Offshore Hydrocarbon Exploitation Target Extraction Based on Time-Series Night Light Remote Sensing Images and Machine Learning Models: A Comparison of Six Machine Learning Algorithms and Their Multi-Feature Importance
The continuous acquisition of spatial distribution information for offshore hydrocarbon exploitation (OHE) targets is crucial for the research of marine carbon emission activities. The methodological framework based on time-series night light remote sensing images with a feature increment strategy c...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 7; p. 1843 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The continuous acquisition of spatial distribution information for offshore hydrocarbon exploitation (OHE) targets is crucial for the research of marine carbon emission activities. The methodological framework based on time-series night light remote sensing images with a feature increment strategy coupled with machine learning models has become one of the most novel techniques for OHE target extraction in recent years. Its performance is mainly influenced by machine learning models, target features, and regional differences. However, there is still a lack of internal comparative studies on the different influencing factors in this framework. Therefore, based on this framework, we selected four different typical experimental regions within the hydrocarbon basins in the South China Sea to validate the extraction performance of six machine learning models (the classification and regression tree (CART), random forest (RF), artificial neural networks (ANN), support vector machine (SVM), Mahalanobis distance (MaD), and maximum likelihood classification (MLC)) using time-series VIIRS night light remote sensing images. On this basis, the influence of the regional differences and the importance of the multi-features were evaluated and analyzed. The results showed that (1) the RF model performed the best, with an average accuracy of 90.74%, which was much higher than the ANN, CART, SVM, MLC, and MaD. (2) The OHE targets with a lower light radiant intensity as well as a closer spatial location were the main subjects of the omission extraction, while the incorrect extractions were mostly caused by the intensive ship activities. (3) The coefficient of variation was the most important feature that affected the accuracy of the OHE target extraction, with a contribution rate of 26%. This was different from the commonly believed frequency feature in the existing research. In the context of global warming, this study can provide a valuable information reference for studies on OHE target extraction, carbon emission activity monitoring, and carbon emission dynamic assessment. |
---|---|
AbstractList | The continuous acquisition of spatial distribution information for offshore hydrocarbon exploitation (OHE) targets is crucial for the research of marine carbon emission activities. The methodological framework based on time-series night light remote sensing images with a feature increment strategy coupled with machine learning models has become one of the most novel techniques for OHE target extraction in recent years. Its performance is mainly influenced by machine learning models, target features, and regional differences. However, there is still a lack of internal comparative studies on the different influencing factors in this framework. Therefore, based on this framework, we selected four different typical experimental regions within the hydrocarbon basins in the South China Sea to validate the extraction performance of six machine learning models (the classification and regression tree (CART), random forest (RF), artificial neural networks (ANN), support vector machine (SVM), Mahalanobis distance (MaD), and maximum likelihood classification (MLC)) using time-series VIIRS night light remote sensing images. On this basis, the influence of the regional differences and the importance of the multi-features were evaluated and analyzed. The results showed that (1) the RF model performed the best, with an average accuracy of 90.74%, which was much higher than the ANN, CART, SVM, MLC, and MaD. (2) The OHE targets with a lower light radiant intensity as well as a closer spatial location were the main subjects of the omission extraction, while the incorrect extractions were mostly caused by the intensive ship activities. (3) The coefficient of variation was the most important feature that affected the accuracy of the OHE target extraction, with a contribution rate of 26%. This was different from the commonly believed frequency feature in the existing research. In the context of global warming, this study can provide a valuable information reference for studies on OHE target extraction, carbon emission activity monitoring, and carbon emission dynamic assessment. |
Audience | Academic |
Author | Wang, Qi Wu, Wenzhou Liu, Na Ma, Rui Chang, Yutong |
Author_xml | – sequence: 1 givenname: Rui surname: Ma fullname: Ma, Rui – sequence: 2 givenname: Wenzhou surname: Wu fullname: Wu, Wenzhou – sequence: 3 givenname: Qi surname: Wang fullname: Wang, Qi – sequence: 4 givenname: Na surname: Liu fullname: Liu, Na – sequence: 5 givenname: Yutong surname: Chang fullname: Chang, Yutong |
BookMark | eNptUl1r2zAUNaODdV1f9gsEexkDd5IlxfbestCugWSFJXsW1_aVo2BLmaRA-1f3a6YkHS3ddEEf955z9HXeZmfWWcyy94xecV7Tzz4wSUtWCf4qOy9oWeSiqIuzZ_M32WUIW5oa56ym4jz7fad12DiP5Pah864F3zhLru93gzMRokmLNfgeY8pFD-0x8xUCduRQMiPmK_QGA_lu-k0ki2P_A0cXkazQBmN7Mh-hTwiwHVlCuzEWyQLB20Nt6TocwhcyJTM37sCbkHSdJitz_y94OvTOm7gZT2LrDRpPlvshmvwGIe7TNebjzvkItsV32WsNQ8DLx_Ei-3lzvZ7d5ou7b_PZdJG3gvOYCypYAQ1UQsuSNUILgSVnQjMmSt51Emo9QS31BCoui0bSouoq2jWsgVJ2lF9k85Nu52Crdt6M4B-UA6OOCed7BT6adkBVybrSNWdNA0xwSkGzitMJlxOhmwnUSevjSWvn3a89hqhGE1ocBrDo9kFxmo5bpKgS9MML6NbtvU03VUVZ16WoRcET6uqE6iHtb6x2h19M0eFo2uQfbVJ-WkoqWbJEmQj0RGi9C8GjVu2jERLRDIpRdTCbejJbonx6Qfn7CP8B_wFrm9e3 |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_172325 crossref_primary_10_1080_17538947_2024_2441932 |
Cites_doi | 10.1080/07038992.2001.10854879 10.1109/ICMLA.2018.00148 10.1029/95WR01955 10.1016/j.isprsjprs.2010.08.003 10.1016/j.strusafe.2014.09.002 10.3390/rs13081576 10.3390/en20300595 10.1016/S0169-7439(99)00047-7 10.3390/rs14071729 10.1016/j.rse.2015.01.010 10.1080/15567030701225260 10.1016/j.rse.2014.11.018 10.1016/j.rse.2016.02.034 10.1117/1.JRS.7.073537 10.3390/rs13050946 10.1080/01431169608949069 10.1007/978-1-4757-2440-0 10.1016/j.rse.2015.12.047 10.1021/acs.estlett.2c00225 10.1016/j.ocecoaman.2019.104942 10.3390/en9010014 10.1007/s10346-015-0614-1 10.1038/srep33623 10.1016/j.energy.2019.06.164 10.1023/A:1010933404324 10.1109/LGRS.2019.2894845 10.1016/j.isprsjprs.2020.05.019 10.1007/978-1-4899-7687-1 10.1016/j.aqpro.2015.02.236 10.3390/rs8100835 10.1109/TGRS.2008.2002881 10.3390/rs9030270 10.1016/j.marpetgeo.2014.01.009 10.1109/TBME.2004.826698 10.1016/j.rse.2017.01.005 10.1038/nature08017 10.1016/j.catena.2016.11.032 10.3390/s19020231 10.1016/j.egyr.2022.01.167 10.1016/j.rse.2019.01.002 10.1080/01431161.2013.879351 10.1016/j.patrec.2005.08.011 10.1080/17445647.2020.1762773 10.3390/rs5094423 10.1016/j.enpol.2022.113128 10.3390/rs10010031 10.1016/j.earscirev.2010.09.010 10.1016/j.rse.2017.10.019 10.1016/j.isprsjprs.2011.11.002 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15071843 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_8598f931bba14300af183063564fb6a9 A750513197 10_3390_rs15071843 |
GeographicLocations | South China Sea |
GeographicLocations_xml | – name: South China Sea |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-40412aba84f571b4f44e7314f11473dd5a9f6ef5f6a8352b5028d80db1ba75d03 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:21:02 EDT 2025 Fri Jul 11 15:33:46 EDT 2025 Fri Jul 25 11:55:46 EDT 2025 Tue Jun 10 20:57:16 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 Tue Jul 01 03:11:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-40412aba84f571b4f44e7314f11473dd5a9f6ef5f6a8352b5028d80db1ba75d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2799749423?pq-origsite=%requestingapplication% |
PQID | 2799749423 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8598f931bba14300af183063564fb6a9 proquest_miscellaneous_3040424248 proquest_journals_2799749423 gale_infotracacademiconefile_A750513197 crossref_citationtrail_10_3390_rs15071843 crossref_primary_10_3390_rs15071843 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Guo (ref_32) 2021; 37 Otukei (ref_47) 2010; 12 Sun (ref_59) 2020; 165 ref_14 ref_58 Liu (ref_17) 2016; 6 ref_11 Wenzhao (ref_30) 2021; 42 ref_53 ref_52 ref_15 Morley (ref_33) 2011; 104 Nguyen (ref_10) 2019; 185 Tulbure (ref_57) 2016; 178 Chojaczyk (ref_45) 2015; 52 Kaper (ref_40) 2004; 51 ref_25 Wackerman (ref_36) 2001; 27 ref_23 Ghimire (ref_54) 2012; 67 ref_21 Salman (ref_2) 2022; 168 Gislason (ref_55) 2006; 27 Qi (ref_43) 2004; 30 Gorrono (ref_7) 2022; 9 Cullen (ref_31) 2014; 58 Breiman (ref_39) 2001; 45 Liu (ref_20) 2016; 175 Meinshausen (ref_1) 2009; 458 Liu (ref_16) 2019; 222 Lee (ref_35) 2009; 47 Falqueto (ref_13) 2019; 16 Massart (ref_46) 2000; 50 Cheng (ref_12) 2013; 7 Lu (ref_27) 2020; 16 Anejionu (ref_22) 2015; 158 Watson (ref_9) 2020; 185 Yu (ref_56) 2011; 66 Youssef (ref_51) 2016; 13 Oliva (ref_24) 2015; 160 Elvidge (ref_28) 2013; 5 Liu (ref_29) 2018; 204 Elvidge (ref_26) 2009; 2 Xing (ref_18) 2015; 3 Hansen (ref_37) 1996; 17 ref_42 ref_41 Xue (ref_3) 2022; 8 Chen (ref_50) 2017; 151 Anejionu (ref_19) 2014; 35 Liaw (ref_38) 2002; 2 ref_49 ref_48 ref_8 Bennett (ref_34) 2017; 192 Balat (ref_4) 2007; 29 ref_5 ref_6 Hsu (ref_44) 1995; 31 |
References_xml | – volume: 27 start-page: 371 year: 2001 ident: ref_36 article-title: Automatic Detection of Ships in RADARSAT-1 SAR Imagery publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2001.10854879 – ident: ref_5 – volume: 2 start-page: 5 year: 2002 ident: ref_38 article-title: Classification and Regression by RandomForest publication-title: R News – ident: ref_48 doi: 10.1109/ICMLA.2018.00148 – volume: 31 start-page: 2517 year: 1995 ident: ref_44 article-title: Artificial Neural Network Modeling of the Rainfall-Runoff Process publication-title: Water Resour. Res. doi: 10.1029/95WR01955 – volume: 12 start-page: S27 year: 2010 ident: ref_47 article-title: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 66 start-page: 28 year: 2011 ident: ref_56 article-title: Predicting individual tree attributes from airborne laser point clouds based on the random forests technique publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.08.003 – volume: 52 start-page: 78 year: 2015 ident: ref_45 article-title: Review and application of Artificial Neural Networks models in reliability analysis of steel structures publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2014.09.002 – ident: ref_42 – ident: ref_21 doi: 10.3390/rs13081576 – volume: 2 start-page: 595 year: 2009 ident: ref_26 article-title: A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data publication-title: Energies doi: 10.3390/en20300595 – volume: 50 start-page: 1 year: 2000 ident: ref_46 article-title: The Mahalanobis distance publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(99)00047-7 – ident: ref_14 doi: 10.3390/rs14071729 – volume: 160 start-page: 144 year: 2015 ident: ref_24 article-title: Assessment of VIIRS 375m active fire detection product for direct burned area mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.010 – ident: ref_8 – volume: 29 start-page: 581 year: 2007 ident: ref_4 article-title: Influence of coal as an energy source on environmental pollution publication-title: Energy Sources Part A doi: 10.1080/15567030701225260 – volume: 158 start-page: 81 year: 2015 ident: ref_22 article-title: Detecting gas flares and estimating flaring volumes at individual flow stations using MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.018 – volume: 42 start-page: 346 year: 2021 ident: ref_30 article-title: Petroleum Exploration History and Enlightenment in Pearl River Mouth Basin publication-title: Xinjiang Pet. Geol. – volume: 178 start-page: 142 year: 2016 ident: ref_57 article-title: Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.034 – volume: 7 start-page: 73537 year: 2013 ident: ref_12 article-title: Invariant triangle-based stationary oil platform detection from multitemporal synthetic aperture radar data publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.7.073537 – ident: ref_23 doi: 10.3390/rs13050946 – volume: 17 start-page: 1075 year: 1996 ident: ref_37 article-title: Classification trees: An alternative to traditional land cover classifiers publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608949069 – ident: ref_41 doi: 10.1007/978-1-4757-2440-0 – volume: 175 start-page: 73 year: 2016 ident: ref_20 article-title: Automatic extraction of offshore platforms using time-series Landsat-8 Operational Land Imager data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.047 – volume: 9 start-page: 520 year: 2022 ident: ref_7 article-title: Satellites Detect a Methane Ultra-emission Event from an Offshore Platform in the Gulf of Mexico publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.2c00225 – volume: 185 start-page: 104942 year: 2020 ident: ref_9 article-title: Greenhouse gas emissions from offshore oil and gas activities—Relevance of the Paris Agreement, Law of the Sea, and Regional Seas Programmes publication-title: Ocean Coast. Manag. doi: 10.1016/j.ocecoaman.2019.104942 – ident: ref_25 doi: 10.3390/en9010014 – volume: 30 start-page: 6 year: 2004 ident: ref_43 article-title: Support Vector Machines and Application Research Overview publication-title: Comput. Eng. – volume: 13 start-page: 839 year: 2016 ident: ref_51 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides doi: 10.1007/s10346-015-0614-1 – volume: 6 start-page: 33623 year: 2016 ident: ref_17 article-title: Satellite data lift the veil on offshore platforms in the South China Sea publication-title: Sci. Rep. doi: 10.1038/srep33623 – volume: 185 start-page: 158 year: 2019 ident: ref_10 article-title: A novel methodology for the design and optimisation of oil and gas offshore platforms publication-title: Energy doi: 10.1016/j.energy.2019.06.164 – ident: ref_11 – volume: 45 start-page: 5 year: 2001 ident: ref_39 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 16 start-page: 1329 year: 2019 ident: ref_13 article-title: Oil Rig Recognition Using Convolutional Neural Network on Sentinel-1 SAR Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2894845 – volume: 165 start-page: 152 year: 2020 ident: ref_59 article-title: Estimating offshore oil production using DMSP-OLS annual composites publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.05.019 – ident: ref_49 doi: 10.1007/978-1-4899-7687-1 – volume: 3 start-page: 127 year: 2015 ident: ref_18 article-title: Remote Sensing of Ships and Offshore Oil Platforms and Mapping the Marine Oil Spill Risk Source in the Bohai Sea publication-title: Aquat. Procedia doi: 10.1016/j.aqpro.2015.02.236 – ident: ref_52 doi: 10.3390/rs8100835 – volume: 47 start-page: 202 year: 2009 ident: ref_35 article-title: Improved Sigma Filter for Speckle Filtering of SAR Imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2002881 – ident: ref_58 doi: 10.3390/rs9030270 – ident: ref_6 – volume: 58 start-page: 674 year: 2014 ident: ref_31 article-title: Reprint of: Nature and significance of the West Baram and Tinjar Lines, NW Borneo publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2014.01.009 – volume: 51 start-page: 1073 year: 2004 ident: ref_40 article-title: BCI competition 2003-data set IIb: Support vector machines for the P300 speller paradigm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826698 – volume: 192 start-page: 176 year: 2017 ident: ref_34 article-title: Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.01.005 – volume: 458 start-page: 1158 year: 2009 ident: ref_1 article-title: Greenhouse-gas emission targets for limiting global warming to 2 °C publication-title: Nature doi: 10.1038/nature08017 – volume: 37 start-page: 1 year: 2021 ident: ref_32 article-title: Difference Analysis of Hydrocarbon Generation in the Southern Part of the Western Continental Margin of the South China Sea publication-title: Mar. Geo. Front. – volume: 151 start-page: 147 year: 2017 ident: ref_50 article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility publication-title: Catena doi: 10.1016/j.catena.2016.11.032 – ident: ref_15 doi: 10.3390/s19020231 – volume: 8 start-page: 304 year: 2022 ident: ref_3 article-title: Research on distributed streaming parallel computing of large scale wind DFIGs from the perspective of Ecological Marxism publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.01.167 – volume: 222 start-page: 244 year: 2019 ident: ref_16 article-title: Geometric accuracy of remote sensing images over oceans: The use of global offshore platforms publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.002 – volume: 35 start-page: 1900 year: 2014 ident: ref_19 article-title: Satellite survey of gas flares: Development and application of a Landsat-based technique in the Niger Delta publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.879351 – volume: 27 start-page: 294 year: 2006 ident: ref_55 article-title: Random Forests for land cover classification publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.08.011 – volume: 16 start-page: 396 year: 2020 ident: ref_27 article-title: Global proliferation of offshore gas flaring areas publication-title: J. Maps doi: 10.1080/17445647.2020.1762773 – volume: 5 start-page: 4423 year: 2013 ident: ref_28 article-title: VIIRS Nightfire: Satellite Pyrometry at Night publication-title: Remote Sens. doi: 10.3390/rs5094423 – volume: 168 start-page: 113128 year: 2022 ident: ref_2 article-title: Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design publication-title: Energy Policy doi: 10.1016/j.enpol.2022.113128 – ident: ref_53 doi: 10.3390/rs10010031 – volume: 104 start-page: 41 year: 2011 ident: ref_33 article-title: Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: A review publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2010.09.010 – volume: 204 start-page: 347 year: 2018 ident: ref_29 article-title: Identifying industrial heat sources using time-series of the VIIRS Nightfire product with an object-oriented approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.019 – volume: 67 start-page: 93 year: 2012 ident: ref_54 article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.11.002 |
SSID | ssj0000331904 |
Score | 2.3479636 |
Snippet | The continuous acquisition of spatial distribution information for offshore hydrocarbon exploitation (OHE) targets is crucial for the research of marine carbon... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1843 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Carbon Classification Climate change Coefficient of variation Comparative analysis Comparative studies Data mining Emission analysis Emissions Emissions (Pollution) Exploitation feature evaluation feature increment strategy Global warming Greenhouse gases Hydrocarbons Learning algorithms Light light intensity Luminous intensity Machine learning machine learning model Natural gas Natural gas reserves Neural networks Night night light remote sensing images Ocean basins offshore hydrocarbon exploitation targets Radiation Regression analysis Remote sensing South China Sea Spatial distribution Statistical analysis Support vector machines Time series time series analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF6kL_oi_sSzVUYUxIfQJLubZH27FstVbAV7hb4tu8nu3cFdIkkO7L_qX-PMJj0rKr74kodkCUnmy8w3ycw3jL1xXlVlqlyU5iaNhCtVZGTpozzNSgRYlXFL_c5n59nsUny8kle3Rn1RTdggDzw8uMNCqsIrnlhrMLTHsfEIwphU1YS3mQmtexjzbiVTwQdzhFYsBj1Sjnn9YdsF6lMI_ksECkL9f3PHIcacPGD3R3II0-GiHrI7rn7E7o5zypfXj9n3z953y6Z1MLuuMPSY1jY1hDq6UWsb5qG0G_f17dCzAEcYqCqgQ6uNi-hzmOvgnJJy-BS2Xxzay8EF1bLXCzjdoI_pwNQVnIVSSwejCusCaHTaunsPUzjeDTCExsPF6tvvi6frRdOu-uVmONmc_klA6PiNiHlu8TZON4H_I_KesMuTD_PjWTROZ4hKwXmPiadIUmNNIbzMEyu8EC7nifCYYeW8qqRRPnNe-swQy7MSmUxVxJVNrMllFfOnbK9uaveMgVVeIc0RaeqcwIzUepGXHJkDV144JSfs3Y3FdDk-TpqgsdaYwpB19U_rTtjr3dqvg2DHH1cdkeF3K0hkO-xA6OkRevpf0JuwtwQbTa6AbGrGjga8KRLV0lNkYzJBIOYTdnCDLD36iE6nucJkTiGfnbBXu8P4dtMvG1O7Zttpjj5WUAdP8fx_XPE-u5ciSRsqjw7YXt9u3QskVb19Gd6fH_m8IK8 priority: 102 providerName: Directory of Open Access Journals |
Title | Offshore Hydrocarbon Exploitation Target Extraction Based on Time-Series Night Light Remote Sensing Images and Machine Learning Models: A Comparison of Six Machine Learning Algorithms and Their Multi-Feature Importance |
URI | https://www.proquest.com/docview/2799749423 https://www.proquest.com/docview/3040424248 https://doaj.org/article/8598f931bba14300af183063564fb6a9 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R5gAXVF4ipUSLQEIcrNre9WO5oKQ0pKgJqEml3qxdezeplNitnUj0r_JrmFlvUiEeFx_slSV7Zr_5ZnYehLzTRhR5KLQXJjL0uM6FJ6PceEkY56BgRcwU1juPJ_Hokn-9iq5cwK1xaZVbTLRAXVQ5xsiPw0QA9RVg_T_d3Ho4NQpPV90IjT3SAQhOwfnqDE4n3y92URafgYr5vO1LysC_P64bS4FSzn6zRLZh_79g2dqa4QF57Egi7bdSfUIe6PIpeejmlS_unpGf34xpFlWt6eiuABMka1WV1ObTuZ7bdGZTvOHeum5rF-gADFZB8dH1SnsYFtMNnaBzTs_t9UKD3DSdYk57OadnK8CahsqyoGObcqmp68Y6pzhCbdl8pH16shtkSCtDp9c__lzcX87hT64Xq_ZlMzyboLby10MGuoHPOFtZPwA08Dm5HJ7OTkaem9Lg5ZyxNTigPAilkik3URIobjjXCQu4AU8rYUURSWFibSITS2R7KgJGU6R-oQIlk6jw2QuyX1alfkmoEkYA3eFhqDUHz1QZnuQMGAQThmsRdcmHrcSy3P1OnKSxzMCVQelm99Ltkre7tTdt446_rhqg4HcrsNm2vVHV88zt3SyNRGoEC5SSwC59XxrAQR8b-3GjYim65D2qTYaQgDKVrrIBPgqba2V9YGVRAIqYdMnRVrMyhxVNdq_ZXfJm9xh2OR7dyFJXmyZjgLUcK3nSw_-_4hV5FAINa3OLjsj-ut7o10Cb1qpH9tLhlx7p9D-Pz6c9t1N6NgjxC0bzHik |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeBgviKsoDDAChHiIlsTOxUgIdYPSsnZIrJP2ltmx3U5qk5G0gv4pfhC_hnOctBPi8raXPMSWpeR8Puc79rkQ8sJYofNQGC9MZOhxkwtPRrn1kjDOAWA6ZgrznUdHcf-EfzqNTrfIj3UuDIZVrnWiU9S6zPGMfC9MBFBfAdb_3cVXD7tG4e3quoVGA4tDs_oGLlv9dvAe5PsyDHsfxgd9r-0q4OWcsQU4TDwIpZIpt1ESKG45NwkLuAXPIGFaR1LY2NjIxhLZiYrAAuvU1ypQMom0z2Dda-Q6rCVwR6W9j5szHZ8BoH3eVEGFcX-vqh3hSjn7ze659gD_MgLOsvVukZstJaXdBkO3yZYp7pCdtjv6dHWX_PxsbT0tK0P7Kw0GT1aqLKiL3msrfNOxCyiHd4uqyZSg-2AeNcWh87nx8BDO1PQIjwLo0D2_GECJoccYQV9M6GAOmq2mstB05AI8DW1rv04oNmyb1W9olx5s2ibS0tLj8-9_Tu7OJiC3xXTeLDbGmxDq8ow95LtL-IzB3HkdgPd75ORKpHefbBdlYR4QqoQVQK54GBrDwQ9Wlic5A77ChOVGRB3yei2xLG9_J_btmGXgOKF0s0vpdsjzzdyLpkzIX2fto-A3M7C0t3tRVpOs1RRZGonUChYoJYHL-r60oHV9LCPIrYql6JBXCJsMFRDKVLZ5FPBRWMor6wIHjAIAYtIhu2tkZa1mqrPLfdQhzzbDoFPwokgWplzWGQPNzjFvKH34_yWekp3-eDTMhoOjw0fkRggEsIlq2iXbi2ppHgNhW6gnbpdQcnbV2_IXaIdVfA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwEviKsoDDAChHiImsTOxUgItduqlm1l2jppb8FO7HZSm4ykFfSv8VP4NZzjpJ0Ql7e95MGxLCXn-Dvfsc-FkNfaiCz1hXb8SPoO16lwZJAaJ_LDFBQsC5nCfOejUTg445_Og_Mt8mOdC4NhlWtMtECdFSmekXf8SAD1FWD9O6YJizje63-8_OpgBym8aV2306hV5ECvvoH7Vn0Y7oGs3_h-f3-8O3CaDgNOyhlbgPPEPV8qGXMTRJ7ihnMdMY8b8BIilmWBFCbUJjChRKaiArDGWexmylMyCjKXwbo3yHYEXpHbItu9_dHxyeaEx2Wg3i6va6IyJtxOWVn6FXP2mxW0zQL-ZRKsnevfJXcagkq7tUbdI1s6v09uNb3Sp6sH5OdnY6ppUWo6WGVg_mSpipzaWL6m3jcd2_ByGFuUdd4E7YGxzCi-uphrB4_kdEVHeDBAD-3zRIPOaHqK8fT5hA7ngHMVlXlGj2y4p6ZNJdgJxfZts-o97dLdTRNFWhh6evH9z8nd2QQkt5jO68XGeC9Cbdaxg-x3CZ8xnFsfBLT_ITm7Fvk9Iq28yPVjQpUwAqgW932tOXjFyvAoZcBemDBci6BN3q0llqTN78QuHrME3CiUbnIl3TZ5tZl7WRcN-eusHgp-MwMLfduBopwkDW4kcSBiI5inlARm67rSAAa7WFSQGxVK0SZvUW0ShCOUqWyyKuCjsLBX0gVGGHigiFGb7Kw1K2lwqkqudlWbvNy8BoTBayOZ62JZJQxwnmMWUfzk_0u8IDdhSyaHw9HBU3LbBzZYhzjtkNaiXOpnwN4W6nmzTSj5ct078xfgHlsO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Offshore+Hydrocarbon+Exploitation+Target+Extraction+Based+on+Time-Series+Night+Light+Remote+Sensing+Images+and+Machine+Learning+Models%3A+A+Comparison+of+Six+Machine+Learning+Algorithms+and+Their+Multi-Feature+Importance&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ma%2C+Rui&rft.au=Wu%2C+Wenzhou&rft.au=Wang%2C+Qi&rft.au=Liu%2C+Na&rft.date=2023-04-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=7&rft.spage=1843&rft_id=info:doi/10.3390%2Frs15071843&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15071843 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |