Object-Oriented Crop Classification Using Time Series Sentinel Images from Google Earth Engine
The resulting maps of land use classification obtained by pixel-based methods often have salt-and-pepper noise, which usually shows a certain degree of cluttered distribution of classification image elements within the region. This paper carries out a study on crop classification and identification...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 5; p. 1353 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The resulting maps of land use classification obtained by pixel-based methods often have salt-and-pepper noise, which usually shows a certain degree of cluttered distribution of classification image elements within the region. This paper carries out a study on crop classification and identification based on time series Sentinel images and object-oriented methods and takes the crop recognition and classification of the National Modern Agricultural Industrial Park in Jalaid Banner, Inner Mongolia, as the research object. It uses the Google Earth Engine (GEE) cloud platform to extract time series Sentinel satellite radar and optical remote sensing images combined with simple noniterative clustering (SNIC) multiscale segmentation with random forest (RF) and support vector machine (SVM) classification algorithms to classify and identify major regional crops based on radar and spectral features. Compared with the pixel-based method, the combination of SNIC multiscale segmentation and random forest classification based on time series radar and optical remote sensing images can effectively reduce the salt-and-pepper phenomenon in classification and improve crop classification accuracy with the highest accuracy of 98.66 and a kappa coefficient of 0.9823. This study provides a reference for large-scale crop identification and classification work. |
---|---|
AbstractList | The resulting maps of land use classification obtained by pixel-based methods often have salt-and-pepper noise, which usually shows a certain degree of cluttered distribution of classification image elements within the region. This paper carries out a study on crop classification and identification based on time series Sentinel images and object-oriented methods and takes the crop recognition and classification of the National Modern Agricultural Industrial Park in Jalaid Banner, Inner Mongolia, as the research object. It uses the Google Earth Engine (GEE) cloud platform to extract time series Sentinel satellite radar and optical remote sensing images combined with simple noniterative clustering (SNIC) multiscale segmentation with random forest (RF) and support vector machine (SVM) classification algorithms to classify and identify major regional crops based on radar and spectral features. Compared with the pixel-based method, the combination of SNIC multiscale segmentation and random forest classification based on time series radar and optical remote sensing images can effectively reduce the salt-and-pepper phenomenon in classification and improve crop classification accuracy with the highest accuracy of 98.66 and a kappa coefficient of 0.9823. This study provides a reference for large-scale crop identification and classification work. |
Audience | Academic |
Author | Xu, Sizhe Li, Yafeng Yang, Xiaodong Yang, Min Zhu, Qingzhen Zhang, Jianmin Xue, Hanyu Xu, Xingang Li, Heli Long, Huiling Yang, Yongan Yang, Guijun |
Author_xml | – sequence: 1 givenname: Hanyu orcidid: 0000-0002-7957-5055 surname: Xue fullname: Xue, Hanyu – sequence: 2 givenname: Xingang orcidid: 0000-0002-8473-5631 surname: Xu fullname: Xu, Xingang – sequence: 3 givenname: Qingzhen orcidid: 0000-0002-5122-9759 surname: Zhu fullname: Zhu, Qingzhen – sequence: 4 givenname: Guijun surname: Yang fullname: Yang, Guijun – sequence: 5 givenname: Huiling surname: Long fullname: Long, Huiling – sequence: 6 givenname: Heli surname: Li fullname: Li, Heli – sequence: 7 givenname: Xiaodong surname: Yang fullname: Yang, Xiaodong – sequence: 8 givenname: Jianmin surname: Zhang fullname: Zhang, Jianmin – sequence: 9 givenname: Yongan surname: Yang fullname: Yang, Yongan – sequence: 10 givenname: Sizhe surname: Xu fullname: Xu, Sizhe – sequence: 11 givenname: Min surname: Yang fullname: Yang, Min – sequence: 12 givenname: Yafeng surname: Li fullname: Li, Yafeng |
BookMark | eNptkUtvEzEUhS1UJErphl9giQ1CmuLneLysolAiVcqCdovlca4HRzN2sJ0F_75OAwJV2It7bX3n-HHeoouYIiD0npIbzjX5nAuVRFIu-St0yYhinWCaXfzTv0HXpexJG5xTTcQl-r4d9-Bqt80BYoUdXuV0wKvZlhJ8cLaGFPFjCXHCD2EB_A0aWFqJNUSY8WaxU1v7nBZ8l9I0A17bXH_gdZwa8A699nYucP27XqHHL-uH1dfufnu3Wd3ed05wXjvhgDNPvKZKOeqps4rK3vNRD154yhQfwSu1E7TvQTs6SGm9AumZtLZ1_Aptzr67ZPfmkMNi8y-TbDDPGylPpt0quBmMG6xmox90L6lQoz5VNSpwYtScDLx5fTx7HXL6eYRSzRKKg3m2EdKxGE4EEQMhSjb0wwt0n445tpcapgbJeK_40KibMzXZdn6IPtVsXZs7WIJrGfrQ9m_VKTymyMmWnAUup1IyeONCfY6iCcNsKDGnwM3fwJvk0wvJn0_4D_wEfZ6q0g |
CitedBy_id | crossref_primary_10_1038_s41598_024_68991_7 crossref_primary_10_3390_agronomy14030557 crossref_primary_10_1007_s10489_024_05469_z crossref_primary_10_1038_s41598_024_80327_z crossref_primary_10_1016_j_atech_2024_100641 crossref_primary_10_3390_agriculture14030500 crossref_primary_10_3390_s25010210 crossref_primary_10_1080_10095020_2024_2341748 crossref_primary_10_48123_rsgis_1411380 crossref_primary_10_1016_j_jag_2023_103431 crossref_primary_10_1080_01431161_2023_2205984 crossref_primary_10_3390_agronomy13092350 crossref_primary_10_3390_min15020124 crossref_primary_10_3390_agronomy14122834 crossref_primary_10_3389_fenvs_2025_1493197 crossref_primary_10_1109_TGRS_2024_3456898 crossref_primary_10_1007_s12517_023_11688_4 |
Cites_doi | 10.1080/01431160512331314083 10.1016/j.rse.2007.07.019 10.1016/j.rse.2011.10.011 10.3390/s18010018 10.1109/LSP.2014.2333012 10.1016/j.patrec.2016.04.019 10.1080/01431160600702632 10.1007/11941439_40 10.1007/978-1-4757-3264-1 10.1016/S0168-1699(02)00116-3 10.1109/TIP.2005.852196 10.1080/01431160412331269698 10.5194/isprs-archives-XLI-B7-757-2016 10.3390/rs70505347 10.1109/ICICICT.2014.6781389 10.3390/rs13132508 10.1080/01431160210144499 10.1016/j.patrec.2012.11.003 10.3390/rs6064870 10.1007/978-3-540-77058-9 10.1023/A:1010933404324 10.1201/9781315139470 10.1016/j.rse.2017.06.031 10.1016/j.isprsjprs.2003.09.007 10.3390/rs13040561 10.1109/IGARSS.2012.6351708 10.1016/j.isprsjprs.2013.04.007 10.3390/rs13061148 10.1016/S0034-4257(96)00067-3 10.1109/IGARSS.2018.8519204 10.14358/PERS.72.7.799 10.1023/A:1009715923555 10.1016/j.rse.2016.02.016 10.1109/TNN.2003.811708 10.1109/CVPR.2017.520 10.3390/info12020094 10.1109/TPAMI.2012.120 10.3390/rs12152411 10.1109/JPROC.2012.2197589 10.1109/ICCV.2003.1238308 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15051353 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library ProQuest SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_c8a92bf8965147b996517b7ec4b93083 A750512705 10_3390_rs15051353 |
GeographicLocations | Mongolia China |
GeographicLocations_xml | – name: Mongolia – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-4ce32f0f9177c1f1ca7156f3b98f4f1273bef77d4166e9c1855af7e5f25aaaf73 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:31:28 EDT 2025 Fri Jul 11 09:33:36 EDT 2025 Fri Jul 25 09:32:21 EDT 2025 Tue Jun 10 20:57:11 EDT 2025 Tue Jul 01 03:11:01 EDT 2025 Thu Apr 24 22:55:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-4ce32f0f9177c1f1ca7156f3b98f4f1273bef77d4166e9c1855af7e5f25aaaf73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5122-9759 0000-0002-7957-5055 0000-0002-8473-5631 |
OpenAccessLink | https://doaj.org/article/c8a92bf8965147b996517b7ec4b93083 |
PQID | 2785236738 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c8a92bf8965147b996517b7ec4b93083 proquest_miscellaneous_3040480075 proquest_journals_2785236738 gale_infotracacademiconefile_A750512705 crossref_citationtrail_10_3390_rs15051353 crossref_primary_10_3390_rs15051353 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wardlow (ref_40) 2008; 112 Velasco (ref_36) 2013; 34 Zhou (ref_14) 2021; 54 Graf (ref_37) 2003; 14 ref_10 Pal (ref_32) 2005; 26 Li (ref_1) 2013; 29 ref_18 Whiteside (ref_12) 2011; 13 ref_15 Du (ref_17) 2019; 21 Deng (ref_50) 2016; 79 ref_25 ref_24 Abdikan (ref_3) 2016; XLI-B7 Dong (ref_20) 2016; 185 ref_23 ref_22 Tian (ref_45) 2022; 53 Burges (ref_38) 1998; 2 Zhang (ref_16) 2015; 30 Zhang (ref_47) 2021; 42 Walter (ref_9) 2004; 58 Plank (ref_21) 2014; 6 ref_27 Pan (ref_44) 2012; 119 Yu (ref_8) 2006; 72 Hao (ref_4) 2015; 7 Yan (ref_13) 2006; 27 Geneletti (ref_11) 2003; 24 Miao (ref_41) 2011; 13 Ma (ref_26) 2021; 43 ref_35 ref_34 ref_33 Chan (ref_52) 2005; 14 ref_30 Gorelick (ref_19) 2017; 202 Achanta (ref_28) 2012; 34 Pal (ref_29) 2005; 26 Liu (ref_5) 2018; 49 Frampton (ref_43) 2013; 82 Fauvel (ref_7) 2013; 101 Jakubauskas (ref_39) 2002; 37 Zhang (ref_51) 2014; 21 Gao (ref_46) 1996; 58 Breiman (ref_31) 2001; 45 Fang (ref_42) 2017; 19 ref_2 ref_49 ref_48 ref_6 |
References_xml | – volume: 43 start-page: 1198 year: 2021 ident: ref_26 article-title: Superpixel segmentation algorithm based on SNIC for dual-phase SAR image publication-title: Syst. Eng. Electron. – volume: 26 start-page: 1007 year: 2005 ident: ref_32 article-title: Support vector machines for classification in remote sensing publication-title: Int. J. Remote Sens. doi: 10.1080/01431160512331314083 – volume: 112 start-page: 1096 year: 2008 ident: ref_40 article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.019 – volume: 119 start-page: 232 year: 2012 ident: ref_44 article-title: Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.011 – ident: ref_6 doi: 10.3390/s18010018 – volume: 21 start-page: 1280 year: 2014 ident: ref_51 article-title: A New Adaptive Weighted Mean Filter for Removing Salt-and-Pepper Noise publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2333012 – volume: 79 start-page: 8 year: 2016 ident: ref_50 article-title: A new adaptive filtering method for removing salt and pepper noise based on multilayered PCNN publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.04.019 – volume: 27 start-page: 4039 year: 2006 ident: ref_13 article-title: Comparison of pixel-based and object-oriented image classification approaches—A case study in a coal fire area, Wuda, Inner Mongolia, China publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600702632 – ident: ref_34 doi: 10.1007/11941439_40 – ident: ref_33 doi: 10.1007/978-1-4757-3264-1 – volume: 37 start-page: 127 year: 2002 ident: ref_39 article-title: Crop identification using harmonic analysis of time-series AVHRR NDVI data publication-title: Comput. Electron. Agric. doi: 10.1016/S0168-1699(02)00116-3 – volume: 53 start-page: 196 year: 2022 ident: ref_45 article-title: Rice planting area extraction based on MODIS-EVI time series and phenological characteristics publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 14 start-page: 1479 year: 2005 ident: ref_52 article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852196 – ident: ref_35 – volume: 49 start-page: 1 year: 2018 ident: ref_5 article-title: Research progress and prospect of fine recognition and automatic mapping of crops by remote sensing publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 26 start-page: 217 year: 2005 ident: ref_29 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331269698 – volume: XLI-B7 start-page: 757 year: 2016 ident: ref_3 article-title: Land cover mapping using sentinel-1 SAR data publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLI-B7-757-2016 – volume: 7 start-page: 5347 year: 2015 ident: ref_4 article-title: Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA publication-title: Remote Sens. doi: 10.3390/rs70505347 – ident: ref_48 doi: 10.1109/ICICICT.2014.6781389 – ident: ref_22 doi: 10.3390/rs13132508 – volume: 24 start-page: 1273 year: 2003 ident: ref_11 article-title: A method for object-oriented land cover classification combining Landsat TM data and aerial photographs publication-title: Int. J. Remote Sens. doi: 10.1080/01431160210144499 – volume: 34 start-page: 344 year: 2013 ident: ref_36 article-title: A study on output normalization in multiclass SVMs publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2012.11.003 – volume: 6 start-page: 4870 year: 2014 ident: ref_21 article-title: Rapid Damage Assessment by Means of Multi-Temporal SAR—A Comprehensive Review and Outlook to Sentinel-1 publication-title: Remote Sens. doi: 10.3390/rs6064870 – ident: ref_10 doi: 10.1007/978-3-540-77058-9 – volume: 45 start-page: 5 year: 2001 ident: ref_31 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 21 start-page: 740 year: 2019 ident: ref_17 article-title: Crop Mapping Based on Sentinel-2A NDVI Time Series Using Object-Oriented Classification and Decision Tree Model publication-title: J. Geo-Inf. Sci. – ident: ref_30 doi: 10.1201/9781315139470 – volume: 202 start-page: 18 year: 2017 ident: ref_19 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 29 start-page: 9 year: 2013 ident: ref_1 article-title: Crop classification recognition based on time-series images from HJ satellite publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 58 start-page: 225 year: 2004 ident: ref_9 article-title: Object-based classification of remote sensing data for change detection publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2003.09.007 – ident: ref_18 doi: 10.3390/rs13040561 – ident: ref_49 doi: 10.1109/IGARSS.2012.6351708 – volume: 82 start-page: 83 year: 2013 ident: ref_43 article-title: Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.04.007 – ident: ref_24 doi: 10.3390/rs13061148 – volume: 58 start-page: 257 year: 1996 ident: ref_46 article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00067-3 – ident: ref_2 doi: 10.1109/IGARSS.2018.8519204 – volume: 19 start-page: 1382 year: 2017 ident: ref_42 article-title: A Comparative Study of Different Red Edge Indices for Remote Sensing Detection of Urban Grassland Health Status publication-title: J. Geo-Inf. Sci. – volume: 30 start-page: 304 year: 2015 ident: ref_16 article-title: Research on Crop Identification Using Multi-Temporal NDVI HJ Images publication-title: Remote Sens. Technol. Appl. – volume: 72 start-page: 799 year: 2006 ident: ref_8 article-title: Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.72.7.799 – volume: 13 start-page: 884 year: 2011 ident: ref_12 article-title: Comparing object-based and pixel-based classifications for mapping savannas publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 42 start-page: 144 year: 2021 ident: ref_47 article-title: Research on the role of Sentinel-2 red-edge band in rice identification: A case study in Deqing County, Zhejiang Province publication-title: J. China Agric. Resour. Reg. Plan. – volume: 2 start-page: 121 year: 1998 ident: ref_38 article-title: A Tutorial on Support Vector Machines for Pattern Recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: 185 start-page: 142 year: 2016 ident: ref_20 article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.016 – volume: 14 start-page: 597 year: 2003 ident: ref_37 article-title: Classification in a normalized feature space using support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2003.811708 – ident: ref_27 doi: 10.1109/CVPR.2017.520 – volume: 54 start-page: 2302 year: 2021 ident: ref_14 article-title: Area extraction and growth monitoring of winter wheat with GEE support in Henan Province publication-title: Sci. Agric. Sin. – volume: 13 start-page: 273 year: 2011 ident: ref_41 article-title: Remote sensing monitoring and analysis of rice planting area based on NDVI time series data: A case study in Jiangsu Province publication-title: Geo-Inf. Sci. – ident: ref_23 doi: 10.3390/info12020094 – volume: 34 start-page: 2274 year: 2012 ident: ref_28 article-title: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – ident: ref_15 doi: 10.3390/rs12152411 – volume: 101 start-page: 652 year: 2013 ident: ref_7 article-title: Advances in spectral-spatial classification of hyperspectral images publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2197589 – ident: ref_25 doi: 10.1109/ICCV.2003.1238308 |
SSID | ssj0000331904 |
Score | 2.4536803 |
Snippet | The resulting maps of land use classification obtained by pixel-based methods often have salt-and-pepper noise, which usually shows a certain degree of... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1353 |
SubjectTerms | Accuracy Algorithms China Classification Cloud computing Clustering Crop identification Crops Fertility Google Earth Engine Image classification Image segmentation Industrial parks Internet Land use Land use classification object-oriented Pixels Precipitation Radar random forest classification Remote sensing Rice Satellite imagery Satellites Sentinel images SNIC algorithm support vector machine classification Support vector machines Time series time series analysis Wheat |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gHOCCeIrxUhBIiENF16RLekIDjZfEQwgkTkRJmozDWMc6Dvx77DYbQgJOrdqoD8exPzvJZ0IOuEtAdY2NcvCmEbexjsDm2ahtc_A_PG9piRucb27bl0_8-jl9Dgm3MiyrnNjEylDnhcUc-XEiZIpsY0yeDN8jrBqFs6uhhMYsmQMTLCH4mjvt3t4_TLMsMQMVi3nNS8ogvj8elQCBUqz28MMTVYT9f5nlytecL5HFABJpp-7VZTLjBitkPtQrf_1cJS93BvMn0R2yFANmpGejYkirApe49KeSNq1WA1Dc40ExB-ZKOGBdCNenV29gRkqKe0voRVH0-o52QYdeaU1PuEaezruPZ5dRqJQQWc7YGGTsWOJjD7GXsC3fslpAXOaZyaTnvgUQxTgvRA7oq-0yCz461V641Cep1nDG1kljUAzcBqHgwnlqpUusjrlnXgp8sNCSaR5bkTbJ0URqygYacaxm0VcQTqCE1beEm2R_2nZYk2f82uoUhT9tgYTX1YVi1FNh_CgrdZYYL7M2IDxhMjwKI5zlJmMAI5vkELtO4bCEz7E67C6An0KCK9UR-LZExPAD25PeVWG8lupbu5pkb3obRhpOn-iBKz5KxcDecYkYa_P_R2yRBSxKX69U2yaN8ejD7QB0GZvdoJ9fqI_teQ priority: 102 providerName: ProQuest |
Title | Object-Oriented Crop Classification Using Time Series Sentinel Images from Google Earth Engine |
URI | https://www.proquest.com/docview/2785236738 https://www.proquest.com/docview/3040480075 https://doaj.org/article/c8a92bf8965147b996517b7ec4b93083 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB7xOMAFAQva8qiMWAntISKNndo5Fmh5iJcWkDitZbv29tBtUFMO_HtmklBAAnHh5CixEnvGnocz8w3AL-ETXLrWRX3UppFwsYlQ5rmo7fqof0S_ZRQlOF9ctk_uxNl9ev-m1BfFhFXwwBXh9p0yWWKDytqo2qXNqJVWeidsxtF-IOmLOu-NM1XKYI5LKxYVHilHv35_XKDpk1KVh3caqATq_0wclzqmtwxLtXHIOtWgVmDGj1Zhoa5TPnj6AX-vLJ2bRFeEToy2Ijsc5w-sLGxJIT8llVkZBcAot4PR2ZcvsKF6EH7ITv-j-CgY5ZSw4zz_N_SsiyQYsAqWcA3uet3bw5OorpAQOcH5BGnreRLigD6XdK3QckaiPxa4zVQQoYWmifVByj5aXW2fOdTNqQnSpyFJjcErvg5zo3zkfwJD1S1Sp3ziTCwCD0rSi6VR3IjYybQBv1-opl0NH05VLIYa3QiisH6lcAN2p30fKtCMD3sdEPGnPQjouryB7Nc1-_VX7G_AHrFO03bE4ThTZxXgpAjYSnckfS2RMU5g64W7ut6nhU6kSgnDjqsG7Ewf4w6j3yZm5PPHQnOUc0KRbbXxHSPehEUqWV_FsW3B3GT86LfRsJnYJsyq3nET5jtHF-c32B50L6__NMuV_QyXOvfC |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXqrzEQgEjQIhD1KztrJ0DQqV0u0tfl1bqCWM7dnvYbpbNVlX_FL-RmTy2QgJuPSWKLScej2c-O575AN7JwFF1nU8K9KaJ9KlN0Ob5ZOAL9D-y6FtNAc6HR4PRqfx2lp2twK8uFoaOVXY2sTbURelpj3yLK51RtjGhP89-JsQaRX9XOwqNRi32w801LtmqT-OvOL7vOR_unuyMkpZVIPFSiAV-TxA8phHXKcr3Y99bhWuYKFyuo4x9dOcuRKUKRCqDkHv0Z5mNKmSRZ9bincB278F9bCunGaWHe8s9nVSgQqeyyYKK5enWvELAlRG3xB9-r6YH-JcTqD3bcAPWW0jKthsdeggrYfoI1lp29Iubx_D92NFuTXJMOZERobKdeTljNZ0mHTSqx5bVZw8YRZQw2nELFV6IhSJM2PgSjVbFKJKF7ZXl-SSwXdTYC9YkQ3wCp3ciwaewOi2n4RkwBAwy8zpwb1MZRdSKGlZWCytTr7IefOykZnybtJy4MyYGFy8kYXMr4R68XdadNak6_lrrCwl_WYPSa9cPyvm5aWer8drm3EWdDxBPKpfTVTkVvHS5QNDagw80dIaMAH6Ot20sA3aK0mmZbUVv4yrFDmx2o2ta61CZW13uwZtlMc5r-lljp6G8qoxA6yo1Ibrn_2_iNayNTg4PzMH4aP8FPOAIwpozcpuwuphfhZcImhbuVa2pDH7c9dT4DdvwKbI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuqOUhAgWMACEOq2xsb-w9INRHQkMhrRCVesJ4vXZ7CNmQTYX61_rrmNlHqkrAraeNEsvZHY9nvvHOzAfwWnqOqpu5KEdvGkkX2whtnosGLkf_I_O-1VTg_GUy2D-Wn06SkzW4bGthKK2ytYmVoc4LR2fkPa50Qt3GhO6FJi3iaG_0Yf4rIgYpetPa0mnUKnLgL35j-Fa-H-_hWr_hfDT8trsfNQwDkZNCLPHevOAhDhizKNcPfWcVxjNBZKkOMvTRtWc-KJUjahn41KFvS2xQPgk8sRY_CZz3FqwrjIriDqzvDCdHX1cnPLFA9Y5l3RNViDTuLUqEXwkxTVzzghVZwL9cQuXnRhtwrwGobLvWqE1Y87P7cKfhSj-7eADfDzM6u4kOqUMy4lW2uyjmrCLXpLSjaqVZlYnAqL6E0fmbL_FCnBR-ysY_0YSVjOpa2MeiOJ16NkT9PWN1a8SHcHwjMnwEnVkx84-BIXyQidOeOxvLIIJWNLGyWlgZO5V04V0rNeOaFubEpDE1GMqQhM2VhLvwajV2Xjfu-OuoHRL-agQ1266-KBanptm7xmmb8izodIDoUmUpXVWmvJNZKhDCduEtLZ0hk4C342xT2YAPRc21zLaif-MqxgfYalfXNLaiNFea3YWXq59xl9OrGzvzxXlpBNpaqQnfPfn_FC_gNm4L83k8OXgKdzkisjphbgs6y8W5f4YIapk9b1SVwY-b3h1_AJfOL0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object-Oriented+Crop+Classification+Using+Time+Series+Sentinel+Images+from+Google+Earth+Engine&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xue%2C+Hanyu&rft.au=Xu%2C+Xingang&rft.au=Zhu%2C+Qingzhen&rft.au=Yang%2C+Guijun&rft.date=2023-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=5&rft.spage=1353&rft_id=info:doi/10.3390%2Frs15051353&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15051353 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |