Offshore Hydrocarbon Exploitation Target Extraction Based on Time-Series Night Light Remote Sensing Images and Machine Learning Models: A Comparison of Six Machine Learning Algorithms and Their Multi-Feature Importance

The continuous acquisition of spatial distribution information for offshore hydrocarbon exploitation (OHE) targets is crucial for the research of marine carbon emission activities. The methodological framework based on time-series night light remote sensing images with a feature increment strategy c...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 7; p. 1843
Main Authors Ma, Rui, Wu, Wenzhou, Wang, Qi, Liu, Na, Chang, Yutong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The continuous acquisition of spatial distribution information for offshore hydrocarbon exploitation (OHE) targets is crucial for the research of marine carbon emission activities. The methodological framework based on time-series night light remote sensing images with a feature increment strategy coupled with machine learning models has become one of the most novel techniques for OHE target extraction in recent years. Its performance is mainly influenced by machine learning models, target features, and regional differences. However, there is still a lack of internal comparative studies on the different influencing factors in this framework. Therefore, based on this framework, we selected four different typical experimental regions within the hydrocarbon basins in the South China Sea to validate the extraction performance of six machine learning models (the classification and regression tree (CART), random forest (RF), artificial neural networks (ANN), support vector machine (SVM), Mahalanobis distance (MaD), and maximum likelihood classification (MLC)) using time-series VIIRS night light remote sensing images. On this basis, the influence of the regional differences and the importance of the multi-features were evaluated and analyzed. The results showed that (1) the RF model performed the best, with an average accuracy of 90.74%, which was much higher than the ANN, CART, SVM, MLC, and MaD. (2) The OHE targets with a lower light radiant intensity as well as a closer spatial location were the main subjects of the omission extraction, while the incorrect extractions were mostly caused by the intensive ship activities. (3) The coefficient of variation was the most important feature that affected the accuracy of the OHE target extraction, with a contribution rate of 26%. This was different from the commonly believed frequency feature in the existing research. In the context of global warming, this study can provide a valuable information reference for studies on OHE target extraction, carbon emission activity monitoring, and carbon emission dynamic assessment.
AbstractList The continuous acquisition of spatial distribution information for offshore hydrocarbon exploitation (OHE) targets is crucial for the research of marine carbon emission activities. The methodological framework based on time-series night light remote sensing images with a feature increment strategy coupled with machine learning models has become one of the most novel techniques for OHE target extraction in recent years. Its performance is mainly influenced by machine learning models, target features, and regional differences. However, there is still a lack of internal comparative studies on the different influencing factors in this framework. Therefore, based on this framework, we selected four different typical experimental regions within the hydrocarbon basins in the South China Sea to validate the extraction performance of six machine learning models (the classification and regression tree (CART), random forest (RF), artificial neural networks (ANN), support vector machine (SVM), Mahalanobis distance (MaD), and maximum likelihood classification (MLC)) using time-series VIIRS night light remote sensing images. On this basis, the influence of the regional differences and the importance of the multi-features were evaluated and analyzed. The results showed that (1) the RF model performed the best, with an average accuracy of 90.74%, which was much higher than the ANN, CART, SVM, MLC, and MaD. (2) The OHE targets with a lower light radiant intensity as well as a closer spatial location were the main subjects of the omission extraction, while the incorrect extractions were mostly caused by the intensive ship activities. (3) The coefficient of variation was the most important feature that affected the accuracy of the OHE target extraction, with a contribution rate of 26%. This was different from the commonly believed frequency feature in the existing research. In the context of global warming, this study can provide a valuable information reference for studies on OHE target extraction, carbon emission activity monitoring, and carbon emission dynamic assessment.
Audience Academic
Author Wang, Qi
Wu, Wenzhou
Liu, Na
Ma, Rui
Chang, Yutong
Author_xml – sequence: 1
  givenname: Rui
  surname: Ma
  fullname: Ma, Rui
– sequence: 2
  givenname: Wenzhou
  surname: Wu
  fullname: Wu, Wenzhou
– sequence: 3
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
– sequence: 4
  givenname: Na
  surname: Liu
  fullname: Liu, Na
– sequence: 5
  givenname: Yutong
  surname: Chang
  fullname: Chang, Yutong
BookMark eNptUl1r2zAUNaODdV1f9gsEexkDd5IlxfbestCugWSFJXsW1_aVo2BLmaRA-1f3a6YkHS3ddEEf955z9HXeZmfWWcyy94xecV7Tzz4wSUtWCf4qOy9oWeSiqIuzZ_M32WUIW5oa56ym4jz7fad12DiP5Pah864F3zhLru93gzMRokmLNfgeY8pFD-0x8xUCduRQMiPmK_QGA_lu-k0ki2P_A0cXkazQBmN7Mh-hTwiwHVlCuzEWyQLB20Nt6TocwhcyJTM37sCbkHSdJitz_y94OvTOm7gZT2LrDRpPlvshmvwGIe7TNebjzvkItsV32WsNQ8DLx_Ei-3lzvZ7d5ou7b_PZdJG3gvOYCypYAQ1UQsuSNUILgSVnQjMmSt51Emo9QS31BCoui0bSouoq2jWsgVJ2lF9k85Nu52Crdt6M4B-UA6OOCed7BT6adkBVybrSNWdNA0xwSkGzitMJlxOhmwnUSevjSWvn3a89hqhGE1ocBrDo9kFxmo5bpKgS9MML6NbtvU03VUVZ16WoRcET6uqE6iHtb6x2h19M0eFo2uQfbVJ-WkoqWbJEmQj0RGi9C8GjVu2jERLRDIpRdTCbejJbonx6Qfn7CP8B_wFrm9e3
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_172325
crossref_primary_10_1080_17538947_2024_2441932
Cites_doi 10.1080/07038992.2001.10854879
10.1109/ICMLA.2018.00148
10.1029/95WR01955
10.1016/j.isprsjprs.2010.08.003
10.1016/j.strusafe.2014.09.002
10.3390/rs13081576
10.3390/en20300595
10.1016/S0169-7439(99)00047-7
10.3390/rs14071729
10.1016/j.rse.2015.01.010
10.1080/15567030701225260
10.1016/j.rse.2014.11.018
10.1016/j.rse.2016.02.034
10.1117/1.JRS.7.073537
10.3390/rs13050946
10.1080/01431169608949069
10.1007/978-1-4757-2440-0
10.1016/j.rse.2015.12.047
10.1021/acs.estlett.2c00225
10.1016/j.ocecoaman.2019.104942
10.3390/en9010014
10.1007/s10346-015-0614-1
10.1038/srep33623
10.1016/j.energy.2019.06.164
10.1023/A:1010933404324
10.1109/LGRS.2019.2894845
10.1016/j.isprsjprs.2020.05.019
10.1007/978-1-4899-7687-1
10.1016/j.aqpro.2015.02.236
10.3390/rs8100835
10.1109/TGRS.2008.2002881
10.3390/rs9030270
10.1016/j.marpetgeo.2014.01.009
10.1109/TBME.2004.826698
10.1016/j.rse.2017.01.005
10.1038/nature08017
10.1016/j.catena.2016.11.032
10.3390/s19020231
10.1016/j.egyr.2022.01.167
10.1016/j.rse.2019.01.002
10.1080/01431161.2013.879351
10.1016/j.patrec.2005.08.011
10.1080/17445647.2020.1762773
10.3390/rs5094423
10.1016/j.enpol.2022.113128
10.3390/rs10010031
10.1016/j.earscirev.2010.09.010
10.1016/j.rse.2017.10.019
10.1016/j.isprsjprs.2011.11.002
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15071843
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_8598f931bba14300af183063564fb6a9
A750513197
10_3390_rs15071843
GeographicLocations South China Sea
GeographicLocations_xml – name: South China Sea
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-40412aba84f571b4f44e7314f11473dd5a9f6ef5f6a8352b5028d80db1ba75d03
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:21:02 EDT 2025
Fri Jul 11 15:33:46 EDT 2025
Fri Jul 25 11:55:46 EDT 2025
Tue Jun 10 20:57:16 EDT 2025
Thu Apr 24 23:11:05 EDT 2025
Tue Jul 01 03:11:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-40412aba84f571b4f44e7314f11473dd5a9f6ef5f6a8352b5028d80db1ba75d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2799749423?pq-origsite=%requestingapplication%
PQID 2799749423
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_8598f931bba14300af183063564fb6a9
proquest_miscellaneous_3040424248
proquest_journals_2799749423
gale_infotracacademiconefile_A750513197
crossref_citationtrail_10_3390_rs15071843
crossref_primary_10_3390_rs15071843
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Guo (ref_32) 2021; 37
Otukei (ref_47) 2010; 12
Sun (ref_59) 2020; 165
ref_14
ref_58
Liu (ref_17) 2016; 6
ref_11
Wenzhao (ref_30) 2021; 42
ref_53
ref_52
ref_15
Morley (ref_33) 2011; 104
Nguyen (ref_10) 2019; 185
Tulbure (ref_57) 2016; 178
Chojaczyk (ref_45) 2015; 52
Kaper (ref_40) 2004; 51
ref_25
Wackerman (ref_36) 2001; 27
ref_23
Ghimire (ref_54) 2012; 67
ref_21
Salman (ref_2) 2022; 168
Gislason (ref_55) 2006; 27
Qi (ref_43) 2004; 30
Gorrono (ref_7) 2022; 9
Cullen (ref_31) 2014; 58
Breiman (ref_39) 2001; 45
Liu (ref_20) 2016; 175
Meinshausen (ref_1) 2009; 458
Liu (ref_16) 2019; 222
Lee (ref_35) 2009; 47
Falqueto (ref_13) 2019; 16
Massart (ref_46) 2000; 50
Cheng (ref_12) 2013; 7
Lu (ref_27) 2020; 16
Anejionu (ref_22) 2015; 158
Watson (ref_9) 2020; 185
Yu (ref_56) 2011; 66
Youssef (ref_51) 2016; 13
Oliva (ref_24) 2015; 160
Elvidge (ref_28) 2013; 5
Liu (ref_29) 2018; 204
Elvidge (ref_26) 2009; 2
Xing (ref_18) 2015; 3
Hansen (ref_37) 1996; 17
ref_42
ref_41
Xue (ref_3) 2022; 8
Chen (ref_50) 2017; 151
Anejionu (ref_19) 2014; 35
Liaw (ref_38) 2002; 2
ref_49
ref_48
ref_8
Bennett (ref_34) 2017; 192
Balat (ref_4) 2007; 29
ref_5
ref_6
Hsu (ref_44) 1995; 31
References_xml – volume: 27
  start-page: 371
  year: 2001
  ident: ref_36
  article-title: Automatic Detection of Ships in RADARSAT-1 SAR Imagery
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2001.10854879
– ident: ref_5
– volume: 2
  start-page: 5
  year: 2002
  ident: ref_38
  article-title: Classification and Regression by RandomForest
  publication-title: R News
– ident: ref_48
  doi: 10.1109/ICMLA.2018.00148
– volume: 31
  start-page: 2517
  year: 1995
  ident: ref_44
  article-title: Artificial Neural Network Modeling of the Rainfall-Runoff Process
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR01955
– volume: 12
  start-page: S27
  year: 2010
  ident: ref_47
  article-title: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 66
  start-page: 28
  year: 2011
  ident: ref_56
  article-title: Predicting individual tree attributes from airborne laser point clouds based on the random forests technique
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.08.003
– volume: 52
  start-page: 78
  year: 2015
  ident: ref_45
  article-title: Review and application of Artificial Neural Networks models in reliability analysis of steel structures
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.09.002
– ident: ref_42
– ident: ref_21
  doi: 10.3390/rs13081576
– volume: 2
  start-page: 595
  year: 2009
  ident: ref_26
  article-title: A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data
  publication-title: Energies
  doi: 10.3390/en20300595
– volume: 50
  start-page: 1
  year: 2000
  ident: ref_46
  article-title: The Mahalanobis distance
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(99)00047-7
– ident: ref_14
  doi: 10.3390/rs14071729
– volume: 160
  start-page: 144
  year: 2015
  ident: ref_24
  article-title: Assessment of VIIRS 375m active fire detection product for direct burned area mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.010
– ident: ref_8
– volume: 29
  start-page: 581
  year: 2007
  ident: ref_4
  article-title: Influence of coal as an energy source on environmental pollution
  publication-title: Energy Sources Part A
  doi: 10.1080/15567030701225260
– volume: 158
  start-page: 81
  year: 2015
  ident: ref_22
  article-title: Detecting gas flares and estimating flaring volumes at individual flow stations using MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.018
– volume: 42
  start-page: 346
  year: 2021
  ident: ref_30
  article-title: Petroleum Exploration History and Enlightenment in Pearl River Mouth Basin
  publication-title: Xinjiang Pet. Geol.
– volume: 178
  start-page: 142
  year: 2016
  ident: ref_57
  article-title: Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.034
– volume: 7
  start-page: 73537
  year: 2013
  ident: ref_12
  article-title: Invariant triangle-based stationary oil platform detection from multitemporal synthetic aperture radar data
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.7.073537
– ident: ref_23
  doi: 10.3390/rs13050946
– volume: 17
  start-page: 1075
  year: 1996
  ident: ref_37
  article-title: Classification trees: An alternative to traditional land cover classifiers
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608949069
– ident: ref_41
  doi: 10.1007/978-1-4757-2440-0
– volume: 175
  start-page: 73
  year: 2016
  ident: ref_20
  article-title: Automatic extraction of offshore platforms using time-series Landsat-8 Operational Land Imager data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.047
– volume: 9
  start-page: 520
  year: 2022
  ident: ref_7
  article-title: Satellites Detect a Methane Ultra-emission Event from an Offshore Platform in the Gulf of Mexico
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.2c00225
– volume: 185
  start-page: 104942
  year: 2020
  ident: ref_9
  article-title: Greenhouse gas emissions from offshore oil and gas activities—Relevance of the Paris Agreement, Law of the Sea, and Regional Seas Programmes
  publication-title: Ocean Coast. Manag.
  doi: 10.1016/j.ocecoaman.2019.104942
– ident: ref_25
  doi: 10.3390/en9010014
– volume: 30
  start-page: 6
  year: 2004
  ident: ref_43
  article-title: Support Vector Machines and Application Research Overview
  publication-title: Comput. Eng.
– volume: 13
  start-page: 839
  year: 2016
  ident: ref_51
  article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
  doi: 10.1007/s10346-015-0614-1
– volume: 6
  start-page: 33623
  year: 2016
  ident: ref_17
  article-title: Satellite data lift the veil on offshore platforms in the South China Sea
  publication-title: Sci. Rep.
  doi: 10.1038/srep33623
– volume: 185
  start-page: 158
  year: 2019
  ident: ref_10
  article-title: A novel methodology for the design and optimisation of oil and gas offshore platforms
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.164
– ident: ref_11
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_39
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 16
  start-page: 1329
  year: 2019
  ident: ref_13
  article-title: Oil Rig Recognition Using Convolutional Neural Network on Sentinel-1 SAR Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2894845
– volume: 165
  start-page: 152
  year: 2020
  ident: ref_59
  article-title: Estimating offshore oil production using DMSP-OLS annual composites
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.05.019
– ident: ref_49
  doi: 10.1007/978-1-4899-7687-1
– volume: 3
  start-page: 127
  year: 2015
  ident: ref_18
  article-title: Remote Sensing of Ships and Offshore Oil Platforms and Mapping the Marine Oil Spill Risk Source in the Bohai Sea
  publication-title: Aquat. Procedia
  doi: 10.1016/j.aqpro.2015.02.236
– ident: ref_52
  doi: 10.3390/rs8100835
– volume: 47
  start-page: 202
  year: 2009
  ident: ref_35
  article-title: Improved Sigma Filter for Speckle Filtering of SAR Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2002881
– ident: ref_58
  doi: 10.3390/rs9030270
– ident: ref_6
– volume: 58
  start-page: 674
  year: 2014
  ident: ref_31
  article-title: Reprint of: Nature and significance of the West Baram and Tinjar Lines, NW Borneo
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2014.01.009
– volume: 51
  start-page: 1073
  year: 2004
  ident: ref_40
  article-title: BCI competition 2003-data set IIb: Support vector machines for the P300 speller paradigm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826698
– volume: 192
  start-page: 176
  year: 2017
  ident: ref_34
  article-title: Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.005
– volume: 458
  start-page: 1158
  year: 2009
  ident: ref_1
  article-title: Greenhouse-gas emission targets for limiting global warming to 2 °C
  publication-title: Nature
  doi: 10.1038/nature08017
– volume: 37
  start-page: 1
  year: 2021
  ident: ref_32
  article-title: Difference Analysis of Hydrocarbon Generation in the Southern Part of the Western Continental Margin of the South China Sea
  publication-title: Mar. Geo. Front.
– volume: 151
  start-page: 147
  year: 2017
  ident: ref_50
  article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
  publication-title: Catena
  doi: 10.1016/j.catena.2016.11.032
– ident: ref_15
  doi: 10.3390/s19020231
– volume: 8
  start-page: 304
  year: 2022
  ident: ref_3
  article-title: Research on distributed streaming parallel computing of large scale wind DFIGs from the perspective of Ecological Marxism
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.01.167
– volume: 222
  start-page: 244
  year: 2019
  ident: ref_16
  article-title: Geometric accuracy of remote sensing images over oceans: The use of global offshore platforms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.002
– volume: 35
  start-page: 1900
  year: 2014
  ident: ref_19
  article-title: Satellite survey of gas flares: Development and application of a Landsat-based technique in the Niger Delta
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.879351
– volume: 27
  start-page: 294
  year: 2006
  ident: ref_55
  article-title: Random Forests for land cover classification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– volume: 16
  start-page: 396
  year: 2020
  ident: ref_27
  article-title: Global proliferation of offshore gas flaring areas
  publication-title: J. Maps
  doi: 10.1080/17445647.2020.1762773
– volume: 5
  start-page: 4423
  year: 2013
  ident: ref_28
  article-title: VIIRS Nightfire: Satellite Pyrometry at Night
  publication-title: Remote Sens.
  doi: 10.3390/rs5094423
– volume: 168
  start-page: 113128
  year: 2022
  ident: ref_2
  article-title: Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2022.113128
– ident: ref_53
  doi: 10.3390/rs10010031
– volume: 104
  start-page: 41
  year: 2011
  ident: ref_33
  article-title: Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: A review
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2010.09.010
– volume: 204
  start-page: 347
  year: 2018
  ident: ref_29
  article-title: Identifying industrial heat sources using time-series of the VIIRS Nightfire product with an object-oriented approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.019
– volume: 67
  start-page: 93
  year: 2012
  ident: ref_54
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.11.002
SSID ssj0000331904
Score 2.3479636
Snippet The continuous acquisition of spatial distribution information for offshore hydrocarbon exploitation (OHE) targets is crucial for the research of marine carbon...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1843
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Carbon
Classification
Climate change
Coefficient of variation
Comparative analysis
Comparative studies
Data mining
Emission analysis
Emissions
Emissions (Pollution)
Exploitation
feature evaluation
feature increment strategy
Global warming
Greenhouse gases
Hydrocarbons
Learning algorithms
Light
light intensity
Luminous intensity
Machine learning
machine learning model
Natural gas
Natural gas reserves
Neural networks
Night
night light remote sensing images
Ocean basins
offshore hydrocarbon exploitation targets
Radiation
Regression analysis
Remote sensing
South China Sea
Spatial distribution
Statistical analysis
Support vector machines
Time series
time series analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF6kL_oi_sSzVUYUxIfQJLubZH27FstVbAV7hb4tu8nu3cFdIkkO7L_qX-PMJj0rKr74kodkCUnmy8w3ycw3jL1xXlVlqlyU5iaNhCtVZGTpozzNSgRYlXFL_c5n59nsUny8kle3Rn1RTdggDzw8uMNCqsIrnlhrMLTHsfEIwphU1YS3mQmtexjzbiVTwQdzhFYsBj1Sjnn9YdsF6lMI_ksECkL9f3PHIcacPGD3R3II0-GiHrI7rn7E7o5zypfXj9n3z953y6Z1MLuuMPSY1jY1hDq6UWsb5qG0G_f17dCzAEcYqCqgQ6uNi-hzmOvgnJJy-BS2Xxzay8EF1bLXCzjdoI_pwNQVnIVSSwejCusCaHTaunsPUzjeDTCExsPF6tvvi6frRdOu-uVmONmc_klA6PiNiHlu8TZON4H_I_KesMuTD_PjWTROZ4hKwXmPiadIUmNNIbzMEyu8EC7nifCYYeW8qqRRPnNe-swQy7MSmUxVxJVNrMllFfOnbK9uaveMgVVeIc0RaeqcwIzUepGXHJkDV144JSfs3Y3FdDk-TpqgsdaYwpB19U_rTtjr3dqvg2DHH1cdkeF3K0hkO-xA6OkRevpf0JuwtwQbTa6AbGrGjga8KRLV0lNkYzJBIOYTdnCDLD36iE6nucJkTiGfnbBXu8P4dtMvG1O7Zttpjj5WUAdP8fx_XPE-u5ciSRsqjw7YXt9u3QskVb19Gd6fH_m8IK8
  priority: 102
  providerName: Directory of Open Access Journals
Title Offshore Hydrocarbon Exploitation Target Extraction Based on Time-Series Night Light Remote Sensing Images and Machine Learning Models: A Comparison of Six Machine Learning Algorithms and Their Multi-Feature Importance
URI https://www.proquest.com/docview/2799749423
https://www.proquest.com/docview/3040424248
https://doaj.org/article/8598f931bba14300af183063564fb6a9
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R5gAXVF4ipUSLQEIcrNre9WO5oKQ0pKgJqEml3qxdezeplNitnUj0r_JrmFlvUiEeFx_slSV7Zr_5ZnYehLzTRhR5KLQXJjL0uM6FJ6PceEkY56BgRcwU1juPJ_Hokn-9iq5cwK1xaZVbTLRAXVQ5xsiPw0QA9RVg_T_d3Ho4NQpPV90IjT3SAQhOwfnqDE4n3y92URafgYr5vO1LysC_P64bS4FSzn6zRLZh_79g2dqa4QF57Egi7bdSfUIe6PIpeejmlS_unpGf34xpFlWt6eiuABMka1WV1ObTuZ7bdGZTvOHeum5rF-gADFZB8dH1SnsYFtMNnaBzTs_t9UKD3DSdYk57OadnK8CahsqyoGObcqmp68Y6pzhCbdl8pH16shtkSCtDp9c__lzcX87hT64Xq_ZlMzyboLby10MGuoHPOFtZPwA08Dm5HJ7OTkaem9Lg5ZyxNTigPAilkik3URIobjjXCQu4AU8rYUURSWFibSITS2R7KgJGU6R-oQIlk6jw2QuyX1alfkmoEkYA3eFhqDUHz1QZnuQMGAQThmsRdcmHrcSy3P1OnKSxzMCVQelm99Ltkre7tTdt446_rhqg4HcrsNm2vVHV88zt3SyNRGoEC5SSwC59XxrAQR8b-3GjYim65D2qTYaQgDKVrrIBPgqba2V9YGVRAIqYdMnRVrMyhxVNdq_ZXfJm9xh2OR7dyFJXmyZjgLUcK3nSw_-_4hV5FAINa3OLjsj-ut7o10Cb1qpH9tLhlx7p9D-Pz6c9t1N6NgjxC0bzHik
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeBgviKsoDDAChHiIlsTOxUgIdYPSsnZIrJP2ltmx3U5qk5G0gv4pfhC_hnOctBPi8raXPMSWpeR8Puc79rkQ8sJYofNQGC9MZOhxkwtPRrn1kjDOAWA6ZgrznUdHcf-EfzqNTrfIj3UuDIZVrnWiU9S6zPGMfC9MBFBfAdb_3cVXD7tG4e3quoVGA4tDs_oGLlv9dvAe5PsyDHsfxgd9r-0q4OWcsQU4TDwIpZIpt1ESKG45NwkLuAXPIGFaR1LY2NjIxhLZiYrAAuvU1ypQMom0z2Dda-Q6rCVwR6W9j5szHZ8BoH3eVEGFcX-vqh3hSjn7ze659gD_MgLOsvVukZstJaXdBkO3yZYp7pCdtjv6dHWX_PxsbT0tK0P7Kw0GT1aqLKiL3msrfNOxCyiHd4uqyZSg-2AeNcWh87nx8BDO1PQIjwLo0D2_GECJoccYQV9M6GAOmq2mstB05AI8DW1rv04oNmyb1W9olx5s2ibS0tLj8-9_Tu7OJiC3xXTeLDbGmxDq8ow95LtL-IzB3HkdgPd75ORKpHefbBdlYR4QqoQVQK54GBrDwQ9Wlic5A77ChOVGRB3yei2xLG9_J_btmGXgOKF0s0vpdsjzzdyLpkzIX2fto-A3M7C0t3tRVpOs1RRZGonUChYoJYHL-r60oHV9LCPIrYql6JBXCJsMFRDKVLZ5FPBRWMor6wIHjAIAYtIhu2tkZa1mqrPLfdQhzzbDoFPwokgWplzWGQPNzjFvKH34_yWekp3-eDTMhoOjw0fkRggEsIlq2iXbi2ppHgNhW6gnbpdQcnbV2_IXaIdVfA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwEviKsoDDAChHiImsTOxUgItduqlm1l2jppb8FO7HZSm4ykFfSv8VP4NZzjpJ0Ql7e95MGxLCXn-Dvfsc-FkNfaiCz1hXb8SPoO16lwZJAaJ_LDFBQsC5nCfOejUTg445_Og_Mt8mOdC4NhlWtMtECdFSmekXf8SAD1FWD9O6YJizje63-8_OpgBym8aV2306hV5ECvvoH7Vn0Y7oGs3_h-f3-8O3CaDgNOyhlbgPPEPV8qGXMTRJ7ihnMdMY8b8BIilmWBFCbUJjChRKaiArDGWexmylMyCjKXwbo3yHYEXpHbItu9_dHxyeaEx2Wg3i6va6IyJtxOWVn6FXP2mxW0zQL-ZRKsnevfJXcagkq7tUbdI1s6v09uNb3Sp6sH5OdnY6ppUWo6WGVg_mSpipzaWL6m3jcd2_ByGFuUdd4E7YGxzCi-uphrB4_kdEVHeDBAD-3zRIPOaHqK8fT5hA7ngHMVlXlGj2y4p6ZNJdgJxfZts-o97dLdTRNFWhh6evH9z8nd2QQkt5jO68XGeC9Cbdaxg-x3CZ8xnFsfBLT_ITm7Fvk9Iq28yPVjQpUwAqgW932tOXjFyvAoZcBemDBci6BN3q0llqTN78QuHrME3CiUbnIl3TZ5tZl7WRcN-eusHgp-MwMLfduBopwkDW4kcSBiI5inlARm67rSAAa7WFSQGxVK0SZvUW0ShCOUqWyyKuCjsLBX0gVGGHigiFGb7Kw1K2lwqkqudlWbvNy8BoTBayOZ62JZJQxwnmMWUfzk_0u8IDdhSyaHw9HBU3LbBzZYhzjtkNaiXOpnwN4W6nmzTSj5ct078xfgHlsO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Offshore+Hydrocarbon+Exploitation+Target+Extraction+Based+on+Time-Series+Night+Light+Remote+Sensing+Images+and+Machine+Learning+Models%3A+A+Comparison+of+Six+Machine+Learning+Algorithms+and+Their+Multi-Feature+Importance&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ma%2C+Rui&rft.au=Wu%2C+Wenzhou&rft.au=Wang%2C+Qi&rft.au=Liu%2C+Na&rft.date=2023-04-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=7&rft.spage=1843&rft_id=info:doi/10.3390%2Frs15071843&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15071843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon