Hybrid Deep Learning and S2S Model for Improved Sub-Seasonal Surface and Root-Zone Soil Moisture Forecasting
Surface soil moisture (SSM) and root-zone soil moisture (RZSM) are key hydrological variables for the agricultural water cycle and vegetation growth. Accurate SSM and RZSM forecasting at sub-seasonal scales would be valuable for agricultural water management and preparations. Currently, weather mode...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 13; p. 3410 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs15133410 |
Cover
Loading…
Abstract | Surface soil moisture (SSM) and root-zone soil moisture (RZSM) are key hydrological variables for the agricultural water cycle and vegetation growth. Accurate SSM and RZSM forecasting at sub-seasonal scales would be valuable for agricultural water management and preparations. Currently, weather model-based soil moisture predictions are subject to large uncertainties due to inaccurate initial conditions and empirical parameterization schemes, while the data-driven machine learning methods have limitations in modeling long-term temporal dependences of SSM and RZSM because of the lack of considerations in the soil water process. Thus, here, we innovatively integrate the model-based soil moisture predictions from a sub-seasonal-to-seasonal (S2S) model into a data-driven stacked deep learning model to construct a hybrid SSM and RZSM forecasting framework. The hybrid forecasting model is evaluated over the Yangtze River Basin and parts of Europe from 1- to 46-day lead times and is compared with four baseline methods, including the support vector regression (SVR), random forest (RF), convolutional long short-term memory (ConvLSTM) and the S2S model. The results indicate substantial skill improvements in the hybrid model relative to baseline models over the two study areas spatiotemporally, in terms of the correlation coefficient, unbiased root mean square error (ubRMSE) and RMSE. The hybrid forecasting model benefits from the long-lead predictive skill from S2S and retains the advantages of data-driven soil moisture memory modeling at short-lead scales, which account for the superiority of hybrid forecasting. Overall, the developed hybrid model is promising for improved sub-seasonal SSM and RZSM forecasting over global and local areas. |
---|---|
AbstractList | Surface soil moisture (SSM) and root-zone soil moisture (RZSM) are key hydrological variables for the agricultural water cycle and vegetation growth. Accurate SSM and RZSM forecasting at sub-seasonal scales would be valuable for agricultural water management and preparations. Currently, weather model-based soil moisture predictions are subject to large uncertainties due to inaccurate initial conditions and empirical parameterization schemes, while the data-driven machine learning methods have limitations in modeling long-term temporal dependences of SSM and RZSM because of the lack of considerations in the soil water process. Thus, here, we innovatively integrate the model-based soil moisture predictions from a sub-seasonal-to-seasonal (S2S) model into a data-driven stacked deep learning model to construct a hybrid SSM and RZSM forecasting framework. The hybrid forecasting model is evaluated over the Yangtze River Basin and parts of Europe from 1- to 46-day lead times and is compared with four baseline methods, including the support vector regression (SVR), random forest (RF), convolutional long short-term memory (ConvLSTM) and the S2S model. The results indicate substantial skill improvements in the hybrid model relative to baseline models over the two study areas spatiotemporally, in terms of the correlation coefficient, unbiased root mean square error (ubRMSE) and RMSE. The hybrid forecasting model benefits from the long-lead predictive skill from S2S and retains the advantages of data-driven soil moisture memory modeling at short-lead scales, which account for the superiority of hybrid forecasting. Overall, the developed hybrid model is promising for improved sub-seasonal SSM and RZSM forecasting over global and local areas. |
Audience | Academic |
Author | Xu, Lei Chen, Nengcheng Du, Wenying Yu, Hongchu Huang, Min Chen, Zeqiang |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0002-6454-2963 surname: Xu fullname: Xu, Lei – sequence: 2 givenname: Hongchu surname: Yu fullname: Yu, Hongchu – sequence: 3 givenname: Zeqiang surname: Chen fullname: Chen, Zeqiang – sequence: 4 givenname: Wenying surname: Du fullname: Du, Wenying – sequence: 5 givenname: Nengcheng orcidid: 0000-0002-3521-9972 surname: Chen fullname: Chen, Nengcheng – sequence: 6 givenname: Min orcidid: 0000-0002-2107-9227 surname: Huang fullname: Huang, Min |
BookMark | eNptUU2LFDEQDbKC67oXf0GDFxF6zWd_HJfVdQdGBEcvXkJ1ujJk6OmMSXph_701O4qymECq8njvJVX1kp3NcUbGXgt-pVTP36csjFBKC_6MnUveylrLXp79k79glznvOC2lRM_1OZvuHoYUxuoD4qFaI6Q5zNsK5rHayE31OY44VT6marU_pHiPBC9DvUHIcYaJLsmDw0f-1xhL_YN-VG1imEgaclkSVrcxoYNcyPcVe-5hynj5O16w77cfv93c1esvn1Y31-vaaaVKraH10jujfOv7jnuDfeO8lmPfDP3IheuVNE2jjGpx0IODQRjXeQ9N6wR3Ql2w1cl3jLCzhxT2kB5shGAfgZi2FlIJbkIrjNTSGweyHbU0ZhAUfUOZHOnU5PX25EX1_1wwF7sP2eE0wYxxyVZxzTWx1ZH65gl1F5dEfcpWdqrRrei1IdbVibUFej_MPpYEjvaI--Cofz4Qft2azrSd4Mdq-EngUsw5obcuFCghziQMkxXcHsdv_46fJO-eSP404T_kX5r_ruQ |
CitedBy_id | crossref_primary_10_1016_j_rse_2024_114252 crossref_primary_10_1007_s00704_025_05424_z crossref_primary_10_3390_w16111589 |
Cites_doi | 10.1175/JHM-D-15-0053.1 10.1016/j.advwatres.2009.10.008 10.1175/JHM-D-18-0141.1 10.1002/joc.6403 10.1038/s41467-019-08403-x 10.1175/BAMS-D-17-0001.1 10.1175/JHM-D-11-0104.1 10.1175/BAMS-85-3-381 10.1016/j.jhydrol.2021.126698 10.1007/978-1-4757-3264-1 10.1023/A:1010933404324 10.1038/s41561-022-00912-7 10.1016/j.catena.2019.02.012 10.1117/12.977774 10.1002/joc.5436 10.5194/hess-2022-334 10.1016/j.rse.2022.113283 10.1016/j.geoderma.2018.05.035 10.3390/land11040502 10.1038/s42256-021-00374-3 10.1016/j.geoderma.2021.115651 10.1016/j.cliser.2022.100319 10.1016/j.scitotenv.2019.01.431 10.1109/JPROC.2010.2043918 10.1002/qj.3803 10.1007/s41060-022-00347-8 10.1175/JHM-D-10-05009.1 10.1038/s41558-021-01044-3 10.1175/JHM571.1 10.1016/j.rse.2020.112248 10.1073/pnas.1904955116 10.3389/frai.2021.636234 10.1175/BAMS-D-12-00050.1 10.1016/j.rse.2020.111806 10.1007/s00382-020-05173-x 10.1007/s00382-018-4221-4 10.1016/j.agwat.2020.106649 10.1029/2018GL079293 10.1029/2020MS002076 10.5194/hess-15-1675-2011 10.1002/qj.828 10.1126/science.1100217 10.1080/16742834.2019.1663123 10.1175/JHM-D-22-0016.1 10.1002/joc.5291 10.1029/2018JD029103 10.1175/BAMS-D-20-0327.1 10.1038/ngeo2868 10.1109/ISPCC48220.2019.8988313 10.3390/rs13040554 10.1098/rsta.2021.0288 10.1016/j.eswa.2022.117653 10.1016/j.compag.2020.105902 10.1016/j.rse.2017.07.001 10.1016/j.rse.2020.112028 10.1371/journal.pone.0214508 10.1016/j.earscirev.2021.103828 10.1029/2021EA001845 10.1016/j.knosys.2016.07.016 10.1175/JCLI-D-16-0758.1 10.1002/joc.5958 10.1038/s41586-019-0912-1 10.1109/JPROC.2010.2043032 10.1175/BAMS-D-16-0017.1 10.1109/SMARTCOMP.2016.7501673 10.1175/WAF-D-15-0025.1 10.1175/JHM-D-22-0150.1 10.1007/978-3-030-01424-7_27 10.1175/JHM-D-15-0084.1 10.1038/s41612-021-00172-z |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15133410 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection (Hollins) Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database (ProQuest) Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_15242f5ca27d4255b17d4f62552d6254 A758578101 10_3390_rs15133410 |
GeographicLocations | China Europe Yangtze River |
GeographicLocations_xml | – name: China – name: Yangtze River – name: Europe |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-4a7f2fc53f7f980f5e96cf42d96b9d01c9325663537eb4bcab15c8ffa67c10c13 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 00:47:41 EDT 2025 Thu Jul 10 22:08:16 EDT 2025 Fri Jul 25 11:50:50 EDT 2025 Tue Jun 10 03:42:48 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Tue Jul 01 03:11:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-4a7f2fc53f7f980f5e96cf42d96b9d01c9325663537eb4bcab15c8ffa67c10c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6454-2963 0000-0002-3521-9972 0000-0002-2107-9227 |
OpenAccessLink | https://www.proquest.com/docview/2836471945?pq-origsite=%requestingapplication% |
PQID | 2836471945 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_15242f5ca27d4255b17d4f62552d6254 proquest_miscellaneous_3040455234 proquest_journals_2836471945 gale_infotracacademiconefile_A758578101 crossref_citationtrail_10_3390_rs15133410 crossref_primary_10_3390_rs15133410 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Irrgang (ref_41) 2021; 3 Spinoni (ref_58) 2018; 38 Gudoshava (ref_39) 2022; 27 Becker (ref_30) 2022; 103 Yang (ref_23) 2022; 23 ref_53 Tian (ref_10) 2019; 10 Ahmad (ref_54) 2010; 33 Xu (ref_44) 2020; 54 ref_16 Entekhabi (ref_13) 2010; 98 Xu (ref_57) 2019; 39 Koster (ref_4) 2004; 305 Kirtman (ref_46) 2014; 95 Gruber (ref_77) 2020; 244 Dubois (ref_8) 2021; 180 Xu (ref_18) 2021; 254 Fan (ref_26) 2022; 282 Dirmeyer (ref_11) 2018; 123 ref_25 Breiman (ref_68) 2001; 45 Sabater (ref_19) 2007; 8 Dee (ref_61) 2011; 137 Reichstein (ref_76) 2019; 566 ref_67 Hersbach (ref_20) 2020; 146 ref_65 ref_64 Yao (ref_48) 2018; 38 ref_63 Dorigo (ref_60) 2011; 15 ref_29 Basak (ref_50) 2023; 15 ElSaadani (ref_34) 2021; 4 Liu (ref_75) 2018; 45 Prasad (ref_66) 2019; 177 Xu (ref_27) 2020; 250 Li (ref_51) 2022; 409 Zhou (ref_3) 2019; 116 ref_70 Ma (ref_12) 2023; 24 Xu (ref_28) 2021; 222 ref_35 Esit (ref_9) 2021; 4 Gelaro (ref_21) 2017; 30 Zhang (ref_74) 2019; 665 Schumacher (ref_2) 2022; 15 ref_31 Zhang (ref_56) 2016; 17 Zhu (ref_38) 2019; 12 Yu (ref_52) 2021; 245 Chen (ref_15) 2015; 30 Rodell (ref_22) 2004; 85 Naumann (ref_59) 2021; 11 Shi (ref_72) 2015; 28 Robertson (ref_73) 2012; 13 Dorigo (ref_17) 2017; 203 McColl (ref_37) 2019; 20 Liaw (ref_69) 2002; 2 AghaKouchak (ref_40) 2022; 380 Seo (ref_6) 2019; 52 Prasad (ref_32) 2018; 330 Dirmeyer (ref_1) 2012; 13 Santanello (ref_5) 2018; 99 Kerr (ref_14) 2010; 98 Han (ref_43) 2020; 12 Adnan (ref_71) 2016; 110 Thober (ref_47) 2015; 16 Jiang (ref_55) 2020; 40 ref_42 Chevuturi (ref_49) 2022; 1 Vitart (ref_45) 2017; 98 Balsamo (ref_62) 2011; 127 Togneri (ref_7) 2022; 207 McColl (ref_36) 2017; 10 Li (ref_24) 2021; 8 Li (ref_33) 2021; 600 |
References_xml | – volume: 16 start-page: 2329 year: 2015 ident: ref_47 article-title: Seasonal soil moisture drought prediction over Europe using the North American Multi-Model Ensemble (NMME) publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-15-0053.1 – volume: 33 start-page: 69 year: 2010 ident: ref_54 article-title: Estimating soil moisture using remote sensing data: A machine learning approach publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2009.10.008 – volume: 28 start-page: 802 year: 2015 ident: ref_72 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Adv. Neural. Inf. Process. Syst. – volume: 20 start-page: 1165 year: 2019 ident: ref_37 article-title: Short-term and long-term surface soil moisture memory time scales are spatially anticorrelated at global scales publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-18-0141.1 – volume: 40 start-page: 3380 year: 2020 ident: ref_55 article-title: Drought characteristics and its impact on changes in surface vegetation from 1981 to 2015 in the Yangtze River Basin, China publication-title: Int. J. Climatol. doi: 10.1002/joc.6403 – volume: 10 start-page: 469 year: 2019 ident: ref_10 article-title: Forecasting dryland vegetation condition months in advance through satellite data assimilation publication-title: Nat. Commun. doi: 10.1038/s41467-019-08403-x – volume: 99 start-page: 1253 year: 2018 ident: ref_5 article-title: Land–atmosphere interactions: The LoCo perspective publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-17-0001.1 – volume: 13 start-page: 981 year: 2012 ident: ref_1 article-title: Evidence for enhanced land–atmosphere feedback in a warming climate publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-11-0104.1 – volume: 85 start-page: 381 year: 2004 ident: ref_22 article-title: The global land data assimilation system publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-85-3-381 – volume: 600 start-page: 126698 year: 2021 ident: ref_33 article-title: Improved daily SMAP satellite soil moisture prediction over China using deep learning model with transfer learning publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126698 – ident: ref_67 doi: 10.1007/978-1-4757-3264-1 – volume: 45 start-page: 5 year: 2001 ident: ref_68 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 15 start-page: 262 year: 2022 ident: ref_2 article-title: Drought self-propagation in drylands due to land–atmosphere feedbacks publication-title: Nat. Geosci. doi: 10.1038/s41561-022-00912-7 – volume: 177 start-page: 149 year: 2019 ident: ref_66 article-title: Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridizer algorithm approach publication-title: Catena doi: 10.1016/j.catena.2019.02.012 – ident: ref_16 doi: 10.1117/12.977774 – volume: 38 start-page: 2565 year: 2018 ident: ref_48 article-title: Superensemble seasonal forecasting of soil moisture by NMME publication-title: Int. J. Climatol. doi: 10.1002/joc.5436 – volume: 1 start-page: e28 year: 2022 ident: ref_49 article-title: Subseasonal prediction performance for South American land–atmosphere coupling in extended austral summer publication-title: Clim. Resil. Sustain. – ident: ref_42 doi: 10.5194/hess-2022-334 – volume: 282 start-page: 113283 year: 2022 ident: ref_26 article-title: Evaluation of satellite and reanalysis estimates of surface and root-zone soil moisture in croplands of Jiangsu Province, China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113283 – volume: 330 start-page: 136 year: 2018 ident: ref_32 article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.035 – ident: ref_25 doi: 10.3390/land11040502 – volume: 3 start-page: 667 year: 2021 ident: ref_41 article-title: Towards neural Earth system modelling by integrating artificial intelligence in Earth system science publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00374-3 – volume: 409 start-page: 115651 year: 2022 ident: ref_51 article-title: An attention-aware LSTM model for soil moisture and soil temperature prediction publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115651 – volume: 27 start-page: 100319 year: 2022 ident: ref_39 article-title: Application of real time S2S forecasts over Eastern Africa in the co-production of climate services publication-title: Clim. Serv. doi: 10.1016/j.cliser.2022.100319 – volume: 665 start-page: 338 year: 2019 ident: ref_74 article-title: Meteorological drought forecasting based on a statistical model with machine learning techniques in Shaanxi province, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.431 – volume: 98 start-page: 704 year: 2010 ident: ref_13 article-title: The soil moisture active passive (SMAP) mission publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2043918 – volume: 146 start-page: 1999 year: 2020 ident: ref_20 article-title: The ERA5 global reanalysis publication-title: Q. J. R. Meteor. Soc. doi: 10.1002/qj.3803 – volume: 15 start-page: 9 year: 2023 ident: ref_50 article-title: From data to interpretable models: Machine learning for soil moisture forecasting publication-title: Int. J. Data Sci. Anal. doi: 10.1007/s41060-022-00347-8 – volume: 13 start-page: 155 year: 2012 ident: ref_73 article-title: A Bayesian approach to predictor selection for seasonal streamflow forecasting publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-10-05009.1 – volume: 11 start-page: 485 year: 2021 ident: ref_59 article-title: Increased economic drought impacts in Europe with anthropogenic warming publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-021-01044-3 – volume: 127 start-page: 78 year: 2011 ident: ref_62 article-title: Evolution of land surface processes in the IFS publication-title: ECMWF Newsl. – volume: 8 start-page: 194 year: 2007 ident: ref_19 article-title: From near-surface to root-zone soil moisture using different assimilation techniques publication-title: J. Hydrometeorol. doi: 10.1175/JHM571.1 – volume: 254 start-page: 112248 year: 2021 ident: ref_18 article-title: In-situ and triple-collocation based evaluations of eight global root zone soil moisture products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112248 – volume: 116 start-page: 18848 year: 2019 ident: ref_3 article-title: Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1904955116 – volume: 4 start-page: 636234 year: 2021 ident: ref_34 article-title: Assessment of a spatiotemporal deep learning approach for soil moisture prediction and filling the gaps in between soil moisture observations publication-title: Front. Artif. Intell. doi: 10.3389/frai.2021.636234 – volume: 95 start-page: 585 year: 2014 ident: ref_46 article-title: The North American multimodel ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-12-00050.1 – volume: 244 start-page: 111806 year: 2020 ident: ref_77 article-title: Validation practices for satellite soil moisture retrievals: What are (the) errors? publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111806 – volume: 54 start-page: 3355 year: 2020 ident: ref_44 article-title: A data-driven multi-model ensemble for deterministic and probabilistic precipitation forecasting at seasonal scale publication-title: Clim. Dynam. doi: 10.1007/s00382-020-05173-x – volume: 52 start-page: 1695 year: 2019 ident: ref_6 article-title: Impact of soil moisture initialization on boreal summer subseasonal forecasts: Mid-latitude surface air temperature and heat wave events publication-title: Clim. Dynam. doi: 10.1007/s00382-018-4221-4 – volume: 245 start-page: 106649 year: 2021 ident: ref_52 article-title: A hybrid CNN-GRU model for predicting soil moisture in maize root zone publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106649 – volume: 45 start-page: 8445 year: 2018 ident: ref_75 article-title: Global search for autumn-lead sea surface salinity predictors of winter precipitation in southwestern United States publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL079293 – volume: 12 start-page: e2020MS002076 year: 2020 ident: ref_43 article-title: A moist physics parameterization based on deep learning publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2020MS002076 – volume: 15 start-page: 1675 year: 2011 ident: ref_60 article-title: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-1675-2011 – volume: 137 start-page: 553 year: 2011 ident: ref_61 article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system publication-title: Q. J. R. Meteor. Soc. doi: 10.1002/qj.828 – volume: 305 start-page: 1138 year: 2004 ident: ref_4 article-title: Regions of strong coupling between soil moisture and precipitation publication-title: Science doi: 10.1126/science.1100217 – volume: 12 start-page: 467 year: 2019 ident: ref_38 article-title: Evaluation of the subseasonal forecast skill of surface soil moisture in the S2S database publication-title: Atmos. Ocean. Sci. Lett. doi: 10.1080/16742834.2019.1663123 – volume: 23 start-page: 1861 year: 2022 ident: ref_23 article-title: Evaluating Root-zone Soil Moisture Products from GLEAM, GLDAS, and ERA5 based on in Situ ObServations and Triple Collocation Method Over the Tibetan Plateau publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-22-0016.1 – volume: 38 start-page: 1718 year: 2018 ident: ref_58 article-title: Will drought events become more frequent and severe in Europe? publication-title: Int. J. Climatol. doi: 10.1002/joc.5291 – ident: ref_63 – volume: 123 start-page: 13111 year: 2018 ident: ref_11 article-title: On the harvest of predictability from land states in a global forecast model publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2018JD029103 – volume: 103 start-page: E973 year: 2022 ident: ref_30 article-title: A Decade of the North American Multimodel Ensemble (NMME): Research, Application, and Future Directions publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-20-0327.1 – volume: 10 start-page: 100 year: 2017 ident: ref_36 article-title: The global distribution and dynamics of surface soil moisture publication-title: Nat. Geosci. doi: 10.1038/ngeo2868 – ident: ref_29 doi: 10.1109/ISPCC48220.2019.8988313 – ident: ref_53 doi: 10.3390/rs13040554 – volume: 380 start-page: 20210288 year: 2022 ident: ref_40 article-title: Status and prospects for drought forecasting: Opportunities in artificial intelligence and hybrid physical–statistical forecasting publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2021.0288 – volume: 207 start-page: 117653 year: 2022 ident: ref_7 article-title: Soil moisture forecast for smart irrigation: The primetime for machine learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117653 – volume: 180 start-page: 105902 year: 2021 ident: ref_8 article-title: Short term soil moisture forecasts for potato crop farming: A machine learning approach publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105902 – volume: 203 start-page: 185 year: 2017 ident: ref_17 article-title: ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.001 – volume: 250 start-page: 112028 year: 2020 ident: ref_27 article-title: Continental drought monitoring using satellite soil moisture, data assimilation and an integrated drought index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112028 – ident: ref_31 doi: 10.1371/journal.pone.0214508 – volume: 222 start-page: 103828 year: 2021 ident: ref_28 article-title: Spatiotemporal forecasting in earth system science: Methods, uncertainties, predictability and future directions publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2021.103828 – volume: 8 start-page: e2021EA001845 year: 2021 ident: ref_24 article-title: InterComparison and Evaluation of MultiSource Soil Moisture Products in China publication-title: Earth Space Sci. doi: 10.1029/2021EA001845 – volume: 110 start-page: 86 year: 2016 ident: ref_71 article-title: Optimizing the number of trees in a decision forest to discover a subforest with high ensemble accuracy using a genetic algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.07.016 – volume: 30 start-page: 5419 year: 2017 ident: ref_21 article-title: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2) publication-title: J. Clim. doi: 10.1175/JCLI-D-16-0758.1 – volume: 39 start-page: 2375 year: 2019 ident: ref_57 article-title: Global drought trends under 1.5 and 2 C warming publication-title: Int. J. Climatol. doi: 10.1002/joc.5958 – volume: 566 start-page: 195 year: 2019 ident: ref_76 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 98 start-page: 666 year: 2010 ident: ref_14 article-title: The SMOS mission: New tool for monitoring key elements ofthe global water cycle publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2043032 – volume: 98 start-page: 163 year: 2017 ident: ref_45 article-title: The subseasonal to seasonal (S2S) prediction project database publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-16-0017.1 – ident: ref_65 doi: 10.1109/SMARTCOMP.2016.7501673 – ident: ref_64 – volume: 2 start-page: 18 year: 2002 ident: ref_69 article-title: Classification and regression by randomForest publication-title: R News – volume: 30 start-page: 1280 year: 2015 ident: ref_15 article-title: Assessment of FY-3A and FY-3B MWHS observations publication-title: Weather Forecast. doi: 10.1175/WAF-D-15-0025.1 – volume: 24 start-page: 897 year: 2023 ident: ref_12 article-title: Sub-seasonal ensemble prediction of flash droughts over China publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-22-0150.1 – ident: ref_70 – ident: ref_35 doi: 10.1007/978-3-030-01424-7_27 – volume: 17 start-page: 811 year: 2016 ident: ref_56 article-title: GRACE-based hydrological drought evaluation of the Yangtze River Basin, China publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-15-0084.1 – volume: 4 start-page: 16 year: 2021 ident: ref_9 article-title: Seasonal to multi-year soil moisture drought forecasting publication-title: Npj Clim. Atmos. Sci. doi: 10.1038/s41612-021-00172-z |
SSID | ssj0000331904 |
Score | 2.3620431 |
Snippet | Surface soil moisture (SSM) and root-zone soil moisture (RZSM) are key hydrological variables for the agricultural water cycle and vegetation growth. Accurate... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3410 |
SubjectTerms | Accuracy Agricultural management Agricultural production Artificial intelligence Climate Comparative analysis Correlation coefficient Correlation coefficients Deep learning Distribution Drought Europe Forecasting Forecasts and trends Hydrologic cycle Hydrology Initial conditions Long short-term memory Machine learning Mathematical models Measurement memory Modelling Moisture content Moisture effects multistep prediction Neural networks Parameterization Precipitation Regions regression analysis Remote sensing rhizosphere River basins Root-mean-square errors S2S model Skills Soil moisture soil moisture forecasting Soil surfaces Soil water Support vector machines vegetation Vegetation growth Water management watersheds weather Weather forecasting Yangtze River |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLu2lokDVAEVGICEOFvFXvDnSAlohwYFlJdSLZTt2i7RKVvtx2H_fmSRs90DFhUuiOI7s2GPPc-J5j5BTsNnCBRMYF1Ey8PgF85wnVglvYDTlzpQYO3x3XwzH6vZJP21IfeGesI4euGu4C_AvSiQdnDAV2Jf2HM4JULsWFRxbJlDweRuLqXYOlmBauer4SCWs6y9mc45SJgpDZTc8UEvU_7_puPUxN9vkcw8O6WVXqS_kQ6x3yMdep_zPapdMhiuMsKJXMU5pT436m7q6oiMxoqhrNqGAQmn3qSBC8tKzUXQt3oaLWXIhtvkfmmbBfjV1pKPmeQKPQncvZ5GiVGdwc9wMvUfGN9ePP4es10tgQUm5YMqZJFLQMplUDvKkY1mEpERVFr6sch4Aq2lEGNJEr3xwnuswSMkVJvA8cPmVbNVQ8DdCQ0JlKlk6qZKqAERWnrsoRUzeDwbJZOT8pQ1t6MnEUdNiYmFRge1t_7V3Rk7WeacdhcaruX5gV6xzIO11mwDGYHtjsG8ZQ0bOsCMtDk6oTnB9jAG8FNJc2UtcHRnkNMvI4Utf237Uzi1ArQKcdal0Ro7Xt2G84U8UV8dmObcSZj0F5Um1_x41PiCfUMC-2wB8SLYWs2X8DjBn4Y9ai_4L_9735Q priority: 102 providerName: Directory of Open Access Journals |
Title | Hybrid Deep Learning and S2S Model for Improved Sub-Seasonal Surface and Root-Zone Soil Moisture Forecasting |
URI | https://www.proquest.com/docview/2836471945 https://www.proquest.com/docview/3040455234 https://doaj.org/article/15242f5ca27d4255b17d4f62552d6254 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYeoDLxKcIjMoIJMTBWhI7cXJCHVupEJvQwqSJi2U79oZUJV3SHvbf817idhyAS6I4Tpz4-X3afj9C3sOYzbWVliWp4ww0fs5MknhWp0YCN8Valrh3-Ow8X1yKr1fZVQi49WFZ5VYmDoK6bi3GyI9ADeYgSEuRfVrdMkSNwtnVAKGxRyYgggtwvibHp-ffL3ZRlpjDEIvFmJeUg39_1PUJQpoI3DL7hyYaEvb_SywPumb-mBwEI5HORqo-IQ9c85Q8DHjlN3fPyHJxhzut6IlzKxpSpF5T3dS0SiuK-GZLCtYoHUMGDoo3hlVOD3Y3XHReWzfUv2jbNfvZNo5W7a8lPApk33SOImSn1T0uin5OLuenPz4vWMBNYFZwvmZCS596m3EvfVnEPnNlbr1I6zI3ZR0nFmy2DC0NLp0RxmqTZLbwXufSJrFN-Auy30DDLwm1HhGqeKm58KIGY7I2iXY8dd6YovAyIh-3fahsSCqO2BZLBc4F9re67--IvNvVXY2pNP5a6xhJsauB6a-Hgra7VoGbFBgdIvWZ1amsQehkJoGzB1cuS2s4ioh8QEIqZFL4HKvDXgP4KUx3pWboJUnMbRaRwy2tVeDeXt2PtYi83d0GvsPJFN24dtMrDtJPQHtcvPr_K16TRwhRPy7xPST7627j3oAhszZTslfMv0zJZHZy9q2ahrE7HcICvwHaBvW9 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOZQLYhWhBYwAIQ5W4yXbAaFCGaZ0OTCtVHExtmOXSqNkSGaE5k_xG3kvyUw5ALdeEsV27MR-m5f3PkJeAs2mxmWOceElA42fMst5YKWwGXBTbLICfYePT9Lxmfp8npxvkF8rXxg8VrmSiZ2gLmuHa-S7oAZTEKSFSt7NfjBEjcLd1RWERk8Wh375E6Zs7duDfRjfV0KMPp5-GLMBVYA5JeWcKZMFEVwiQxaKPA6JL1IXlCiL1BZlzB1YNAnqYZl5q6wzlicuD8GkmeOx4xLqvUFuQl0FclQ--rRe04klEHSs-iiokB_vNi1HABWFDrp_6L0OHuBfSqDTbKM75PZgktK9nobukg1f3SNbAzr69-V9Mh0v0a-L7ns_o0NA1gtqqpJOxIQimtqUgu1L-wUKD8kLyybedFY-PDTBON-V_1LXc_a1rjyd1JdTeBWIbNF4igChzrR4BPsBObuW_nxINito-BGhLiAeliyMVEGVYLqWlhsvhQ_W5nnIIvJm1YfaDSHMEUljqmEqg_2tr_o7Ii_WZWd94I6_lnqPQ7EugcG2u4S6udAD72owcZQIiTMiK0HEJZbDPcDEMRElXFVEXuNAahQJ8DnODJ4N8FMYXEvv4Zwsw0hqEdlZjbUeZEWrryg7Is_X2cDluHVjKl8vWi1B1ipoT6rH_6_iGdkanx4f6aODk8NtckuASdYfLt4hm_Nm4Z-ACTW3Tzu6peTbdTPKb9qvLn0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anQRcEJ-iMMAIEOIQNbGduDkgtNFVHYNqWpk0cTG2Yw-kqilNK9R_jb-O95K04wDcdkkUx7ET-306fu8H8BJpNjNOuSjhXkSo8bPIJkmICm4VclNsVE6xw5_G2ehMfjhPz3fg1yYWhrZVbmRiLaiL0tEaeQ_VYIaCNJdpL7TbIk4Gw3fzHxEhSNGf1g2cRkMix379E9236u3RAOf6FefDw8_vR1GLMBA5KcQykkYFHlwqggp5Pw6pzzMXJC_yzOZFnDi0blLSyUJ5K60zNkldPwSTKZfELhHY7jXYVegVxR3YPTgcn5xuV3higeQdyyYnqhB53FtUCcGpSArX_UML1mAB_1IJtZ4b3oZbrYHK9huKugM7fnYXbrRY6d_W92A6WlOUFxt4P2dtetYLZmYFm_AJI2y1KUNLmDXLFR6LVzaaeFPb_HixCMb5uv5pWS6jL-XMs0n5fYqPIsmtFp4RXKgzFW3Ivg9nVzKiD6Azw44fAnOB0LFEboQMskBDtrCJ8YL7YG2_H1QX3mzGULs2oTnhakw1OjY03vpyvLvwYlt33qTx-GutA5qKbQ1KvV0XlIsL3XKyRoNH8pA6w1WBAi-1CZ4DupEpL_Aou_CaJlKTgMDXcaaNc8CPolRbep88NEV51bqwt5lr3UqOSl_SeReeb28jz9OPHDPz5arSAiWvxP6EfPT_Jp7BdWQS_fFofPwYbnK0z5qdxnvQWS5W_gnaU0v7tCVcBl-vmld-A-ZRNA8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Deep+Learning+and+S2S+Model+for+Improved+Sub-Seasonal+Surface+and+Root-Zone+Soil+Moisture+Forecasting&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Lei&rft.au=Yu%2C+Hongchu&rft.au=Chen%2C+Zeqiang&rft.au=Du%2C+Wenying&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=13&rft.spage=3410&rft_id=info:doi/10.3390%2Frs15133410&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |