Object-Oriented Crop Classification Using Time Series Sentinel Images from Google Earth Engine

The resulting maps of land use classification obtained by pixel-based methods often have salt-and-pepper noise, which usually shows a certain degree of cluttered distribution of classification image elements within the region. This paper carries out a study on crop classification and identification...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 5; p. 1353
Main Authors Xue, Hanyu, Xu, Xingang, Zhu, Qingzhen, Yang, Guijun, Long, Huiling, Li, Heli, Yang, Xiaodong, Zhang, Jianmin, Yang, Yongan, Xu, Sizhe, Yang, Min, Li, Yafeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The resulting maps of land use classification obtained by pixel-based methods often have salt-and-pepper noise, which usually shows a certain degree of cluttered distribution of classification image elements within the region. This paper carries out a study on crop classification and identification based on time series Sentinel images and object-oriented methods and takes the crop recognition and classification of the National Modern Agricultural Industrial Park in Jalaid Banner, Inner Mongolia, as the research object. It uses the Google Earth Engine (GEE) cloud platform to extract time series Sentinel satellite radar and optical remote sensing images combined with simple noniterative clustering (SNIC) multiscale segmentation with random forest (RF) and support vector machine (SVM) classification algorithms to classify and identify major regional crops based on radar and spectral features. Compared with the pixel-based method, the combination of SNIC multiscale segmentation and random forest classification based on time series radar and optical remote sensing images can effectively reduce the salt-and-pepper phenomenon in classification and improve crop classification accuracy with the highest accuracy of 98.66 and a kappa coefficient of 0.9823. This study provides a reference for large-scale crop identification and classification work.
AbstractList The resulting maps of land use classification obtained by pixel-based methods often have salt-and-pepper noise, which usually shows a certain degree of cluttered distribution of classification image elements within the region. This paper carries out a study on crop classification and identification based on time series Sentinel images and object-oriented methods and takes the crop recognition and classification of the National Modern Agricultural Industrial Park in Jalaid Banner, Inner Mongolia, as the research object. It uses the Google Earth Engine (GEE) cloud platform to extract time series Sentinel satellite radar and optical remote sensing images combined with simple noniterative clustering (SNIC) multiscale segmentation with random forest (RF) and support vector machine (SVM) classification algorithms to classify and identify major regional crops based on radar and spectral features. Compared with the pixel-based method, the combination of SNIC multiscale segmentation and random forest classification based on time series radar and optical remote sensing images can effectively reduce the salt-and-pepper phenomenon in classification and improve crop classification accuracy with the highest accuracy of 98.66 and a kappa coefficient of 0.9823. This study provides a reference for large-scale crop identification and classification work.
Audience Academic
Author Xu, Sizhe
Li, Yafeng
Yang, Xiaodong
Yang, Min
Zhu, Qingzhen
Zhang, Jianmin
Xue, Hanyu
Xu, Xingang
Li, Heli
Long, Huiling
Yang, Yongan
Yang, Guijun
Author_xml – sequence: 1
  givenname: Hanyu
  orcidid: 0000-0002-7957-5055
  surname: Xue
  fullname: Xue, Hanyu
– sequence: 2
  givenname: Xingang
  orcidid: 0000-0002-8473-5631
  surname: Xu
  fullname: Xu, Xingang
– sequence: 3
  givenname: Qingzhen
  orcidid: 0000-0002-5122-9759
  surname: Zhu
  fullname: Zhu, Qingzhen
– sequence: 4
  givenname: Guijun
  surname: Yang
  fullname: Yang, Guijun
– sequence: 5
  givenname: Huiling
  surname: Long
  fullname: Long, Huiling
– sequence: 6
  givenname: Heli
  surname: Li
  fullname: Li, Heli
– sequence: 7
  givenname: Xiaodong
  surname: Yang
  fullname: Yang, Xiaodong
– sequence: 8
  givenname: Jianmin
  surname: Zhang
  fullname: Zhang, Jianmin
– sequence: 9
  givenname: Yongan
  surname: Yang
  fullname: Yang, Yongan
– sequence: 10
  givenname: Sizhe
  surname: Xu
  fullname: Xu, Sizhe
– sequence: 11
  givenname: Min
  surname: Yang
  fullname: Yang, Min
– sequence: 12
  givenname: Yafeng
  surname: Li
  fullname: Li, Yafeng
BookMark eNptkUtvEzEUhS1UJErphl9giQ1CmuLneLysolAiVcqCdovlca4HRzN2sJ0F_75OAwJV2It7bX3n-HHeoouYIiD0npIbzjX5nAuVRFIu-St0yYhinWCaXfzTv0HXpexJG5xTTcQl-r4d9-Bqt80BYoUdXuV0wKvZlhJ8cLaGFPFjCXHCD2EB_A0aWFqJNUSY8WaxU1v7nBZ8l9I0A17bXH_gdZwa8A699nYucP27XqHHL-uH1dfufnu3Wd3ed05wXjvhgDNPvKZKOeqps4rK3vNRD154yhQfwSu1E7TvQTs6SGm9AumZtLZ1_Aptzr67ZPfmkMNi8y-TbDDPGylPpt0quBmMG6xmox90L6lQoz5VNSpwYtScDLx5fTx7HXL6eYRSzRKKg3m2EdKxGE4EEQMhSjb0wwt0n445tpcapgbJeK_40KibMzXZdn6IPtVsXZs7WIJrGfrQ9m_VKTymyMmWnAUup1IyeONCfY6iCcNsKDGnwM3fwJvk0wvJn0_4D_wEfZ6q0g
CitedBy_id crossref_primary_10_1038_s41598_024_68991_7
crossref_primary_10_3390_agronomy14030557
crossref_primary_10_1007_s10489_024_05469_z
crossref_primary_10_1038_s41598_024_80327_z
crossref_primary_10_1016_j_atech_2024_100641
crossref_primary_10_3390_agriculture14030500
crossref_primary_10_3390_s25010210
crossref_primary_10_1080_10095020_2024_2341748
crossref_primary_10_48123_rsgis_1411380
crossref_primary_10_1016_j_jag_2023_103431
crossref_primary_10_1080_01431161_2023_2205984
crossref_primary_10_3390_agronomy13092350
crossref_primary_10_3390_min15020124
crossref_primary_10_3390_agronomy14122834
crossref_primary_10_3389_fenvs_2025_1493197
crossref_primary_10_1109_TGRS_2024_3456898
crossref_primary_10_1007_s12517_023_11688_4
Cites_doi 10.1080/01431160512331314083
10.1016/j.rse.2007.07.019
10.1016/j.rse.2011.10.011
10.3390/s18010018
10.1109/LSP.2014.2333012
10.1016/j.patrec.2016.04.019
10.1080/01431160600702632
10.1007/11941439_40
10.1007/978-1-4757-3264-1
10.1016/S0168-1699(02)00116-3
10.1109/TIP.2005.852196
10.1080/01431160412331269698
10.5194/isprs-archives-XLI-B7-757-2016
10.3390/rs70505347
10.1109/ICICICT.2014.6781389
10.3390/rs13132508
10.1080/01431160210144499
10.1016/j.patrec.2012.11.003
10.3390/rs6064870
10.1007/978-3-540-77058-9
10.1023/A:1010933404324
10.1201/9781315139470
10.1016/j.rse.2017.06.031
10.1016/j.isprsjprs.2003.09.007
10.3390/rs13040561
10.1109/IGARSS.2012.6351708
10.1016/j.isprsjprs.2013.04.007
10.3390/rs13061148
10.1016/S0034-4257(96)00067-3
10.1109/IGARSS.2018.8519204
10.14358/PERS.72.7.799
10.1023/A:1009715923555
10.1016/j.rse.2016.02.016
10.1109/TNN.2003.811708
10.1109/CVPR.2017.520
10.3390/info12020094
10.1109/TPAMI.2012.120
10.3390/rs12152411
10.1109/JPROC.2012.2197589
10.1109/ICCV.2003.1238308
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15051353
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
ProQuest SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_c8a92bf8965147b996517b7ec4b93083
A750512705
10_3390_rs15051353
GeographicLocations Mongolia
China
GeographicLocations_xml – name: Mongolia
– name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-4ce32f0f9177c1f1ca7156f3b98f4f1273bef77d4166e9c1855af7e5f25aaaf73
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:31:28 EDT 2025
Fri Jul 11 09:33:36 EDT 2025
Fri Jul 25 09:32:21 EDT 2025
Tue Jun 10 20:57:11 EDT 2025
Tue Jul 01 03:11:01 EDT 2025
Thu Apr 24 22:55:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-4ce32f0f9177c1f1ca7156f3b98f4f1273bef77d4166e9c1855af7e5f25aaaf73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5122-9759
0000-0002-7957-5055
0000-0002-8473-5631
OpenAccessLink https://doaj.org/article/c8a92bf8965147b996517b7ec4b93083
PQID 2785236738
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_c8a92bf8965147b996517b7ec4b93083
proquest_miscellaneous_3040480075
proquest_journals_2785236738
gale_infotracacademiconefile_A750512705
crossref_citationtrail_10_3390_rs15051353
crossref_primary_10_3390_rs15051353
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wardlow (ref_40) 2008; 112
Velasco (ref_36) 2013; 34
Zhou (ref_14) 2021; 54
Graf (ref_37) 2003; 14
ref_10
Pal (ref_32) 2005; 26
Li (ref_1) 2013; 29
ref_18
Whiteside (ref_12) 2011; 13
ref_15
Du (ref_17) 2019; 21
Deng (ref_50) 2016; 79
ref_25
ref_24
Abdikan (ref_3) 2016; XLI-B7
Dong (ref_20) 2016; 185
ref_23
ref_22
Tian (ref_45) 2022; 53
Burges (ref_38) 1998; 2
Zhang (ref_16) 2015; 30
Zhang (ref_47) 2021; 42
Walter (ref_9) 2004; 58
Plank (ref_21) 2014; 6
ref_27
Pan (ref_44) 2012; 119
Yu (ref_8) 2006; 72
Hao (ref_4) 2015; 7
Yan (ref_13) 2006; 27
Geneletti (ref_11) 2003; 24
Miao (ref_41) 2011; 13
Ma (ref_26) 2021; 43
ref_35
ref_34
ref_33
Chan (ref_52) 2005; 14
ref_30
Gorelick (ref_19) 2017; 202
Achanta (ref_28) 2012; 34
Pal (ref_29) 2005; 26
Liu (ref_5) 2018; 49
Frampton (ref_43) 2013; 82
Fauvel (ref_7) 2013; 101
Jakubauskas (ref_39) 2002; 37
Zhang (ref_51) 2014; 21
Gao (ref_46) 1996; 58
Breiman (ref_31) 2001; 45
Fang (ref_42) 2017; 19
ref_2
ref_49
ref_48
ref_6
References_xml – volume: 43
  start-page: 1198
  year: 2021
  ident: ref_26
  article-title: Superpixel segmentation algorithm based on SNIC for dual-phase SAR image
  publication-title: Syst. Eng. Electron.
– volume: 26
  start-page: 1007
  year: 2005
  ident: ref_32
  article-title: Support vector machines for classification in remote sensing
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160512331314083
– volume: 112
  start-page: 1096
  year: 2008
  ident: ref_40
  article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.019
– volume: 119
  start-page: 232
  year: 2012
  ident: ref_44
  article-title: Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.011
– ident: ref_6
  doi: 10.3390/s18010018
– volume: 21
  start-page: 1280
  year: 2014
  ident: ref_51
  article-title: A New Adaptive Weighted Mean Filter for Removing Salt-and-Pepper Noise
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2333012
– volume: 79
  start-page: 8
  year: 2016
  ident: ref_50
  article-title: A new adaptive filtering method for removing salt and pepper noise based on multilayered PCNN
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.04.019
– volume: 27
  start-page: 4039
  year: 2006
  ident: ref_13
  article-title: Comparison of pixel-based and object-oriented image classification approaches—A case study in a coal fire area, Wuda, Inner Mongolia, China
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600702632
– ident: ref_34
  doi: 10.1007/11941439_40
– ident: ref_33
  doi: 10.1007/978-1-4757-3264-1
– volume: 37
  start-page: 127
  year: 2002
  ident: ref_39
  article-title: Crop identification using harmonic analysis of time-series AVHRR NDVI data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/S0168-1699(02)00116-3
– volume: 53
  start-page: 196
  year: 2022
  ident: ref_45
  article-title: Rice planting area extraction based on MODIS-EVI time series and phenological characteristics
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 14
  start-page: 1479
  year: 2005
  ident: ref_52
  article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.852196
– ident: ref_35
– volume: 49
  start-page: 1
  year: 2018
  ident: ref_5
  article-title: Research progress and prospect of fine recognition and automatic mapping of crops by remote sensing
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 26
  start-page: 217
  year: 2005
  ident: ref_29
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331269698
– volume: XLI-B7
  start-page: 757
  year: 2016
  ident: ref_3
  article-title: Land cover mapping using sentinel-1 SAR data
  publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLI-B7-757-2016
– volume: 7
  start-page: 5347
  year: 2015
  ident: ref_4
  article-title: Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA
  publication-title: Remote Sens.
  doi: 10.3390/rs70505347
– ident: ref_48
  doi: 10.1109/ICICICT.2014.6781389
– ident: ref_22
  doi: 10.3390/rs13132508
– volume: 24
  start-page: 1273
  year: 2003
  ident: ref_11
  article-title: A method for object-oriented land cover classification combining Landsat TM data and aerial photographs
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160210144499
– volume: 34
  start-page: 344
  year: 2013
  ident: ref_36
  article-title: A study on output normalization in multiclass SVMs
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.11.003
– volume: 6
  start-page: 4870
  year: 2014
  ident: ref_21
  article-title: Rapid Damage Assessment by Means of Multi-Temporal SAR—A Comprehensive Review and Outlook to Sentinel-1
  publication-title: Remote Sens.
  doi: 10.3390/rs6064870
– ident: ref_10
  doi: 10.1007/978-3-540-77058-9
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_31
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 21
  start-page: 740
  year: 2019
  ident: ref_17
  article-title: Crop Mapping Based on Sentinel-2A NDVI Time Series Using Object-Oriented Classification and Decision Tree Model
  publication-title: J. Geo-Inf. Sci.
– ident: ref_30
  doi: 10.1201/9781315139470
– volume: 202
  start-page: 18
  year: 2017
  ident: ref_19
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 29
  start-page: 9
  year: 2013
  ident: ref_1
  article-title: Crop classification recognition based on time-series images from HJ satellite
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 58
  start-page: 225
  year: 2004
  ident: ref_9
  article-title: Object-based classification of remote sensing data for change detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2003.09.007
– ident: ref_18
  doi: 10.3390/rs13040561
– ident: ref_49
  doi: 10.1109/IGARSS.2012.6351708
– volume: 82
  start-page: 83
  year: 2013
  ident: ref_43
  article-title: Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.04.007
– ident: ref_24
  doi: 10.3390/rs13061148
– volume: 58
  start-page: 257
  year: 1996
  ident: ref_46
  article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
– ident: ref_2
  doi: 10.1109/IGARSS.2018.8519204
– volume: 19
  start-page: 1382
  year: 2017
  ident: ref_42
  article-title: A Comparative Study of Different Red Edge Indices for Remote Sensing Detection of Urban Grassland Health Status
  publication-title: J. Geo-Inf. Sci.
– volume: 30
  start-page: 304
  year: 2015
  ident: ref_16
  article-title: Research on Crop Identification Using Multi-Temporal NDVI HJ Images
  publication-title: Remote Sens. Technol. Appl.
– volume: 72
  start-page: 799
  year: 2006
  ident: ref_8
  article-title: Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.72.7.799
– volume: 13
  start-page: 884
  year: 2011
  ident: ref_12
  article-title: Comparing object-based and pixel-based classifications for mapping savannas
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 42
  start-page: 144
  year: 2021
  ident: ref_47
  article-title: Research on the role of Sentinel-2 red-edge band in rice identification: A case study in Deqing County, Zhejiang Province
  publication-title: J. China Agric. Resour. Reg. Plan.
– volume: 2
  start-page: 121
  year: 1998
  ident: ref_38
  article-title: A Tutorial on Support Vector Machines for Pattern Recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 185
  start-page: 142
  year: 2016
  ident: ref_20
  article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.016
– volume: 14
  start-page: 597
  year: 2003
  ident: ref_37
  article-title: Classification in a normalized feature space using support vector machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2003.811708
– ident: ref_27
  doi: 10.1109/CVPR.2017.520
– volume: 54
  start-page: 2302
  year: 2021
  ident: ref_14
  article-title: Area extraction and growth monitoring of winter wheat with GEE support in Henan Province
  publication-title: Sci. Agric. Sin.
– volume: 13
  start-page: 273
  year: 2011
  ident: ref_41
  article-title: Remote sensing monitoring and analysis of rice planting area based on NDVI time series data: A case study in Jiangsu Province
  publication-title: Geo-Inf. Sci.
– ident: ref_23
  doi: 10.3390/info12020094
– volume: 34
  start-page: 2274
  year: 2012
  ident: ref_28
  article-title: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– ident: ref_15
  doi: 10.3390/rs12152411
– volume: 101
  start-page: 652
  year: 2013
  ident: ref_7
  article-title: Advances in spectral-spatial classification of hyperspectral images
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2197589
– ident: ref_25
  doi: 10.1109/ICCV.2003.1238308
SSID ssj0000331904
Score 2.4536803
Snippet The resulting maps of land use classification obtained by pixel-based methods often have salt-and-pepper noise, which usually shows a certain degree of...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1353
SubjectTerms Accuracy
Algorithms
China
Classification
Cloud computing
Clustering
Crop identification
Crops
Fertility
Google Earth Engine
Image classification
Image segmentation
Industrial parks
Internet
Land use
Land use classification
object-oriented
Pixels
Precipitation
Radar
random forest classification
Remote sensing
Rice
Satellite imagery
Satellites
Sentinel images
SNIC algorithm
support vector machine classification
Support vector machines
Time series
time series analysis
Wheat
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gHOCCeIrxUhBIiENF16RLekIDjZfEQwgkTkRJmozDWMc6Dvx77DYbQgJOrdqoD8exPzvJZ0IOuEtAdY2NcvCmEbexjsDm2ahtc_A_PG9piRucb27bl0_8-jl9Dgm3MiyrnNjEylDnhcUc-XEiZIpsY0yeDN8jrBqFs6uhhMYsmQMTLCH4mjvt3t4_TLMsMQMVi3nNS8ogvj8elQCBUqz28MMTVYT9f5nlytecL5HFABJpp-7VZTLjBitkPtQrf_1cJS93BvMn0R2yFANmpGejYkirApe49KeSNq1WA1Dc40ExB-ZKOGBdCNenV29gRkqKe0voRVH0-o52QYdeaU1PuEaezruPZ5dRqJQQWc7YGGTsWOJjD7GXsC3fslpAXOaZyaTnvgUQxTgvRA7oq-0yCz461V641Cep1nDG1kljUAzcBqHgwnlqpUusjrlnXgp8sNCSaR5bkTbJ0URqygYacaxm0VcQTqCE1beEm2R_2nZYk2f82uoUhT9tgYTX1YVi1FNh_CgrdZYYL7M2IDxhMjwKI5zlJmMAI5vkELtO4bCEz7E67C6An0KCK9UR-LZExPAD25PeVWG8lupbu5pkb3obRhpOn-iBKz5KxcDecYkYa_P_R2yRBSxKX69U2yaN8ejD7QB0GZvdoJ9fqI_teQ
  priority: 102
  providerName: ProQuest
Title Object-Oriented Crop Classification Using Time Series Sentinel Images from Google Earth Engine
URI https://www.proquest.com/docview/2785236738
https://www.proquest.com/docview/3040480075
https://doaj.org/article/c8a92bf8965147b996517b7ec4b93083
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB7xOMAFAQva8qiMWAntISKNndo5Fmh5iJcWkDitZbv29tBtUFMO_HtmklBAAnHh5CixEnvGnocz8w3AL-ETXLrWRX3UppFwsYlQ5rmo7fqof0S_ZRQlOF9ctk_uxNl9ev-m1BfFhFXwwBXh9p0yWWKDytqo2qXNqJVWeidsxtF-IOmLOu-NM1XKYI5LKxYVHilHv35_XKDpk1KVh3caqATq_0wclzqmtwxLtXHIOtWgVmDGj1Zhoa5TPnj6AX-vLJ2bRFeEToy2Ijsc5w-sLGxJIT8llVkZBcAot4PR2ZcvsKF6EH7ITv-j-CgY5ZSw4zz_N_SsiyQYsAqWcA3uet3bw5OorpAQOcH5BGnreRLigD6XdK3QckaiPxa4zVQQoYWmifVByj5aXW2fOdTNqQnSpyFJjcErvg5zo3zkfwJD1S1Sp3ziTCwCD0rSi6VR3IjYybQBv1-opl0NH05VLIYa3QiisH6lcAN2p30fKtCMD3sdEPGnPQjouryB7Nc1-_VX7G_AHrFO03bE4ThTZxXgpAjYSnckfS2RMU5g64W7ut6nhU6kSgnDjqsG7Ewf4w6j3yZm5PPHQnOUc0KRbbXxHSPehEUqWV_FsW3B3GT86LfRsJnYJsyq3nET5jtHF-c32B50L6__NMuV_QyXOvfC
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXqrzEQgEjQIhD1KztrJ0DQqV0u0tfl1bqCWM7dnvYbpbNVlX_FL-RmTy2QgJuPSWKLScej2c-O575AN7JwFF1nU8K9KaJ9KlN0Ob5ZOAL9D-y6FtNAc6HR4PRqfx2lp2twK8uFoaOVXY2sTbURelpj3yLK51RtjGhP89-JsQaRX9XOwqNRi32w801LtmqT-OvOL7vOR_unuyMkpZVIPFSiAV-TxA8phHXKcr3Y99bhWuYKFyuo4x9dOcuRKUKRCqDkHv0Z5mNKmSRZ9bincB278F9bCunGaWHe8s9nVSgQqeyyYKK5enWvELAlRG3xB9-r6YH-JcTqD3bcAPWW0jKthsdeggrYfoI1lp29Iubx_D92NFuTXJMOZERobKdeTljNZ0mHTSqx5bVZw8YRZQw2nELFV6IhSJM2PgSjVbFKJKF7ZXl-SSwXdTYC9YkQ3wCp3ciwaewOi2n4RkwBAwy8zpwb1MZRdSKGlZWCytTr7IefOykZnybtJy4MyYGFy8kYXMr4R68XdadNak6_lrrCwl_WYPSa9cPyvm5aWer8drm3EWdDxBPKpfTVTkVvHS5QNDagw80dIaMAH6Ot20sA3aK0mmZbUVv4yrFDmx2o2ta61CZW13uwZtlMc5r-lljp6G8qoxA6yo1Ibrn_2_iNayNTg4PzMH4aP8FPOAIwpozcpuwuphfhZcImhbuVa2pDH7c9dT4DdvwKbI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuqOUhAgWMACEOq2xsb-w9INRHQkMhrRCVesJ4vXZ7CNmQTYX61_rrmNlHqkrAraeNEsvZHY9nvvHOzAfwWnqOqpu5KEdvGkkX2whtnosGLkf_I_O-1VTg_GUy2D-Wn06SkzW4bGthKK2ytYmVoc4LR2fkPa50Qt3GhO6FJi3iaG_0Yf4rIgYpetPa0mnUKnLgL35j-Fa-H-_hWr_hfDT8trsfNQwDkZNCLPHevOAhDhizKNcPfWcVxjNBZKkOMvTRtWc-KJUjahn41KFvS2xQPgk8sRY_CZz3FqwrjIriDqzvDCdHX1cnPLFA9Y5l3RNViDTuLUqEXwkxTVzzghVZwL9cQuXnRhtwrwGobLvWqE1Y87P7cKfhSj-7eADfDzM6u4kOqUMy4lW2uyjmrCLXpLSjaqVZlYnAqL6E0fmbL_FCnBR-ysY_0YSVjOpa2MeiOJ16NkT9PWN1a8SHcHwjMnwEnVkx84-BIXyQidOeOxvLIIJWNLGyWlgZO5V04V0rNeOaFubEpDE1GMqQhM2VhLvwajV2Xjfu-OuoHRL-agQ1266-KBanptm7xmmb8izodIDoUmUpXVWmvJNZKhDCduEtLZ0hk4C342xT2YAPRc21zLaif-MqxgfYalfXNLaiNFea3YWXq59xl9OrGzvzxXlpBNpaqQnfPfn_FC_gNm4L83k8OXgKdzkisjphbgs6y8W5f4YIapk9b1SVwY-b3h1_AJfOL0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object-Oriented+Crop+Classification+Using+Time+Series+Sentinel+Images+from+Google+Earth+Engine&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xue%2C+Hanyu&rft.au=Xu%2C+Xingang&rft.au=Zhu%2C+Qingzhen&rft.au=Yang%2C+Guijun&rft.date=2023-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=5&rft.spage=1353&rft_id=info:doi/10.3390%2Frs15051353&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15051353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon