Optical and SAR Image Registration Based on Pseudo-SAR Image Generation Strategy
The registration of optical and SAR images has always been a challenging task due to the different imaging mechanisms of the corresponding sensors. To mitigate this difference, this paper proposes a registration algorithm based on a pseudo-SAR image generation strategy and an improved deep learning-...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 14; p. 3528 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The registration of optical and SAR images has always been a challenging task due to the different imaging mechanisms of the corresponding sensors. To mitigate this difference, this paper proposes a registration algorithm based on a pseudo-SAR image generation strategy and an improved deep learning-based network. The method consists of two stages: a pseudo-SAR image generation strategy and an image registration network. In the pseudo-SAR image generation section, an improved Restormer network is used to convert optical images into pseudo-SAR images. An L2 loss function is adopted in the network, and the loss function fluctuates less at the optimal point, making it easier for the model to reach the fitting state. In the registration part, the ROEWA operator is used to construct the Harris scale space for pseudo-SAR and real SAR images, respectively, and each extreme point in the scale space is extracted and added to the keypoint set. The image patches around the keypoints are selected and fed into the network to obtain the feature descriptor. The pseudo-SAR and real SAR images are matched according to the descriptors, and outliers are removed by the RANSAC algorithm to obtain the final registration result. The proposed method is tested on a public dataset. The experimental analysis shows that the average value of NCM surpasses similar methods over 30%, and the average value of RMSE is lower than similar methods by more than 0.04. The results demonstrate that the proposed strategy is more robust than other state-of-the-art methods. |
---|---|
AbstractList | The registration of optical and SAR images has always been a challenging task due to the different imaging mechanisms of the corresponding sensors. To mitigate this difference, this paper proposes a registration algorithm based on a pseudo-SAR image generation strategy and an improved deep learning-based network. The method consists of two stages: a pseudo-SAR image generation strategy and an image registration network. In the pseudo-SAR image generation section, an improved Restormer network is used to convert optical images into pseudo-SAR images. An L2 loss function is adopted in the network, and the loss function fluctuates less at the optimal point, making it easier for the model to reach the fitting state. In the registration part, the ROEWA operator is used to construct the Harris scale space for pseudo-SAR and real SAR images, respectively, and each extreme point in the scale space is extracted and added to the keypoint set. The image patches around the keypoints are selected and fed into the network to obtain the feature descriptor. The pseudo-SAR and real SAR images are matched according to the descriptors, and outliers are removed by the RANSAC algorithm to obtain the final registration result. The proposed method is tested on a public dataset. The experimental analysis shows that the average value of NCM surpasses similar methods over 30%, and the average value of RMSE is lower than similar methods by more than 0.04. The results demonstrate that the proposed strategy is more robust than other state-of-the-art methods. |
Audience | Academic |
Author | Hu, Canbin Zhu, Runze Sun, Xiaokun Xiang, Deliang Li, Xinwei |
Author_xml | – sequence: 1 givenname: Canbin orcidid: 0000-0002-4183-5106 surname: Hu fullname: Hu, Canbin – sequence: 2 givenname: Runze surname: Zhu fullname: Zhu, Runze – sequence: 3 givenname: Xiaokun surname: Sun fullname: Sun, Xiaokun – sequence: 4 givenname: Xinwei surname: Li fullname: Li, Xinwei – sequence: 5 givenname: Deliang orcidid: 0000-0003-0152-6621 surname: Xiang fullname: Xiang, Deliang |
BookMark | eNptkVFLHDEQxxexoLW--AkW-lIKZ5NJdpM8XqXVA0HR-hxmk9klx97mmuw9-O2NnmiRJoQMw-8_k8n_c3U4xYmq6oyzcyEM-5Eyb7gUDeiD6hiYgoUEA4f_xEfVac5rVpYQ3DB5XN3ebOfgcKxx8vX98q5ebXCg-o6GkOeEc4hT_RMz-boEt5l2Pi7esUua6BW6f6ZpePxSfepxzHT6ep9UD79__bm4WlzfXK4ultcLJ4WYy2tAtbIDRcBJCs9US0qCQOGRvALDWdcicsUFtah7DkaLBl1njO471omTarWv6yOu7TaFDaZHGzHYl0RMg8VURhvJsh601kY5SV52qkUGnVeycV5p7TSUWt_2tbYp_t1Rnu0mZEfjiBPFXbaCSSZbUeiCfv2AruMuTWVSC1oKzspRhTrfUwOW_mHqY_kdV7anTXDFtT6U_FI1BgCYNEXwfS9wKeacqH-biDP7bK59N7fA7APswvziQukSxv9JngCQXqSG |
CitedBy_id | crossref_primary_10_3390_rs17061071 crossref_primary_10_1109_TGRS_2024_3502356 crossref_primary_10_1109_TGRS_2024_3409750 |
Cites_doi | 10.1109/TPAMI.2005.188 10.1016/j.cageo.2007.10.005 10.1109/TUFFC.2010.1554 10.1109/JSTARS.2022.3143532 10.34133/2021/9841456 10.3390/rs13030516 10.1017/CBO9780511777684 10.1109/36.673672 10.1109/LGRS.2020.2972361 10.1109/LGRS.2016.2600858 10.3390/rs14122811 10.1109/TGRS.2018.2790483 10.1109/JSTARS.2021.3121405 10.1109/TMI.2013.2265603 10.1080/01431160902927622 10.1109/APSAR46974.2019.9048448 10.5244/C.30.119 10.1109/CVPR.2018.00813 10.3390/rs14051175 10.1007/s11263-006-0011-2 10.3390/rs13245128 10.1109/36.7708 10.3390/rs13101924 10.1109/LGRS.2017.2781741 10.1109/TGRS.2011.2144607 10.1016/j.isprsjprs.2019.04.015 10.1109/JSTARS.2022.3155665 10.1109/CVPRW50498.2020.00203 10.1109/IDAACS53288.2021.9660904 10.1023/B:VISI.0000029664.99615.94 10.1109/29.7550 10.1109/TGRS.2003.817664 10.1109/CVPR52688.2022.00564 10.3390/rs14061507 10.1109/TGRS.2014.2323552 10.1109/JSTARS.2020.3026162 10.1109/ACCESS.2021.3079327 10.1109/ICCV.2017.244 10.1109/TGRS.2022.3211858 10.1109/CVPR.2018.00068 10.1016/j.media.2012.05.008 10.1109/JSTARS.2021.3134676 10.1109/CVPR.2017.649 10.1145/358669.358692 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15143528 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_0f288897c4ed4b76a02bd745cd788c82 A759222049 10_3390_rs15143528 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-422764b27e21e43d076e7423a3daed72910b6aa1713e6a8f129835acb998fb0b3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:29:10 EDT 2025 Fri Jul 11 04:24:45 EDT 2025 Fri Jul 25 11:44:18 EDT 2025 Tue Jun 10 21:02:20 EDT 2025 Thu Apr 24 22:57:53 EDT 2025 Tue Jul 01 03:11:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-422764b27e21e43d076e7423a3daed72910b6aa1713e6a8f129835acb998fb0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4183-5106 0000-0003-0152-6621 |
OpenAccessLink | https://www.proquest.com/docview/2843104317?pq-origsite=%requestingapplication% |
PQID | 2843104317 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0f288897c4ed4b76a02bd745cd788c82 proquest_miscellaneous_3040463788 proquest_journals_2843104317 gale_infotracacademiconefile_A759222049 crossref_primary_10_3390_rs15143528 crossref_citationtrail_10_3390_rs15143528 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Ma (ref_35) 2019; 152 Mikolajczyk (ref_15) 2005; 27 Schwind (ref_36) 2010; 31 Sotiras (ref_3) 2013; 32 ref_10 Heinrich (ref_12) 2012; 16 ref_51 ref_19 Fischler (ref_42) 1981; 24 ref_25 Ma (ref_18) 2021; 18 ref_22 ref_21 ref_20 ref_29 ref_28 ref_27 ref_26 Xiang (ref_48) 2020; 13 Zhang (ref_52) 2021; 14 Xiang (ref_24) 2022; 60 ref_34 Bovik (ref_38) 1988; 36 ref_33 ref_31 Yu (ref_4) 2008; 34 ref_30 Dellinger (ref_37) 2015; 53 Xiang (ref_14) 2018; 56 Fjortoft (ref_16) 1998; 36 An (ref_43) 2022; 15 Wang (ref_11) 2007; 74 Du (ref_40) 2021; 9 ref_47 ref_46 Liao (ref_23) 2022; 15 ref_45 ref_44 Chen (ref_8) 2003; 41 ref_41 Sedaghat (ref_17) 2011; 49 Ma (ref_49) 2017; 14 ref_1 Luo (ref_9) 2010; 57 ref_2 Lowe (ref_13) 2004; 60 ref_7 Ye (ref_5) 2018; 15 ref_6 Ma (ref_32) 2022; 15 Touzi (ref_39) 1988; 26 |
References_xml | – volume: 27 start-page: 1615 year: 2005 ident: ref_15 article-title: A performance evaluation of local descriptors publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.188 – volume: 34 start-page: 838 year: 2008 ident: ref_4 article-title: A fast and fully automatic registration approach based on point features for multi-source remote-sensing images publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2007.10.005 – volume: 57 start-page: 1347 year: 2010 ident: ref_9 article-title: A fast normalized cross-correlation calculation method for motion estimation publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control. doi: 10.1109/TUFFC.2010.1554 – volume: 15 start-page: 1373 year: 2022 ident: ref_43 article-title: TR-MISR: Multiimage super-resolution based on feature fusion with transformers publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3143532 – ident: ref_47 doi: 10.34133/2021/9841456 – ident: ref_34 doi: 10.3390/rs13030516 – ident: ref_1 doi: 10.1017/CBO9780511777684 – volume: 36 start-page: 793 year: 1998 ident: ref_16 article-title: An optimal multiedge detector for SAR image segmentation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.673672 – volume: 18 start-page: 351 year: 2021 ident: ref_18 article-title: Multispectral Remote Sensing Image Matching via Image Transfer by Regularized Conditional Generative Adversarial Networks and Local Feature publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2972361 – volume: 14 start-page: 3 year: 2017 ident: ref_49 article-title: Remote Sensing Image Registration with Modified SIFT and Enhanced Feature Matching publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2600858 – ident: ref_25 doi: 10.3390/rs14122811 – ident: ref_31 – volume: 56 start-page: 3078 year: 2018 ident: ref_14 article-title: OS-SIFT: A Robust SIFT-Like Algorithm for High-Resolution Optical-to-SAR Image Registration in Suburban Areas publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2790483 – volume: 14 start-page: 10835 year: 2021 ident: ref_52 article-title: Multireceiver SAS imagery based on monostatic conversion publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3121405 – volume: 32 start-page: 1153 year: 2013 ident: ref_3 article-title: Deformable medical image registration: A survey publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2265603 – ident: ref_10 – volume: 31 start-page: 1959 year: 2010 ident: ref_36 article-title: Applicability of the SIFT operator to geometric SAR image registration publication-title: Int. J. Remote Sens. doi: 10.1080/01431160902927622 – ident: ref_26 doi: 10.1109/APSAR46974.2019.9048448 – ident: ref_20 doi: 10.5244/C.30.119 – ident: ref_29 doi: 10.1109/CVPR.2018.00813 – ident: ref_27 doi: 10.3390/rs14051175 – volume: 74 start-page: 201 year: 2007 ident: ref_11 article-title: Non-rigid multi-modal image registration using cross-cumulative residual entropy publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-006-0011-2 – ident: ref_2 doi: 10.3390/rs13245128 – ident: ref_7 – ident: ref_28 – volume: 26 start-page: 764 year: 1988 ident: ref_39 article-title: A statistical and geometrical edge detector for SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.7708 – ident: ref_30 – ident: ref_51 doi: 10.3390/rs13101924 – volume: 15 start-page: 232 year: 2018 ident: ref_5 article-title: Remote sensing image registration using convolutional neural network features publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2781741 – volume: 49 start-page: 4516 year: 2011 ident: ref_17 article-title: Uniform Robust Scale-Invariant Feature Matching for Optical Remote Sensing Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2144607 – volume: 152 start-page: 166 year: 2019 ident: ref_35 article-title: Deep learning in remote sensing applications: A meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.015 – volume: 15 start-page: 2223 year: 2022 ident: ref_32 article-title: Homo–heterogenous transformer learning framework for RS scene classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3155665 – ident: ref_46 doi: 10.1109/CVPRW50498.2020.00203 – ident: ref_44 doi: 10.1109/IDAACS53288.2021.9660904 – volume: 60 start-page: 91 year: 2004 ident: ref_13 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 36 start-page: 1618 year: 1988 ident: ref_38 article-title: On detecting edges in speckle imagery publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.7550 – volume: 41 start-page: 2445 year: 2003 ident: ref_8 article-title: Performance of mutual information similarity measure for registration of multitemporal remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.817664 – ident: ref_41 doi: 10.1109/CVPR52688.2022.00564 – ident: ref_33 doi: 10.3390/rs14061507 – volume: 53 start-page: 453 year: 2015 ident: ref_37 article-title: SAR-SIFT: A SIFT-Like Algorithm for SAR Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2323552 – ident: ref_6 – volume: 13 start-page: 5847 year: 2020 ident: ref_48 article-title: Automatic registration of optical and SAR images via improved phase congruency model publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3026162 – volume: 9 start-page: 71022 year: 2021 ident: ref_40 article-title: Exploring the potential of unsupervised image synthesis for SAR-optical image matching publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3079327 – ident: ref_50 doi: 10.1109/ICCV.2017.244 – volume: 60 start-page: 5235913 year: 2022 ident: ref_24 article-title: Optical and SAR Image Registration Based on Feature Decoupling Network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3211858 – ident: ref_45 doi: 10.1109/CVPR.2018.00068 – volume: 16 start-page: 1423 year: 2012 ident: ref_12 article-title: MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.05.008 – volume: 15 start-page: 448 year: 2022 ident: ref_23 article-title: Feature Matching and Position Matching Between Optical and SAR With Local Deep Feature Descriptor publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3134676 – ident: ref_21 doi: 10.1109/CVPR.2017.649 – ident: ref_19 – ident: ref_22 – volume: 24 start-page: 381 year: 1981 ident: ref_42 article-title: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography publication-title: Commun. ACM doi: 10.1145/358669.358692 |
SSID | ssj0000331904 |
Score | 2.3674169 |
Snippet | The registration of optical and SAR images has always been a challenging task due to the different imaging mechanisms of the corresponding sensors. To mitigate... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3528 |
SubjectTerms | Algorithms Artificial intelligence Comparative analysis data collection Deep learning image analysis image generation strategy Image processing Image registration Methods Neural networks Outliers (statistics) pseudo-SAR Radar imaging Registration Remote sensing Synthetic aperture radar Technology application |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF1gQTxEoKAgkxBA1iR27GVtEVZCAqlCpm-VXYYC26mPov-fOSR8DiIUtSm5w7uK774vt7wi5NikquFAVJZqziA20gjkXx5G1Inc5YAjB8HDy0zNv99hjP-tvtPrCPWGFPHDhuFo8SIGk5cIwZ5kWXMWptoJlxgJ5M3WffaHmbZApn4MpfFoxK_RIKfD62mSaeGyAbdc3KpAX6v8tHfsa09ojuyU4DBvFoPbJlhsekO2yT_nH4pB0Xsb-33MI_D98bXTDhy_IB2HXva_0b8Mm1CUbwkVn6uZ2FK3NColpb1SK0i6OSK91_3bXjsqeCJFhlM4ilqaCM50KlyaOURsL7nCxVVGrnAWknMSaK5UA93Rc1QdQzgFjKaOBVg10rOkxqQxHQ3dCQmqMdVDBXMbrzORUW_CPy1EsOMsyagJyu_STNKVgOPat-JRAHNCncu3TgFytbMeFTMaPVk1098oCpa39DQi4LAMu_wp4QG4wWBInIAzHqPIcAbwUSlnJhshyAD3AfAJSXcZTljNzKqEcA6JF2BSQy9VjmFO4UKKGbjSfSgqZjXFU2j_9jxGfkR1sUl9s8q2Symwyd-cAZWb6wn-131lJ7Yw priority: 102 providerName: Directory of Open Access Journals |
Title | Optical and SAR Image Registration Based on Pseudo-SAR Image Generation Strategy |
URI | https://www.proquest.com/docview/2843104317 https://www.proquest.com/docview/3040463788 https://doaj.org/article/0f288897c4ed4b76a02bd745cd788c82 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R5gAXxFMYSmQEEuJgde1dr-0TSqChIFqilEq9rfaV9gB2iJND_z0z9sbhANwse2TZszuPb3b3G4A3NiMGF66T1EiRiKXRaHOMJc4Vla8whygEHU4-O5enl-LLVX4VCm5t2Fa584mdo3aNpRr5MbpRzEQo3L1f_UqoaxStroYWGgcwQhdcIvgaTU_O54uhysI4TjEmel5Sjvj-eN2mXY5A7df_iEQdYf-_3HIXa2YP4H5IEuNJP6oP4Y6vH8Hd0K_85vYxzL-tuhp0rGsXX0wW8eef6Bfihb8eeHDjKcYnF-PFvPVb1yR7sZ5quhMK5LS3T-BydvL9w2kSeiMkVnC-SUSWFVKYrPBZ6gV3rJCeFl01d9o7zJhTZqTWKWJQL3W5xLCOuZa2BuHV0jDDn8Jh3dT-GcTcWucxkvlclsJW3DjUj6-INDjPc24jeLfTk7KBOJz6V_xQCCBIp2qv0wheD7Krni7jr1JTUvcgQRTX3Y1mfa2CxSi2zBCdV4UV3glTSM0y4wqRW4eo3ZZZBG9psBQZIn6O1eE8Af4UUVqpSZFXmPwgAorgaDeeKlhoq_bzKYJXw2O0LVow0bVvtq3i6OGEJMb95_9_xQu4R23o-228R3C4WW_9S0xWNmYMB-Xs0xhGk49nXy_GYX6OO-j_Gw9N6ew |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigXxFMY2mIECHGwau-uXwdUpUBI6IOqtFJv232lPRQ7xImq_Cl-IzN-hQNw682yRyt7dh7f7Hq_AXhjGDG4cBVEOhGBmGiFPheGgbVp7nLEEKmgw8mHR8noTHw9j8_X4Fd3FoZ-q-xiYh2obWlojXwHwygiEUp3u9OfAXWNot3VroVGYxb7bnmDJVv1YfwJ5_ctY8PPpx9HQdtVIDCC83kgGEsToVnqWOQEt1jIO9quVNwqZxFrRqFOlIqwenOJyiaYEBGlKKOxMJnoUHMc9w7cxbFy8qhs-KVf0wk5GnQoGhZUfB7uzKqoRiTU7P2PvFe3B_hXEqgz2_AB3G8hqT9obOghrLniEWy03dGvlo_h-Nu0XvH2VWH974MTf_wDo5B_4i571l1_D7Oh9fHiuHILWwYrsYbYuhZqqXCXT-DsVnT2FNaLsnDPwOfGWId508VJJkzOtUX9uJwoiuM45saD952epGlpyqlbxrXEcoV0Klc69eB1LzttyDn-KrVH6u4liFC7vlHOLmXrnzKcsCzL8tQIZ4VOExUybVMRG5tmmcmYB-9osiS5Pb6OUe3pBfwoItCSgzTOEWphveXBZjefso0HlVxZrwev-sfoybQ9owpXLirJMZ6KhPj9n_9_iJewMTo9PJAH46P9F3CPIexqfiDehPX5bOG2ECbN9XZtmz5c3LYz_AY52yD2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdwKWAECHGwst5dvw4IJbRRQyFEgUq9LftyORQ7xIlQ_hq_jlm_wgG49WbZI8uencc3-_gG4IWmjsGFySBUMQ94riT6HCGBMUlmM8QQCXeHkz_O4pMz_v48Ot-DX91ZGLetsouJdaA2pXZz5EMMo4hEXLob5u22iPnR5O3yR-A6SLmV1q6dRmMip3b7E8u36s30CMf6JaWT4y_vToK2w0CgOWPrgFOaxFzRxNLQcmawqLdu6VIyI61B3BkSFUsZYiVnY5nmmBwRsUitsEjJFVEM33sN9hOsisgA9sfHs_min-EhDM2b8IYTlbGMDFdVWOMT1_r9jyxYNwv4V0qo89zkNtxqAao_aizqDuzZ4i7caHulf9veg_mnZT3_7cvC-J9HC3_6HWOSv7AXPQevP8bcaHy8mFd2Y8pgJ9bQXNdCLTHu9j6cXYnWHsCgKAv7EHymtbGYRW0Up1xnTBnUj80cYXEURUx78LrTk9AtabnrnXEpsHhxOhU7nXrwvJddNlQdf5UaO3X3Eo5eu75Rri5E662C5DRN0yzR3BquklgSqkzCI22SNNUp9eCVGyzhggB-jpbtWQb8KUenJUZJlCHwwurLg8NuPEUbHSqxs2UPnvWP0a_dYo0sbLmpBMPoymPH9n_w_1c8hevoCOLDdHb6CG5SxGDNbuJDGKxXG_sYMdNaPWmN04evV-0PvwGcOiaI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+and+SAR+Image+Registration+Based+on+Pseudo-SAR+Image+Generation+Strategy&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Hu%2C+Canbin&rft.au=Zhu%2C+Runze&rft.au=Sun%2C+Xiaokun&rft.au=Li%2C+Xinwei&rft.date=2023-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=14&rft_id=info:doi/10.3390%2Frs15143528&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |