Interfacial improvement of carbon fiber/epoxy composites using one-step method for grafting carbon nanotubes on the fibers at ultra-low temperatures

This paper focuses on improving the out-of-plane properties of carbon fiber/epoxy composites to extend their applications. Carbon nanotubes (CNTs) were introduced on carbon fiber surface by a novel one-step chemical vapor deposition (CVD) method at ultra-low temperature and hybrid composites were fa...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 164; pp. 133 - 142
Main Authors Yao, Zhiqiang, Wang, Chengguo, Qin, Jianjie, Su, Shunsheng, Wang, Yanxiang, Wang, Qifen, Yu, Meijie, Wei, Huazhen
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 30.08.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper focuses on improving the out-of-plane properties of carbon fiber/epoxy composites to extend their applications. Carbon nanotubes (CNTs) were introduced on carbon fiber surface by a novel one-step chemical vapor deposition (CVD) method at ultra-low temperature and hybrid composites were fabricated by molding technology. Mechanical and dielectric tests were conducted to figure out the changes in out-of-plane properties after grafting CNTs. The results of single-fiber tensile strength indicated that both the strength and the Weibull modulus of the CNTs-coated carbon fiber increased due to the less damage caused to the fiber by catalysts at low temperature and the repairing effect of the CNTs. Compared with the properties of desized fiber based composites, both interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) of CNTs-coated fiber/epoxy composites increased by 30.73% and 32.29%, respectively, as well as the dielectric properties were also improved. The fracture mechanisms of CNTs were investigated based on the morphology observation on the interface. The improved out-of-plane properties were associated with the improved stress transfer between the carbon fibers and surrounding matrix through the newly formed interphase induced by CNT layer. TEM images of the structure of CNTs.The fracture surface in the weft direction of CNTs-coated carbon fiber/epoxy composites. [Display omitted]
AbstractList This paper focuses on improving the out-of-plane properties of carbon fiber/epoxy composites to extend their applications. Carbon nanotubes (CNTs) were introduced on carbon fiber surface by a novel one-step chemical vapor deposition (CVD) method at ultra-low temperature and hybrid composites were fabricated by molding technology. Mechanical and dielectric tests were conducted to figure out the changes in out-of-plane properties after grafting CNTs. The results of single-fiber tensile strength indicated that both the strength and the Weibull modulus of the CNTs-coated carbon fiber increased due to the less damage caused to the fiber by catalysts at low temperature and the repairing effect of the CNTs. Compared with the properties of desized fiber based composites, both interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) of CNTs-coated fiber/epoxy composites increased by 30.73% and 32.29%, respectively, as well as the dielectric properties were also improved. The fracture mechanisms of CNTs were investigated based on the morphology observation on the interface. The improved out-of-plane properties were associated with the improved stress transfer between the carbon fibers and surrounding matrix through the newly formed interphase induced by CNT layer.
This paper focuses on improving the out-of-plane properties of carbon fiber/epoxy composites to extend their applications. Carbon nanotubes (CNTs) were introduced on carbon fiber surface by a novel one-step chemical vapor deposition (CVD) method at ultra-low temperature and hybrid composites were fabricated by molding technology. Mechanical and dielectric tests were conducted to figure out the changes in out-of-plane properties after grafting CNTs. The results of single-fiber tensile strength indicated that both the strength and the Weibull modulus of the CNTs-coated carbon fiber increased due to the less damage caused to the fiber by catalysts at low temperature and the repairing effect of the CNTs. Compared with the properties of desized fiber based composites, both interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) of CNTs-coated fiber/epoxy composites increased by 30.73% and 32.29%, respectively, as well as the dielectric properties were also improved. The fracture mechanisms of CNTs were investigated based on the morphology observation on the interface. The improved out-of-plane properties were associated with the improved stress transfer between the carbon fibers and surrounding matrix through the newly formed interphase induced by CNT layer. TEM images of the structure of CNTs.The fracture surface in the weft direction of CNTs-coated carbon fiber/epoxy composites. [Display omitted]
Author Wang, Qifen
Su, Shunsheng
Wang, Chengguo
Wei, Huazhen
Yu, Meijie
Wang, Yanxiang
Yao, Zhiqiang
Qin, Jianjie
Author_xml – sequence: 1
  givenname: Zhiqiang
  surname: Yao
  fullname: Yao, Zhiqiang
  organization: Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
– sequence: 2
  givenname: Chengguo
  surname: Wang
  fullname: Wang, Chengguo
  email: wangchg@sdu.edu.cn
  organization: Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
– sequence: 3
  givenname: Jianjie
  surname: Qin
  fullname: Qin, Jianjie
  organization: Carbon Fiber Engineering Research Center, School of Material Science and Engineering, Shandong University, Jinan, 250061, China
– sequence: 4
  givenname: Shunsheng
  surname: Su
  fullname: Su, Shunsheng
  organization: Carbon Fiber Engineering Research Center, School of Material Science and Engineering, Shandong University, Jinan, 250061, China
– sequence: 5
  givenname: Yanxiang
  surname: Wang
  fullname: Wang, Yanxiang
  organization: Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
– sequence: 6
  givenname: Qifen
  surname: Wang
  fullname: Wang, Qifen
  organization: CNGC Institute 53, Jinan, 250031, China
– sequence: 7
  givenname: Meijie
  surname: Yu
  fullname: Yu, Meijie
  email: yumeijie@sdu.edu.cn
  organization: Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
– sequence: 8
  givenname: Huazhen
  surname: Wei
  fullname: Wei, Huazhen
  organization: CNGC Institute 53, Jinan, 250031, China
BookMark eNqFkbFO3jAUha2KSv2hfYMOlrqwJNixk9gMSBVqCxJSl3a2HOca_Cuxg-1QeA8euP4VJgaYrCuf7-jec47RkQ8eEPpKSU0J7c72tdFxCL5uSENqwmrSkQ9oR0XPKiYkPUI7QoiouqZhn9BxSvsyckH5Dj1f-wzRauP0hN28xPAAM_iMg8WbKbZugHgGS3h8wibMS0guQ8Jrcv4Wl0WqlGHBM-S7MGIbIr6N2ubD54uB1z7kdShMGfIdbI4J64zXKUddTeEfzjAvEHVeI6TP6KPVU4IvL-8J-vvzx5_Lq-rm96_ry-83leGM5YqNIHvR8YFJC93YM6tt38t2GCVr-dgKKSyXduy4hpY3hspmaCnnRmhCWw7sBJ1uvuXs-xVSVrNLBqZJewhrUg1nkjddy3mRfnsl3Yc1-rJdUXEqRMekKCq-qUwMKUWwaolu1vFJUaIOVam92kJRh6oUYapUVbDzV5hxWWcXfEnHTe_BFxsMJakHB1El48AbGF0Ek9UY3NsG_wFtsrbs
CitedBy_id crossref_primary_10_1016_j_cej_2023_147447
crossref_primary_10_1016_j_surfin_2022_102394
crossref_primary_10_1016_j_colsurfa_2023_131874
crossref_primary_10_1002_mame_202200433
crossref_primary_10_1016_j_compositesa_2024_108306
crossref_primary_10_1007_s10443_022_10032_5
crossref_primary_10_1016_j_compositesb_2021_109197
crossref_primary_10_1016_j_aej_2022_09_019
crossref_primary_10_3390_polym13234092
crossref_primary_10_1007_s10853_022_06901_w
crossref_primary_10_1016_j_diamond_2023_110739
crossref_primary_10_3390_jcs7020088
crossref_primary_10_1002_pc_29436
crossref_primary_10_1016_j_colsurfa_2024_133776
crossref_primary_10_1016_j_diamond_2024_111308
crossref_primary_10_1016_j_msea_2025_147845
crossref_primary_10_2139_ssrn_4146279
crossref_primary_10_3390_nano11092414
crossref_primary_10_1016_j_compositesa_2022_107201
crossref_primary_10_1016_j_apsusc_2022_154480
crossref_primary_10_1016_j_coco_2023_101687
crossref_primary_10_1016_j_diamond_2023_109880
crossref_primary_10_1515_rams_2024_0069
crossref_primary_10_1088_1361_6528_ac764f
crossref_primary_10_3390_jcs5040111
crossref_primary_10_1021_acsanm_3c00330
crossref_primary_10_1080_09276440_2024_2417337
crossref_primary_10_1016_j_vacuum_2023_112722
crossref_primary_10_1016_j_ceramint_2021_11_176
crossref_primary_10_3390_polym13111825
crossref_primary_10_3390_polym17030267
crossref_primary_10_1016_j_carbon_2022_08_080
crossref_primary_10_1016_j_colsurfa_2023_131455
crossref_primary_10_1016_j_compositesb_2024_111654
crossref_primary_10_1002_mawe_202200072
crossref_primary_10_1016_j_engfracmech_2023_109271
crossref_primary_10_1016_j_jmst_2021_12_050
crossref_primary_10_1002_admi_202201360
crossref_primary_10_1002_pc_27670
crossref_primary_10_3390_nano13050944
crossref_primary_10_1016_j_compscitech_2022_109734
crossref_primary_10_1016_j_compscitech_2022_109855
crossref_primary_10_1002_pc_27278
crossref_primary_10_1016_j_cej_2023_146298
crossref_primary_10_1016_j_compositesb_2021_109300
crossref_primary_10_1039_D1NR07104A
crossref_primary_10_1021_acsanm_1c00888
crossref_primary_10_1016_j_coco_2024_102015
crossref_primary_10_1016_j_compositesa_2022_107023
crossref_primary_10_1149_2162_8777_acc891
crossref_primary_10_1021_acsami_2c18632
crossref_primary_10_1016_j_compstruct_2022_115665
crossref_primary_10_1039_D1QM01587G
crossref_primary_10_1002_pc_26173
crossref_primary_10_1021_acsanm_3c01439
crossref_primary_10_1177_00219983211015421
crossref_primary_10_1016_j_apsusc_2022_153889
crossref_primary_10_1016_j_ceramint_2023_05_087
crossref_primary_10_1016_j_colsurfa_2021_128085
crossref_primary_10_1002_pc_27941
crossref_primary_10_1002_pc_25955
crossref_primary_10_1016_j_jcis_2023_01_108
crossref_primary_10_2139_ssrn_3969118
crossref_primary_10_1016_j_carbon_2022_03_046
crossref_primary_10_1016_j_compositesb_2023_110826
crossref_primary_10_1016_j_surfin_2022_102230
crossref_primary_10_1021_acsami_0c12477
crossref_primary_10_3390_nano10091670
crossref_primary_10_1016_j_cej_2024_151746
crossref_primary_10_3390_jcs8110459
crossref_primary_10_1016_j_ceramint_2022_06_227
crossref_primary_10_1016_j_ceramint_2023_10_207
crossref_primary_10_1016_j_compositesa_2020_106201
crossref_primary_10_1016_j_polymer_2024_127533
crossref_primary_10_1016_j_matdes_2021_109456
crossref_primary_10_1155_jnt_4194409
crossref_primary_10_1016_j_ceramint_2021_09_271
crossref_primary_10_1021_acsanm_2c02117
crossref_primary_10_1088_1361_6528_acfef7
crossref_primary_10_1016_j_compscitech_2024_110912
crossref_primary_10_1016_j_compscitech_2021_108780
crossref_primary_10_1016_j_matdes_2024_112981
crossref_primary_10_1016_j_coco_2022_101149
crossref_primary_10_1016_j_compositesb_2021_108872
crossref_primary_10_1016_j_infrared_2022_104296
crossref_primary_10_1016_j_compositesb_2022_109785
crossref_primary_10_1002_pc_26916
crossref_primary_10_1016_j_porgcoat_2023_108129
crossref_primary_10_1016_j_porgcoat_2024_108468
crossref_primary_10_1002_smll_202409234
crossref_primary_10_1016_j_coco_2024_102237
crossref_primary_10_1016_j_ceramint_2022_09_261
crossref_primary_10_1016_j_ceramint_2023_09_044
crossref_primary_10_1002_pc_26593
crossref_primary_10_1021_acs_langmuir_2c00866
crossref_primary_10_1016_j_ijbiomac_2025_140597
crossref_primary_10_1016_j_matdes_2021_110293
crossref_primary_10_1002_app_53611
crossref_primary_10_1016_j_apsusc_2021_150813
crossref_primary_10_1021_acsanm_1c02890
crossref_primary_10_1515_ntrev_2020_0090
crossref_primary_10_1149_2162_8777_ada2b9
crossref_primary_10_1002_app_54395
crossref_primary_10_1016_j_coco_2023_101599
crossref_primary_10_1007_s10854_023_11033_1
crossref_primary_10_2139_ssrn_4123015
crossref_primary_10_1016_j_mtcomm_2023_107907
crossref_primary_10_1002_pc_29097
crossref_primary_10_1039_D2QM01271E
crossref_primary_10_1016_j_apsusc_2022_154309
crossref_primary_10_1002_pc_29414
crossref_primary_10_1016_j_compscitech_2023_109933
crossref_primary_10_1016_j_compscitech_2023_110415
crossref_primary_10_1149_2162_8777_ac22e4
crossref_primary_10_1002_pc_29138
crossref_primary_10_1016_j_diamond_2022_109574
crossref_primary_10_1021_acs_langmuir_1c03459
crossref_primary_10_3934_matersci_2024054
crossref_primary_10_1016_j_carbon_2022_08_053
crossref_primary_10_2139_ssrn_4110624
crossref_primary_10_1016_j_jmrt_2024_02_183
crossref_primary_10_1016_j_apsusc_2023_159210
crossref_primary_10_1039_D3RA08577E
crossref_primary_10_1039_D1NA00294E
crossref_primary_10_1002_adfm_202112231
crossref_primary_10_1016_j_compositesa_2024_108192
crossref_primary_10_1016_j_carbon_2023_118131
crossref_primary_10_1002_app_52665
crossref_primary_10_1016_j_cej_2021_132449
crossref_primary_10_2139_ssrn_4128530
crossref_primary_10_1016_j_jmrt_2023_04_158
crossref_primary_10_1016_j_wear_2023_205132
crossref_primary_10_1515_ntrev_2021_0048
Cites_doi 10.1007/s10853-009-3484-x
10.1016/j.compscitech.2018.02.007
10.1016/j.diamond.2014.11.002
10.1016/j.compositesa.2019.04.017
10.1016/j.apsusc.2011.09.003
10.1002/adma.200801006
10.1016/j.carbon.2015.08.041
10.1016/j.apsusc.2015.12.189
10.1016/j.matdes.2010.04.018
10.1016/j.compositesa.2010.04.004
10.1016/j.carbon.2019.01.063
10.1016/j.carbon.2013.12.020
10.1007/s10853-011-6112-5
10.1021/am3002499
10.1016/j.compstruct.2019.04.037
10.1021/acsami.6b13397
10.1016/j.compositesa.2009.06.002
10.1016/j.compositesa.2015.06.023
10.1016/j.compositesb.2017.06.004
10.1016/j.carbon.2018.06.032
10.1016/j.compositesa.2017.08.006
10.1016/j.diamond.2016.06.012
10.1016/j.carbon.2012.01.003
10.1002/pc.22556
10.1016/j.compositesa.2008.03.011
10.1016/j.carbon.2014.09.022
10.1016/j.compscitech.2004.04.002
10.1016/j.matdes.2011.07.027
10.1016/j.carbon.2011.03.032
10.1016/j.compositesa.2013.10.016
10.1016/S0925-9635(03)00205-X
10.1016/j.compositesb.2015.07.003
10.1021/acsami.8b06673
10.1016/j.carbon.2005.12.039
10.1021/acs.langmuir.6b01485
10.1016/j.carbon.2015.10.002
10.1016/j.compscitech.2018.08.018
10.1002/pen.23881
10.1088/1361-6528/aad10c
10.1016/j.matlet.2017.10.026
10.1016/j.carbon.2012.03.053
10.1038/354056a0
10.1016/j.compscitech.2019.04.034
10.1016/j.compscitech.2018.09.007
10.1016/j.carbon.2018.02.059
10.1016/j.compscitech.2016.08.010
10.1016/j.compscitech.2018.06.018
10.1016/j.carbon.2017.08.008
10.1002/adma.201704419
10.1016/j.carbon.2012.11.037
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Aug 30, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 30, 2020
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.carbon.2020.03.060
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
EndPage 142
ExternalDocumentID 10_1016_j_carbon_2020_03_060
S0008622320303146
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
XPP
ZMT
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
IHE
R2-
RIG
SEW
SMS
WUQ
7SR
8FD
JG9
SSH
7S9
L.6
ID FETCH-LOGICAL-c433t-3de97864b39fe6d73faf7795bd9354d5898f49fd64ae542c192b5144c8a0154e3
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Jul 11 09:23:34 EDT 2025
Fri Jul 25 05:40:34 EDT 2025
Tue Aug 05 03:08:26 EDT 2025
Thu Apr 24 23:05:19 EDT 2025
Fri Feb 23 02:47:33 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-3de97864b39fe6d73faf7795bd9354d5898f49fd64ae542c192b5144c8a0154e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2441886398
PQPubID 2045273
PageCount 10
ParticipantIDs proquest_miscellaneous_2439426544
proquest_journals_2441886398
crossref_primary_10_1016_j_carbon_2020_03_060
crossref_citationtrail_10_1016_j_carbon_2020_03_060
elsevier_sciencedirect_doi_10_1016_j_carbon_2020_03_060
PublicationCentury 2000
PublicationDate 2020-08-30
PublicationDateYYYYMMDD 2020-08-30
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-30
  day: 30
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, Li, Gu, Wang, Li, Zhang (bib26) 2018; 166
Sonoyama, Ohshita, Nijubu, Nishikawa, Yanase, Hayashi (bib39) 2006; 44
Zhu, Su, Lehoczky, Muntele, Ila (bib34) 2003; 12
Dong, Hou, Li, Wang, Gao, Tang (bib23) 2014; 56
Qin, Wang, Wang, Lu, Zheng, Wang (bib16) 2018; 29
An, Lu, Guo, He, Lu, Yang (bib28) 2011; 258
Zou, Zhao, Wu, Zhang, Xu, Yang (bib37) 2018; 30
Zhang, Wang, He, Wang, Ren (bib11) 2009; 44
Zhang, De Greef, Kalinka, Van Bilzen, Locquet, Verpoest (bib45) 2017; 126
He, Fan, Zhao, Lu, Yang, Liu (bib30) 2017; 9
Mei, Zhang, Chen, Zhou, Zhai, Cheng (bib12) 2016; 134
He, Wang, Tong, Wang, Cao, Peng (bib9) 2012; 50
Bhanuprakash, Parasuram, Varghese (bib3) 2019; 179
Gangineni, Yandrapu, Ghosh, Anand, Prusty, Ray (bib2) 2019; 122
Du, Liu, Zhou, Moody, Mai (bib38) 2012; 50
Kim, Yu, Youk, Lee (bib44) 2012; 4
Ponnamma, Ramachandran, Hussain, Rajaraman, Amarendra, Varughese (bib51) 2015; 77
Chen, Xu, Liu, Mi, Shen (bib14) 2018; 168
Guo, Lu, An (bib24) 2011; 47
De Greef, Zhang, Magrez, Forró, Locquet, Verpoest (bib43) 2015; 51
Gojny, Wichmann, Köpke, Fiedler, Schulte (bib46) 2004; 64
Kim, Kim, Yu, Youk, Lee (bib27) 2013; 54
Zhang, Deng, Sui, Yang (bib1) 2019; 145
Zhang, Pu, Wang, Xue (bib42) 2014; 80
Iijima (bib13) 1991; 354
Agnihotri, Basu, Kar (bib31) 2011; 49
Montazeri, Javadpour, Khavandi, Tcharkhtchi, Mohajeri (bib5) 2010; 31
Hung, Kuo, Ko, Tzeng, Yan (bib21) 2009; 40
Fan, Wang, Wang, Chen, Wang, Yuan (bib17) 2016; 364
Li, Liu, Yang, Jiao, Hao, Wang (bib19) 2020
Islam, Deng, Tong, Faisal, Roy, Minett (bib10) 2016; 96
Bedi, Tiwari, Agnihotri (bib15) 2018; 132
Liu, He, Hamon, Fan, Haghi-Ashtiani, Reiss (bib18) 2018; 167
Arjmand, Sundararaj (bib49) 2015; 55
Yuan, Zhang, Yang, Guo, Men, Liu (bib41) 2017; 102
Gao, Zhang, Hao, Huo, Zhang, Shao (bib22) 2017; 123
Singh, Akhtar, Kar (bib33) 2018; 10
Wang, Li, Tong, Song, Li, Li (bib29) 2014; 69
Wang, Wang, Wang, Wang, Lu, Qin (bib50) 2018; 211
Wang, Fu, Yin, Li, Qi, Fu (bib20) 2018; 139
Lee, Youk, Lee, Sul, Yu (bib36) 2016; 68
Oulanti, Laurent, Le-Huu, Durand, Donnet (bib40) 2015; 95
Chiang, Sankaran (bib35) 2008; 20
Mittal, Rhee (bib7) 2018; 165
Gao, Zhang, Gao, He, Wang, Liu (bib8) 2016; 32
An, Lu, Li, Guo, Lu, Lu (bib6) 2012; 33
Lee, Sung, Youk, Lee, Yu (bib25) 2019; 220
Jia, Chen, Yan (bib48) 2015; 81
Karsli, Ozkan, Aytac, Deniz (bib4) 2013; 34
Garcia, Wardle, John Hart (bib47) 2008; 39
Qian, Bismarck, Greenhalgh, Shaffer (bib32) 2010; 41
He (10.1016/j.carbon.2020.03.060_bib30) 2017; 9
An (10.1016/j.carbon.2020.03.060_bib6) 2012; 33
Bedi (10.1016/j.carbon.2020.03.060_bib15) 2018; 132
Lee (10.1016/j.carbon.2020.03.060_bib36) 2016; 68
Iijima (10.1016/j.carbon.2020.03.060_bib13) 1991; 354
Hung (10.1016/j.carbon.2020.03.060_bib21) 2009; 40
An (10.1016/j.carbon.2020.03.060_bib28) 2011; 258
Zhu (10.1016/j.carbon.2020.03.060_bib34) 2003; 12
Bhanuprakash (10.1016/j.carbon.2020.03.060_bib3) 2019; 179
Montazeri (10.1016/j.carbon.2020.03.060_bib5) 2010; 31
Lee (10.1016/j.carbon.2020.03.060_bib25) 2019; 220
Gao (10.1016/j.carbon.2020.03.060_bib8) 2016; 32
Gojny (10.1016/j.carbon.2020.03.060_bib46) 2004; 64
Qian (10.1016/j.carbon.2020.03.060_bib32) 2010; 41
Karsli (10.1016/j.carbon.2020.03.060_bib4) 2013; 34
Mittal (10.1016/j.carbon.2020.03.060_bib7) 2018; 165
Gangineni (10.1016/j.carbon.2020.03.060_bib2) 2019; 122
Gao (10.1016/j.carbon.2020.03.060_bib22) 2017; 123
Ponnamma (10.1016/j.carbon.2020.03.060_bib51) 2015; 77
Li (10.1016/j.carbon.2020.03.060_bib26) 2018; 166
Fan (10.1016/j.carbon.2020.03.060_bib17) 2016; 364
Dong (10.1016/j.carbon.2020.03.060_bib23) 2014; 56
Garcia (10.1016/j.carbon.2020.03.060_bib47) 2008; 39
Singh (10.1016/j.carbon.2020.03.060_bib33) 2018; 10
Kim (10.1016/j.carbon.2020.03.060_bib44) 2012; 4
Yuan (10.1016/j.carbon.2020.03.060_bib41) 2017; 102
Qin (10.1016/j.carbon.2020.03.060_bib16) 2018; 29
Mei (10.1016/j.carbon.2020.03.060_bib12) 2016; 134
Li (10.1016/j.carbon.2020.03.060_bib19) 2020
Wang (10.1016/j.carbon.2020.03.060_bib20) 2018; 139
Kim (10.1016/j.carbon.2020.03.060_bib27) 2013; 54
Zhang (10.1016/j.carbon.2020.03.060_bib42) 2014; 80
Chen (10.1016/j.carbon.2020.03.060_bib14) 2018; 168
Guo (10.1016/j.carbon.2020.03.060_bib24) 2011; 47
He (10.1016/j.carbon.2020.03.060_bib9) 2012; 50
Zhang (10.1016/j.carbon.2020.03.060_bib11) 2009; 44
Oulanti (10.1016/j.carbon.2020.03.060_bib40) 2015; 95
Liu (10.1016/j.carbon.2020.03.060_bib18) 2018; 167
Du (10.1016/j.carbon.2020.03.060_bib38) 2012; 50
Zhang (10.1016/j.carbon.2020.03.060_bib1) 2019; 145
Arjmand (10.1016/j.carbon.2020.03.060_bib49) 2015; 55
Zou (10.1016/j.carbon.2020.03.060_bib37) 2018; 30
Agnihotri (10.1016/j.carbon.2020.03.060_bib31) 2011; 49
Wang (10.1016/j.carbon.2020.03.060_bib29) 2014; 69
Jia (10.1016/j.carbon.2020.03.060_bib48) 2015; 81
Wang (10.1016/j.carbon.2020.03.060_bib50) 2018; 211
Islam (10.1016/j.carbon.2020.03.060_bib10) 2016; 96
Zhang (10.1016/j.carbon.2020.03.060_bib45) 2017; 126
Sonoyama (10.1016/j.carbon.2020.03.060_bib39) 2006; 44
De Greef (10.1016/j.carbon.2020.03.060_bib43) 2015; 51
Chiang (10.1016/j.carbon.2020.03.060_bib35) 2008; 20
References_xml – volume: 165
  start-page: 84
  year: 2018
  end-page: 94
  ident: bib7
  article-title: Chemical vapor deposition-based grafting of CNTs onto basalt fabric and their reinforcement in epoxy-based composites
  publication-title: Compos. Sci. Technol.
– volume: 145
  start-page: 629
  year: 2019
  end-page: 639
  ident: bib1
  article-title: Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites
  publication-title: Carbon
– volume: 20
  start-page: 4857
  year: 2008
  end-page: 4861
  ident: bib35
  article-title: Synergistic effects in bimetallic nanoparticles for low temperature carbon nanotube growth
  publication-title: Adv. Mater.
– volume: 102
  start-page: 243
  year: 2017
  end-page: 252
  ident: bib41
  article-title: Carbon nanotubes coated hybrid-fabric composites with enhanced mechanical and thermal properties for tribological applications
  publication-title: Composites Part a-Appl. S
– volume: 9
  start-page: 2948
  year: 2017
  end-page: 2958
  ident: bib30
  article-title: Design of electrically conductive structural composites by modulating aligned CVD-grown carbon nanotube length on glass fibers
  publication-title: ACS Appl. Mater. Interfaces
– volume: 122
  start-page: 36
  year: 2019
  end-page: 44
  ident: bib2
  article-title: Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: an assessment of the influence of functional groups
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 32
  start-page: 8339
  year: 2016
  end-page: 8349
  ident: bib8
  article-title: Interfacial microstructure and enhanced mechanical properties of carbon fiber composites caused by growing generation 1-4 dendritic poly(amidoamine) on a fiber surface
  publication-title: Langmuir
– volume: 168
  start-page: 20
  year: 2018
  end-page: 27
  ident: bib14
  article-title: The effect of double grafted interface layer on the properties of carbon fiber reinforced polyamide 66 composites
  publication-title: Compos. Sci. Technol.
– volume: 80
  start-page: 734
  year: 2014
  end-page: 745
  ident: bib42
  article-title: Frictional dependence of graphene and carbon nanotube in diamond-like carbon/ionic liquids hybrid films in vacuum
  publication-title: Carbon
– volume: 50
  start-page: 3782
  year: 2012
  end-page: 3788
  ident: bib9
  article-title: Direct measurement of grafting strength between an individual carbon nanotube and a carbon fiber
  publication-title: Carbon
– volume: 68
  start-page: 118
  year: 2016
  end-page: 126
  ident: bib36
  article-title: Low-temperature grafting of carbon nanotubes on carbon fibers using a bimetallic floating catalyst
  publication-title: Diam. Relat. Mater.
– volume: 56
  start-page: 248
  year: 2014
  end-page: 255
  ident: bib23
  article-title: Preparation of continuous carbon nanotube networks in carbon fiber/epoxy composite
  publication-title: Composites Part a-Appl S
– volume: 258
  start-page: 1069
  year: 2011
  end-page: 1076
  ident: bib28
  article-title: Preparation of vertically aligned carbon nanotube arrays grown onto carbon fiber fabric and evaluating its wettability on effect of composite
  publication-title: Appl. Surf. Sci.
– volume: 44
  start-page: 1754
  year: 2006
  end-page: 1761
  ident: bib39
  article-title: Synthesis of carbon nanotubes on carbon fibers by means of two-step thermochemical vapor deposition
  publication-title: Carbon
– volume: 47
  start-page: 2831
  year: 2011
  end-page: 2836
  ident: bib24
  article-title: Effect of electrophoretically deposited carbon nanotubes on the interface of carbon fiber reinforced epoxy composite
  publication-title: J. Mater. Sci.
– start-page: 187
  year: 2020
  ident: bib19
  article-title: Interfacial reinforcement of hybrid composite by electrophoretic deposition for vertically aligned carbon nanotubes on carbon fiber
  publication-title: Compos. Sci. Technol.
– volume: 167
  start-page: 331
  year: 2018
  end-page: 338
  ident: bib18
  article-title: Comparison of different surface treatments of carbon fibers used as reinforcements in epoxy composites: interfacial strength measurements by in-situ scanning electron microscope tensile tests
  publication-title: Compos. Sci. Technol.
– volume: 95
  start-page: 261
  year: 2015
  end-page: 267
  ident: bib40
  article-title: Growth of carbon nanotubes on carbon fibers using the combustion flame oxy-acetylene method
  publication-title: Carbon
– volume: 40
  start-page: 1299
  year: 2009
  end-page: 1304
  ident: bib21
  article-title: Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibers
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 179
  start-page: 134
  year: 2019
  end-page: 144
  ident: bib3
  article-title: Experimental investigation on graphene oxides coated carbon fibre/epoxy hybrid composites: mechanical and electrical properties
  publication-title: Compos. Sci. Technol.
– volume: 49
  start-page: 3098
  year: 2011
  end-page: 3106
  ident: bib31
  article-title: Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites
  publication-title: Carbon
– volume: 134
  start-page: 89
  year: 2016
  end-page: 95
  ident: bib12
  article-title: Interfacial modification and enhancement of toughening mechanisms in epoxy composites with CNTs grafted on carbon fibers
  publication-title: Compos. Sci. Technol.
– volume: 123
  start-page: 548
  year: 2017
  end-page: 557
  ident: bib22
  article-title: In-situ modification of carbon fibers with hyperbranched polyglycerol via anionic ring-opening polymerization for use in high-performance composites
  publication-title: Carbon
– volume: 81
  start-page: 64
  year: 2015
  end-page: 71
  ident: bib48
  article-title: A numerical study on carbon nanotube pullout to understand its bridging effect in carbon nanotube reinforced composites
  publication-title: Compos. B Eng.
– volume: 44
  start-page: 3574
  year: 2009
  end-page: 3577
  ident: bib11
  article-title: Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid
  publication-title: J. Mater. Sci.
– volume: 50
  start-page: 2347
  year: 2012
  end-page: 2350
  ident: bib38
  article-title: On the flame synthesis of carbon nanotubes grafted onto carbon fibers and the bonding force between them
  publication-title: Carbon
– volume: 39
  start-page: 1065
  year: 2008
  end-page: 1070
  ident: bib47
  article-title: Joining prepreg composite interfaces with aligned carbon nanotubes
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 55
  start-page: 173
  year: 2015
  end-page: 179
  ident: bib49
  article-title: Broadband dielectric properties of multiwalled carbon nanotube/polystyrene composites
  publication-title: Polym. Eng. Sci.
– volume: 132
  start-page: 181
  year: 2018
  end-page: 190
  ident: bib15
  article-title: Quantitative determination of size and properties of interphases in carbon nanotube-based multiscale composites
  publication-title: Carbon
– volume: 30
  year: 2018
  ident: bib37
  article-title: Single carbon fibers with a macroscopic-thickness, 3D highly porous carbon nanotube coating
  publication-title: Adv. Mater.
– volume: 41
  start-page: 1107
  year: 2010
  end-page: 1114
  ident: bib32
  article-title: Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation
  publication-title: Composites Part a-Appl S
– volume: 54
  start-page: 258
  year: 2013
  end-page: 267
  ident: bib27
  article-title: Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface
  publication-title: Carbon
– volume: 220
  start-page: 580
  year: 2019
  end-page: 591
  ident: bib25
  article-title: Improved tensile strength of carbon nanotube-grafted carbon fiber reinforced composites
  publication-title: Compos. Struct.
– volume: 34
  start-page: 1583
  year: 2013
  end-page: 1590
  ident: bib4
  article-title: Effects of sizing materials on the properties of carbon fiber-reinforced polyamide 6,6 composites
  publication-title: Polym. Compos.
– volume: 166
  start-page: 176
  year: 2018
  end-page: 182
  ident: bib26
  article-title: Mechanical enhancement effect of the interlayer hybrid, CNT film/carbon fiber/epoxy, composite
  publication-title: Compos. Sci. Technol.
– volume: 77
  start-page: 164
  year: 2015
  end-page: 171
  ident: bib51
  article-title: Free-volume correlation with mechanical and dielectric properties of natural rubber/multi walled carbon nanotubes composites
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 69
  start-page: 239
  year: 2014
  end-page: 246
  ident: bib29
  article-title: The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites
  publication-title: Carbon
– volume: 29
  start-page: 395602
  year: 2018
  ident: bib16
  article-title: Synthesis and growth mechanism of carbon nanotubes growing on carbon fiber surfaces with improved tensile strength
  publication-title: Nanotechnology
– volume: 64
  start-page: 2363
  year: 2004
  end-page: 2371
  ident: bib46
  article-title: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content
  publication-title: Compos. Sci. Technol.
– volume: 96
  start-page: 701
  year: 2016
  end-page: 710
  ident: bib10
  article-title: Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: towards next generation aerospace composites and energy storage applications
  publication-title: Carbon
– volume: 33
  start-page: 197
  year: 2012
  end-page: 202
  ident: bib6
  article-title: Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite
  publication-title: Mater. Des.
– volume: 51
  start-page: 39
  year: 2015
  end-page: 48
  ident: bib43
  article-title: Direct growth of carbon nanotubes on carbon fibers: effect of the CVD parameters on the degradation of mechanical properties of carbon fibers
  publication-title: Diam. Relat. Mater.
– volume: 10
  start-page: 24816
  year: 2018
  end-page: 24828
  ident: bib33
  article-title: Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 2250
  year: 2012
  end-page: 2258
  ident: bib44
  article-title: Degradation and healing mechanisms of carbon fibers during the catalytic growth of carbon nanotubes on their surfaces
  publication-title: ACS Appl. Mater. Interfaces
– volume: 139
  start-page: 45
  year: 2018
  end-page: 51
  ident: bib20
  article-title: Grafting CNTs on carbon fabrics with enhanced mechanical and thermal properties for tribological applications of carbon fabrics/phenolic composites
  publication-title: Carbon
– volume: 12
  start-page: 1825
  year: 2003
  end-page: 1828
  ident: bib34
  article-title: Carbon nanotube growth on carbon fibers
  publication-title: Diam. Relat. Mater.
– volume: 354
  start-page: 56
  year: 1991
  end-page: 58
  ident: bib13
  article-title: Helical microtubules of graphitic carbon
  publication-title: Nature
– volume: 211
  start-page: 273
  year: 2018
  end-page: 276
  ident: bib50
  article-title: Colossal permittivity of carbon nanotubes grafted carbon fiber-reinforced epoxy composites
  publication-title: Mater. Lett.
– volume: 31
  start-page: 4202
  year: 2010
  end-page: 4208
  ident: bib5
  article-title: Mechanical properties of multi-walled carbon nanotube/epoxy composites
  publication-title: Mater. Des.
– volume: 126
  start-page: 202
  year: 2017
  end-page: 210
  ident: bib45
  article-title: Carbon nanotube-grafted carbon fiber polymer composites: damage characterization on the micro-scale
  publication-title: Compos. B Eng.
– volume: 364
  start-page: 539
  year: 2016
  end-page: 551
  ident: bib17
  article-title: High efficient preparation of carbon nanotube-grafted carbon fibers with the improved tensile strength
  publication-title: Appl. Surf. Sci.
– volume: 44
  start-page: 3574
  year: 2009
  ident: 10.1016/j.carbon.2020.03.060_bib11
  article-title: Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-3484-x
– volume: 166
  start-page: 176
  year: 2018
  ident: 10.1016/j.carbon.2020.03.060_bib26
  article-title: Mechanical enhancement effect of the interlayer hybrid, CNT film/carbon fiber/epoxy, composite
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.02.007
– volume: 51
  start-page: 39
  year: 2015
  ident: 10.1016/j.carbon.2020.03.060_bib43
  article-title: Direct growth of carbon nanotubes on carbon fibers: effect of the CVD parameters on the degradation of mechanical properties of carbon fibers
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2014.11.002
– volume: 122
  start-page: 36
  year: 2019
  ident: 10.1016/j.carbon.2020.03.060_bib2
  article-title: Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: an assessment of the influence of functional groups
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2019.04.017
– volume: 258
  start-page: 1069
  year: 2011
  ident: 10.1016/j.carbon.2020.03.060_bib28
  article-title: Preparation of vertically aligned carbon nanotube arrays grown onto carbon fiber fabric and evaluating its wettability on effect of composite
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.09.003
– volume: 20
  start-page: 4857
  year: 2008
  ident: 10.1016/j.carbon.2020.03.060_bib35
  article-title: Synergistic effects in bimetallic nanoparticles for low temperature carbon nanotube growth
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801006
– volume: 95
  start-page: 261
  year: 2015
  ident: 10.1016/j.carbon.2020.03.060_bib40
  article-title: Growth of carbon nanotubes on carbon fibers using the combustion flame oxy-acetylene method
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.08.041
– volume: 364
  start-page: 539
  year: 2016
  ident: 10.1016/j.carbon.2020.03.060_bib17
  article-title: High efficient preparation of carbon nanotube-grafted carbon fibers with the improved tensile strength
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.12.189
– volume: 31
  start-page: 4202
  year: 2010
  ident: 10.1016/j.carbon.2020.03.060_bib5
  article-title: Mechanical properties of multi-walled carbon nanotube/epoxy composites
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.04.018
– volume: 41
  start-page: 1107
  year: 2010
  ident: 10.1016/j.carbon.2020.03.060_bib32
  article-title: Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation
  publication-title: Composites Part a-Appl S
  doi: 10.1016/j.compositesa.2010.04.004
– volume: 145
  start-page: 629
  year: 2019
  ident: 10.1016/j.carbon.2020.03.060_bib1
  article-title: Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.063
– volume: 69
  start-page: 239
  year: 2014
  ident: 10.1016/j.carbon.2020.03.060_bib29
  article-title: The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.12.020
– volume: 47
  start-page: 2831
  year: 2011
  ident: 10.1016/j.carbon.2020.03.060_bib24
  article-title: Effect of electrophoretically deposited carbon nanotubes on the interface of carbon fiber reinforced epoxy composite
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-011-6112-5
– volume: 4
  start-page: 2250
  year: 2012
  ident: 10.1016/j.carbon.2020.03.060_bib44
  article-title: Degradation and healing mechanisms of carbon fibers during the catalytic growth of carbon nanotubes on their surfaces
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3002499
– volume: 220
  start-page: 580
  year: 2019
  ident: 10.1016/j.carbon.2020.03.060_bib25
  article-title: Improved tensile strength of carbon nanotube-grafted carbon fiber reinforced composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.04.037
– volume: 9
  start-page: 2948
  year: 2017
  ident: 10.1016/j.carbon.2020.03.060_bib30
  article-title: Design of electrically conductive structural composites by modulating aligned CVD-grown carbon nanotube length on glass fibers
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13397
– volume: 40
  start-page: 1299
  year: 2009
  ident: 10.1016/j.carbon.2020.03.060_bib21
  article-title: Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibers
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2009.06.002
– volume: 77
  start-page: 164
  year: 2015
  ident: 10.1016/j.carbon.2020.03.060_bib51
  article-title: Free-volume correlation with mechanical and dielectric properties of natural rubber/multi walled carbon nanotubes composites
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2015.06.023
– volume: 126
  start-page: 202
  year: 2017
  ident: 10.1016/j.carbon.2020.03.060_bib45
  article-title: Carbon nanotube-grafted carbon fiber polymer composites: damage characterization on the micro-scale
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2017.06.004
– volume: 139
  start-page: 45
  year: 2018
  ident: 10.1016/j.carbon.2020.03.060_bib20
  article-title: Grafting CNTs on carbon fabrics with enhanced mechanical and thermal properties for tribological applications of carbon fabrics/phenolic composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.06.032
– volume: 102
  start-page: 243
  year: 2017
  ident: 10.1016/j.carbon.2020.03.060_bib41
  article-title: Carbon nanotubes coated hybrid-fabric composites with enhanced mechanical and thermal properties for tribological applications
  publication-title: Composites Part a-Appl. S
  doi: 10.1016/j.compositesa.2017.08.006
– volume: 68
  start-page: 118
  year: 2016
  ident: 10.1016/j.carbon.2020.03.060_bib36
  article-title: Low-temperature grafting of carbon nanotubes on carbon fibers using a bimetallic floating catalyst
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2016.06.012
– volume: 50
  start-page: 2347
  year: 2012
  ident: 10.1016/j.carbon.2020.03.060_bib38
  article-title: On the flame synthesis of carbon nanotubes grafted onto carbon fibers and the bonding force between them
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.01.003
– volume: 34
  start-page: 1583
  year: 2013
  ident: 10.1016/j.carbon.2020.03.060_bib4
  article-title: Effects of sizing materials on the properties of carbon fiber-reinforced polyamide 6,6 composites
  publication-title: Polym. Compos.
  doi: 10.1002/pc.22556
– volume: 39
  start-page: 1065
  year: 2008
  ident: 10.1016/j.carbon.2020.03.060_bib47
  article-title: Joining prepreg composite interfaces with aligned carbon nanotubes
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2008.03.011
– volume: 80
  start-page: 734
  year: 2014
  ident: 10.1016/j.carbon.2020.03.060_bib42
  article-title: Frictional dependence of graphene and carbon nanotube in diamond-like carbon/ionic liquids hybrid films in vacuum
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.09.022
– volume: 64
  start-page: 2363
  year: 2004
  ident: 10.1016/j.carbon.2020.03.060_bib46
  article-title: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2004.04.002
– volume: 33
  start-page: 197
  year: 2012
  ident: 10.1016/j.carbon.2020.03.060_bib6
  article-title: Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2011.07.027
– volume: 49
  start-page: 3098
  year: 2011
  ident: 10.1016/j.carbon.2020.03.060_bib31
  article-title: Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.03.032
– volume: 56
  start-page: 248
  year: 2014
  ident: 10.1016/j.carbon.2020.03.060_bib23
  article-title: Preparation of continuous carbon nanotube networks in carbon fiber/epoxy composite
  publication-title: Composites Part a-Appl S
  doi: 10.1016/j.compositesa.2013.10.016
– volume: 12
  start-page: 1825
  year: 2003
  ident: 10.1016/j.carbon.2020.03.060_bib34
  article-title: Carbon nanotube growth on carbon fibers
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/S0925-9635(03)00205-X
– volume: 81
  start-page: 64
  year: 2015
  ident: 10.1016/j.carbon.2020.03.060_bib48
  article-title: A numerical study on carbon nanotube pullout to understand its bridging effect in carbon nanotube reinforced composites
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2015.07.003
– volume: 10
  start-page: 24816
  year: 2018
  ident: 10.1016/j.carbon.2020.03.060_bib33
  article-title: Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06673
– volume: 44
  start-page: 1754
  year: 2006
  ident: 10.1016/j.carbon.2020.03.060_bib39
  article-title: Synthesis of carbon nanotubes on carbon fibers by means of two-step thermochemical vapor deposition
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.12.039
– volume: 32
  start-page: 8339
  year: 2016
  ident: 10.1016/j.carbon.2020.03.060_bib8
  article-title: Interfacial microstructure and enhanced mechanical properties of carbon fiber composites caused by growing generation 1-4 dendritic poly(amidoamine) on a fiber surface
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b01485
– volume: 96
  start-page: 701
  year: 2016
  ident: 10.1016/j.carbon.2020.03.060_bib10
  article-title: Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: towards next generation aerospace composites and energy storage applications
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.10.002
– volume: 167
  start-page: 331
  year: 2018
  ident: 10.1016/j.carbon.2020.03.060_bib18
  article-title: Comparison of different surface treatments of carbon fibers used as reinforcements in epoxy composites: interfacial strength measurements by in-situ scanning electron microscope tensile tests
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.08.018
– volume: 55
  start-page: 173
  year: 2015
  ident: 10.1016/j.carbon.2020.03.060_bib49
  article-title: Broadband dielectric properties of multiwalled carbon nanotube/polystyrene composites
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.23881
– volume: 29
  start-page: 395602
  year: 2018
  ident: 10.1016/j.carbon.2020.03.060_bib16
  article-title: Synthesis and growth mechanism of carbon nanotubes growing on carbon fiber surfaces with improved tensile strength
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aad10c
– volume: 211
  start-page: 273
  year: 2018
  ident: 10.1016/j.carbon.2020.03.060_bib50
  article-title: Colossal permittivity of carbon nanotubes grafted carbon fiber-reinforced epoxy composites
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.10.026
– volume: 50
  start-page: 3782
  year: 2012
  ident: 10.1016/j.carbon.2020.03.060_bib9
  article-title: Direct measurement of grafting strength between an individual carbon nanotube and a carbon fiber
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.03.053
– volume: 354
  start-page: 56
  year: 1991
  ident: 10.1016/j.carbon.2020.03.060_bib13
  article-title: Helical microtubules of graphitic carbon
  publication-title: Nature
  doi: 10.1038/354056a0
– volume: 179
  start-page: 134
  year: 2019
  ident: 10.1016/j.carbon.2020.03.060_bib3
  article-title: Experimental investigation on graphene oxides coated carbon fibre/epoxy hybrid composites: mechanical and electrical properties
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.04.034
– volume: 168
  start-page: 20
  year: 2018
  ident: 10.1016/j.carbon.2020.03.060_bib14
  article-title: The effect of double grafted interface layer on the properties of carbon fiber reinforced polyamide 66 composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.09.007
– volume: 132
  start-page: 181
  year: 2018
  ident: 10.1016/j.carbon.2020.03.060_bib15
  article-title: Quantitative determination of size and properties of interphases in carbon nanotube-based multiscale composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.02.059
– volume: 134
  start-page: 89
  year: 2016
  ident: 10.1016/j.carbon.2020.03.060_bib12
  article-title: Interfacial modification and enhancement of toughening mechanisms in epoxy composites with CNTs grafted on carbon fibers
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2016.08.010
– volume: 165
  start-page: 84
  year: 2018
  ident: 10.1016/j.carbon.2020.03.060_bib7
  article-title: Chemical vapor deposition-based grafting of CNTs onto basalt fabric and their reinforcement in epoxy-based composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.06.018
– volume: 123
  start-page: 548
  year: 2017
  ident: 10.1016/j.carbon.2020.03.060_bib22
  article-title: In-situ modification of carbon fibers with hyperbranched polyglycerol via anionic ring-opening polymerization for use in high-performance composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.08.008
– volume: 30
  year: 2018
  ident: 10.1016/j.carbon.2020.03.060_bib37
  article-title: Single carbon fibers with a macroscopic-thickness, 3D highly porous carbon nanotube coating
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704419
– start-page: 187
  year: 2020
  ident: 10.1016/j.carbon.2020.03.060_bib19
  article-title: Interfacial reinforcement of hybrid composite by electrophoretic deposition for vertically aligned carbon nanotubes on carbon fiber
  publication-title: Compos. Sci. Technol.
– volume: 54
  start-page: 258
  year: 2013
  ident: 10.1016/j.carbon.2020.03.060_bib27
  article-title: Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.11.037
SSID ssj0004814
Score 2.6349204
Snippet This paper focuses on improving the out-of-plane properties of carbon fiber/epoxy composites to extend their applications. Carbon nanotubes (CNTs) were...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 133
SubjectTerms Carbon fiber reinforced plastics
Carbon fibers
Carbon nanotubes
Carbon-epoxy composites
catalysts
Chemical vapor deposition
Coated fibers
Composite materials
Dielectric properties
epoxides
Fracture mechanics
Grafting
Hybrid composites
Interfacial shear strength
Low temperature
Morphology
Nanotubes
shear strength
Stress transfer
temperature
Tensile strength
vapors
Weibull modulus
Weibull statistics
Title Interfacial improvement of carbon fiber/epoxy composites using one-step method for grafting carbon nanotubes on the fibers at ultra-low temperatures
URI https://dx.doi.org/10.1016/j.carbon.2020.03.060
https://www.proquest.com/docview/2441886398
https://www.proquest.com/docview/2439426544
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS_QwEA6iB9_Li5-86xcRvMZdm0mbHmVRVkVPCt5C2iayL0u77HZRL_4Kf7AzaasoguCxbdKvmUyeTp88w9iRTEFGOC2IZJB6AZBaGlJKSJ3HqpAnOQR1_uubeHQHl_fqfokNu7UwRKtsY38T00O0bvf027fZn47HtMaX4DgiAvRTiQOeVrBDQl5-_PJB8wDd6HvTb35q3S2fCxyv3M6yilRQo0GQOg1Cld9OT18CdZh9ztfY3xY28tPmztbZkis32Oqwq9a2yV5Das9byoDzccgUhMQfrzxvrs89kUP6CLifnjkxyYmu5eacmO8PvCqdQINPeVNSmiOW5Q8z64kV3Z2gtGVVLzLsgxsIHJszzrmt-WJSz6yYVI-ctK5aoeb5Frs7P7sdjkRbcUHkIGUtZOHwqzKGTKbexUUivfVJkqqsSKWCQulUe0h9EYN1CqIc4WGGiAtybQmLObnNlku84X-MU2Vd73ykCh-Dy5QlcIdwMI4KjYFD9ZjsXrTJWzlyqooxMR3v7L9pns6QecxAGjRPj4n3XtNGjuOH9klnQ_PJrQzOGD_03OtMbtphPTeIhU60RlCne-zw_TBamv6y2NJVC2qD_h_FCmDn1xffZX9oK-SuB3tsuZ4t3D6Cnzo7CN59wFZOL65GN2_47QVY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6x8sBe0NhAlDFmJF6tlthOnEdUDZUBfQKJN8tJbFRUJVWbatv_sT94d47DtAkJicfEP-Ozz1_O5-8AzkQuRYLbAs_GuedS5paWlOJCl6mqxHkpAzv_7Syd3svvD-phCyb9XRhyq4y6v9PpQVvHN6M4mqPlfE53fAmOIyLAeSpwwb-DbWKnUgPYvri6ns7-Xo_UHcU3nfRTgf4GXXDzKu2qaIgINRkHttPAVfniDvWfrg4b0OUH2I3IkV10nduDLVd_hJ1JH7DtE_wO1j1vyQjO5sFYEGx_rPGsa5958g8ZIeb--YuRMzl5bLk1I-f3R9bUjqPMl6yLKs0QzrLHlfXkGN1XUNu6aTcFlsEHxI5djWtmW7ZZtCvLF80PRnRXkat5vQ_3l9_uJlMegy7wUgrRclE5_LFMZSFy79IqE976LMtVUeVCyUrpXHuZ-yqV1imZlIgQCwRdstSW4JgTBzCoscOHwCi4rnc-UZVPpSuUJXyHiDBNKo26Qw1B9ANtyshIToExFqZ3PXsy3dcZEo8ZC4PiGQJ_LrXsGDleyZ_1MjT_zCyDm8YrJY97kZu4stcG4dC51ojr9BBOn5NR0nTQYmvXbCgPLoEkVVIevbnxr7Azvbu9MTdXs-vP8J5Sgil7fAyDdrVxXxALtcVJnOt_AN3zCAk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+improvement+of+carbon+fiber%2Fepoxy+composites+using+one-step+method+for+grafting+carbon+nanotubes+on+the+fibers+at+ultra-low+temperatures&rft.jtitle=Carbon+%28New+York%29&rft.au=Yao%2C+Zhiqiang&rft.au=Wang%2C+Chengguo&rft.au=Qin%2C+Jianjie&rft.au=Su%2C+Shunsheng&rft.date=2020-08-30&rft.issn=0008-6223&rft.volume=164+p.133-142&rft.spage=133&rft.epage=142&rft_id=info:doi/10.1016%2Fj.carbon.2020.03.060&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon