_1016_j_compositesb_2022_110342
crossref_primary_10_1016_j_compositesb_2021_109435
crossref_primary_10_1615_IntJEnergeticMaterialsChemProp_v23_i6_30
crossref_primary_10_1016_j_icheatmasstransfer_2021_105526
crossref_primary_10_3390_nano12142378
crossref_primary_10_1016_j_apenergy_2024_125134
crossref_primary_10_1016_j_polymertesting_2021_107283
crossref_primary_10_1016_j_jmst_2022_12_038
crossref_primary_10_1007_s10765_022_03108_8
crossref_primary_10_1021_acs_jpcc_4c03868
crossref_primary_10_1007_s10765_022_03079_w
crossref_primary_10_1016_j_carbon_2023_118040
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126639
crossref_primary_10_1021_acsnano_4c14128
crossref_primary_10_1016_S1872_5805_21_60092_6
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124123
crossref_primary_10_1016_j_egyr_2021_09_110
crossref_primary_10_1063_5_0244895
crossref_primary_10_1016_j_compositesb_2021_109205
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123012
crossref_primary_10_1080_09276440_2021_2024114
crossref_primary_10_1016_j_compositesb_2025_112359
crossref_primary_10_1016_j_coco_2021_101008
crossref_primary_10_1038_s41598_022_19755_8
crossref_primary_10_1063_5_0108739
crossref_primary_10_1016_j_ijthermalsci_2022_107621
crossref_primary_10_3390_nano12030367
crossref_primary_10_1016_j_apenergy_2025_125309
crossref_primary_10_3390_s21237968
crossref_primary_10_1002_slct_202203102
crossref_primary_10_1016_j_jmrt_2024_07_181
crossref_primary_10_3389_fther_2022_935616
crossref_primary_10_1016_j_apenergy_2022_120418
crossref_primary_10_1360_TB_2024_0653
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122533
crossref_primary_10_1021_acsanm_4c00411
crossref_primary_10_1016_j_apsusc_2023_157387
crossref_primary_10_1016_j_carbon_2024_118851
crossref_primary_10_1080_15440478_2022_2162653
crossref_primary_10_1016_j_solmat_2022_111739
crossref_primary_10_1016_j_carbon_2023_118219
crossref_primary_10_1080_09276440_2023_2179248
crossref_primary_10_1088_1361_6463_ac378f
crossref_primary_10_1016_j_coco_2025_102282
crossref_primary_10_1360_TB_2022_0318
crossref_primary_10_1002_aoc_7013
crossref_primary_10_1016_j_est_2022_105807
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122216
crossref_primary_10_1126_sciadv_abn0939
crossref_primary_10_1007_s10765_021_02864_3
crossref_primary_10_1016_j_materresbull_2021_111676
crossref_primary_10_1021_acsami_2c02381
crossref_primary_10_3390_nano11092261
crossref_primary_10_1016_j_carbpol_2023_121742
crossref_primary_10_1002_pssb_202300381
crossref_primary_10_1007_s10765_022_02996_0
crossref_primary_10_3390_en15134685
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122280
crossref_primary_10_1016_j_cej_2023_148262
crossref_primary_10_1007_s11581_024_05743_7
crossref_primary_10_1103_PhysRevB_105_165406
Cites_doi 10.1021/nl802737q
10.1063/1.4773462
10.1103/PhysRevLett.104.215902
10.1016/j.physleta.2011.11.016
10.1103/PhysRevE.57.2992
10.1002/adma.201601186
10.1103/PhysRevE.86.040101
10.1103/PhysRevB.81.155408
10.1038/srep11962
10.1016/j.compositesa.2016.08.035
10.3390/en12050796
10.1016/j.carbon.2018.09.073
10.1103/PhysRevE.81.061131
10.1103/RevModPhys.41.48
10.1103/PhysRevB.59.R2514
10.1021/nl101790k
10.1109/JQE.1972.1077175
10.1103/PhysRevB.76.035439
10.1038/nnano.2008.268
10.1016/j.physleta.2010.08.034
10.1016/j.ijthermalsci.2010.12.004
10.1038/am.2014.48
10.1016/j.ijheatmasstransfer.2013.11.065
10.1080/10893950390150467
10.1016/j.carbon.2018.09.034
10.1016/j.carbon.2017.03.030
10.1021/jp402509w
10.1016/j.nantod.2010.02.002
10.1016/j.cap.2005.01.053
10.1103/PhysRevB.66.165440
10.1016/j.physleta.2004.08.016
10.1063/1.2349601
10.1063/1.3435465
10.1021/nl3023274
10.1088/0953-8984/22/33/334215
10.1557/jmr.2013.380
10.1021/nn200181e
10.1016/j.ijheatmasstransfer.2009.03.011
10.1007/s10765-014-1651-z
10.1103/PhysRevB.99.045301
10.1002/smll.201801346
10.1103/PhysRevLett.95.065502
10.1016/j.carbon.2019.01.085
10.1063/1.4819911
10.1016/j.ijheatmasstransfer.2019.01.107
10.1021/jp411573c
10.1021/nl8030086
10.1088/0957-4484/21/28/285706
10.1016/j.applthermaleng.2018.06.049
10.1063/1.4745034
10.1063/1.2907977
10.1063/1.2779850
10.1038/srep21014
10.1016/S0921-4526(02)00898-0
10.1088/0957-4484/11/2/305
10.1063/1.3428464
10.1063/1.4737903
10.1088/1367-2630/15/10/105019
10.1126/science.aaa6502
10.1103/PhysRevB.97.155420
10.1016/j.carbon.2019.01.074
10.1021/acs.chemrev.5b00102
10.1088/1367-2630/5/1/148
10.1038/nmat2753
10.1063/1.3088924
10.1080/14786435.2012.737485
10.7498/aps.58.7809
10.1126/science.1225549
10.1039/C6NR06402G
10.1115/1.1597619
10.1143/JJAP.48.05EC07
10.1063/1.3136860
10.1016/j.corsci.2012.04.036
10.1023/A:1018721525900
10.1063/1.5052692
10.1103/PhysRevLett.78.1896
10.1021/acsphotonics.7b00815
10.1088/1361-6528/aacd7b
10.1016/j.joule.2018.01.006
10.1021/acs.jpcc.7b09643
10.1021/jp2086158
10.1103/PhysRevB.1.638
10.1103/PhysRevE.74.062101
10.3389/fenrg.2018.00028
10.1021/am3032772
10.1016/j.ijheatmasstransfer.2020.119565
10.1021/acsanm.9b01955
10.1021/nl200523f
10.1103/PhysRevLett.89.200601
10.1088/0957-4484/20/14/145702
10.1103/PhysRevLett.98.125503
10.1535/itj.0901.06
10.1063/1.127079
10.1007/s10765-011-1075-y
10.1063/1.3622300
10.1016/j.carbon.2014.07.064
10.1103/PhysRevB.84.075470
10.1007/s10934-011-9504-7
10.1002/adma.201902028
10.1063/1.3189087
10.1039/C5NR03579A
10.1103/RevModPhys.85.1295
10.1021/nl901988t
10.1103/PhysRevLett.87.215502
10.1063/1.4919792
10.1002/smll.201002198
10.1103/PhysRevB.88.035428
10.1016/j.carbon.2007.08.011
10.1103/PhysRevB.80.125407
10.1021/nl0731872
10.1103/RevModPhys.61.605
10.1016/j.carbon.2016.12.006
10.1088/1361-648X/ab285c
10.1038/nnano.2008.58
10.1016/j.carbon.2011.08.041
10.1021/nl102923q
10.1126/science.1101398
10.1103/PhysRevB.91.115426
10.1063/1.3169515
10.1016/j.carbon.2015.11.033
10.1021/am201330f
10.1103/PhysRevB.79.155413
10.1103/PhysRevB.82.205406
10.1103/PhysRevB.65.235412
10.1021/nl301230g
10.1103/PhysRevB.90.134312
10.1016/j.colsurfa.2013.12.083
10.1088/0957-4484/21/3/035709
10.1364/OE.23.010040
10.1021/acs.nanolett.6b01709
10.1103/PhysRevB.90.245429
10.1063/1.4732100
10.1021/am505173s
10.1103/PhysRevLett.84.4613
10.1021/nn9006237
10.1038/ncomms4689
10.1016/j.diamond.2005.08.041
10.1103/PhysRevB.82.161402
10.1063/1.127078
10.1103/PhysRevB.82.115427
10.1016/j.carbon.2017.03.011
10.1038/ncomms12854
10.1063/1.3246155
10.1063/1.3610498
10.1063/1.1146545
10.1063/1.2397008
10.1063/1.4991715
10.1021/nl060331v
10.1103/PhysRevB.93.125432
10.1073/pnas.1306175110
10.1016/j.carbon.2018.02.052
10.1016/S0040-6031(97)00201-3
10.1103/PhysRevB.84.075471
10.1063/1.3000441
10.1021/nl050714d
10.1063/1.353367
10.1021/acsanm.0c01265
10.1016/j.carbon.2016.03.003
10.1007/s10853-019-03368-0
10.1021/acsami.8b12480
10.1103/PhysRevB.69.073407
10.1103/PhysRevB.74.125403
10.1021/nl203060j
10.1016/j.carbon.2017.05.037
10.1002/smll.201401465
10.1016/j.mattod.2015.06.009
10.1016/j.carbon.2016.11.056
10.1002/adfm.201202638
10.1002/adma.200601748
10.1016/j.ijheatmasstransfer.2020.119751
10.1021/nn200847u
10.1038/nmat3064
10.1021/nl300662q
10.1080/15567265.2017.1313343
10.1039/C8RA09879D
10.1039/C5NR00564G
10.1063/1.3567415
10.1039/C7NR06667H
10.1039/C7NR01695F
10.1016/j.ijheatmasstransfer.2019.01.012
10.1103/PhysRevB.81.045413
10.1063/1.2036967
10.1016/j.applthermaleng.2018.09.084
10.1016/j.cap.2020.02.006
10.3389/fenrg.2018.00048
10.1103/PhysRevLett.102.105901
10.1103/RevModPhys.90.041002
10.1021/acsami.6b04114
10.1126/science.1228061
10.1021/am404594m
10.1016/j.nanoen.2018.03.075
10.1103/PhysRevB.5.4951
10.1063/1.3670011
10.1016/j.carbon.2013.05.030
10.1016/j.carbon.2015.10.046
10.1021/cg400767u
10.1115/1.2352778
10.1103/PhysRevB.71.085417
10.1016/j.ijheatmasstransfer.2018.05.011
10.1088/0022-3727/42/10/105502
10.1021/acsami.5b10173
10.1119/1.15177
10.1038/ncomms5709
10.1016/j.carbon.2010.06.063
10.1126/science.1184014
10.1016/j.applthermaleng.2016.10.109
10.3389/fmats.2018.00017
10.1007/s11051-011-0596-4
10.1155/2016/9174085
10.1038/srep15440
10.1103/PhysRevB.59.R9015
10.1038/s41598-017-01601-x
10.1063/1.1141498
10.7567/JJAP.57.02CB08
10.1021/am505484z
10.1016/j.carbon.2016.11.067
10.1126/science.255.5047.971
10.1016/j.carbon.2016.04.043
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jun 30, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 30, 2021
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.carbon.2021.02.105
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
EndPage 412
ExternalDocumentID 10_1016_j_carbon_2021_02_105
S0008622321003328
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
XPP
ZMT
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
IHE
R2-
RIG
SEW
SMS
WUQ
7SR
8FD
JG9
SSH
7S9
L.6
ID FETCH-LOGICAL-c433t-52cf36aced36aea56a2b6bc19e00a61d9df99a5c5e9f92d2897395bb88064c0d3
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Mon Jul 21 09:35:35 EDT 2025
Fri Jul 25 06:18:12 EDT 2025
Thu Apr 24 23:09:01 EDT 2025
Tue Aug 05 03:08:29 EDT 2025
Fri Feb 23 02:41:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal conductivity
Measurement methods
Nano-carbon assembly
Interfacial heat transport
Low-frequency phonons
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-52cf36aced36aea56a2b6bc19e00a61d9df99a5c5e9f92d2897395bb88064c0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5654-9217
0000-0001-8081-786X
0000-0001-9008-791X
0000-0003-3389-3741
PQID 2539938623
PQPubID 2045273
PageCount 22
ParticipantIDs proquest_miscellaneous_2552007388
proquest_journals_2539938623
crossref_citationtrail_10_1016_j_carbon_2021_02_105
crossref_primary_10_1016_j_carbon_2021_02_105
elsevier_sciencedirect_doi_10_1016_j_carbon_2021_02_105
PublicationCentury 2000
PublicationDate 2021-06-30
PublicationDateYYYYMMDD 2021-06-30
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-30
  day: 30
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mayhew, Prakash (bib189) 2014; 115
Shi, Li, Yu, Jang, Kim, Yao, Kim, Majumdar (bib213) 2003; 125
Li, Liu, Fan (bib210) 2009; 9
Maruyama (bib11) 2002; 323
Zhong (bib78) 2010; 81
Cao, Guo, Xiang, Gong (bib74) 2012; 376
Zhong, Lukes (bib81) 2006; 74
Wang, Song, Liu, Wu, Fan (bib146) 2008; 19
Qiu, Zheng, Zhu, Tang, Yang, Hu, Wang, Li (bib228) 2015; 36
Zhang, Ma, Zang, Wang, Yang (bib69) 2018; 6
Wang, Qin, Buehler, Xu (bib109) 2016; 7
Norris, Smoyer, Duda, Hopkins (bib67) 2012; 134
Ujihara (bib202) 1972; 8
Ding, Pei, Jiang, Huang, Zhang (bib99) 2016; 96
Fox, Gaggini, Wangsani (bib178) 1987; 55
Nika, Ghosh, Pokatilov, Balandin (bib16) 2009; 94
Schmidt, Collins, Minnich, Chen (bib204) 2010; 107
Zhang, Li (bib12) 2005; 123
Li, Katakami, Ikuta, Kohno, Zhang, Takahashi (bib217) 2019; 141
Xu, Zhang, Suhir, Wang (bib137) 2006; 100
Hu, Padilla, Xu, Fisher, Goodson (bib222) 2006; 128
Di, Zhang, Yong, Zhang, Li, Li, Li (bib122) 2016; 28
Wang, Tang, Li, Zheng, Zhang, Zheng, Zhu, Jin, Yang, Gu (bib219) 2007; 91
Xu, Pereira, Wang, Wu, Zhang, Zhao, Bae, Bui, Xie, Thong, Hong, Loh, Donadio, Li, Özyilmaz (bib13) 2014; 5
Craddock, Burgess, Edrington, Weisenberger (bib186) 2017; 9
Hone, Llaguno, Nemes, Johnson, Fischer, Walters, Casavant, Schmidt, Smalley (bib144) 2000; 77
Xin, Yao, Sun, Scott, Shao, Wang, Lian (bib163) 2015; 349
Qiu, Zheng, Su, Tang (bib231) 2013; 34
Kim, Shi, Majumdar, McEuen (bib207) 2001; 87
Cho, Changjian, Hsiao, Lee, Huang (bib182) 2016; 90
Saviot (bib114) 2018; 97
Zaman, Li, Ikram, Li, Zhang, Guo (bib183) 2012; 61
Kumanek, Janas (bib28) 2019; 54
Volkov, Salaway, Zhigilei (bib177) 2013; 114
Zhang, Zhang, Liu, Fan (bib157) 2012; 12
Pereira, Savić, Donadio (bib6) 2013; 15
Nicklow, Wakabayashi, Smith (bib43) 1972; 5
Cocemasov, Nika, Balandin (bib46) 2015; 7
Sun, Kim, Kim (bib230) 2007; 78
Varshney, Lee, Li, Brown, Farmer, Voevodin, Roy (bib97) 2017; 114
Varshney, Lee, Brown, Farmer, Voevodin, Roy (bib98) 2018; 5
Bryning, Milkie, Islam, Hough, Kikkawa, Yodh (bib124) 2007; 19
Hu, Keblinski, Wang, Raravikar (bib82) 2008; 104
Chen, Gao, Yang, Dong, Huang, Li, Dong, Wang (bib181) 2018; 49
Duda, Smoyer, Norris, Hopkins (bib64) 2009; 95
Guo, Zhang, Gong (bib75) 2011; 84
Li, Xu, Yue, Yang, Wang (bib216) 2016; 103
Hsu, Pettes, Bushmaker, Aykol, Shi, Cronin (bib211) 2009; 9
Pettes, Ji, Ruoff, Shi (bib131) 2012; 12
Yang, Zhang, Li (bib7) 2010; 5
Xu, Gao (bib121) 2015; 18
Qiu, Guo, Kong, Tan, Liang, Wei, Tey, Feng, Zhang, Tay (bib172) 2019; 145
Evans, Shen, Keblinski (bib22) 2012; 100
Qiu, Guo, Yang, Ouyang, Feng, Zhang, Zhao, Zhang, Li (bib169) 2019; 145
Volkov, Zhigilei (bib175) 2010; 104
Zhao, Wang, Wu, Wang, Bi, Liang, Yang, Chen, Xu, Ni (bib108) 2015; 5
Di, Wang, Xing, Zhang, Zhang, Lu, Li, Zhu (bib120) 2014; 10
Smith, Benes, Luzzi, Fischer, Walters, Casavant, Schmidt, Smalley (bib156) 2000; 77
Koh, Lyons, Bae, Huang, Dorgan, Cahill, Pop (bib103) 2016; 16
Zhu (bib164) 2015
Huang, Kang (bib113) 2011; 110
Misak, Rutledge, Swenson, Mall (bib155) 2016; 2016
Lepri, Livi, Politi (bib9) 1997; 78
Lindsay, Broido, Mingo (bib18) 2010; 82
Liu, Ma, Zhang (bib117) 2011; 7
Jakubinek, White, Li, Jayasinghe, Cho, Schulz, Shanov (bib139) 2010; 48
Che, Çagin, Goddard (bib21) 2000; 11
Hart, Aggarwal, Lax (bib192) 1970; 1
Zheng, Huang, Li, Koh (bib102) 2018; 10
Mohammad Nejad, Bozorg Bigdeli, Srivastava, Fasano (bib27) 2019; 12
Chalopin, Volz, Mingo (bib174) 2009; 105
Birge, Dixon, Menon (bib227) 1997; 304–305
Hopkins, Norris, Stevens (bib65) 2008; 130
Marconnet, Panzer, Goodson (bib173) 2013; 85
Hopkins, Baraket, Barnat, Beechem, Kearney, Duda, Robinson, Walton (bib24) 2012; 12
Akoshima, Hata, Futaba, Mizuno, Baba, Yumura (bib140) 2009; 48
Pasieka, Hordy, Coulombe, Servio (bib184) 2013; 13
Ong, Pop (bib91) 2010; 81
Chen, Zhang, Cai, Jiang, Zheng, Zhao, Wei (bib88) 2017; 117
Ericson, Fan, Peng, Davis, Zhou, Sulpizio, Wang, Booker, Vavro, Guthy, Parra-Vasquez, Kim, Ramesh, Saini, Kittrell, Lavin, Schmidt, Adams, Billups, Pasquali, Hwang, Hauge, Fischer, Smalley (bib161) 2004; 305
Volkov, Zhigilei (bib176) 2012; 101
Liao, Alizadegan, Ong, Dutta, Xiong, Hsia, Pop (bib63) 2010; 82
Yang, Chou (bib112) 2011; 11
Yue, Ouyang, Hu (bib52) 2015; 5
Zhang, Tan, Smail, De Volder, Fleck, Boies (bib153) 2018; 29
Wang, Chen, Lin, Li, Li, Chen, Meng, Xing, Yao, Wong, Li (bib134) 2014; 6
Jiang, Qian, Yang (bib206) 2017; 88
Hu, Li, Zhao (bib10) 1998; 57
Tong, A (bib224) 2006; 77
Lindsay, Broido, Mingo (bib15) 2009; 80
Roberts, Walker (bib59) 2011; 50
Singh, Murthy, Fisher (bib72) 2011; 110
Yang, Yi, Yao, Li, Li (bib171) 2020; 3
Greaney, Grossman (bib94) 2007; 98
Damnjanović, Dobardžić, Milošević, Vuković, Nikolić (bib42) 2003; 5
Qiu, Zou, Wang, Feng, Zhang, Zhao, Zhang, Li (bib115) 2019; 141
Lin, Zou, Zhu, Feng, Zhang, Zhang (bib116) 2018; 141
Cong, Yu (bib58) 2014; 5
Perebeinos, Rotkin, Petrov, Avouris (bib104) 2009; 9
Yao, Wang, Li, Liu (bib45) 2005; 71
Chen, Chen, Di, Xu, Li, Li (bib149) 2012; 116
Cahill (bib226) 1990; 61
Cao, Yan, Xiao, Ding (bib14) 2004; 69
Li, Zhang, Takahashi (bib197) 2018; 125
Xing, Zhang, Chen, Chen, Li (bib150) 2013; 61
Lombard, Detcheverry, Merabia (bib70) 2014; 27
Chalin, Avramenko, Parmeggiani, Rochal (bib53) 2019; 31
Zhu, Wu, Lattery, Zheng, Wang (bib203) 2017; 21
Lippi, Livi (bib34) 2000; 100
Nika, Askerov, Balandin (bib40) 2012; 12
Wang, Xie, Bui, Liu, Ni, Li, Thong (bib190) 2011; 11
Duzynska, Taube, Korona, Judek, Zdrojek (bib152) 2015; 106
Xu, Fan, Wang, Zhang, Wang (bib194) 2020; 154
Ran, Guo, Hu, Wang (bib60) 2018; 6
Wu, Xu, Mu, Xie, Ling, Kong, Dresselhaus, Zhang (bib51) 2014; 118
Behabtu, Young, Tsentalovich, Kleinerman, Wang, Ma, Bengio, ter Waarbeek, de Jong, Hoogerwerf, Fairchild, Ferguson, Maruyama, Kono, Talmon, Cohen, Otto, Pasquali (bib162) 2013; 339
Lu, Nilsson, Fricke, Pekala (bib127) 1993; 73
Salaway, Zhigilei (bib220) 2014; 70
Feng, Feng, Zhang (bib125) 2012; 19
Yuan, Wang, Tan, Wang, Wang (bib195) 2017; 4
Hone, Whitney, Piskoti, Zettl (bib1) 1999; 59
Sahoo, Chitturi, Agarwal, Jiang, Katiyar (bib151) 2014; 6
Wang, Hu, Li (bib36) 2012; 86
Kong, Bodelot, Lebental, Lim, Shiau, Gusarov, Tan, Liang, Lu, Tan, Coquet, Tay (bib185) 2018; 132
Lu, Arduini-Schuster, Kuhn, Nilsson, Fricke, Pekala (bib126) 1992; 255
Fujii, Zhang, Xie, Ago, Takahashi, Ikuta, Abe, Shimizu (bib208) 2005; 95
Qiu, Ouyang, Feng, Zhang (bib191) 2018; 89
Yue, Huang, Wang (bib148) 2010; 374
Jakubinek, Johnson, White, Jayasinghe, Li, Cho, Schulz, Shanov (bib160) 2012; 50
Wang, Samani, Li, Dong, Zhang, Su, Chen, Chen, Huang, Yuan, Xu, Li, Leifer, Ye, Liu (bib26) 2018; 14
Hou, Cao, Guo (bib32) 2009; 58
Ghosh, Bao, Nika, Subrina, Pokatilov, Lau, Balandin (bib17) 2010; 9
Marconnet, Yamamoto, Panzer, Wardle, Goodson (bib141) 2011; 5
Namsani, Singh (bib101) 2018; 122
Yang, Xu, Zhang, Li (bib8) 2012; 2
Bougher, Taphouse, Cola (bib188) 2015
Xie, Xu, Xu, Wu, Deng, Wang (bib128) 2016; 98
Anindya, Islam, Park, Bhuiyan, Hashimoto (bib47) 2020; 20
Qiu, Wang, Tang, Zheng, Norris, Wen, Zhao, Zhang, Li (bib165) 2016; 105
Chen, Yang, Liu, Xu, Zhang, Zhuang, Ding, Huai, Zhang (bib93) 2019; 9
Wang, Song, Xu (bib107) 2014; 29
Harish, Orejon, Takata, Kohno (bib179) 2017; 114
Guo, Zhang, Gong (bib4) 2009; 95
Maruyama (bib29) 2003; 7
K (bib61) 1952; 22
Liu, Baimova, Reddy, Law, Dmitriev, Wu, Zhou (bib100) 2014; 6
Ivanov, Puretzky, Eres, Wang, Pan, Cui, Jin, Howe, Geohegan (bib135) 2006; 89
Mingo, Broido (bib30) 2005; 5
Zhang, Lu, Zhou, Li (bib123) 2020; 32
Choi, Poulikakos, Tharian, Sennhauser (bib218) 2006; 6
Berber, Kwon, Tománek (bib2) 2000; 84
Fu, Hansson, Liu, Chen, Zehri, Samani, Wang, Ni, Zhang, Zhang, Wang, Li, Lu, Sledzinska, Torres, Volz, Balandin, Xu, Liu (bib214) 2019; 7
Xu, Wang, David, Yue, Wang (bib198) 2015; 23
Cocemasov, Nika, Balandin (bib50) 2013; 88
Liang, Yao, Wang, Liu, Wong (bib133) 2011; 5
Koh, Bae, Cahill, Pop (bib205) 2010; 10
Balandin (bib5) 2011; 10
Chen, Gui, Wang, Li, Xiang, Wang, Wu, Xia, Zhou, Wang, Tang, Chen (bib180) 2012; 4
Liu, Fan, Mikhalchan, Tran, Jewell, Duong, Marconnet (bib166) 2016; 8
Chen, Jang, Xiao, Ishigami, Fuhrer (bib105) 2008; 3
Wang, Gu, Zhang, Song (bib212) 2009; 42
Meric, Han, Young, Ozyilmaz, Kim, Shepard (bib106) 2008; 3
Nika, Pokatilov, Askerov, Balandin (bib39) 2009; 79
Yang, Zhang, Chen, Yoon, Ahn, Wang, Zhou, Wang, Li (bib201) 2002; 66
Shaikh, Li, Lafdi, Huie (bib138) 2007; 45
Sääskilahti, Oksanen, Tulkki, Volz (bib85) 2014; 90
Feng, Zhu, Tang (bib90) 2018; 145
Yi, Lu, Zhang, Pan, Xie (bib221) 1999; 59
Zhao, Yan, Kumar, Wang, Porter, Priya (bib154) 2012; 112
Pollack (bib80) 1969; 41
Li, Xia, Zhang, Zhang, Li, Takahashi, Zhang (bib187) 2017; 9
Mohr, Maultzsch, Dobardžić, Reich, Milošević, Damnjanović, Bosak, Krisch, Thomsen (bib44) 2007; 76
Qiu, Wang, Su, Tang, Zheng, Zhu, Wang, Norris, Bradford, Zhu (bib86) 2016; 6
Liu, Baimova, Reddy, Dmitriev, Law, Feng, Zhou (bib84) 2014; 79
Li, Wei, Datta (bib89) 2017; 113
Ghosh, Calizo, Teweldebrhan, Pokatilov, Nika, Balandin, Bao, Miao, Lau (bib199) 2008; 92
Song, Liu, Liu, Wu, Cheng, Kang (bib23) 2018; 2
Panzer, Zhang, Mann, Hu, Pop, Dai, Goodson (bib143) 2008; 130
Qiu, Scheider, Radwan, Larkin, Saltonstall, Feng, Zhang, Norris (bib87) 2017; 120
Gspann, Juckes, Niven, Johnson, Elliott, White, Windle (bib167) 2017; 114
Zhang, Gu, Zhang, Ye, Gong (bib111) 2004; 331
Moon, Jeong, Kwun (bib229) 1996; 67
Yang, He, Puneet, Su, Skove, Gaillard, Tritt, Rao (bib147) 2010; 22
Sahoo, Gaur, Ahmadi, Guinel, Katiyar (bib193) 2013; 117
Xu, Buehler (bib96) 2009; 3
Gao, Qu, Yao (bib71) 2011; 110
Prasher, Hu, Chalopin, Mingo, Lofgreen, Volz, Cleri, Keblinski (bib95) 2009; 102
Zobeiri, Wang, Wang, Lin, Deng, Wang (bib196) 2019; 133
Seol, Jo, Moore, Lindsay, Aitken, Pettes, Li, Yao, Huang, Broido, Mingo, Ruoff, Shi (bib20) 2010; 328
Evans, Hu, Keblinski (bib31) 2010; 96
Gonnet, Liang, Choi, Kadambala, Zhang, Brooks, Wang, Kramer (bib145) 2006; 6
Aliev, Lima, Silverman, Baughman (bib223) 2010; 21
Hong, Li, Zeng, Zhang (bib92) 2015; 7
Zhong, Zhang, Ai, Zheng (bib73) 2011; 98
Samson, Machiroutu, Chang, Santos, Hermerding, Dani, Prasher, Song (bib136) 2005; 9
Cheng, Hu, Zhao, Qu (bib119) 2014; 6
Guo, Zhang, Zhai, Gong (bib79) 2010; 21
Narayan, Ramaswamy (bib37) 2002; 89
Cola, Xu, Fisher (bib
Hopkins (10.1016/j.carbon.2021.02.105_bib65) 2008; 130
Cola (10.1016/j.carbon.2021.02.105_bib83) 2009; 52
Wang (10.1016/j.carbon.2021.02.105_bib219) 2007; 91
Qiu (10.1016/j.carbon.2021.02.105_bib231) 2013; 34
Mohr (10.1016/j.carbon.2021.02.105_bib44) 2007; 76
Chen (10.1016/j.carbon.2021.02.105_bib181) 2018; 49
Zhu (10.1016/j.carbon.2021.02.105_bib203) 2017; 21
Zhou (10.1016/j.carbon.2021.02.105_bib132) 2013; 23
Qiu (10.1016/j.carbon.2021.02.105_bib191) 2018; 89
Guo (10.1016/j.carbon.2021.02.105_bib75) 2011; 84
Cahill (10.1016/j.carbon.2021.02.105_bib226) 1990; 61
Liu (10.1016/j.carbon.2021.02.105_bib215) 2019; 135
Marconnet (10.1016/j.carbon.2021.02.105_bib141) 2011; 5
Liu (10.1016/j.carbon.2021.02.105_bib84) 2014; 79
Wang (10.1016/j.carbon.2021.02.105_bib190) 2011; 11
Nicklow (10.1016/j.carbon.2021.02.105_bib43) 1972; 5
Qiu (10.1016/j.carbon.2021.02.105_bib169) 2019; 145
Wang (10.1016/j.carbon.2021.02.105_bib26) 2018; 14
Li (10.1016/j.carbon.2021.02.105_bib209) 2009; 20
Shi (10.1016/j.carbon.2021.02.105_bib213) 2003; 125
Marconnet (10.1016/j.carbon.2021.02.105_bib173) 2013; 85
Cong (10.1016/j.carbon.2021.02.105_bib58) 2014; 5
Ran (10.1016/j.carbon.2021.02.105_bib60) 2018; 6
Ghosh (10.1016/j.carbon.2021.02.105_bib17) 2010; 9
Sahoo (10.1016/j.carbon.2021.02.105_bib151) 2014; 6
Qiu (10.1016/j.carbon.2021.02.105_bib165) 2016; 105
Zhang (10.1016/j.carbon.2021.02.105_bib153) 2018; 29
Ivanov (10.1016/j.carbon.2021.02.105_bib135) 2006; 89
Yang (10.1016/j.carbon.2021.02.105_bib7) 2010; 5
Thomas (10.1016/j.carbon.2021.02.105_bib33) 2010; 81
Jiang (10.1016/j.carbon.2021.02.105_bib206) 2017; 88
Howlader (10.1016/j.carbon.2021.02.105_bib57) 2018; 57
Liao (10.1016/j.carbon.2021.02.105_bib63) 2010; 82
Xu (10.1016/j.carbon.2021.02.105_bib121) 2015; 18
Hu (10.1016/j.carbon.2021.02.105_bib10) 1998; 57
Zheng (10.1016/j.carbon.2021.02.105_bib232) 2011; 13
Guo (10.1016/j.carbon.2021.02.105_bib4) 2009; 95
Lindsay (10.1016/j.carbon.2021.02.105_bib15) 2009; 80
Swartz (10.1016/j.carbon.2021.02.105_bib62) 1989; 61
Yue (10.1016/j.carbon.2021.02.105_bib148) 2010; 374
Ding (10.1016/j.carbon.2021.02.105_bib158) 2017; 9
Cheng (10.1016/j.carbon.2021.02.105_bib129) 2017; 7
Singh (10.1016/j.carbon.2021.02.105_bib72) 2011; 110
Che (10.1016/j.carbon.2021.02.105_bib21) 2000; 11
Popov (10.1016/j.carbon.2021.02.105_bib41) 2014; 90
Namsani (10.1016/j.carbon.2021.02.105_bib101) 2018; 122
Meric (10.1016/j.carbon.2021.02.105_bib106) 2008; 3
Li (10.1016/j.carbon.2021.02.105_bib187) 2017; 9
Li (10.1016/j.carbon.2021.02.105_bib89) 2017; 113
Liu (10.1016/j.carbon.2021.02.105_bib166) 2016; 8
Ujihara (10.1016/j.carbon.2021.02.105_bib202) 1972; 8
Nika (10.1016/j.carbon.2021.02.105_bib40) 2012; 12
Yang (10.1016/j.carbon.2021.02.105_bib201) 2002; 66
Li (10.1016/j.carbon.2021.02.105_bib168) 2020; 3
Wang (10.1016/j.carbon.2021.02.105_bib109) 2016; 7
Xie (10.1016/j.carbon.2021.02.105_bib128) 2016; 98
Evans (10.1016/j.carbon.2021.02.105_bib22) 2012; 100
Wang (10.1016/j.carbon.2021.02.105_bib107) 2014; 29
Kumanek (10.1016/j.carbon.2021.02.105_bib28) 2019; 54
Aliev (10.1016/j.carbon.2021.02.105_bib223) 2010; 21
Zhang (10.1016/j.carbon.2021.02.105_bib55) 2013; 93
Fox (10.1016/j.carbon.2021.02.105_bib178) 1987; 55
Lindsay (10.1016/j.carbon.2021.02.105_bib19) 2010; 82
Pereira (10.1016/j.carbon.2021.02.105_bib6) 2013; 15
Kim (10.1016/j.carbon.2021.02.105_bib207) 2001; 87
Li (10.1016/j.carbon.2021.02.105_bib210) 2009; 9
Evans (10.1016/j.carbon.2021.02.105_bib31) 2010; 96
Cho (10.1016/j.carbon.2021.02.105_bib182) 2016; 90
Yao (10.1016/j.carbon.2021.02.105_bib45) 2005; 71
Xin (10.1016/j.carbon.2021.02.105_bib163) 2015; 349
Gspann (10.1016/j.carbon.2021.02.105_bib167) 2017; 114
Lin (10.1016/j.carbon.2021.02.105_bib116) 2018; 141
Liu (10.1016/j.carbon.2021.02.105_bib117) 2011; 7
Ericson (10.1016/j.carbon.2021.02.105_bib161) 2004; 305
Li (10.1016/j.carbon.2021.02.105_bib217) 2019; 141
Roberts (10.1016/j.carbon.2021.02.105_bib59) 2011; 50
Anindya (10.1016/j.carbon.2021.02.105_bib47) 2020; 20
Smith (10.1016/j.carbon.2021.02.105_bib156) 2000; 77
Li (10.1016/j.carbon.2021.02.105_bib197) 2018; 125
Bougher (10.1016/j.carbon.2021.02.105_bib188) 2015
Hone (10.1016/j.carbon.2021.02.105_bib144) 2000; 77
Luckyanova (10.1016/j.carbon.2021.02.105_bib49) 2012; 338
Li (10.1016/j.carbon.2021.02.105_bib216) 2016; 103
Duda (10.1016/j.carbon.2021.02.105_bib64) 2009; 95
Hone (10.1016/j.carbon.2021.02.105_bib1) 1999; 59
Jakubinek (10.1016/j.carbon.2021.02.105_bib139) 2010; 48
Sugime (10.1016/j.carbon.2021.02.105_bib142) 2013; 103
Volkov (10.1016/j.carbon.2021.02.105_bib175) 2010; 104
Ahmed (10.1016/j.carbon.2021.02.105_bib225) 2006; 15
Birge (10.1016/j.carbon.2021.02.105_bib227) 1997; 304–305
Li (10.1016/j.carbon.2021.02.105_bib118) 2015; 115
Qiu (10.1016/j.carbon.2021.02.105_bib87) 2017; 120
Zhang (10.1016/j.carbon.2021.02.105_bib69) 2018; 6
Pollack (10.1016/j.carbon.2021.02.105_bib80) 1969; 41
Lombard (10.1016/j.carbon.2021.02.105_bib70) 2014; 27
Zhang (10.1016/j.carbon.2021.02.105_bib157) 2012; 12
Di (10.1016/j.carbon.2021.02.105_bib120) 2014; 10
Jakubinek (10.1016/j.carbon.2021.02.105_bib160) 2012; 50
Zhong (10.1016/j.carbon.2021.02.105_bib78) 2010; 81
Zhao (10.1016/j.carbon.2021.02.105_bib154) 2012; 112
Gao (10.1016/j.carbon.2021.02.105_bib71) 2011; 110
Cocemasov (10.1016/j.carbon.2021.02.105_bib50) 2013; 88
Salaway (10.1016/j.carbon.2021.02.105_bib220) 2014; 70
Sääskilahti (10.1016/j.carbon.2021.02.105_bib48) 2015; 91
Zhang (10.1016/j.carbon.2021.02.105_bib123) 2020; 32
Bryning (10.1016/j.carbon.2021.02.105_bib124) 2007; 19
Lepri (10.1016/j.carbon.2021.02.105_bib9) 1997; 78
Koh (10.1016/j.carbon.2021.02.105_bib103) 2016; 16
Volkov (10.1016/j.carbon.2021.02.105_bib176) 2012; 101
Qiu (10.1016/j.carbon.2021.02.105_bib170) 2020; 152
Hart (10.1016/j.carbon.2021.02.105_bib192) 1970; 1
Wang (10.1016/j.carbon.2021.02.105_bib212) 2009; 42
Samson (10.1016/j.carbon.2021.02.105_bib136) 2005; 9
Chalopin (10.1016/j.carbon.2021.02.105_bib174) 2009; 105
Qiu (10.1016/j.carbon.2021.02.105_bib115) 2019; 141
Xie (10.1016/j.carbon.2021.02.105_bib159) 2016; 8
Gonnet (10.1016/j.carbon.2021.02.105_bib145) 2006; 6
Liang (10.1016/j.carbon.2021.02.105_bib133) 2011; 5
Akoshima (10.1016/j.carbon.2021.02.105_bib140) 2009; 48
Hu (10.1016/j.carbon.2021.02.105_bib222) 2006; 128
Zhang (10.1016/j.carbon.2021.02.105_bib12) 2005; 123
Zhang (10.1016/j.carbon.2021.02.105_bib111) 2004; 331
Vallabhaneni (10.1016/j.carbon.2021.02.105_bib200) 2016; 93
Balandin (10.1016/j.carbon.2021.02.105_bib3) 2008; 8
Ghosh (10.1016/j.carbon.2021.02.105_bib199) 2008; 92
Mingo (10.1016/j.carbon.2021.02.105_bib30) 2005; 5
Lu (10.1016/j.carbon.2021.02.105_bib127) 1993; 73
Narayan (10.1016/j.carbon.2021.02.105_bib37) 2002; 89
Zhao (10.1016/j.carbon.2021.02.105_bib108) 2015; 5
Xu (10.1016/j.carbon.2021.02.105_bib194) 2020; 154
Norris (10.1016/j.carbon.2021.02.105_bib67) 2012; 134
Chen (10.1016/j.carbon.2021.02.105_bib180) 2012; 4
Gu (10.1016/j.carbon.2021.02.105_bib38) 2018; 90
Greaney (10.1016/j.carbon.2021.02.105_bib94) 2007; 98
Zhong (10.1016/j.carbon.2021.02.105_bib73) 2011; 98
Harish (10.1016/j.carbon.2021.02.105_bib179) 2017; 114
Zhong (10.1016/j.carbon.2021.02.105_bib81) 2006; 74
Di (10.1016/j.carbon.2021.02.105_bib122) 2016; 28
Berber (10.1016/j.carbon.2021.02.105_bib2) 2000; 84
Balandin (10.1016/j.carbon.2021.02.105_bib5) 2011; 10
Feng (10.1016/j.carbon.2021.02.105_bib66) 2019; 99
Sadeghi (10.1016/j.carbon.2021.02.105_bib76) 2013; 110
Xu (10.1016/j.carbon.2021.02.105_bib96) 2009; 3
Chalin (10.1016/j.carbon.2021.02.105_bib53) 2019; 31
Wang (10.1016/j.carbon.2021.02.105_bib134) 2014; 6
Yang (10.1016/j.carbon.2021.02.105_bib171) 2020; 3
K (10.1016/j.carbon.2021.02.105_bib61) 1952; 22
Guo (10.1016/j.carbon.2021.02.105_bib79) 2010; 21
Shaikh (10.1016/j.carbon.2021.02.105_bib138) 2007; 45
Yi (10.1016/j.carbon.2021.02.105_bib221) 1999; 59
Mayhew (10.1016/j.carbon.2021.02.105_bib189) 2014; 115
Zaman (10.1016/j.carbon.2021.02.105_bib183) 2012; 61
Feng (10.1016/j.carbon.2021.02.105_bib125) 2012; 19
Behabtu (10.1016/j.carbon.2021.02.105_bib162) 2013; 339
Lu (10.1016/j.carbon.2021.02.105_bib126) 1992; 255
Wang (10.1016/j.carbon.2021.02.105_bib110) 2016; 8
Choi (10.1016/j.carbon.2021.02.105_bib218) 2006; 6
Lippi (10.1016/j.carbon.2021.02.105_bib34) 2000; 100
Chen (10.1016/j.carbon.2021.02.105_bib105) 2008; 3
Volkov (10.1016/j.carbon.2021.02.105_bib177) 2013; 114
Ong (10.1016/j.carbon.2021.02.105_bib77) 2011; 84
Sääskilahti (10.1016/j.carbon.2021.02.105_bib85) 2014; 90
Hsu (10.1016/j.carbon.2021.02.105_bib211) 2009; 9
Suzuura (10.1016/j.carbon.2021.02.105_bib54) 2002; 65
Xu (10.1016/j.carbon.2021.02.105_bib13) 2014; 5
Liu (10.1016/j.carbon.2021.02.105_bib100) 2014; 6
Fu (10.1016/j.carbon.2021.02.105_bib214) 2019; 7
Misak (10.1016/j.carbon.2021.02.105_bib155) 2016; 2016
Varshney (10.1016/j.carbon.2021.02.105_bib98) 2018; 5
Nika (10.1016/j.carbon.2021.02.105_bib39) 2009; 79
Nika (10.1016/j.carbon.2021.02.105_bib16) 2009; 94
Chen (10.1016/j.carbon.2021.02.105_bib88) 2017; 117
Saviot (10.1016/j.carbon.2021.02.105_bib114) 2018; 97
Tong (10.1016/j.carbon.2021.02.105_bib224) 2006; 77
Panzer (10.1016/j.carbon.2021.02.105_bib143) 2008; 130
Craddock (10.1016/j.carbon.2021.02.105_bib186) 2017; 9
Sun (10.1016/j.carbon.2021.02.105_bib230) 2007; 78
Duzynska (10.1016/j.carbon.2021.02.105_bib152) 2015; 106
Xing (10.1016/j.carbon.2021.02.105_bib150) 2013; 61
Yue (10.1016/j.carbon.2021.02.105_bib52) 2015; 5
Yang (10.1016/j.carbon.2021.02.105_bib35) 2006; 74
Prasher (10.1016/j.carbon.2021.02.105_bib95) 2009; 102
Fujii (10.1016/j.carbon.2021.02.105_bib208) 2005; 95
Yang (10.1016/j.carbon.2021.02.105_bib8) 2012; 2
Ong (10.1016/j.carbon.2021.02.105_bib91) 2010; 81
Zhu (10.1016/j.carbon.2021.02.105_bib164) 2015
Hopkins (10.1016/j.carbon.2021.02.105_bib68) 2009; 106
Huang (10.1016/j.carbon.2021.02.105_bib113) 2011; 110
Yang (10.1016/j.carbon.2021.02.105_bib112) 2011; 11
Schmidt (10.1016/j.carbon.2021.02.105_bib204) 2010; 107
Zheng (10.1016/j.carbon.2021.02.105_bib102) 2018; 10
Ding (10.1016/j.carbon.2021.02.105_bib99) 2016; 96
Yang (10.1016/j.carbon.2021.02.105_bib147) 2010; 22
Chen (10.1016/j.carbon.2021.02.105_bib93) 2019; 9
Perebeinos (10.1016/j.carbon.2021.02.105_bi
References_xml – volume: 5
  start-page: 2599
  year: 2013
  end-page: 2603
  ident: bib25
  article-title: Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering
  publication-title: ACS Appl. Mater. Interfaces
– volume: 91
  start-page: 123119
  year: 2007
  ident: bib219
  article-title: Length-dependent thermal conductivity of an individual single-wall carbon nanotube
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 81
  year: 2012
  end-page: 86
  ident: bib180
  article-title: Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 88
  year: 2017
  ident: bib206
  article-title: Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach
  publication-title: Rev. Sci. Instrum.
– volume: 7
  year: 2019
  ident: bib214
  article-title: Graphene related materials for thermal management
  publication-title: 2D Mater.
– volume: 7
  start-page: 41
  year: 2003
  end-page: 50
  ident: bib29
  article-title: A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube
  publication-title: Microscale Thermophys. Eng.
– volume: 12
  start-page: 796
  year: 2019
  ident: bib27
  article-title: Heat transfer at the interface of graphene nanoribbons with different relative orientations and gaps
  publication-title: Energies
– volume: 100
  start-page: 1147
  year: 2000
  end-page: 1172
  ident: bib34
  article-title: Heat conduction in two-dimensional nonlinear lattices
  publication-title: J. Stat. Phys.
– volume: 116
  start-page: 3903
  year: 2012
  end-page: 3909
  ident: bib149
  article-title: Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials
  publication-title: J. Phys. Chem. C
– volume: 57
  start-page: 2992
  year: 1998
  end-page: 2995
  ident: bib10
  article-title: Heat conduction in one-dimensional chains
  publication-title: Phys. Rev. E
– volume: 23
  start-page: 10040
  year: 2015
  end-page: 10056
  ident: bib198
  article-title: Development of time-domain differential Raman for transient thermal probing of materials
  publication-title: Opt Express
– volume: 61
  start-page: 501
  year: 2013
  end-page: 506
  ident: bib150
  article-title: Enhancing buckypaper conductivity through co-deposition with copper nanowires
  publication-title: Carbon
– volume: 71
  year: 2005
  ident: bib45
  article-title: Thermal conduction of carbon nanotubes using molecular dynamics
  publication-title: Phys. Rev. B
– volume: 86
  year: 2012
  ident: bib36
  article-title: Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices
  publication-title: Phys. Rev. E
– volume: 101
  year: 2012
  ident: bib176
  article-title: Heat conduction in carbon nanotube materials: strong effect of intrinsic thermal conductivity of carbon nanotubes
  publication-title: Appl. Phys. Lett.
– volume: 78
  start-page: 1896
  year: 1997
  end-page: 1899
  ident: bib9
  article-title: Heat conduction in chains of nonlinear oscillators
  publication-title: Phys. Rev. Lett.
– volume: 84
  year: 2011
  ident: bib75
  article-title: Manipulating thermal conductivity through substrate coupling
  publication-title: Phys. Rev. B
– volume: 74
  start-page: 125403
  year: 2006
  ident: bib81
  article-title: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 1439
  year: 2017
  ident: bib129
  article-title: Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction
  publication-title: Sci. Rep.
– volume: 3
  start-page: 2149
  year: 2020
  end-page: 2155
  ident: bib171
  article-title: Thermally conductive graphene films for heat dissipation
  publication-title: ACS Appl. Nano Mater.
– volume: 106
  year: 2009
  ident: bib68
  article-title: Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 4848
  year: 2012
  end-page: 4852
  ident: bib157
  article-title: High-density carbon nanotube buckypapers with superior transport and mechanical properties
  publication-title: Nano Lett.
– volume: 135
  start-page: 511
  year: 2019
  end-page: 516
  ident: bib215
  article-title: Differential laser flash Raman spectroscopy method for non-contact characterization of thermal transport properties of individual nanowires
  publication-title: Int. J. Heat Mass Tran.
– volume: 82
  start-page: 161402
  year: 2010
  ident: bib18
  article-title: Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit
  publication-title: Phys. Rev. B
– start-page: 919
  year: 2015
  end-page: 922
  ident: bib164
  article-title: Thermal property of carbon nanotube fibers from chemical vapor deposition synthesis
  publication-title: Proceedings of the 2015 International Conference on Materials, Environmental and Biological Engineering, Volume 10 of
– volume: 61
  start-page: 605
  year: 1989
  end-page: 668
  ident: bib62
  article-title: Thermal boundary resistance
  publication-title: Rev. Mod. Phys.
– volume: 27
  year: 2014
  ident: bib70
  article-title: Influence of the electron–phonon interfacial conductance on the thermal transport at metal/dielectric interfaces
  publication-title: J. Phys.:Condes. Matter
– volume: 29
  start-page: 362
  year: 2014
  end-page: 372
  ident: bib107
  article-title: Characterizing phonon thermal conduction in polycrystalline graphene
  publication-title: J. Mater. Res.
– volume: 77
  start-page: 104902
  year: 2006
  ident: bib224
  article-title: Reexamining the 3-omega technique for thin film thermal characterization
  publication-title: Rev. Sci. Instrum.
– volume: 28
  start-page: 10529
  year: 2016
  end-page: 10538
  ident: bib122
  article-title: Carbon-nanotube fibers for wearable devices and smart textiles
  publication-title: Adv. Mater.
– volume: 9
  start-page: 75
  year: 2005
  end-page: 86
  ident: bib136
  article-title: Interface material selection and a thermal management technique in second-generation platforms built on intel centrino mobile technology
  publication-title: Intel Technol. J.
– volume: 89
  year: 2018
  ident: bib191
  article-title: Note: thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3ω method
  publication-title: Rev. Sci. Instrum.
– volume: 112
  year: 2012
  ident: bib154
  article-title: Thermal conductivity of self-assembled nano-structured ZnO bulk ceramics
  publication-title: J. Appl. Phys.
– volume: 134
  year: 2012
  ident: bib67
  article-title: Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials
  publication-title: J. Heat Tran.
– volume: 130
  year: 2008
  ident: bib65
  article-title: Influence of inelastic scattering at metal-dielectric interfaces
  publication-title: J. Heat Tran.
– volume: 74
  year: 2006
  ident: bib35
  article-title: Dimensional crossover of heat conduction in low dimensions
  publication-title: Phys. Rev. E
– volume: 96
  start-page: 888
  year: 2016
  end-page: 896
  ident: bib99
  article-title: Interfacial thermal conductance in graphene/MoS
  publication-title: Carbon
– volume: 132
  start-page: 359
  year: 2018
  end-page: 369
  ident: bib185
  article-title: Novel three-dimensional carbon nanotube networks as high performance thermal interface materials
  publication-title: Carbon
– volume: 41
  start-page: 48
  year: 1969
  end-page: 81
  ident: bib80
  article-title: Kapitza resistance
  publication-title: Rev. Mod. Phys.
– volume: 91
  start-page: 115426
  year: 2015
  ident: bib48
  article-title: Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 590
  year: 2009
  end-page: 594
  ident: bib211
  article-title: Optical absorption and thermal transport of individual suspended carbon nanotube bundles
  publication-title: Nano Lett.
– volume: 103
  start-page: 101
  year: 2016
  end-page: 108
  ident: bib216
  article-title: Thermal characterization of carbon nanotube fiber by time-domain differential Raman
  publication-title: Carbon
– volume: 20
  start-page: 145702
  year: 2009
  ident: bib209
  article-title: Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method
  publication-title: Nanotechnology
– volume: 23
  start-page: 2263
  year: 2013
  end-page: 2269
  ident: bib132
  article-title: Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage
  publication-title: Adv. Funct. Mater.
– volume: 67
  start-page: 29
  year: 1996
  end-page: 35
  ident: bib229
  article-title: The
  publication-title: Rev. Sci. Instrum.
– volume: 5
  start-page: 17
  year: 2018
  ident: bib98
  article-title: Effect of length, diameter, chirality, deformation, and strain on contact thermal conductance between single-wall carbon nanotubes
  publication-title: Front. Mater.
– volume: 7
  start-page: 12854
  year: 2016
  ident: bib109
  article-title: Intercalated water layers promote thermal dissipation at bio-nano interfaces
  publication-title: Nat. Commun.
– volume: 120
  start-page: 128
  year: 2017
  end-page: 136
  ident: bib87
  article-title: Thermal transport barrier in carbon nanotube array nano-thermal interface materials
  publication-title: Carbon
– volume: 255
  start-page: 971
  year: 1992
  end-page: 972
  ident: bib126
  article-title: Thermal conductivity of monolithic organic aerogels
  publication-title: Science
– volume: 9
  start-page: 10784
  year: 2017
  end-page: 10793
  ident: bib187
  article-title: Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method
  publication-title: Nanoscale
– volume: 122
  start-page: 2113
  year: 2018
  end-page: 2121
  ident: bib101
  article-title: Enhancement of thermal energy transport across the gold-graphene interface using nanoscale defects: a molecular dynamics study
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 2392
  year: 2011
  end-page: 2401
  ident: bib133
  article-title: A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials
  publication-title: ACS Nano
– volume: 61
  start-page: 802
  year: 1990
  end-page: 808
  ident: bib226
  article-title: Thermal conductivity measurement from 30 to 750 K: the
  publication-title: Rev. Sci. Instrum.
– volume: 8
  start-page: 902
  year: 2008
  end-page: 907
  ident: bib3
  article-title: Superior thermal conductivity of single-layer graphene
  publication-title: Nano Lett.
– volume: 19
  start-page: 661
  year: 2007
  end-page: 664
  ident: bib124
  article-title: Carbon nanotube Aerogels
  publication-title: Adv. Mater.
– volume: 1
  start-page: 638
  year: 1970
  end-page: 642
  ident: bib192
  article-title: Temperature dependence of Raman scattering in silicon
  publication-title: Phys. Rev. B
– volume: 82
  start-page: 115427
  year: 2010
  ident: bib19
  article-title: Flexural phonons and thermal transport in graphene
  publication-title: Phys. Rev. B
– volume: 141
  start-page: 913
  year: 2018
  end-page: 920
  ident: bib116
  article-title: Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers
  publication-title: Appl. Therm. Eng.
– volume: 118
  start-page: 58
  year: 2017
  end-page: 65
  ident: bib56
  article-title: Structural characterization of carbon nanotubes via the vibrationaldensity of states
  publication-title: Carbon
– volume: 100
  year: 2006
  ident: bib137
  article-title: Thermal properties of carbon nanotube array used for integrated circuit cooling
  publication-title: J. Appl. Phys.
– volume: 58
  start-page: 7809
  year: 2009
  end-page: 7814
  ident: bib32
  article-title: Thermal conductivity of carbon nanotube: from ballistic to diffusive transport
  publication-title: Acta Phys. Sin.
– volume: 7
  start-page: 12851
  year: 2015
  end-page: 12859
  ident: bib46
  article-title: Engineering of the thermodynamic properties of bilayer graphene by atomic plane rotations: the role of the out-of-plane phonons
  publication-title: Nanoscale
– volume: 84
  year: 2011
  ident: bib77
  article-title: Effect of substrate modes on thermal transport in supported graphene
  publication-title: Phys. Rev. B
– volume: 113
  start-page: 274
  year: 2017
  end-page: 282
  ident: bib89
  article-title: Thermal characteristics of graphene nanoribbons endorsed by surface functionalization
  publication-title: Carbon
– volume: 50
  start-page: 244
  year: 2012
  end-page: 248
  ident: bib160
  article-title: Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns
  publication-title: Carbon
– volume: 6
  start-page: 28
  year: 2018
  ident: bib60
  article-title: Interfacial phonon transport through Si/Ge multilayer film using Monte Carlo scheme with spectral transmissivity
  publication-title: Front. Energy Res.
– volume: 349
  start-page: 1083
  year: 2015
  end-page: 1087
  ident: bib163
  article-title: Highly thermally conductive and mechanically strong graphene fibers
  publication-title: Science
– volume: 106
  start-page: 183108
  year: 2015
  ident: bib152
  article-title: Temperature-dependent thermal properties of single-walled carbon nanotube thin films
  publication-title: Appl. Phys. Lett.
– volume: 34
  start-page: 2261
  year: 2013
  end-page: 2275
  ident: bib231
  article-title: Design and application of a freestanding sensor based on
  publication-title: Int. J. Thermophys.
– volume: 65
  start-page: 235412
  year: 2002
  ident: bib54
  article-title: Phonons and electron-phonon scattering in carbon nanotubes
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 442
  year: 2018
  end-page: 463
  ident: bib23
  article-title: Two-dimensional materials for thermal management applications
  publication-title: Joule
– volume: 445
  start-page: 48
  year: 2014
  end-page: 53
  ident: bib130
  article-title: Thermal and electrical properties of graphene/carbon nanotube aerogels
  publication-title: Colloids Surf., A
– volume: 21
  year: 2010
  ident: bib223
  article-title: Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes
  publication-title: Nanotechnology
– volume: 52
  start-page: 3490
  year: 2009
  end-page: 3503
  ident: bib83
  article-title: Contact mechanics and thermal conductance of carbon nanotube array interfaces
  publication-title: Int. J. Heat Mass Tran.
– volume: 95
  start-page: 163103
  year: 2009
  ident: bib4
  article-title: Thermal conductivity of graphene nanoribbons
  publication-title: Appl. Phys. Lett.
– volume: 123
  start-page: 114714
  year: 2005
  ident: bib12
  article-title: Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature
  publication-title: J. Chem. Phys.
– volume: 21
  start-page: 177
  year: 2017
  end-page: 198
  ident: bib203
  article-title: The ultrafast laser pump-probe technique for thermal characterization of materials with micro/nanostructures
  publication-title: Nanoscale Microscale Thermophys. Eng.
– volume: 5
  start-page: 148
  year: 2003
  ident: bib42
  article-title: Lattice dynamics and symmetry of double wall carbon nanotubes
  publication-title: New J. Phys.
– volume: 95
  year: 2005
  ident: bib208
  article-title: Measuring the thermal conductivity of a single carbon nanotube
  publication-title: Phys. Rev. Lett.
– volume: 133
  start-page: 1074
  year: 2019
  end-page: 1085
  ident: bib196
  article-title: Frequency-domain energy transport state-resolved Raman for measuring the thermal conductivity of suspended nm-thick MoSe
  publication-title: Int. J. Heat Mass Tran.
– volume: 93
  start-page: 125432
  year: 2016
  ident: bib200
  article-title: Reliability of Raman measurements of thermal conductivity of single-layer graphene due to selective electron-phonon coupling: a first-principles study
  publication-title: Phys. Rev. B
– volume: 125
  start-page: 881
  year: 2003
  end-page: 888
  ident: bib213
  article-title: Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device
  publication-title: J. Heat Tran.
– volume: 8
  start-page: 1970
  year: 2016
  end-page: 1976
  ident: bib110
  article-title: Water intercalation for seamless, electrically insulating, and thermally transparent interfaces
  publication-title: ACS Appl. Mater. Interfaces
– volume: 110
  year: 2011
  ident: bib113
  article-title: Acoustic vibrations of a circular nanowire by considering the effect of surface
  publication-title: J. Appl. Phys.
– volume: 82
  start-page: 205406
  year: 2010
  ident: bib63
  article-title: Thermal dissipation and variability in electrical breakdown of carbon nanotube devices
  publication-title: Phys. Rev. B
– volume: 32
  start-page: 1902028
  year: 2020
  ident: bib123
  article-title: Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics
  publication-title: Adv. Mater.
– volume: 110
  start-page: 124314
  year: 2011
  ident: bib71
  article-title: Interfacial thermal resistance between metallic carbon nanotube and Cu substrate
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 48
  year: 2018
  ident: bib69
  article-title: A modified theoretical model to accurately account for interfacial roughness in predicting the interfacial thermal conductance
  publication-title: Front. Energy Res.
– volume: 128
  start-page: 1109
  year: 2006
  end-page: 1113
  ident: bib222
  article-title: 3-Omega measurements of vertically oriented carbon nanotubes on silicon
  publication-title: J. Heat Trans-T ASME
– volume: 6
  start-page: 21014
  year: 2016
  ident: bib86
  article-title: Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film
  publication-title: Sci. Rep.
– volume: 6
  start-page: 18180
  year: 2014
  end-page: 18188
  ident: bib100
  article-title: Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 2959
  year: 2012
  end-page: 2964
  ident: bib131
  article-title: Thermal transport in three-Dimensional foam architectures of few-layer graphene and ultrathin graphite
  publication-title: Nano Lett.
– volume: 16
  start-page: 6014
  year: 2016
  end-page: 6020
  ident: bib103
  article-title: Role of remote interfacial phonon (RIP) scattering in heat transport across graphene/SiO
  publication-title: Nano Lett.
– volume: 98
  start-page: 113107
  year: 2011
  ident: bib73
  article-title: Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study
  publication-title: Appl. Phys. Lett.
– volume: 2
  year: 2012
  ident: bib8
  article-title: Thermal transport in nanostructures
  publication-title: AIP Adv.
– volume: 3
  start-page: 2767
  year: 2009
  end-page: 2775
  ident: bib96
  article-title: Nanoengineering heat transfer performance at carbon nanotube interfaces
  publication-title: ACS Nano
– volume: 114
  start-page: 104301
  year: 2013
  ident: bib177
  article-title: Atomistic simulations, mesoscopic modeling, and theoretical analysis of thermal conductivity of bundles composed of carbon nanotubes
  publication-title: J. Appl. Phys.
– volume: 85
  start-page: 1295
  year: 2013
  end-page: 1326
  ident: bib173
  article-title: Thermal conduction phenomena in carbon nanotubes and related nanostructured materials
  publication-title: Rev. Mod. Phys.
– volume: 49
  start-page: 86
  year: 2018
  end-page: 94
  ident: bib181
  article-title: Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting
  publication-title: Nano Energy
– volume: 19
  year: 2008
  ident: bib146
  article-title: Highly oriented carbon nanotube papers made of aligned carbon nanotubes
  publication-title: Nanotechnology
– volume: 11
  start-page: 113
  year: 2011
  end-page: 118
  ident: bib190
  article-title: Thermal transport in suspended and supported few-layer graphene
  publication-title: Nano Lett.
– volume: 57
  year: 2018
  ident: bib57
  article-title: Vacancy and curvature effects on the phonon properties of single wall carbon nanotube
  publication-title: Jpn. J. Appl. Phys.
– volume: 12
  start-page: 590
  year: 2012
  end-page: 595
  ident: bib24
  article-title: Manipulating thermal conductance at metal-graphene contacts via chemical functionalization
  publication-title: Nano Lett.
– volume: 54
  start-page: 7397
  year: 2019
  end-page: 7427
  ident: bib28
  article-title: Thermal conductivity of carbon nanotube networks: a review
  publication-title: J. Mater. Sci.
– volume: 10
  start-page: 569
  year: 2011
  end-page: 581
  ident: bib5
  article-title: Thermal properties of graphene and nanostructured carbon materials
  publication-title: Nat. Mater.
– volume: 61
  start-page: 134
  year: 2012
  end-page: 142
  ident: bib183
  article-title: Morphology, thermal response and anti-ablation performance of 3D-four directional pitch-based carbon/carbon composites
  publication-title: Corrosion Sci.
– volume: 115
  start-page: 174306
  year: 2014
  ident: bib189
  article-title: Thermal conductivity of high performance carbon nanotube yarn-like fibers
  publication-title: Appl. Phys. Lett.
– volume: 59
  start-page: R9015
  year: 1999
  end-page: R9018
  ident: bib221
  article-title: Linear specific heat of carbon nanotubes
  publication-title: Phys. Rev. B
– volume: 99
  year: 2019
  ident: bib66
  article-title: Unexpected high inelastic phonon transport across solid-solid interface: modal nonequilibrium molecular dynamics simulations and Landauer analysis
  publication-title: Phys. Rev. B
– volume: 145
  start-page: 725
  year: 2019
  end-page: 733
  ident: bib172
  article-title: Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials
  publication-title: Carbon
– volume: 152
  start-page: 119565
  year: 2020
  ident: bib170
  article-title: Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites
  publication-title: Int. J. Heat Mass Tran.
– volume: 145
  start-page: 650
  year: 2019
  end-page: 657
  ident: bib169
  article-title: Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances
  publication-title: Carbon
– volume: 110
  year: 2011
  ident: bib72
  article-title: Mechanism of thermal conductivity reduction in few-layer graphene
  publication-title: J. Appl. Phys.
– volume: 98
  start-page: 125503
  year: 2007
  ident: bib94
  article-title: Nanomechanical energy transfer and resonance effects in single-walled carbon nanotubes
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 551
  year: 2012
  end-page: 556
  ident: bib125
  article-title: Thermal conductivity of low density carbon aerogels
  publication-title: J. Porous Mater.
– volume: 36
  start-page: 2523
  year: 2015
  end-page: 2534
  ident: bib228
  article-title: Thermal transport in high-strength polymethacrylimide (PMI) foam insulations
  publication-title: Int. J. Thermophys.
– volume: 31
  start-page: 425302
  year: 2019
  ident: bib53
  article-title: Low-frequency phonon dynamics and related thermal properties of axially stressed single-walled carbon nanotubes
  publication-title: J. Phys. Condens. Matter
– volume: 9
  start-page: 312
  year: 2009
  end-page: 316
  ident: bib104
  article-title: The effects of substrate phonon mode scattering on transport in carbon nanotubes
  publication-title: Nano Lett.
– volume: 80
  start-page: 125407
  year: 2009
  ident: bib15
  article-title: Lattice thermal conductivity of single-walled carbon nanotubes: beyond the relaxation time approximation and phonon-phonon scattering selection rules
  publication-title: Phys. Rev. B
– volume: 92
  start-page: 151911
  year: 2008
  ident: bib199
  article-title: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits
  publication-title: Appl. Phys. Lett.
– volume: 90
  start-page: 678
  year: 2016
  end-page: 686
  ident: bib182
  article-title: Three-dimensional carbon nanotube based polymer composites for thermal management
  publication-title: Compos. Part A
– volume: 13
  start-page: 6887
  year: 2011
  end-page: 6893
  ident: bib232
  article-title: Thermal conductivity and thermal diffusivity of SiO
  publication-title: J. Nanopart. Res.
– volume: 95
  year: 2009
  ident: bib64
  article-title: Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 389
  year: 2006
  end-page: 393
  ident: bib225
  article-title: Xtending the
  publication-title: Diam. Relat. Mater.
– volume: 376
  start-page: 525
  year: 2012
  end-page: 528
  ident: bib74
  article-title: Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons
  publication-title: Phys. Lett. A
– volume: 118
  start-page: 3636
  year: 2014
  end-page: 3643
  ident: bib51
  article-title: Observation of low-frequency combination and overtone Raman modes in misoriented graphene
  publication-title: J. Phys. Chem. C
– volume: 90
  start-page: 134312
  year: 2014
  ident: bib85
  article-title: Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces
  publication-title: Phys. Rev. B
– volume: 103
  year: 2013
  ident: bib142
  article-title: Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 480
  year: 2015
  end-page: 492
  ident: bib121
  article-title: Graphene fiber: a new trend in carbon fibers
  publication-title: Mater. Today
– volume: 81
  start-page: 155408
  year: 2010
  ident: bib91
  article-title: Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO
  publication-title: Phys. Rev. B
– volume: 96
  start-page: 203112
  year: 2010
  ident: bib31
  article-title: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 6061
  year: 2020
  end-page: 6070
  ident: bib168
  article-title: Incorporating Ag nanowires into graphene nanosheets for enhanced thermal conductivity: implications for thermal management
  publication-title: ACS Appl. Nano Mater.
– volume: 114
  start-page: 15
  year: 2017
  end-page: 22
  ident: bib97
  article-title: Understanding thermal conductance across multi-wall carbon nanotube contacts: role of nanotube curvature
  publication-title: Carbon
– volume: 73
  start-page: 581
  year: 1993
  end-page: 584
  ident: bib127
  article-title: Thermal and electrical conductivity of monolithic carbon aerogels
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 1589
  year: 2006
  end-page: 1593
  ident: bib218
  article-title: Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method
  publication-title: Nano Lett.
– volume: 331
  start-page: 332
  year: 2004
  end-page: 336
  ident: bib111
  article-title: Structures and properties of Ni nanowires
  publication-title: Phys. Lett. A
– volume: 70
  start-page: 954
  year: 2014
  end-page: 964
  ident: bib220
  article-title: Molecular dynamics simulations of thermal conductivity of carbon nanotubes: resolving the effects of computational parameters
  publication-title: Int. J. Heat Mass Tran.
– volume: 100
  start-page: 261908
  year: 2012
  ident: bib22
  article-title: Inter-tube thermal conductance in carbon nanotubes arrays and bundles: effects of contact area and pressure
  publication-title: Appl. Phys. Lett.
– volume: 81
  year: 2010
  ident: bib78
  article-title: Different thermal conductance of the inter- and intrachain interactions in a double-stranded molecular structure
  publication-title: Phys. Rev. E
– volume: 9
  start-page: 3805
  year: 2009
  end-page: 3809
  ident: bib210
  article-title: Thermal boundary resistances of carbon nanotubes in contact with metals and polymers
  publication-title: Nano Lett.
– volume: 110
  start-page: 16321
  year: 2013
  end-page: 16326
  ident: bib76
  article-title: Phonon-interface scattering in multilayer grapheneon an amorphous support
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 7
  start-page: 1504
  year: 2011
  end-page: 1520
  ident: bib117
  article-title: Macroscopic carbon nanotube Assemblies: preparation, properties, and potential applications
  publication-title: Small
– volume: 11
  start-page: 65
  year: 2000
  end-page: 69
  ident: bib21
  article-title: Thermal conductivity of carbon nanotubes
  publication-title: Nanotechnology
– volume: 14
  start-page: 1801346
  year: 2018
  ident: bib26
  article-title: Tailoring the thermal and mechanical properties of graphene film by structural engineering
  publication-title: Small
– volume: 154
  start-page: 119751
  year: 2020
  ident: bib194
  article-title: Raman-based nanoscale thermal transport characterization: a critical review
  publication-title: Int. J. Heat Mass Tran.
– volume: 79
  start-page: 155413
  year: 2009
  ident: bib39
  article-title: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering
  publication-title: Phys. Rev. B
– volume: 323
  start-page: 193
  year: 2002
  end-page: 195
  ident: bib11
  article-title: A molecular dynamics simulation of heat conduction in finite length SWNTs
  publication-title: Physica B
– volume: 8
  start-page: 17581
  year: 2016
  end-page: 17597
  ident: bib159
  article-title: Switch on the high thermal conductivity of graphene paper
  publication-title: Nanoscale
– volume: 89
  start-page: 200601
  year: 2002
  ident: bib37
  article-title: Anomalous heat conduction in one-dimensional momentum-conserving systems
  publication-title: Phys. Rev. Lett.
– volume: 45
  start-page: 2608
  year: 2007
  end-page: 2613
  ident: bib138
  article-title: Thermal conductivity of an aligned carbon nanotube array
  publication-title: Carbon
– volume: 84
  start-page: 4613
  year: 2000
  end-page: 4616
  ident: bib2
  article-title: Unusually high thermal conductivity of carbon nanotubes
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 4818
  year: 2011
  end-page: 4825
  ident: bib141
  article-title: Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density
  publication-title: ACS Nano
– volume: 339
  start-page: 182
  year: 2013
  end-page: 186
  ident: bib162
  article-title: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity
  publication-title: Science
– volume: 69
  year: 2004
  ident: bib14
  article-title: Thermal conductivity of zigzag single-walled carbon nanotubes: role of the umklapp process
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 4363
  year: 2010
  end-page: 4368
  ident: bib205
  article-title: Heat conduction across monolayer and few-layer graphenes
  publication-title: Nano Lett.
– volume: 117
  start-page: 9042
  year: 2013
  end-page: 9047
  ident: bib193
  article-title: Temperature-dependent Raman studies and thermal conductivity of few-layer MoS
  publication-title: J. Phys. Chem. C
– volume: 102
  start-page: 105901
  year: 2009
  ident: bib95
  article-title: Turning carbon nanotubes from exceptional heat conductors into insulators
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 539
  year: 2014
  end-page: 544
  ident: bib134
  article-title: Crack-free and scalable transfer of carbon nanotube Arrays into flexible and highly thermal conductive composite film
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 3238
  year: 2012
  end-page: 3244
  ident: bib40
  article-title: Anomalous size dependence of the thermal conductivity of graphene ribbons
  publication-title: Nano Lett.
– volume: 5
  start-page: 4951
  year: 1972
  end-page: 4962
  ident: bib43
  article-title: Lattice dynamics of pyrolytic graphite
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 16871
  year: 2017
  end-page: 16878
  ident: bib158
  article-title: An ultrahigh thermal conductive graphene flexible paper
  publication-title: Nanoscale
– volume: 22
  start-page: 687
  year: 1952
  end-page: 704
  ident: bib61
  article-title: Teploobmen mezhdu tverdym telom I geliem-II
  publication-title: Z. Eksp. Teor. Fiz.
– volume: 93
  start-page: 922
  year: 2013
  end-page: 948
  ident: bib55
  article-title: Dynamical phenomena in fast sliding nanotube models
  publication-title: Philos. Mag.
– volume: 48
  start-page: 3947
  year: 2010
  end-page: 3952
  ident: bib139
  article-title: Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays
  publication-title: Carbon
– volume: 117
  start-page: 399
  year: 2017
  end-page: 410
  ident: bib88
  article-title: Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures
  publication-title: Carbon
– volume: 105
  start-page: 248
  year: 2016
  end-page: 259
  ident: bib165
  article-title: Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers
  publication-title: Carbon
– volume: 78
  start-page: 45
  year: 2007
  ident: bib230
  article-title: 3omega method to measure thermal properties of electrically conducting small-volume liquid
  publication-title: Rev. Sci. Instrum.
– volume: 5
  start-page: 85
  year: 2010
  end-page: 90
  ident: bib7
  article-title: Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires
  publication-title: Nano Today
– volume: 338
  start-page: 936
  year: 2012
  end-page: 939
  ident: bib49
  article-title: Coherent phonon heat conduction in superlattices
  publication-title: Science
– volume: 76
  year: 2007
  ident: bib44
  article-title: Phonon dispersion of graphite by inelastic x-ray scattering
  publication-title: Phys. Rev. B
– volume: 50
  start-page: 648
  year: 2011
  end-page: 662
  ident: bib59
  article-title: A review of thermal rectification observations and models in solid materials
  publication-title: Int. J. Therm. Sci.
– volume: 21
  start-page: 285706
  year: 2010
  ident: bib79
  article-title: The intriguing thermal conductivity of ice nanotubes
  publication-title: Nanotechnology
– volume: 8
  start-page: 17461
  year: 2016
  end-page: 17471
  ident: bib166
  article-title: Continuous carbon nanotube-based fibers and films for applications requiring enhanced heat dissipation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 90
  year: 2018
  ident: bib38
  article-title: Colloquium: phononic thermal properties of two-dimensional materials
  publication-title: Rev. Mod. Phys.
– volume: 125
  start-page: 1230
  year: 2018
  end-page: 1239
  ident: bib197
  article-title: Variable-spot-size laser-flash Raman method to measure in-plane and interfacial thermal properties of 2D van der Waals heterostructures
  publication-title: Int. J. Heat Mass Tran.
– volume: 5
  start-page: 1121
  year: 2005
  end-page: 1225
  ident: bib30
  article-title: Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”
  publication-title: Nano Lett.
– volume: 105
  year: 2009
  ident: bib174
  article-title: Upper bound to the thermal conductivity of carbon nanotube pellets
  publication-title: J. Appl. Phys.
– volume: 77
  start-page: 663
  year: 2000
  end-page: 665
  ident: bib156
  article-title: Structural anisotropy of magnetically aligned single wall carbon nanotube films
  publication-title: Appl. Phys. Lett.
– volume: 97
  start-page: 155420
  year: 2018
  ident: bib114
  article-title: Vibrations of single-crystal gold nanorods and nanowires
  publication-title: Phys. Rev. B
– volume: 130
  year: 2008
  ident: bib143
  article-title: Thermal properties of metal-coated vertically aligned single-wall nanotube Arrays
  publication-title: J. Heat Tran.
– volume: 141
  start-page: 92
  year: 2019
  end-page: 98
  ident: bib217
  article-title: Thermal characterization of carbon nanotube fiber by time-domain differential Raman
  publication-title: Carbon
– volume: 5
  start-page: 11962
  year: 2015
  ident: bib108
  article-title: Defect-engineered heat transport in graphene: a route to high efficient thermal rectification
  publication-title: Sci. Rep.
– volume: 59
  start-page: R2514
  year: 1999
  end-page: R2516
  ident: bib1
  article-title: Thermal conductivity of single-walled carbon nanotubes
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 3689
  year: 2014
  ident: bib13
  article-title: Length-dependent thermal conductivity in suspended single-layer graphene
  publication-title: Nat. Commun.
– volume: 81
  year: 2010
  ident: bib33
  article-title: Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes
  publication-title: Phys. Rev. B
– start-page: IPACK2015
  year: 2015
  end-page: 48587
  ident: bib188
  article-title: Characterization of carbon nanotube forest interfaces using time domain thermoreflectance
  publication-title: Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, San Francisco, California, USA
– volume: 107
  start-page: 104907
  year: 2010
  ident: bib204
  article-title: Thermal conductance and phonon transmissivity of metal–graphite interfaces
  publication-title: J. Appl. Phys.
– volume: 145
  start-page: 667
  year: 2018
  end-page: 673
  ident: bib90
  article-title: Dependence of carbon nanotube array-silicon interface thermal conductance on array arrangement and filling fraction
  publication-title: Appl. Therm. Eng.
– volume: 6
  start-page: e113
  year: 2014
  ident: bib119
  article-title: Graphene fiber: a new material platform for unique applications
  publication-title: NPG Asia Mater.
– volume: 4
  start-page: 3115
  year: 2017
  end-page: 3129
  ident: bib195
  article-title: Energy transport state resolved Raman for probing interface energy transport and hot carrier diffusion in few-layered MoS
  publication-title: ACS Photonics
– volume: 104
  start-page: 215902
  year: 2010
  ident: bib175
  article-title: Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 567
  year: 1972
  end-page: 568
  ident: bib202
  article-title: Reflectivity of metals at high temperatures
  publication-title: IEEE J. Quant. Electron.
– volume: 22
  start-page: 334215
  year: 2010
  ident: bib147
  article-title: Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper
  publication-title: J. Phys. Condens. Matter
– volume: 10
  start-page: 35487
  year: 2018
  end-page: 35494
  ident: bib102
  article-title: Achieving huge thermal conductance of metallic nitride on graphene through enhanced elastic and inelastic phonon transmission
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 105019
  year: 2013
  ident: bib6
  article-title: Thermal conductivity of one-, two- and three-dimensional sp
  publication-title: New J. Phys.
– volume: 9
  start-page: 555
  year: 2010
  end-page: 558
  ident: bib17
  article-title: Dimensional crossover of thermal transport in few-layer graphene
  publication-title: Nat. Mater.
– volume: 29
  start-page: 365708
  year: 2018
  ident: bib153
  article-title: High-fidelity characterization on anisotropic thermal conductivity of carbon nanotube sheets and on their effects of thermal enhancement of nanocomposites
  publication-title: Nanotechnology
– volume: 114
  start-page: 1240
  year: 2017
  end-page: 1246
  ident: bib179
  article-title: Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions
  publication-title: Appl. Therm. Eng.
– volume: 9
  year: 2017
  ident: bib186
  article-title: Method for direct measurement of on-axis carbon fiber thermal diffusivity using the laser flash technique
  publication-title: J. Therm. Sci. Eng. Appl.
– volume: 3
  start-page: 206
  year: 2008
  end-page: 209
  ident: bib105
  article-title: Intrinsic and extrinsic performance limits of graphene devices on SiO
  publication-title: Nat. Nanotechnol.
– volume: 374
  start-page: 4144
  year: 2010
  end-page: 4151
  ident: bib148
  article-title: Thermal transport in multiwall carbon nanotube buckypapers
  publication-title: Phys. Lett. A
– volume: 87
  start-page: 215502
  year: 2001
  ident: bib207
  article-title: Thermal transport measurements of individual multiwalled nanotubes
  publication-title: Phys. Rev. Lett.
– volume: 115
  start-page: 7046
  year: 2015
  end-page: 7117
  ident: bib118
  article-title: Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene
  publication-title: Chem. Rev.
– volume: 10
  start-page: 4606
  year: 2014
  end-page: 4625
  ident: bib120
  article-title: Dry-processable carbon nanotubes for functional devices and composites
  publication-title: Small
– volume: 94
  start-page: 203103
  year: 2009
  ident: bib16
  article-title: Lattice thermal conductivity of graphene flakes: comparison with bulk graphite
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 572
  year: 2020
  end-page: 581
  ident: bib47
  article-title: Interlayer vacancy effects on the phonon modes in AB stacked bilayergraphene nanoribbon
  publication-title: Curr. Appl. Phys.
– volume: 2016
  start-page: 9174085
  year: 2016
  ident: bib155
  article-title: Thermal transport properties of dry spun carbon nanotube sheets
  publication-title: J. Nanomater.
– volume: 48
  year: 2009
  ident: bib140
  article-title: Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method
  publication-title: Jpn. J. Appl. Phys.
– volume: 5
  start-page: 15440
  year: 2015
  ident: bib52
  article-title: Diameter dependence of lattice thermal conductivity of single- walled carbon nanotubes: study from ab initio
  publication-title: Sci. Rep.
– volume: 98
  start-page: 381
  year: 2016
  end-page: 390
  ident: bib128
  article-title: Interface-mediated extremely low thermal conductivity of graphene aerogel
  publication-title: Carbon
– volume: 104
  year: 2008
  ident: bib82
  article-title: Interfacial thermal conductance between silicon and a vertical carbon nanotube
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 4563
  year: 2019
  end-page: 4570
  ident: bib93
  article-title: Enhanced thermal conductance at the graphene–water interface based on functionalized alkane chains
  publication-title: RSC Adv.
– volume: 114
  start-page: 160
  year: 2017
  end-page: 168
  ident: bib167
  article-title: High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology
  publication-title: Carbon
– volume: 66
  start-page: 165440
  year: 2002
  ident: bib201
  article-title: Thermal conductivity of multiwalled carbon nanotubes
  publication-title: Phys. Rev. B
– volume: 77
  start-page: 666
  year: 2000
  end-page: 668
  ident: bib144
  article-title: Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films
  publication-title: Appl. Phys. Lett.
– volume: 89
  start-page: 223110
  year: 2006
  ident: bib135
  article-title: Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays
  publication-title: Appl. Phys. Lett.
– volume: 55
  start-page: 272
  year: 1987
  end-page: 274
  ident: bib178
  article-title: Measurement of the thermal conductivity of liquids using a transient hot wire technique
  publication-title: Am. J. Phys.
– volume: 141
  start-page: 497
  year: 2019
  end-page: 505
  ident: bib115
  article-title: Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity
  publication-title: Carbon
– volume: 42
  start-page: 105502
  year: 2009
  ident: bib212
  article-title: Thermal conductivity measurement of an individual fibre using a T type probe method
  publication-title: J. Phys. D Appl. Phys.
– volume: 13
  start-page: 4017
  year: 2013
  end-page: 4024
  ident: bib184
  article-title: Measuring the effect of multi-Wall carbon nanotubes on tetrahydrofuran-water hydrate front velocities using thermal imaging
  publication-title: Cryst. Growth Des.
– volume: 5
  start-page: 4709
  year: 2014
  ident: bib58
  article-title: Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers
  publication-title: Nat. Commun.
– volume: 88
  year: 2013
  ident: bib50
  article-title: Phonons in twisted bilayer graphene
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 119
  year: 2006
  end-page: 122
  ident: bib145
  article-title: Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites
  publication-title: Curr. Appl. Phys.
– volume: 79
  start-page: 236
  year: 2014
  end-page: 244
  ident: bib84
  article-title: Interface thermal conductance and rectification in hybrid graphene/silicene monolayer
  publication-title: Carbon
– volume: 328
  start-page: 213
  year: 2010
  end-page: 216
  ident: bib20
  article-title: Two-dimensional phonon transport in supported graphene
  publication-title: Science
– volume: 304–305
  start-page: 51
  year: 1997
  end-page: 66
  ident: bib227
  article-title: Specific heat spectroscopy: origins, status and applications of the
  publication-title: Thermochim. Acta
– volume: 90
  start-page: 245429
  year: 2014
  ident: bib41
  article-title: Low-frequency phonons of few-layer graphene within a tight-binding model
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 654
  year: 2008
  end-page: 659
  ident: bib106
  article-title: Current saturation in zero-bandgap, top-gated graphene field-effect transistors
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 2618
  year: 2011
  end-page: 2621
  ident: bib112
  article-title: Lattice vibrational modes and their frequency shifts in semiconductor nanowires
  publication-title: Nano Lett.
– volume: 7
  start-page: 6286
  year: 2015
  end-page: 6294
  ident: bib92
  article-title: Tuning thermal contact conductance at graphene–copper interface via surface nanoengineering
  publication-title: Nanoscale
– volume: 305
  start-page: 1447
  year: 2004
  end-page: 1450
  ident: bib161
  article-title: Macroscopic, neat, single-walled carbon nanotube fibers
  publication-title: Science
– volume: 6
  start-page: 19958
  year: 2014
  end-page: 19965
  ident: bib151
  article-title: Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 590
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib211
  article-title: Optical absorption and thermal transport of individual suspended carbon nanotube bundles
  publication-title: Nano Lett.
  doi: 10.1021/nl802737q
– volume: 2
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib8
  article-title: Thermal transport in nanostructures
  publication-title: AIP Adv.
  doi: 10.1063/1.4773462
– volume: 104
  start-page: 215902
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib175
  article-title: Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.215902
– volume: 376
  start-page: 525
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib74
  article-title: Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2011.11.016
– volume: 57
  start-page: 2992
  year: 1998
  ident: 10.1016/j.carbon.2021.02.105_bib10
  article-title: Heat conduction in one-dimensional chains
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.57.2992
– volume: 28
  start-page: 10529
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib122
  article-title: Carbon-nanotube fibers for wearable devices and smart textiles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601186
– volume: 86
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib36
  article-title: Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.040101
– volume: 81
  start-page: 155408
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib91
  article-title: Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.155408
– volume: 5
  start-page: 11962
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib108
  article-title: Defect-engineered heat transport in graphene: a route to high efficient thermal rectification
  publication-title: Sci. Rep.
  doi: 10.1038/srep11962
– volume: 90
  start-page: 678
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib182
  article-title: Three-dimensional carbon nanotube based polymer composites for thermal management
  publication-title: Compos. Part A
  doi: 10.1016/j.compositesa.2016.08.035
– volume: 12
  start-page: 796
  year: 2019
  ident: 10.1016/j.carbon.2021.02.105_bib27
  article-title: Heat transfer at the interface of graphene nanoribbons with different relative orientations and gaps
  publication-title: Energies
  doi: 10.3390/en12050796
– volume: 141
  start-page: 497
  year: 2019
  ident: 10.1016/j.carbon.2021.02.105_bib115
  article-title: Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.073
– volume: 81
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib78
  article-title: Different thermal conductance of the inter- and intrachain interactions in a double-stranded molecular structure
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.061131
– volume: 41
  start-page: 48
  year: 1969
  ident: 10.1016/j.carbon.2021.02.105_bib80
  article-title: Kapitza resistance
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.41.48
– volume: 59
  start-page: R2514
  year: 1999
  ident: 10.1016/j.carbon.2021.02.105_bib1
  article-title: Thermal conductivity of single-walled carbon nanotubes
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.R2514
– start-page: IPACK2015
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib188
  article-title: Characterization of carbon nanotube forest interfaces using time domain thermoreflectance
– volume: 10
  start-page: 4363
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib205
  article-title: Heat conduction across monolayer and few-layer graphenes
  publication-title: Nano Lett.
  doi: 10.1021/nl101790k
– volume: 8
  start-page: 567
  year: 1972
  ident: 10.1016/j.carbon.2021.02.105_bib202
  article-title: Reflectivity of metals at high temperatures
  publication-title: IEEE J. Quant. Electron.
  doi: 10.1109/JQE.1972.1077175
– volume: 76
  year: 2007
  ident: 10.1016/j.carbon.2021.02.105_bib44
  article-title: Phonon dispersion of graphite by inelastic x-ray scattering
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.035439
– volume: 7
  year: 2019
  ident: 10.1016/j.carbon.2021.02.105_bib214
  article-title: Graphene related materials for thermal management
  publication-title: 2D Mater.
– volume: 3
  start-page: 654
  year: 2008
  ident: 10.1016/j.carbon.2021.02.105_bib106
  article-title: Current saturation in zero-bandgap, top-gated graphene field-effect transistors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.268
– volume: 374
  start-page: 4144
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib148
  article-title: Thermal transport in multiwall carbon nanotube buckypapers
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2010.08.034
– volume: 50
  start-page: 648
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib59
  article-title: A review of thermal rectification observations and models in solid materials
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.12.004
– volume: 6
  start-page: e113
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib119
  article-title: Graphene fiber: a new material platform for unique applications
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2014.48
– volume: 70
  start-page: 954
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib220
  article-title: Molecular dynamics simulations of thermal conductivity of carbon nanotubes: resolving the effects of computational parameters
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2013.11.065
– volume: 7
  start-page: 41
  year: 2003
  ident: 10.1016/j.carbon.2021.02.105_bib29
  article-title: A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube
  publication-title: Microscale Thermophys. Eng.
  doi: 10.1080/10893950390150467
– volume: 141
  start-page: 92
  year: 2019
  ident: 10.1016/j.carbon.2021.02.105_bib217
  article-title: Thermal characterization of carbon nanotube fiber by time-domain differential Raman
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.034
– volume: 118
  start-page: 58
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib56
  article-title: Structural characterization of carbon nanotubes via the vibrationaldensity of states
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.03.030
– volume: 117
  start-page: 9042
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib193
  article-title: Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp402509w
– volume: 5
  start-page: 85
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib7
  article-title: Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2010.02.002
– volume: 6
  start-page: 119
  year: 2006
  ident: 10.1016/j.carbon.2021.02.105_bib145
  article-title: Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2005.01.053
– volume: 66
  start-page: 165440
  year: 2002
  ident: 10.1016/j.carbon.2021.02.105_bib201
  article-title: Thermal conductivity of multiwalled carbon nanotubes
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.165440
– volume: 331
  start-page: 332
  year: 2004
  ident: 10.1016/j.carbon.2021.02.105_bib111
  article-title: Structures and properties of Ni nanowires
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2004.08.016
– volume: 77
  start-page: 104902
  year: 2006
  ident: 10.1016/j.carbon.2021.02.105_bib224
  article-title: Reexamining the 3-omega technique for thin film thermal characterization
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2349601
– volume: 78
  start-page: 45
  year: 2007
  ident: 10.1016/j.carbon.2021.02.105_bib230
  article-title: 3omega method to measure thermal properties of electrically conducting small-volume liquid
  publication-title: Rev. Sci. Instrum.
– volume: 96
  start-page: 203112
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib31
  article-title: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3435465
– volume: 12
  start-page: 4848
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib157
  article-title: High-density carbon nanotube buckypapers with superior transport and mechanical properties
  publication-title: Nano Lett.
  doi: 10.1021/nl3023274
– volume: 22
  start-page: 334215
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib147
  article-title: Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/33/334215
– volume: 29
  start-page: 362
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib107
  article-title: Characterizing phonon thermal conduction in polycrystalline graphene
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2013.380
– volume: 5
  start-page: 2392
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib133
  article-title: A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials
  publication-title: ACS Nano
  doi: 10.1021/nn200181e
– volume: 52
  start-page: 3490
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib83
  article-title: Contact mechanics and thermal conductance of carbon nanotube array interfaces
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2009.03.011
– volume: 36
  start-page: 2523
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib228
  article-title: Thermal transport in high-strength polymethacrylimide (PMI) foam insulations
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-014-1651-z
– volume: 99
  year: 2019
  ident: 10.1016/j.carbon.2021.02.105_bib66
  article-title: Unexpected high inelastic phonon transport across solid-solid interface: modal nonequilibrium molecular dynamics simulations and Landauer analysis
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.045301
– volume: 14
  start-page: 1801346
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib26
  article-title: Tailoring the thermal and mechanical properties of graphene film by structural engineering
  publication-title: Small
  doi: 10.1002/smll.201801346
– volume: 95
  year: 2005
  ident: 10.1016/j.carbon.2021.02.105_bib208
  article-title: Measuring the thermal conductivity of a single carbon nanotube
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.065502
– volume: 145
  start-page: 725
  year: 2019
  ident: 10.1016/j.carbon.2021.02.105_bib172
  article-title: Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.085
– volume: 114
  start-page: 104301
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib177
  article-title: Atomistic simulations, mesoscopic modeling, and theoretical analysis of thermal conductivity of bundles composed of carbon nanotubes
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4819911
– volume: 135
  start-page: 511
  year: 2019
  ident: 10.1016/j.carbon.2021.02.105_bib215
  article-title: Differential laser flash Raman spectroscopy method for non-contact characterization of thermal transport properties of individual nanowires
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.01.107
– volume: 118
  start-page: 3636
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib51
  article-title: Observation of low-frequency combination and overtone Raman modes in misoriented graphene
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp411573c
– volume: 9
  start-page: 312
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib104
  article-title: The effects of substrate phonon mode scattering on transport in carbon nanotubes
  publication-title: Nano Lett.
  doi: 10.1021/nl8030086
– volume: 21
  start-page: 285706
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib79
  article-title: The intriguing thermal conductivity of ice nanotubes
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/28/285706
– volume: 141
  start-page: 913
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib116
  article-title: Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.06.049
– volume: 112
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib154
  article-title: Thermal conductivity of self-assembled nano-structured ZnO bulk ceramics
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4745034
– volume: 92
  start-page: 151911
  year: 2008
  ident: 10.1016/j.carbon.2021.02.105_bib199
  article-title: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2907977
– volume: 91
  start-page: 123119
  year: 2007
  ident: 10.1016/j.carbon.2021.02.105_bib219
  article-title: Length-dependent thermal conductivity of an individual single-wall carbon nanotube
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2779850
– volume: 6
  start-page: 21014
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib86
  article-title: Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film
  publication-title: Sci. Rep.
  doi: 10.1038/srep21014
– volume: 323
  start-page: 193
  year: 2002
  ident: 10.1016/j.carbon.2021.02.105_bib11
  article-title: A molecular dynamics simulation of heat conduction in finite length SWNTs
  publication-title: Physica B
  doi: 10.1016/S0921-4526(02)00898-0
– volume: 11
  start-page: 65
  year: 2000
  ident: 10.1016/j.carbon.2021.02.105_bib21
  article-title: Thermal conductivity of carbon nanotubes
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/11/2/305
– volume: 107
  start-page: 104907
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib204
  article-title: Thermal conductance and phonon transmissivity of metal–graphite interfaces
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3428464
– volume: 134
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib67
  article-title: Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials
  publication-title: J. Heat Tran.
– volume: 101
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib176
  article-title: Heat conduction in carbon nanotube materials: strong effect of intrinsic thermal conductivity of carbon nanotubes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4737903
– volume: 15
  start-page: 105019
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib6
  article-title: Thermal conductivity of one-, two- and three-dimensional sp2 carbon
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/10/105019
– volume: 349
  start-page: 1083
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib163
  article-title: Highly thermally conductive and mechanically strong graphene fibers
  publication-title: Science
  doi: 10.1126/science.aaa6502
– volume: 97
  start-page: 155420
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib114
  article-title: Vibrations of single-crystal gold nanorods and nanowires
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.155420
– volume: 145
  start-page: 650
  year: 2019
  ident: 10.1016/j.carbon.2021.02.105_bib169
  article-title: Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.074
– volume: 115
  start-page: 7046
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib118
  article-title: Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00102
– volume: 5
  start-page: 148
  year: 2003
  ident: 10.1016/j.carbon.2021.02.105_bib42
  article-title: Lattice dynamics and symmetry of double wall carbon nanotubes
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/5/1/148
– volume: 9
  start-page: 555
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib17
  article-title: Dimensional crossover of thermal transport in few-layer graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2753
– volume: 105
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib174
  article-title: Upper bound to the thermal conductivity of carbon nanotube pellets
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3088924
– volume: 93
  start-page: 922
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib55
  article-title: Dynamical phenomena in fast sliding nanotube models
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2012.737485
– volume: 22
  start-page: 687
  year: 1952
  ident: 10.1016/j.carbon.2021.02.105_bib61
  article-title: Teploobmen mezhdu tverdym telom I geliem-II
  publication-title: Z. Eksp. Teor. Fiz.
– volume: 58
  start-page: 7809
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib32
  article-title: Thermal conductivity of carbon nanotube: from ballistic to diffusive transport
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.58.7809
– volume: 338
  start-page: 936
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib49
  article-title: Coherent phonon heat conduction in superlattices
  publication-title: Science
  doi: 10.1126/science.1225549
– volume: 8
  start-page: 17581
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib159
  article-title: Switch on the high thermal conductivity of graphene paper
  publication-title: Nanoscale
  doi: 10.1039/C6NR06402G
– volume: 125
  start-page: 881
  year: 2003
  ident: 10.1016/j.carbon.2021.02.105_bib213
  article-title: Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device
  publication-title: J. Heat Tran.
  doi: 10.1115/1.1597619
– volume: 48
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib140
  article-title: Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.48.05EC07
– volume: 94
  start-page: 203103
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib16
  article-title: Lattice thermal conductivity of graphene flakes: comparison with bulk graphite
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3136860
– volume: 61
  start-page: 134
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib183
  article-title: Morphology, thermal response and anti-ablation performance of 3D-four directional pitch-based carbon/carbon composites
  publication-title: Corrosion Sci.
  doi: 10.1016/j.corsci.2012.04.036
– volume: 100
  start-page: 1147
  year: 2000
  ident: 10.1016/j.carbon.2021.02.105_bib34
  article-title: Heat conduction in two-dimensional nonlinear lattices
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1018721525900
– volume: 89
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib191
  article-title: Note: thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3ω method
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5052692
– volume: 78
  start-page: 1896
  year: 1997
  ident: 10.1016/j.carbon.2021.02.105_bib9
  article-title: Heat conduction in chains of nonlinear oscillators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1896
– volume: 4
  start-page: 3115
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib195
  article-title: Energy transport state resolved Raman for probing interface energy transport and hot carrier diffusion in few-layered MoS2
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00815
– volume: 29
  start-page: 365708
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib153
  article-title: High-fidelity characterization on anisotropic thermal conductivity of carbon nanotube sheets and on their effects of thermal enhancement of nanocomposites
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aacd7b
– volume: 2
  start-page: 442
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib23
  article-title: Two-dimensional materials for thermal management applications
  publication-title: Joule
  doi: 10.1016/j.joule.2018.01.006
– volume: 122
  start-page: 2113
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib101
  article-title: Enhancement of thermal energy transport across the gold-graphene interface using nanoscale defects: a molecular dynamics study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b09643
– volume: 116
  start-page: 3903
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib149
  article-title: Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2086158
– volume: 9
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib186
  article-title: Method for direct measurement of on-axis carbon fiber thermal diffusivity using the laser flash technique
  publication-title: J. Therm. Sci. Eng. Appl.
– volume: 1
  start-page: 638
  year: 1970
  ident: 10.1016/j.carbon.2021.02.105_bib192
  article-title: Temperature dependence of Raman scattering in silicon
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.1.638
– volume: 74
  year: 2006
  ident: 10.1016/j.carbon.2021.02.105_bib35
  article-title: Dimensional crossover of heat conduction in low dimensions
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.062101
– volume: 6
  start-page: 28
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib60
  article-title: Interfacial phonon transport through Si/Ge multilayer film using Monte Carlo scheme with spectral transmissivity
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2018.00028
– volume: 5
  start-page: 2599
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib25
  article-title: Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3032772
– volume: 152
  start-page: 119565
  year: 2020
  ident: 10.1016/j.carbon.2021.02.105_bib170
  article-title: Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2020.119565
– volume: 3
  start-page: 2149
  year: 2020
  ident: 10.1016/j.carbon.2021.02.105_bib171
  article-title: Thermally conductive graphene films for heat dissipation
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01955
– volume: 11
  start-page: 2618
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib112
  article-title: Lattice vibrational modes and their frequency shifts in semiconductor nanowires
  publication-title: Nano Lett.
  doi: 10.1021/nl200523f
– volume: 89
  start-page: 200601
  year: 2002
  ident: 10.1016/j.carbon.2021.02.105_bib37
  article-title: Anomalous heat conduction in one-dimensional momentum-conserving systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.200601
– volume: 20
  start-page: 145702
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib209
  article-title: Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/14/145702
– volume: 98
  start-page: 125503
  year: 2007
  ident: 10.1016/j.carbon.2021.02.105_bib94
  article-title: Nanomechanical energy transfer and resonance effects in single-walled carbon nanotubes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.125503
– volume: 9
  start-page: 75
  year: 2005
  ident: 10.1016/j.carbon.2021.02.105_bib136
  article-title: Interface material selection and a thermal management technique in second-generation platforms built on intel centrino mobile technology
  publication-title: Intel Technol. J.
  doi: 10.1535/itj.0901.06
– volume: 77
  start-page: 666
  year: 2000
  ident: 10.1016/j.carbon.2021.02.105_bib144
  article-title: Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.127079
– volume: 34
  start-page: 2261
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib231
  article-title: Design and application of a freestanding sensor based on 3ωtechnique for thermal-conductivity measurement of solids, liquids, and nanopowders
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-011-1075-y
– volume: 110
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib72
  article-title: Mechanism of thermal conductivity reduction in few-layer graphene
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3622300
– volume: 79
  start-page: 236
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib84
  article-title: Interface thermal conductance and rectification in hybrid graphene/silicene monolayer
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.07.064
– volume: 84
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib75
  article-title: Manipulating thermal conductivity through substrate coupling
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.075470
– volume: 130
  year: 2008
  ident: 10.1016/j.carbon.2021.02.105_bib143
  article-title: Thermal properties of metal-coated vertically aligned single-wall nanotube Arrays
  publication-title: J. Heat Tran.
– volume: 19
  start-page: 551
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib125
  article-title: Thermal conductivity of low density carbon aerogels
  publication-title: J. Porous Mater.
  doi: 10.1007/s10934-011-9504-7
– volume: 115
  start-page: 174306
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib189
  article-title: Thermal conductivity of high performance carbon nanotube yarn-like fibers
  publication-title: Appl. Phys. Lett.
– start-page: 919
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib164
  article-title: Thermal property of carbon nanotube fibers from chemical vapor deposition synthesis
– volume: 32
  start-page: 1902028
  year: 2020
  ident: 10.1016/j.carbon.2021.02.105_bib123
  article-title: Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902028
– volume: 95
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib64
  article-title: Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3189087
– volume: 7
  start-page: 12851
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib46
  article-title: Engineering of the thermodynamic properties of bilayer graphene by atomic plane rotations: the role of the out-of-plane phonons
  publication-title: Nanoscale
  doi: 10.1039/C5NR03579A
– volume: 85
  start-page: 1295
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib173
  article-title: Thermal conduction phenomena in carbon nanotubes and related nanostructured materials
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.1295
– volume: 9
  start-page: 3805
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib210
  article-title: Thermal boundary resistances of carbon nanotubes in contact with metals and polymers
  publication-title: Nano Lett.
  doi: 10.1021/nl901988t
– volume: 87
  start-page: 215502
  year: 2001
  ident: 10.1016/j.carbon.2021.02.105_bib207
  article-title: Thermal transport measurements of individual multiwalled nanotubes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.215502
– volume: 130
  year: 2008
  ident: 10.1016/j.carbon.2021.02.105_bib65
  article-title: Influence of inelastic scattering at metal-dielectric interfaces
  publication-title: J. Heat Tran.
– volume: 106
  start-page: 183108
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib152
  article-title: Temperature-dependent thermal properties of single-walled carbon nanotube thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4919792
– volume: 7
  start-page: 1504
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib117
  article-title: Macroscopic carbon nanotube Assemblies: preparation, properties, and potential applications
  publication-title: Small
  doi: 10.1002/smll.201002198
– volume: 88
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib50
  article-title: Phonons in twisted bilayer graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.035428
– volume: 45
  start-page: 2608
  year: 2007
  ident: 10.1016/j.carbon.2021.02.105_bib138
  article-title: Thermal conductivity of an aligned carbon nanotube array
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.08.011
– volume: 80
  start-page: 125407
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib15
  article-title: Lattice thermal conductivity of single-walled carbon nanotubes: beyond the relaxation time approximation and phonon-phonon scattering selection rules
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.125407
– volume: 8
  start-page: 902
  year: 2008
  ident: 10.1016/j.carbon.2021.02.105_bib3
  article-title: Superior thermal conductivity of single-layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 61
  start-page: 605
  year: 1989
  ident: 10.1016/j.carbon.2021.02.105_bib62
  article-title: Thermal boundary resistance
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.61.605
– volume: 27
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib70
  article-title: Influence of the electron–phonon interfacial conductance on the thermal transport at metal/dielectric interfaces
  publication-title: J. Phys.:Condes. Matter
– volume: 114
  start-page: 160
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib167
  article-title: High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.12.006
– volume: 31
  start-page: 425302
  year: 2019
  ident: 10.1016/j.carbon.2021.02.105_bib53
  article-title: Low-frequency phonon dynamics and related thermal properties of axially stressed single-walled carbon nanotubes
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/ab285c
– volume: 3
  start-page: 206
  year: 2008
  ident: 10.1016/j.carbon.2021.02.105_bib105
  article-title: Intrinsic and extrinsic performance limits of graphene devices on SiO2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.58
– volume: 50
  start-page: 244
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib160
  article-title: Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.08.041
– volume: 11
  start-page: 113
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib190
  article-title: Thermal transport in suspended and supported few-layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl102923q
– volume: 305
  start-page: 1447
  year: 2004
  ident: 10.1016/j.carbon.2021.02.105_bib161
  article-title: Macroscopic, neat, single-walled carbon nanotube fibers
  publication-title: Science
  doi: 10.1126/science.1101398
– volume: 91
  start-page: 115426
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib48
  article-title: Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.115426
– volume: 106
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib68
  article-title: Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3169515
– volume: 98
  start-page: 381
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib128
  article-title: Interface-mediated extremely low thermal conductivity of graphene aerogel
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.11.033
– volume: 4
  start-page: 81
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib180
  article-title: Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am201330f
– volume: 79
  start-page: 155413
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib39
  article-title: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.155413
– volume: 82
  start-page: 205406
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib63
  article-title: Thermal dissipation and variability in electrical breakdown of carbon nanotube devices
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.205406
– volume: 65
  start-page: 235412
  year: 2002
  ident: 10.1016/j.carbon.2021.02.105_bib54
  article-title: Phonons and electron-phonon scattering in carbon nanotubes
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.235412
– volume: 12
  start-page: 3238
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib40
  article-title: Anomalous size dependence of the thermal conductivity of graphene ribbons
  publication-title: Nano Lett.
  doi: 10.1021/nl301230g
– volume: 90
  start-page: 134312
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib85
  article-title: Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.134312
– volume: 445
  start-page: 48
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib130
  article-title: Thermal and electrical properties of graphene/carbon nanotube aerogels
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2013.12.083
– volume: 21
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib223
  article-title: Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/3/035709
– volume: 23
  start-page: 10040
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib198
  article-title: Development of time-domain differential Raman for transient thermal probing of materials
  publication-title: Opt Express
  doi: 10.1364/OE.23.010040
– volume: 16
  start-page: 6014
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib103
  article-title: Role of remote interfacial phonon (RIP) scattering in heat transport across graphene/SiO2 interfaces
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01709
– volume: 90
  start-page: 245429
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib41
  article-title: Low-frequency phonons of few-layer graphene within a tight-binding model
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.245429
– volume: 100
  start-page: 261908
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib22
  article-title: Inter-tube thermal conductance in carbon nanotubes arrays and bundles: effects of contact area and pressure
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4732100
– volume: 6
  start-page: 18180
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib100
  article-title: Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505173s
– volume: 84
  start-page: 4613
  year: 2000
  ident: 10.1016/j.carbon.2021.02.105_bib2
  article-title: Unusually high thermal conductivity of carbon nanotubes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.4613
– volume: 3
  start-page: 2767
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib96
  article-title: Nanoengineering heat transfer performance at carbon nanotube interfaces
  publication-title: ACS Nano
  doi: 10.1021/nn9006237
– volume: 5
  start-page: 3689
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib13
  article-title: Length-dependent thermal conductivity in suspended single-layer graphene
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4689
– volume: 15
  start-page: 389
  year: 2006
  ident: 10.1016/j.carbon.2021.02.105_bib225
  article-title: Xtending the 3ω-method to the MHz range for thermal conductivity measurements of diamond thin films
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2005.08.041
– volume: 82
  start-page: 161402
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib18
  article-title: Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.161402
– volume: 77
  start-page: 663
  year: 2000
  ident: 10.1016/j.carbon.2021.02.105_bib156
  article-title: Structural anisotropy of magnetically aligned single wall carbon nanotube films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.127078
– volume: 82
  start-page: 115427
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib19
  article-title: Flexural phonons and thermal transport in graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.115427
– volume: 117
  start-page: 399
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib88
  article-title: Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.03.011
– volume: 7
  start-page: 12854
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib109
  article-title: Intercalated water layers promote thermal dissipation at bio-nano interfaces
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12854
– volume: 95
  start-page: 163103
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib4
  article-title: Thermal conductivity of graphene nanoribbons
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3246155
– volume: 110
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib113
  article-title: Acoustic vibrations of a circular nanowire by considering the effect of surface
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3610498
– volume: 67
  start-page: 29
  year: 1996
  ident: 10.1016/j.carbon.2021.02.105_bib229
  article-title: The 3ωtechnique for measuring dynamic specific heat and thermal conductivity of a liquid or solid
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1146545
– volume: 89
  start-page: 223110
  year: 2006
  ident: 10.1016/j.carbon.2021.02.105_bib135
  article-title: Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2397008
– volume: 88
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib206
  article-title: Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4991715
– volume: 6
  start-page: 1589
  year: 2006
  ident: 10.1016/j.carbon.2021.02.105_bib218
  article-title: Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method
  publication-title: Nano Lett.
  doi: 10.1021/nl060331v
– volume: 93
  start-page: 125432
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib200
  article-title: Reliability of Raman measurements of thermal conductivity of single-layer graphene due to selective electron-phonon coupling: a first-principles study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.125432
– volume: 110
  start-page: 16321
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib76
  article-title: Phonon-interface scattering in multilayer grapheneon an amorphous support
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1306175110
– volume: 132
  start-page: 359
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib185
  article-title: Novel three-dimensional carbon nanotube networks as high performance thermal interface materials
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.02.052
– volume: 304–305
  start-page: 51
  year: 1997
  ident: 10.1016/j.carbon.2021.02.105_bib227
  article-title: Specific heat spectroscopy: origins, status and applications of the 3ωmethod
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(97)00201-3
– volume: 84
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib77
  article-title: Effect of substrate modes on thermal transport in supported graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.075471
– volume: 103
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib142
  article-title: Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports
  publication-title: Appl. Phys. Lett.
– volume: 104
  year: 2008
  ident: 10.1016/j.carbon.2021.02.105_bib82
  article-title: Interfacial thermal conductance between silicon and a vertical carbon nanotube
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3000441
– volume: 5
  start-page: 1121
  year: 2005
  ident: 10.1016/j.carbon.2021.02.105_bib30
  article-title: Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”
  publication-title: Nano Lett.
  doi: 10.1021/nl050714d
– volume: 73
  start-page: 581
  year: 1993
  ident: 10.1016/j.carbon.2021.02.105_bib127
  article-title: Thermal and electrical conductivity of monolithic carbon aerogels
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.353367
– volume: 3
  start-page: 6061
  year: 2020
  ident: 10.1016/j.carbon.2021.02.105_bib168
  article-title: Incorporating Ag nanowires into graphene nanosheets for enhanced thermal conductivity: implications for thermal management
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c01265
– volume: 103
  start-page: 101
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib216
  article-title: Thermal characterization of carbon nanotube fiber by time-domain differential Raman
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.03.003
– volume: 54
  start-page: 7397
  year: 2019
  ident: 10.1016/j.carbon.2021.02.105_bib28
  article-title: Thermal conductivity of carbon nanotube networks: a review
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-03368-0
– volume: 10
  start-page: 35487
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib102
  article-title: Achieving huge thermal conductance of metallic nitride on graphene through enhanced elastic and inelastic phonon transmission
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12480
– volume: 69
  year: 2004
  ident: 10.1016/j.carbon.2021.02.105_bib14
  article-title: Thermal conductivity of zigzag single-walled carbon nanotubes: role of the umklapp process
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.073407
– volume: 74
  start-page: 125403
  year: 2006
  ident: 10.1016/j.carbon.2021.02.105_bib81
  article-title: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.125403
– volume: 12
  start-page: 590
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib24
  article-title: Manipulating thermal conductance at metal-graphene contacts via chemical functionalization
  publication-title: Nano Lett.
  doi: 10.1021/nl203060j
– volume: 120
  start-page: 128
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib87
  article-title: Thermal transport barrier in carbon nanotube array nano-thermal interface materials
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.05.037
– volume: 10
  start-page: 4606
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib120
  article-title: Dry-processable carbon nanotubes for functional devices and composites
  publication-title: Small
  doi: 10.1002/smll.201401465
– volume: 18
  start-page: 480
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib121
  article-title: Graphene fiber: a new trend in carbon fibers
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.06.009
– volume: 114
  start-page: 15
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib97
  article-title: Understanding thermal conductance across multi-wall carbon nanotube contacts: role of nanotube curvature
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.11.056
– volume: 23
  start-page: 2263
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib132
  article-title: Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202638
– volume: 19
  start-page: 661
  year: 2007
  ident: 10.1016/j.carbon.2021.02.105_bib124
  article-title: Carbon nanotube Aerogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200601748
– volume: 154
  start-page: 119751
  year: 2020
  ident: 10.1016/j.carbon.2021.02.105_bib194
  article-title: Raman-based nanoscale thermal transport characterization: a critical review
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2020.119751
– volume: 5
  start-page: 4818
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib141
  article-title: Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density
  publication-title: ACS Nano
  doi: 10.1021/nn200847u
– volume: 10
  start-page: 569
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib5
  article-title: Thermal properties of graphene and nanostructured carbon materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3064
– volume: 12
  start-page: 2959
  year: 2012
  ident: 10.1016/j.carbon.2021.02.105_bib131
  article-title: Thermal transport in three-Dimensional foam architectures of few-layer graphene and ultrathin graphite
  publication-title: Nano Lett.
  doi: 10.1021/nl300662q
– volume: 21
  start-page: 177
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib203
  article-title: The ultrafast laser pump-probe technique for thermal characterization of materials with micro/nanostructures
  publication-title: Nanoscale Microscale Thermophys. Eng.
  doi: 10.1080/15567265.2017.1313343
– volume: 9
  start-page: 4563
  year: 2019
  ident: 10.1016/j.carbon.2021.02.105_bib93
  article-title: Enhanced thermal conductance at the graphene–water interface based on functionalized alkane chains
  publication-title: RSC Adv.
  doi: 10.1039/C8RA09879D
– volume: 7
  start-page: 6286
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib92
  article-title: Tuning thermal contact conductance at graphene–copper interface via surface nanoengineering
  publication-title: Nanoscale
  doi: 10.1039/C5NR00564G
– volume: 98
  start-page: 113107
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib73
  article-title: Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3567415
– volume: 9
  start-page: 16871
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib158
  article-title: An ultrahigh thermal conductive graphene flexible paper
  publication-title: Nanoscale
  doi: 10.1039/C7NR06667H
– volume: 9
  start-page: 10784
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib187
  article-title: Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method
  publication-title: Nanoscale
  doi: 10.1039/C7NR01695F
– volume: 133
  start-page: 1074
  year: 2019
  ident: 10.1016/j.carbon.2021.02.105_bib196
  article-title: Frequency-domain energy transport state-resolved Raman for measuring the thermal conductivity of suspended nm-thick MoSe2
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.01.012
– volume: 81
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib33
  article-title: Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.045413
– volume: 123
  start-page: 114714
  year: 2005
  ident: 10.1016/j.carbon.2021.02.105_bib12
  article-title: Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2036967
– volume: 145
  start-page: 667
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib90
  article-title: Dependence of carbon nanotube array-silicon interface thermal conductance on array arrangement and filling fraction
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.09.084
– volume: 20
  start-page: 572
  year: 2020
  ident: 10.1016/j.carbon.2021.02.105_bib47
  article-title: Interlayer vacancy effects on the phonon modes in AB stacked bilayergraphene nanoribbon
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2020.02.006
– volume: 6
  start-page: 48
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib69
  article-title: A modified theoretical model to accurately account for interfacial roughness in predicting the interfacial thermal conductance
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2018.00048
– volume: 102
  start-page: 105901
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib95
  article-title: Turning carbon nanotubes from exceptional heat conductors into insulators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.105901
– volume: 90
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib38
  article-title: Colloquium: phononic thermal properties of two-dimensional materials
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.041002
– volume: 8
  start-page: 17461
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib166
  article-title: Continuous carbon nanotube-based fibers and films for applications requiring enhanced heat dissipation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04114
– volume: 19
  year: 2008
  ident: 10.1016/j.carbon.2021.02.105_bib146
  article-title: Highly oriented carbon nanotube papers made of aligned carbon nanotubes
  publication-title: Nanotechnology
– volume: 339
  start-page: 182
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib162
  article-title: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity
  publication-title: Science
  doi: 10.1126/science.1228061
– volume: 6
  start-page: 539
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib134
  article-title: Crack-free and scalable transfer of carbon nanotube Arrays into flexible and highly thermal conductive composite film
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am404594m
– volume: 49
  start-page: 86
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib181
  article-title: Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.075
– volume: 5
  start-page: 4951
  year: 1972
  ident: 10.1016/j.carbon.2021.02.105_bib43
  article-title: Lattice dynamics of pyrolytic graphite
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.5.4951
– volume: 100
  year: 2006
  ident: 10.1016/j.carbon.2021.02.105_bib137
  article-title: Thermal properties of carbon nanotube array used for integrated circuit cooling
  publication-title: J. Appl. Phys.
– volume: 110
  start-page: 124314
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib71
  article-title: Interfacial thermal resistance between metallic carbon nanotube and Cu substrate
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3670011
– volume: 61
  start-page: 501
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib150
  article-title: Enhancing buckypaper conductivity through co-deposition with copper nanowires
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.05.030
– volume: 96
  start-page: 888
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib99
  article-title: Interfacial thermal conductance in graphene/MoS2 heterostructures
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.10.046
– volume: 13
  start-page: 4017
  year: 2013
  ident: 10.1016/j.carbon.2021.02.105_bib184
  article-title: Measuring the effect of multi-Wall carbon nanotubes on tetrahydrofuran-water hydrate front velocities using thermal imaging
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg400767u
– volume: 128
  start-page: 1109
  year: 2006
  ident: 10.1016/j.carbon.2021.02.105_bib222
  article-title: 3-Omega measurements of vertically oriented carbon nanotubes on silicon
  publication-title: J. Heat Trans-T ASME
  doi: 10.1115/1.2352778
– volume: 71
  year: 2005
  ident: 10.1016/j.carbon.2021.02.105_bib45
  article-title: Thermal conduction of carbon nanotubes using molecular dynamics
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.085417
– volume: 125
  start-page: 1230
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib197
  article-title: Variable-spot-size laser-flash Raman method to measure in-plane and interfacial thermal properties of 2D van der Waals heterostructures
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.05.011
– volume: 42
  start-page: 105502
  year: 2009
  ident: 10.1016/j.carbon.2021.02.105_bib212
  article-title: Thermal conductivity measurement of an individual fibre using a T type probe method
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/42/10/105502
– volume: 8
  start-page: 1970
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib110
  article-title: Water intercalation for seamless, electrically insulating, and thermally transparent interfaces
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10173
– volume: 55
  start-page: 272
  year: 1987
  ident: 10.1016/j.carbon.2021.02.105_bib178
  article-title: Measurement of the thermal conductivity of liquids using a transient hot wire technique
  publication-title: Am. J. Phys.
  doi: 10.1119/1.15177
– volume: 5
  start-page: 4709
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib58
  article-title: Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5709
– volume: 48
  start-page: 3947
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib139
  article-title: Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.06.063
– volume: 328
  start-page: 213
  year: 2010
  ident: 10.1016/j.carbon.2021.02.105_bib20
  article-title: Two-dimensional phonon transport in supported graphene
  publication-title: Science
  doi: 10.1126/science.1184014
– volume: 114
  start-page: 1240
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib179
  article-title: Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.10.109
– volume: 5
  start-page: 17
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib98
  article-title: Effect of length, diameter, chirality, deformation, and strain on contact thermal conductance between single-wall carbon nanotubes
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2018.00017
– volume: 13
  start-page: 6887
  year: 2011
  ident: 10.1016/j.carbon.2021.02.105_bib232
  article-title: Thermal conductivity and thermal diffusivity of SiO2 nanopowder
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-011-0596-4
– volume: 2016
  start-page: 9174085
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib155
  article-title: Thermal transport properties of dry spun carbon nanotube sheets
  publication-title: J. Nanomater.
  doi: 10.1155/2016/9174085
– volume: 5
  start-page: 15440
  year: 2015
  ident: 10.1016/j.carbon.2021.02.105_bib52
  article-title: Diameter dependence of lattice thermal conductivity of single- walled carbon nanotubes: study from ab initio
  publication-title: Sci. Rep.
  doi: 10.1038/srep15440
– volume: 59
  start-page: R9015
  year: 1999
  ident: 10.1016/j.carbon.2021.02.105_bib221
  article-title: Linear specific heat of carbon nanotubes
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.R9015
– volume: 7
  start-page: 1439
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib129
  article-title: Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01601-x
– volume: 61
  start-page: 802
  year: 1990
  ident: 10.1016/j.carbon.2021.02.105_bib226
  article-title: Thermal conductivity measurement from 30 to 750 K: the 3ωmethod
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1141498
– volume: 57
  year: 2018
  ident: 10.1016/j.carbon.2021.02.105_bib57
  article-title: Vacancy and curvature effects on the phonon properties of single wall carbon nanotube
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.57.02CB08
– volume: 6
  start-page: 19958
  year: 2014
  ident: 10.1016/j.carbon.2021.02.105_bib151
  article-title: Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505484z
– volume: 113
  start-page: 274
  year: 2017
  ident: 10.1016/j.carbon.2021.02.105_bib89
  article-title: Thermal characteristics of graphene nanoribbons endorsed by surface functionalization
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.11.067
– volume: 255
  start-page: 971
  year: 1992
  ident: 10.1016/j.carbon.2021.02.105_bib126
  article-title: Thermal conductivity of monolithic organic aerogels
  publication-title: Science
  doi: 10.1126/science.255.5047.971
– volume: 105
  start-page: 248
  year: 2016
  ident: 10.1016/j.carbon.2021.02.105_bib165
  article-title: Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.04.043
SSID ssj0004814
Score 2.573704
SecondaryResourceType review_article
Snippet Although the individual one- and two-dimensional (1D and 2D) carbon nanostructures possess extremely high thermal conductivity, their macroscopic assemblies do...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 391
SubjectTerms Assemblies
Carbon
heat tolerance
Heat transfer
Interfacial heat transport
Lattice vibration
Low-frequency phonons
Measurement methods
Nano-carbon assembly
Nanomaterials
Nanostructure
Nanostructured materials
Phonons
Studies
Thermal conductivity
Thermal resistance
Thermal utilization
Thermodynamic properties
Title Interfacial heat transport in nano-carbon assemblies
URI https://dx.doi.org/10.1016/j.carbon.2021.02.105
https://www.proquest.com/docview/2539938623
https://www.proquest.com/docview/2552007388
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jPuiL-InTOSr4Wpc2ado8juGYintysLeQr8JE27F1r_7t5tpmogiCL4UkFxoul8slufsdQreS5XkkcRIya3RIbc5CaVxRcm5S5Xao2MB9x_OMTef0cZEsOmjsY2HArbLV_Y1Or7V1WzNsuTlcLZcQ4wvmeAxBKJiQGAJ-KU1Byu8-vtw8aNbge8MzP1D78Lnax0vLtSoBBTWukTsjSGL3-_b0Q1HXu8_kCB22ZmMwakZ2jDq2OEH7Y5-t7RTR-movl3ADHoCCDSoPWx4si6CQRRk24wicuWzflbM9N2doPrl_GU_DNiNCqCkhlTs16pww6XjjvlYmTMaKKR1xi7FkkeEm51wmOrE8d1x2hyl4h1PKLVJGNTbkHHWLsrAXKLAZ0SZOFDZU0owlXGllM0DLISrDHPcQ8YwQuoULh6wVb8L7hb2KZtgC2Cdw7GqTHgp3vVYNXMYf9Knnsfg27cJp9D969v2UiHbZbUQMOLvESQXpoZtds5sJeAWRhS23QANIUynJsst___wKHUCp8Rvso2613tprZ5xUalBL3wDtjR6eprNPkaHjmw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5096AX8Ymrq1bwWkyTJtscl0Xp-tiTgreQV2FFW9H6_830oSiC4KWQx9AwSWYmycw3AGdaFEWiCY-FdzZOfSFi7UJRS-kmJmgo6vC-43Yh8vv06oE_rMCsj4VBt8pO9rcyvZHWXc15x83zl-USY3zRHKcYhEIYo9kqDBGdig9gOJ1f54uv8MishfjGl34k6CPoGjcvq19NhUCotAHvTDCP3e8a6oesbhTQ5SZsdJZjNG0HtwUrvtyGtVmfsG0H0uZ2r9B4CR6hjI3qHrk8WpZRqcsqbscRBYvZP5tgfr7twv3lxd0sj7ukCLFNGavDwdEWTOjAnvD1mgtNjTA2kZ4QLRInXSGl5pZ7WQRGh_MUPsUZE_apSC1xbA8GZVX6fYh8xqyj3BCX6jQTXBprfIaAOcxkRJIRsJ4RynaI4Zi44kn1rmGPqh22QvYpQkMtH0H8SfXSImb80X_S81h9m3kVhPoflON-SlS3894URahdFhYGG8HpZ3OYCXwI0aWv3rEPgk1NWJYd_PvnJ7CW393eqJv54voQ1rGldSMcw6B-ffdHwVapzXG3Fj8AaFbmTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+heat+transport+in+nano-carbon+assemblies&rft.jtitle=Carbon+%28New+York%29&rft.au=Qiu%2C+Lin&rft.au=Zhang%2C+Xiaohua&rft.au=Guo%2C+Zhixin&rft.au=Li%2C+Qingwen&rft.date=2021-06-30&rft.pub=Elsevier+Ltd&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=178&rft.spage=391&rft.epage=412&rft_id=info:doi/10.1016%2Fj.carbon.2021.02.105&rft.externalDocID=S0008622321003328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon