Hybrid Deep Learning and S2S Model for Improved Sub-Seasonal Surface and Root-Zone Soil Moisture Forecasting

Surface soil moisture (SSM) and root-zone soil moisture (RZSM) are key hydrological variables for the agricultural water cycle and vegetation growth. Accurate SSM and RZSM forecasting at sub-seasonal scales would be valuable for agricultural water management and preparations. Currently, weather mode...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 13; p. 3410
Main Authors Xu, Lei, Yu, Hongchu, Chen, Zeqiang, Du, Wenying, Chen, Nengcheng, Huang, Min
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2023
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs15133410

Cover

Loading…
Abstract Surface soil moisture (SSM) and root-zone soil moisture (RZSM) are key hydrological variables for the agricultural water cycle and vegetation growth. Accurate SSM and RZSM forecasting at sub-seasonal scales would be valuable for agricultural water management and preparations. Currently, weather model-based soil moisture predictions are subject to large uncertainties due to inaccurate initial conditions and empirical parameterization schemes, while the data-driven machine learning methods have limitations in modeling long-term temporal dependences of SSM and RZSM because of the lack of considerations in the soil water process. Thus, here, we innovatively integrate the model-based soil moisture predictions from a sub-seasonal-to-seasonal (S2S) model into a data-driven stacked deep learning model to construct a hybrid SSM and RZSM forecasting framework. The hybrid forecasting model is evaluated over the Yangtze River Basin and parts of Europe from 1- to 46-day lead times and is compared with four baseline methods, including the support vector regression (SVR), random forest (RF), convolutional long short-term memory (ConvLSTM) and the S2S model. The results indicate substantial skill improvements in the hybrid model relative to baseline models over the two study areas spatiotemporally, in terms of the correlation coefficient, unbiased root mean square error (ubRMSE) and RMSE. The hybrid forecasting model benefits from the long-lead predictive skill from S2S and retains the advantages of data-driven soil moisture memory modeling at short-lead scales, which account for the superiority of hybrid forecasting. Overall, the developed hybrid model is promising for improved sub-seasonal SSM and RZSM forecasting over global and local areas.
AbstractList Surface soil moisture (SSM) and root-zone soil moisture (RZSM) are key hydrological variables for the agricultural water cycle and vegetation growth. Accurate SSM and RZSM forecasting at sub-seasonal scales would be valuable for agricultural water management and preparations. Currently, weather model-based soil moisture predictions are subject to large uncertainties due to inaccurate initial conditions and empirical parameterization schemes, while the data-driven machine learning methods have limitations in modeling long-term temporal dependences of SSM and RZSM because of the lack of considerations in the soil water process. Thus, here, we innovatively integrate the model-based soil moisture predictions from a sub-seasonal-to-seasonal (S2S) model into a data-driven stacked deep learning model to construct a hybrid SSM and RZSM forecasting framework. The hybrid forecasting model is evaluated over the Yangtze River Basin and parts of Europe from 1- to 46-day lead times and is compared with four baseline methods, including the support vector regression (SVR), random forest (RF), convolutional long short-term memory (ConvLSTM) and the S2S model. The results indicate substantial skill improvements in the hybrid model relative to baseline models over the two study areas spatiotemporally, in terms of the correlation coefficient, unbiased root mean square error (ubRMSE) and RMSE. The hybrid forecasting model benefits from the long-lead predictive skill from S2S and retains the advantages of data-driven soil moisture memory modeling at short-lead scales, which account for the superiority of hybrid forecasting. Overall, the developed hybrid model is promising for improved sub-seasonal SSM and RZSM forecasting over global and local areas.
Audience Academic
Author Xu, Lei
Chen, Nengcheng
Du, Wenying
Yu, Hongchu
Huang, Min
Chen, Zeqiang
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0002-6454-2963
  surname: Xu
  fullname: Xu, Lei
– sequence: 2
  givenname: Hongchu
  surname: Yu
  fullname: Yu, Hongchu
– sequence: 3
  givenname: Zeqiang
  surname: Chen
  fullname: Chen, Zeqiang
– sequence: 4
  givenname: Wenying
  surname: Du
  fullname: Du, Wenying
– sequence: 5
  givenname: Nengcheng
  orcidid: 0000-0002-3521-9972
  surname: Chen
  fullname: Chen, Nengcheng
– sequence: 6
  givenname: Min
  orcidid: 0000-0002-2107-9227
  surname: Huang
  fullname: Huang, Min
BookMark eNptUU2LFDEQDbKC67oXf0GDFxF6zWd_HJfVdQdGBEcvXkJ1ujJk6OmMSXph_701O4qymECq8njvJVX1kp3NcUbGXgt-pVTP36csjFBKC_6MnUveylrLXp79k79glznvOC2lRM_1OZvuHoYUxuoD4qFaI6Q5zNsK5rHayE31OY44VT6marU_pHiPBC9DvUHIcYaJLsmDw0f-1xhL_YN-VG1imEgaclkSVrcxoYNcyPcVe-5hynj5O16w77cfv93c1esvn1Y31-vaaaVKraH10jujfOv7jnuDfeO8lmPfDP3IheuVNE2jjGpx0IODQRjXeQ9N6wR3Ql2w1cl3jLCzhxT2kB5shGAfgZi2FlIJbkIrjNTSGweyHbU0ZhAUfUOZHOnU5PX25EX1_1wwF7sP2eE0wYxxyVZxzTWx1ZH65gl1F5dEfcpWdqrRrei1IdbVibUFej_MPpYEjvaI--Cofz4Qft2azrSd4Mdq-EngUsw5obcuFCghziQMkxXcHsdv_46fJO-eSP404T_kX5r_ruQ
CitedBy_id crossref_primary_10_1016_j_rse_2024_114252
crossref_primary_10_1007_s00704_025_05424_z
crossref_primary_10_3390_w16111589
Cites_doi 10.1175/JHM-D-15-0053.1
10.1016/j.advwatres.2009.10.008
10.1175/JHM-D-18-0141.1
10.1002/joc.6403
10.1038/s41467-019-08403-x
10.1175/BAMS-D-17-0001.1
10.1175/JHM-D-11-0104.1
10.1175/BAMS-85-3-381
10.1016/j.jhydrol.2021.126698
10.1007/978-1-4757-3264-1
10.1023/A:1010933404324
10.1038/s41561-022-00912-7
10.1016/j.catena.2019.02.012
10.1117/12.977774
10.1002/joc.5436
10.5194/hess-2022-334
10.1016/j.rse.2022.113283
10.1016/j.geoderma.2018.05.035
10.3390/land11040502
10.1038/s42256-021-00374-3
10.1016/j.geoderma.2021.115651
10.1016/j.cliser.2022.100319
10.1016/j.scitotenv.2019.01.431
10.1109/JPROC.2010.2043918
10.1002/qj.3803
10.1007/s41060-022-00347-8
10.1175/JHM-D-10-05009.1
10.1038/s41558-021-01044-3
10.1175/JHM571.1
10.1016/j.rse.2020.112248
10.1073/pnas.1904955116
10.3389/frai.2021.636234
10.1175/BAMS-D-12-00050.1
10.1016/j.rse.2020.111806
10.1007/s00382-020-05173-x
10.1007/s00382-018-4221-4
10.1016/j.agwat.2020.106649
10.1029/2018GL079293
10.1029/2020MS002076
10.5194/hess-15-1675-2011
10.1002/qj.828
10.1126/science.1100217
10.1080/16742834.2019.1663123
10.1175/JHM-D-22-0016.1
10.1002/joc.5291
10.1029/2018JD029103
10.1175/BAMS-D-20-0327.1
10.1038/ngeo2868
10.1109/ISPCC48220.2019.8988313
10.3390/rs13040554
10.1098/rsta.2021.0288
10.1016/j.eswa.2022.117653
10.1016/j.compag.2020.105902
10.1016/j.rse.2017.07.001
10.1016/j.rse.2020.112028
10.1371/journal.pone.0214508
10.1016/j.earscirev.2021.103828
10.1029/2021EA001845
10.1016/j.knosys.2016.07.016
10.1175/JCLI-D-16-0758.1
10.1002/joc.5958
10.1038/s41586-019-0912-1
10.1109/JPROC.2010.2043032
10.1175/BAMS-D-16-0017.1
10.1109/SMARTCOMP.2016.7501673
10.1175/WAF-D-15-0025.1
10.1175/JHM-D-22-0150.1
10.1007/978-3-030-01424-7_27
10.1175/JHM-D-15-0084.1
10.1038/s41612-021-00172-z
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15133410
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection (Hollins)
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (ProQuest)
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_15242f5ca27d4255b17d4f62552d6254
A758578101
10_3390_rs15133410
GeographicLocations China
Europe
Yangtze River
GeographicLocations_xml – name: China
– name: Yangtze River
– name: Europe
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-4a7f2fc53f7f980f5e96cf42d96b9d01c9325663537eb4bcab15c8ffa67c10c13
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 00:47:41 EDT 2025
Thu Jul 10 22:08:16 EDT 2025
Fri Jul 25 11:50:50 EDT 2025
Tue Jun 10 03:42:48 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Tue Jul 01 03:11:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-4a7f2fc53f7f980f5e96cf42d96b9d01c9325663537eb4bcab15c8ffa67c10c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6454-2963
0000-0002-3521-9972
0000-0002-2107-9227
OpenAccessLink https://www.proquest.com/docview/2836471945?pq-origsite=%requestingapplication%
PQID 2836471945
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_15242f5ca27d4255b17d4f62552d6254
proquest_miscellaneous_3040455234
proquest_journals_2836471945
gale_infotracacademiconefile_A758578101
crossref_citationtrail_10_3390_rs15133410
crossref_primary_10_3390_rs15133410
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Irrgang (ref_41) 2021; 3
Spinoni (ref_58) 2018; 38
Gudoshava (ref_39) 2022; 27
Becker (ref_30) 2022; 103
Yang (ref_23) 2022; 23
ref_53
Tian (ref_10) 2019; 10
Ahmad (ref_54) 2010; 33
Xu (ref_44) 2020; 54
ref_16
Entekhabi (ref_13) 2010; 98
Xu (ref_57) 2019; 39
Koster (ref_4) 2004; 305
Kirtman (ref_46) 2014; 95
Gruber (ref_77) 2020; 244
Dubois (ref_8) 2021; 180
Xu (ref_18) 2021; 254
Fan (ref_26) 2022; 282
Dirmeyer (ref_11) 2018; 123
ref_25
Breiman (ref_68) 2001; 45
Sabater (ref_19) 2007; 8
Dee (ref_61) 2011; 137
Reichstein (ref_76) 2019; 566
ref_67
Hersbach (ref_20) 2020; 146
ref_65
ref_64
Yao (ref_48) 2018; 38
ref_63
Dorigo (ref_60) 2011; 15
ref_29
Basak (ref_50) 2023; 15
ElSaadani (ref_34) 2021; 4
Liu (ref_75) 2018; 45
Prasad (ref_66) 2019; 177
Xu (ref_27) 2020; 250
Li (ref_51) 2022; 409
Zhou (ref_3) 2019; 116
ref_70
Ma (ref_12) 2023; 24
Xu (ref_28) 2021; 222
ref_35
Esit (ref_9) 2021; 4
Gelaro (ref_21) 2017; 30
Zhang (ref_74) 2019; 665
Schumacher (ref_2) 2022; 15
ref_31
Zhang (ref_56) 2016; 17
Zhu (ref_38) 2019; 12
Yu (ref_52) 2021; 245
Chen (ref_15) 2015; 30
Rodell (ref_22) 2004; 85
Naumann (ref_59) 2021; 11
Shi (ref_72) 2015; 28
Robertson (ref_73) 2012; 13
Dorigo (ref_17) 2017; 203
McColl (ref_37) 2019; 20
Liaw (ref_69) 2002; 2
AghaKouchak (ref_40) 2022; 380
Seo (ref_6) 2019; 52
Prasad (ref_32) 2018; 330
Dirmeyer (ref_1) 2012; 13
Santanello (ref_5) 2018; 99
Kerr (ref_14) 2010; 98
Han (ref_43) 2020; 12
Adnan (ref_71) 2016; 110
Thober (ref_47) 2015; 16
Jiang (ref_55) 2020; 40
ref_42
Chevuturi (ref_49) 2022; 1
Vitart (ref_45) 2017; 98
Balsamo (ref_62) 2011; 127
Togneri (ref_7) 2022; 207
McColl (ref_36) 2017; 10
Li (ref_24) 2021; 8
Li (ref_33) 2021; 600
References_xml – volume: 16
  start-page: 2329
  year: 2015
  ident: ref_47
  article-title: Seasonal soil moisture drought prediction over Europe using the North American Multi-Model Ensemble (NMME)
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-15-0053.1
– volume: 33
  start-page: 69
  year: 2010
  ident: ref_54
  article-title: Estimating soil moisture using remote sensing data: A machine learning approach
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2009.10.008
– volume: 28
  start-page: 802
  year: 2015
  ident: ref_72
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 20
  start-page: 1165
  year: 2019
  ident: ref_37
  article-title: Short-term and long-term surface soil moisture memory time scales are spatially anticorrelated at global scales
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-18-0141.1
– volume: 40
  start-page: 3380
  year: 2020
  ident: ref_55
  article-title: Drought characteristics and its impact on changes in surface vegetation from 1981 to 2015 in the Yangtze River Basin, China
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.6403
– volume: 10
  start-page: 469
  year: 2019
  ident: ref_10
  article-title: Forecasting dryland vegetation condition months in advance through satellite data assimilation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08403-x
– volume: 99
  start-page: 1253
  year: 2018
  ident: ref_5
  article-title: Land–atmosphere interactions: The LoCo perspective
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-17-0001.1
– volume: 13
  start-page: 981
  year: 2012
  ident: ref_1
  article-title: Evidence for enhanced land–atmosphere feedback in a warming climate
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-11-0104.1
– volume: 85
  start-page: 381
  year: 2004
  ident: ref_22
  article-title: The global land data assimilation system
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-85-3-381
– volume: 600
  start-page: 126698
  year: 2021
  ident: ref_33
  article-title: Improved daily SMAP satellite soil moisture prediction over China using deep learning model with transfer learning
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126698
– ident: ref_67
  doi: 10.1007/978-1-4757-3264-1
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_68
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 15
  start-page: 262
  year: 2022
  ident: ref_2
  article-title: Drought self-propagation in drylands due to land–atmosphere feedbacks
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-022-00912-7
– volume: 177
  start-page: 149
  year: 2019
  ident: ref_66
  article-title: Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridizer algorithm approach
  publication-title: Catena
  doi: 10.1016/j.catena.2019.02.012
– ident: ref_16
  doi: 10.1117/12.977774
– volume: 38
  start-page: 2565
  year: 2018
  ident: ref_48
  article-title: Superensemble seasonal forecasting of soil moisture by NMME
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5436
– volume: 1
  start-page: e28
  year: 2022
  ident: ref_49
  article-title: Subseasonal prediction performance for South American land–atmosphere coupling in extended austral summer
  publication-title: Clim. Resil. Sustain.
– ident: ref_42
  doi: 10.5194/hess-2022-334
– volume: 282
  start-page: 113283
  year: 2022
  ident: ref_26
  article-title: Evaluation of satellite and reanalysis estimates of surface and root-zone soil moisture in croplands of Jiangsu Province, China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113283
– volume: 330
  start-page: 136
  year: 2018
  ident: ref_32
  article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.035
– ident: ref_25
  doi: 10.3390/land11040502
– volume: 3
  start-page: 667
  year: 2021
  ident: ref_41
  article-title: Towards neural Earth system modelling by integrating artificial intelligence in Earth system science
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00374-3
– volume: 409
  start-page: 115651
  year: 2022
  ident: ref_51
  article-title: An attention-aware LSTM model for soil moisture and soil temperature prediction
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115651
– volume: 27
  start-page: 100319
  year: 2022
  ident: ref_39
  article-title: Application of real time S2S forecasts over Eastern Africa in the co-production of climate services
  publication-title: Clim. Serv.
  doi: 10.1016/j.cliser.2022.100319
– volume: 665
  start-page: 338
  year: 2019
  ident: ref_74
  article-title: Meteorological drought forecasting based on a statistical model with machine learning techniques in Shaanxi province, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.431
– volume: 98
  start-page: 704
  year: 2010
  ident: ref_13
  article-title: The soil moisture active passive (SMAP) mission
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2043918
– volume: 146
  start-page: 1999
  year: 2020
  ident: ref_20
  article-title: The ERA5 global reanalysis
  publication-title: Q. J. R. Meteor. Soc.
  doi: 10.1002/qj.3803
– volume: 15
  start-page: 9
  year: 2023
  ident: ref_50
  article-title: From data to interpretable models: Machine learning for soil moisture forecasting
  publication-title: Int. J. Data Sci. Anal.
  doi: 10.1007/s41060-022-00347-8
– volume: 13
  start-page: 155
  year: 2012
  ident: ref_73
  article-title: A Bayesian approach to predictor selection for seasonal streamflow forecasting
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-10-05009.1
– volume: 11
  start-page: 485
  year: 2021
  ident: ref_59
  article-title: Increased economic drought impacts in Europe with anthropogenic warming
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-021-01044-3
– volume: 127
  start-page: 78
  year: 2011
  ident: ref_62
  article-title: Evolution of land surface processes in the IFS
  publication-title: ECMWF Newsl.
– volume: 8
  start-page: 194
  year: 2007
  ident: ref_19
  article-title: From near-surface to root-zone soil moisture using different assimilation techniques
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM571.1
– volume: 254
  start-page: 112248
  year: 2021
  ident: ref_18
  article-title: In-situ and triple-collocation based evaluations of eight global root zone soil moisture products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112248
– volume: 116
  start-page: 18848
  year: 2019
  ident: ref_3
  article-title: Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1904955116
– volume: 4
  start-page: 636234
  year: 2021
  ident: ref_34
  article-title: Assessment of a spatiotemporal deep learning approach for soil moisture prediction and filling the gaps in between soil moisture observations
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2021.636234
– volume: 95
  start-page: 585
  year: 2014
  ident: ref_46
  article-title: The North American multimodel ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-12-00050.1
– volume: 244
  start-page: 111806
  year: 2020
  ident: ref_77
  article-title: Validation practices for satellite soil moisture retrievals: What are (the) errors?
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111806
– volume: 54
  start-page: 3355
  year: 2020
  ident: ref_44
  article-title: A data-driven multi-model ensemble for deterministic and probabilistic precipitation forecasting at seasonal scale
  publication-title: Clim. Dynam.
  doi: 10.1007/s00382-020-05173-x
– volume: 52
  start-page: 1695
  year: 2019
  ident: ref_6
  article-title: Impact of soil moisture initialization on boreal summer subseasonal forecasts: Mid-latitude surface air temperature and heat wave events
  publication-title: Clim. Dynam.
  doi: 10.1007/s00382-018-4221-4
– volume: 245
  start-page: 106649
  year: 2021
  ident: ref_52
  article-title: A hybrid CNN-GRU model for predicting soil moisture in maize root zone
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106649
– volume: 45
  start-page: 8445
  year: 2018
  ident: ref_75
  article-title: Global search for autumn-lead sea surface salinity predictors of winter precipitation in southwestern United States
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL079293
– volume: 12
  start-page: e2020MS002076
  year: 2020
  ident: ref_43
  article-title: A moist physics parameterization based on deep learning
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2020MS002076
– volume: 15
  start-page: 1675
  year: 2011
  ident: ref_60
  article-title: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-1675-2011
– volume: 137
  start-page: 553
  year: 2011
  ident: ref_61
  article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Q. J. R. Meteor. Soc.
  doi: 10.1002/qj.828
– volume: 305
  start-page: 1138
  year: 2004
  ident: ref_4
  article-title: Regions of strong coupling between soil moisture and precipitation
  publication-title: Science
  doi: 10.1126/science.1100217
– volume: 12
  start-page: 467
  year: 2019
  ident: ref_38
  article-title: Evaluation of the subseasonal forecast skill of surface soil moisture in the S2S database
  publication-title: Atmos. Ocean. Sci. Lett.
  doi: 10.1080/16742834.2019.1663123
– volume: 23
  start-page: 1861
  year: 2022
  ident: ref_23
  article-title: Evaluating Root-zone Soil Moisture Products from GLEAM, GLDAS, and ERA5 based on in Situ ObServations and Triple Collocation Method Over the Tibetan Plateau
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-22-0016.1
– volume: 38
  start-page: 1718
  year: 2018
  ident: ref_58
  article-title: Will drought events become more frequent and severe in Europe?
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5291
– ident: ref_63
– volume: 123
  start-page: 13111
  year: 2018
  ident: ref_11
  article-title: On the harvest of predictability from land states in a global forecast model
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2018JD029103
– volume: 103
  start-page: E973
  year: 2022
  ident: ref_30
  article-title: A Decade of the North American Multimodel Ensemble (NMME): Research, Application, and Future Directions
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-20-0327.1
– volume: 10
  start-page: 100
  year: 2017
  ident: ref_36
  article-title: The global distribution and dynamics of surface soil moisture
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2868
– ident: ref_29
  doi: 10.1109/ISPCC48220.2019.8988313
– ident: ref_53
  doi: 10.3390/rs13040554
– volume: 380
  start-page: 20210288
  year: 2022
  ident: ref_40
  article-title: Status and prospects for drought forecasting: Opportunities in artificial intelligence and hybrid physical–statistical forecasting
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2021.0288
– volume: 207
  start-page: 117653
  year: 2022
  ident: ref_7
  article-title: Soil moisture forecast for smart irrigation: The primetime for machine learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117653
– volume: 180
  start-page: 105902
  year: 2021
  ident: ref_8
  article-title: Short term soil moisture forecasts for potato crop farming: A machine learning approach
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105902
– volume: 203
  start-page: 185
  year: 2017
  ident: ref_17
  article-title: ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.001
– volume: 250
  start-page: 112028
  year: 2020
  ident: ref_27
  article-title: Continental drought monitoring using satellite soil moisture, data assimilation and an integrated drought index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112028
– ident: ref_31
  doi: 10.1371/journal.pone.0214508
– volume: 222
  start-page: 103828
  year: 2021
  ident: ref_28
  article-title: Spatiotemporal forecasting in earth system science: Methods, uncertainties, predictability and future directions
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2021.103828
– volume: 8
  start-page: e2021EA001845
  year: 2021
  ident: ref_24
  article-title: InterComparison and Evaluation of MultiSource Soil Moisture Products in China
  publication-title: Earth Space Sci.
  doi: 10.1029/2021EA001845
– volume: 110
  start-page: 86
  year: 2016
  ident: ref_71
  article-title: Optimizing the number of trees in a decision forest to discover a subforest with high ensemble accuracy using a genetic algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.07.016
– volume: 30
  start-page: 5419
  year: 2017
  ident: ref_21
  article-title: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0758.1
– volume: 39
  start-page: 2375
  year: 2019
  ident: ref_57
  article-title: Global drought trends under 1.5 and 2 C warming
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5958
– volume: 566
  start-page: 195
  year: 2019
  ident: ref_76
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 98
  start-page: 666
  year: 2010
  ident: ref_14
  article-title: The SMOS mission: New tool for monitoring key elements ofthe global water cycle
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2043032
– volume: 98
  start-page: 163
  year: 2017
  ident: ref_45
  article-title: The subseasonal to seasonal (S2S) prediction project database
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-16-0017.1
– ident: ref_65
  doi: 10.1109/SMARTCOMP.2016.7501673
– ident: ref_64
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_69
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 30
  start-page: 1280
  year: 2015
  ident: ref_15
  article-title: Assessment of FY-3A and FY-3B MWHS observations
  publication-title: Weather Forecast.
  doi: 10.1175/WAF-D-15-0025.1
– volume: 24
  start-page: 897
  year: 2023
  ident: ref_12
  article-title: Sub-seasonal ensemble prediction of flash droughts over China
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-22-0150.1
– ident: ref_70
– ident: ref_35
  doi: 10.1007/978-3-030-01424-7_27
– volume: 17
  start-page: 811
  year: 2016
  ident: ref_56
  article-title: GRACE-based hydrological drought evaluation of the Yangtze River Basin, China
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-15-0084.1
– volume: 4
  start-page: 16
  year: 2021
  ident: ref_9
  article-title: Seasonal to multi-year soil moisture drought forecasting
  publication-title: Npj Clim. Atmos. Sci.
  doi: 10.1038/s41612-021-00172-z
SSID ssj0000331904
Score 2.3620431
Snippet Surface soil moisture (SSM) and root-zone soil moisture (RZSM) are key hydrological variables for the agricultural water cycle and vegetation growth. Accurate...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3410
SubjectTerms Accuracy
Agricultural management
Agricultural production
Artificial intelligence
Climate
Comparative analysis
Correlation coefficient
Correlation coefficients
Deep learning
Distribution
Drought
Europe
Forecasting
Forecasts and trends
Hydrologic cycle
Hydrology
Initial conditions
Long short-term memory
Machine learning
Mathematical models
Measurement
memory
Modelling
Moisture content
Moisture effects
multistep prediction
Neural networks
Parameterization
Precipitation
Regions
regression analysis
Remote sensing
rhizosphere
River basins
Root-mean-square errors
S2S model
Skills
Soil moisture
soil moisture forecasting
Soil surfaces
Soil water
Support vector machines
vegetation
Vegetation growth
Water management
watersheds
weather
Weather forecasting
Yangtze River
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLu2lokDVAEVGICEOFvFXvDnSAlohwYFlJdSLZTt2i7RKVvtx2H_fmSRs90DFhUuiOI7s2GPPc-J5j5BTsNnCBRMYF1Ey8PgF85wnVglvYDTlzpQYO3x3XwzH6vZJP21IfeGesI4euGu4C_AvSiQdnDAV2Jf2HM4JULsWFRxbJlDweRuLqXYOlmBauer4SCWs6y9mc45SJgpDZTc8UEvU_7_puPUxN9vkcw8O6WVXqS_kQ6x3yMdep_zPapdMhiuMsKJXMU5pT436m7q6oiMxoqhrNqGAQmn3qSBC8tKzUXQt3oaLWXIhtvkfmmbBfjV1pKPmeQKPQncvZ5GiVGdwc9wMvUfGN9ePP4es10tgQUm5YMqZJFLQMplUDvKkY1mEpERVFr6sch4Aq2lEGNJEr3xwnuswSMkVJvA8cPmVbNVQ8DdCQ0JlKlk6qZKqAERWnrsoRUzeDwbJZOT8pQ1t6MnEUdNiYmFRge1t_7V3Rk7WeacdhcaruX5gV6xzIO11mwDGYHtjsG8ZQ0bOsCMtDk6oTnB9jAG8FNJc2UtcHRnkNMvI4Utf237Uzi1ArQKcdal0Ro7Xt2G84U8UV8dmObcSZj0F5Um1_x41PiCfUMC-2wB8SLYWs2X8DjBn4Y9ai_4L_9735Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Hybrid Deep Learning and S2S Model for Improved Sub-Seasonal Surface and Root-Zone Soil Moisture Forecasting
URI https://www.proquest.com/docview/2836471945
https://www.proquest.com/docview/3040455234
https://doaj.org/article/15242f5ca27d4255b17d4f62552d6254
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYeoDLxKcIjMoIJMTBWhI7cXJCHVupEJvQwqSJi2U79oZUJV3SHvbf817idhyAS6I4Tpz4-X3afj9C3sOYzbWVliWp4ww0fs5MknhWp0YCN8Valrh3-Ow8X1yKr1fZVQi49WFZ5VYmDoK6bi3GyI9ADeYgSEuRfVrdMkSNwtnVAKGxRyYgggtwvibHp-ffL3ZRlpjDEIvFmJeUg39_1PUJQpoI3DL7hyYaEvb_SywPumb-mBwEI5HORqo-IQ9c85Q8DHjlN3fPyHJxhzut6IlzKxpSpF5T3dS0SiuK-GZLCtYoHUMGDoo3hlVOD3Y3XHReWzfUv2jbNfvZNo5W7a8lPApk33SOImSn1T0uin5OLuenPz4vWMBNYFZwvmZCS596m3EvfVnEPnNlbr1I6zI3ZR0nFmy2DC0NLp0RxmqTZLbwXufSJrFN-Auy30DDLwm1HhGqeKm58KIGY7I2iXY8dd6YovAyIh-3fahsSCqO2BZLBc4F9re67--IvNvVXY2pNP5a6xhJsauB6a-Hgra7VoGbFBgdIvWZ1amsQehkJoGzB1cuS2s4ioh8QEIqZFL4HKvDXgP4KUx3pWboJUnMbRaRwy2tVeDeXt2PtYi83d0GvsPJFN24dtMrDtJPQHtcvPr_K16TRwhRPy7xPST7627j3oAhszZTslfMv0zJZHZy9q2ahrE7HcICvwHaBvW9
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOZQLYhWhBYwAIQ5W4yXbAaFCGaZ0OTCtVHExtmOXSqNkSGaE5k_xG3kvyUw5ALdeEsV27MR-m5f3PkJeAs2mxmWOceElA42fMst5YKWwGXBTbLICfYePT9Lxmfp8npxvkF8rXxg8VrmSiZ2gLmuHa-S7oAZTEKSFSt7NfjBEjcLd1RWERk8Wh375E6Zs7duDfRjfV0KMPp5-GLMBVYA5JeWcKZMFEVwiQxaKPA6JL1IXlCiL1BZlzB1YNAnqYZl5q6wzlicuD8GkmeOx4xLqvUFuQl0FclQ--rRe04klEHSs-iiokB_vNi1HABWFDrp_6L0OHuBfSqDTbKM75PZgktK9nobukg1f3SNbAzr69-V9Mh0v0a-L7ns_o0NA1gtqqpJOxIQimtqUgu1L-wUKD8kLyybedFY-PDTBON-V_1LXc_a1rjyd1JdTeBWIbNF4igChzrR4BPsBObuW_nxINito-BGhLiAeliyMVEGVYLqWlhsvhQ_W5nnIIvJm1YfaDSHMEUljqmEqg_2tr_o7Ii_WZWd94I6_lnqPQ7EugcG2u4S6udAD72owcZQIiTMiK0HEJZbDPcDEMRElXFVEXuNAahQJ8DnODJ4N8FMYXEvv4Zwsw0hqEdlZjbUeZEWrryg7Is_X2cDluHVjKl8vWi1B1ipoT6rH_6_iGdkanx4f6aODk8NtckuASdYfLt4hm_Nm4Z-ACTW3Tzu6peTbdTPKb9qvLn0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anQRcEJ-iMMAIEOIQNbGduDkgtNFVHYNqWpk0cTG2Yw-kqilNK9R_jb-O95K04wDcdkkUx7ET-306fu8H8BJpNjNOuSjhXkSo8bPIJkmICm4VclNsVE6xw5_G2ehMfjhPz3fg1yYWhrZVbmRiLaiL0tEaeQ_VYIaCNJdpL7TbIk4Gw3fzHxEhSNGf1g2cRkMix379E9236u3RAOf6FefDw8_vR1GLMBA5KcQykkYFHlwqggp5Pw6pzzMXJC_yzOZFnDi0blLSyUJ5K60zNkldPwSTKZfELhHY7jXYVegVxR3YPTgcn5xuV3higeQdyyYnqhB53FtUCcGpSArX_UML1mAB_1IJtZ4b3oZbrYHK9huKugM7fnYXbrRY6d_W92A6WlOUFxt4P2dtetYLZmYFm_AJI2y1KUNLmDXLFR6LVzaaeFPb_HixCMb5uv5pWS6jL-XMs0n5fYqPIsmtFp4RXKgzFW3Ivg9nVzKiD6Azw44fAnOB0LFEboQMskBDtrCJ8YL7YG2_H1QX3mzGULs2oTnhakw1OjY03vpyvLvwYlt33qTx-GutA5qKbQ1KvV0XlIsL3XKyRoNH8pA6w1WBAi-1CZ4DupEpL_Aou_CaJlKTgMDXcaaNc8CPolRbep88NEV51bqwt5lr3UqOSl_SeReeb28jz9OPHDPz5arSAiWvxP6EfPT_Jp7BdWQS_fFofPwYbnK0z5qdxnvQWS5W_gnaU0v7tCVcBl-vmld-A-ZRNA8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Deep+Learning+and+S2S+Model+for+Improved+Sub-Seasonal+Surface+and+Root-Zone+Soil+Moisture+Forecasting&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Lei&rft.au=Yu%2C+Hongchu&rft.au=Chen%2C+Zeqiang&rft.au=Du%2C+Wenying&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=13&rft.spage=3410&rft_id=info:doi/10.3390%2Frs15133410&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon