Interfacial improvement of carbon fiber/epoxy composites using one-step method for grafting carbon nanotubes on the fibers at ultra-low temperatures
This paper focuses on improving the out-of-plane properties of carbon fiber/epoxy composites to extend their applications. Carbon nanotubes (CNTs) were introduced on carbon fiber surface by a novel one-step chemical vapor deposition (CVD) method at ultra-low temperature and hybrid composites were fa...
Saved in:
Published in | Carbon (New York) Vol. 164; pp. 133 - 142 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
30.08.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper focuses on improving the out-of-plane properties of carbon fiber/epoxy composites to extend their applications. Carbon nanotubes (CNTs) were introduced on carbon fiber surface by a novel one-step chemical vapor deposition (CVD) method at ultra-low temperature and hybrid composites were fabricated by molding technology. Mechanical and dielectric tests were conducted to figure out the changes in out-of-plane properties after grafting CNTs. The results of single-fiber tensile strength indicated that both the strength and the Weibull modulus of the CNTs-coated carbon fiber increased due to the less damage caused to the fiber by catalysts at low temperature and the repairing effect of the CNTs. Compared with the properties of desized fiber based composites, both interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) of CNTs-coated fiber/epoxy composites increased by 30.73% and 32.29%, respectively, as well as the dielectric properties were also improved. The fracture mechanisms of CNTs were investigated based on the morphology observation on the interface. The improved out-of-plane properties were associated with the improved stress transfer between the carbon fibers and surrounding matrix through the newly formed interphase induced by CNT layer.
TEM images of the structure of CNTs.The fracture surface in the weft direction of CNTs-coated carbon fiber/epoxy composites. [Display omitted] |
---|---|
AbstractList | This paper focuses on improving the out-of-plane properties of carbon fiber/epoxy composites to extend their applications. Carbon nanotubes (CNTs) were introduced on carbon fiber surface by a novel one-step chemical vapor deposition (CVD) method at ultra-low temperature and hybrid composites were fabricated by molding technology. Mechanical and dielectric tests were conducted to figure out the changes in out-of-plane properties after grafting CNTs. The results of single-fiber tensile strength indicated that both the strength and the Weibull modulus of the CNTs-coated carbon fiber increased due to the less damage caused to the fiber by catalysts at low temperature and the repairing effect of the CNTs. Compared with the properties of desized fiber based composites, both interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) of CNTs-coated fiber/epoxy composites increased by 30.73% and 32.29%, respectively, as well as the dielectric properties were also improved. The fracture mechanisms of CNTs were investigated based on the morphology observation on the interface. The improved out-of-plane properties were associated with the improved stress transfer between the carbon fibers and surrounding matrix through the newly formed interphase induced by CNT layer. This paper focuses on improving the out-of-plane properties of carbon fiber/epoxy composites to extend their applications. Carbon nanotubes (CNTs) were introduced on carbon fiber surface by a novel one-step chemical vapor deposition (CVD) method at ultra-low temperature and hybrid composites were fabricated by molding technology. Mechanical and dielectric tests were conducted to figure out the changes in out-of-plane properties after grafting CNTs. The results of single-fiber tensile strength indicated that both the strength and the Weibull modulus of the CNTs-coated carbon fiber increased due to the less damage caused to the fiber by catalysts at low temperature and the repairing effect of the CNTs. Compared with the properties of desized fiber based composites, both interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) of CNTs-coated fiber/epoxy composites increased by 30.73% and 32.29%, respectively, as well as the dielectric properties were also improved. The fracture mechanisms of CNTs were investigated based on the morphology observation on the interface. The improved out-of-plane properties were associated with the improved stress transfer between the carbon fibers and surrounding matrix through the newly formed interphase induced by CNT layer. TEM images of the structure of CNTs.The fracture surface in the weft direction of CNTs-coated carbon fiber/epoxy composites. [Display omitted] |
Author | Wang, Qifen Su, Shunsheng Wang, Chengguo Wei, Huazhen Yu, Meijie Wang, Yanxiang Yao, Zhiqiang Qin, Jianjie |
Author_xml | – sequence: 1 givenname: Zhiqiang surname: Yao fullname: Yao, Zhiqiang organization: Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China – sequence: 2 givenname: Chengguo surname: Wang fullname: Wang, Chengguo email: wangchg@sdu.edu.cn organization: Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China – sequence: 3 givenname: Jianjie surname: Qin fullname: Qin, Jianjie organization: Carbon Fiber Engineering Research Center, School of Material Science and Engineering, Shandong University, Jinan, 250061, China – sequence: 4 givenname: Shunsheng surname: Su fullname: Su, Shunsheng organization: Carbon Fiber Engineering Research Center, School of Material Science and Engineering, Shandong University, Jinan, 250061, China – sequence: 5 givenname: Yanxiang surname: Wang fullname: Wang, Yanxiang organization: Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China – sequence: 6 givenname: Qifen surname: Wang fullname: Wang, Qifen organization: CNGC Institute 53, Jinan, 250031, China – sequence: 7 givenname: Meijie surname: Yu fullname: Yu, Meijie email: yumeijie@sdu.edu.cn organization: Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China – sequence: 8 givenname: Huazhen surname: Wei fullname: Wei, Huazhen organization: CNGC Institute 53, Jinan, 250031, China |
BookMark | eNqFkbFO3jAUha2KSv2hfYMOlrqwJNixk9gMSBVqCxJSl3a2HOca_Cuxg-1QeA8euP4VJgaYrCuf7-jec47RkQ8eEPpKSU0J7c72tdFxCL5uSENqwmrSkQ9oR0XPKiYkPUI7QoiouqZhn9BxSvsyckH5Dj1f-wzRauP0hN28xPAAM_iMg8WbKbZugHgGS3h8wibMS0guQ8Jrcv4Wl0WqlGHBM-S7MGIbIr6N2ubD54uB1z7kdShMGfIdbI4J64zXKUddTeEfzjAvEHVeI6TP6KPVU4IvL-8J-vvzx5_Lq-rm96_ry-83leGM5YqNIHvR8YFJC93YM6tt38t2GCVr-dgKKSyXduy4hpY3hspmaCnnRmhCWw7sBJ1uvuXs-xVSVrNLBqZJewhrUg1nkjddy3mRfnsl3Yc1-rJdUXEqRMekKCq-qUwMKUWwaolu1vFJUaIOVam92kJRh6oUYapUVbDzV5hxWWcXfEnHTe_BFxsMJakHB1El48AbGF0Ek9UY3NsG_wFtsrbs |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_147447 crossref_primary_10_1016_j_surfin_2022_102394 crossref_primary_10_1016_j_colsurfa_2023_131874 crossref_primary_10_1002_mame_202200433 crossref_primary_10_1016_j_compositesa_2024_108306 crossref_primary_10_1007_s10443_022_10032_5 crossref_primary_10_1016_j_compositesb_2021_109197 crossref_primary_10_1016_j_aej_2022_09_019 crossref_primary_10_3390_polym13234092 crossref_primary_10_1007_s10853_022_06901_w crossref_primary_10_1016_j_diamond_2023_110739 crossref_primary_10_3390_jcs7020088 crossref_primary_10_1002_pc_29436 crossref_primary_10_1016_j_colsurfa_2024_133776 crossref_primary_10_1016_j_diamond_2024_111308 crossref_primary_10_1016_j_msea_2025_147845 crossref_primary_10_2139_ssrn_4146279 crossref_primary_10_3390_nano11092414 crossref_primary_10_1016_j_compositesa_2022_107201 crossref_primary_10_1016_j_apsusc_2022_154480 crossref_primary_10_1016_j_coco_2023_101687 crossref_primary_10_1016_j_diamond_2023_109880 crossref_primary_10_1515_rams_2024_0069 crossref_primary_10_1088_1361_6528_ac764f crossref_primary_10_3390_jcs5040111 crossref_primary_10_1021_acsanm_3c00330 crossref_primary_10_1080_09276440_2024_2417337 crossref_primary_10_1016_j_vacuum_2023_112722 crossref_primary_10_1016_j_ceramint_2021_11_176 crossref_primary_10_3390_polym13111825 crossref_primary_10_3390_polym17030267 crossref_primary_10_1016_j_carbon_2022_08_080 crossref_primary_10_1016_j_colsurfa_2023_131455 crossref_primary_10_1016_j_compositesb_2024_111654 crossref_primary_10_1002_mawe_202200072 crossref_primary_10_1016_j_engfracmech_2023_109271 crossref_primary_10_1016_j_jmst_2021_12_050 crossref_primary_10_1002_admi_202201360 crossref_primary_10_1002_pc_27670 crossref_primary_10_3390_nano13050944 crossref_primary_10_1016_j_compscitech_2022_109734 crossref_primary_10_1016_j_compscitech_2022_109855 crossref_primary_10_1002_pc_27278 crossref_primary_10_1016_j_cej_2023_146298 crossref_primary_10_1016_j_compositesb_2021_109300 crossref_primary_10_1039_D1NR07104A crossref_primary_10_1021_acsanm_1c00888 crossref_primary_10_1016_j_coco_2024_102015 crossref_primary_10_1016_j_compositesa_2022_107023 crossref_primary_10_1149_2162_8777_acc891 crossref_primary_10_1021_acsami_2c18632 crossref_primary_10_1016_j_compstruct_2022_115665 crossref_primary_10_1039_D1QM01587G crossref_primary_10_1002_pc_26173 crossref_primary_10_1021_acsanm_3c01439 crossref_primary_10_1177_00219983211015421 crossref_primary_10_1016_j_apsusc_2022_153889 crossref_primary_10_1016_j_ceramint_2023_05_087 crossref_primary_10_1016_j_colsurfa_2021_128085 crossref_primary_10_1002_pc_27941 crossref_primary_10_1002_pc_25955 crossref_primary_10_1016_j_jcis_2023_01_108 crossref_primary_10_2139_ssrn_3969118 crossref_primary_10_1016_j_carbon_2022_03_046 crossref_primary_10_1016_j_compositesb_2023_110826 crossref_primary_10_1016_j_surfin_2022_102230 crossref_primary_10_1021_acsami_0c12477 crossref_primary_10_3390_nano10091670 crossref_primary_10_1016_j_cej_2024_151746 crossref_primary_10_3390_jcs8110459 crossref_primary_10_1016_j_ceramint_2022_06_227 crossref_primary_10_1016_j_ceramint_2023_10_207 crossref_primary_10_1016_j_compositesa_2020_106201 crossref_primary_10_1016_j_polymer_2024_127533 crossref_primary_10_1016_j_matdes_2021_109456 crossref_primary_10_1155_jnt_4194409 crossref_primary_10_1016_j_ceramint_2021_09_271 crossref_primary_10_1021_acsanm_2c02117 crossref_primary_10_1088_1361_6528_acfef7 crossref_primary_10_1016_j_compscitech_2024_110912 crossref_primary_10_1016_j_compscitech_2021_108780 crossref_primary_10_1016_j_matdes_2024_112981 crossref_primary_10_1016_j_coco_2022_101149 crossref_primary_10_1016_j_compositesb_2021_108872 crossref_primary_10_1016_j_infrared_2022_104296 crossref_primary_10_1016_j_compositesb_2022_109785 crossref_primary_10_1002_pc_26916 crossref_primary_10_1016_j_porgcoat_2023_108129 crossref_primary_10_1016_j_porgcoat_2024_108468 crossref_primary_10_1002_smll_202409234 crossref_primary_10_1016_j_coco_2024_102237 crossref_primary_10_1016_j_ceramint_2022_09_261 crossref_primary_10_1016_j_ceramint_2023_09_044 crossref_primary_10_1002_pc_26593 crossref_primary_10_1021_acs_langmuir_2c00866 crossref_primary_10_1016_j_ijbiomac_2025_140597 crossref_primary_10_1016_j_matdes_2021_110293 crossref_primary_10_1002_app_53611 crossref_primary_10_1016_j_apsusc_2021_150813 crossref_primary_10_1021_acsanm_1c02890 crossref_primary_10_1515_ntrev_2020_0090 crossref_primary_10_1149_2162_8777_ada2b9 crossref_primary_10_1002_app_54395 crossref_primary_10_1016_j_coco_2023_101599 crossref_primary_10_1007_s10854_023_11033_1 crossref_primary_10_2139_ssrn_4123015 crossref_primary_10_1016_j_mtcomm_2023_107907 crossref_primary_10_1002_pc_29097 crossref_primary_10_1039_D2QM01271E crossref_primary_10_1016_j_apsusc_2022_154309 crossref_primary_10_1002_pc_29414 crossref_primary_10_1016_j_compscitech_2023_109933 crossref_primary_10_1016_j_compscitech_2023_110415 crossref_primary_10_1149_2162_8777_ac22e4 crossref_primary_10_1002_pc_29138 crossref_primary_10_1016_j_diamond_2022_109574 crossref_primary_10_1021_acs_langmuir_1c03459 crossref_primary_10_3934_matersci_2024054 crossref_primary_10_1016_j_carbon_2022_08_053 crossref_primary_10_2139_ssrn_4110624 crossref_primary_10_1016_j_jmrt_2024_02_183 crossref_primary_10_1016_j_apsusc_2023_159210 crossref_primary_10_1039_D3RA08577E crossref_primary_10_1039_D1NA00294E crossref_primary_10_1002_adfm_202112231 crossref_primary_10_1016_j_compositesa_2024_108192 crossref_primary_10_1016_j_carbon_2023_118131 crossref_primary_10_1002_app_52665 crossref_primary_10_1016_j_cej_2021_132449 crossref_primary_10_2139_ssrn_4128530 crossref_primary_10_1016_j_jmrt_2023_04_158 crossref_primary_10_1016_j_wear_2023_205132 crossref_primary_10_1515_ntrev_2021_0048 |
Cites_doi | 10.1007/s10853-009-3484-x 10.1016/j.compscitech.2018.02.007 10.1016/j.diamond.2014.11.002 10.1016/j.compositesa.2019.04.017 10.1016/j.apsusc.2011.09.003 10.1002/adma.200801006 10.1016/j.carbon.2015.08.041 10.1016/j.apsusc.2015.12.189 10.1016/j.matdes.2010.04.018 10.1016/j.compositesa.2010.04.004 10.1016/j.carbon.2019.01.063 10.1016/j.carbon.2013.12.020 10.1007/s10853-011-6112-5 10.1021/am3002499 10.1016/j.compstruct.2019.04.037 10.1021/acsami.6b13397 10.1016/j.compositesa.2009.06.002 10.1016/j.compositesa.2015.06.023 10.1016/j.compositesb.2017.06.004 10.1016/j.carbon.2018.06.032 10.1016/j.compositesa.2017.08.006 10.1016/j.diamond.2016.06.012 10.1016/j.carbon.2012.01.003 10.1002/pc.22556 10.1016/j.compositesa.2008.03.011 10.1016/j.carbon.2014.09.022 10.1016/j.compscitech.2004.04.002 10.1016/j.matdes.2011.07.027 10.1016/j.carbon.2011.03.032 10.1016/j.compositesa.2013.10.016 10.1016/S0925-9635(03)00205-X 10.1016/j.compositesb.2015.07.003 10.1021/acsami.8b06673 10.1016/j.carbon.2005.12.039 10.1021/acs.langmuir.6b01485 10.1016/j.carbon.2015.10.002 10.1016/j.compscitech.2018.08.018 10.1002/pen.23881 10.1088/1361-6528/aad10c 10.1016/j.matlet.2017.10.026 10.1016/j.carbon.2012.03.053 10.1038/354056a0 10.1016/j.compscitech.2019.04.034 10.1016/j.compscitech.2018.09.007 10.1016/j.carbon.2018.02.059 10.1016/j.compscitech.2016.08.010 10.1016/j.compscitech.2018.06.018 10.1016/j.carbon.2017.08.008 10.1002/adma.201704419 10.1016/j.carbon.2012.11.037 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Aug 30, 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Aug 30, 2020 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.carbon.2020.03.060 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3891 |
EndPage | 142 |
ExternalDocumentID | 10_1016_j_carbon_2020_03_060 S0008622320303146 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TWZ XPP ZMT ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ IHE R2- RIG SEW SMS WUQ 7SR 8FD JG9 SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-3de97864b39fe6d73faf7795bd9354d5898f49fd64ae542c192b5144c8a0154e3 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Fri Jul 11 09:23:34 EDT 2025 Fri Jul 25 05:40:34 EDT 2025 Tue Aug 05 03:08:26 EDT 2025 Thu Apr 24 23:05:19 EDT 2025 Fri Feb 23 02:47:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-3de97864b39fe6d73faf7795bd9354d5898f49fd64ae542c192b5144c8a0154e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2441886398 |
PQPubID | 2045273 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2439426544 proquest_journals_2441886398 crossref_primary_10_1016_j_carbon_2020_03_060 crossref_citationtrail_10_1016_j_carbon_2020_03_060 elsevier_sciencedirect_doi_10_1016_j_carbon_2020_03_060 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-30 |
PublicationDateYYYYMMDD | 2020-08-30 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Carbon (New York) |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Li, Li, Gu, Wang, Li, Zhang (bib26) 2018; 166 Sonoyama, Ohshita, Nijubu, Nishikawa, Yanase, Hayashi (bib39) 2006; 44 Zhu, Su, Lehoczky, Muntele, Ila (bib34) 2003; 12 Dong, Hou, Li, Wang, Gao, Tang (bib23) 2014; 56 Qin, Wang, Wang, Lu, Zheng, Wang (bib16) 2018; 29 An, Lu, Guo, He, Lu, Yang (bib28) 2011; 258 Zou, Zhao, Wu, Zhang, Xu, Yang (bib37) 2018; 30 Zhang, Wang, He, Wang, Ren (bib11) 2009; 44 Zhang, De Greef, Kalinka, Van Bilzen, Locquet, Verpoest (bib45) 2017; 126 He, Fan, Zhao, Lu, Yang, Liu (bib30) 2017; 9 Mei, Zhang, Chen, Zhou, Zhai, Cheng (bib12) 2016; 134 He, Wang, Tong, Wang, Cao, Peng (bib9) 2012; 50 Bhanuprakash, Parasuram, Varghese (bib3) 2019; 179 Gangineni, Yandrapu, Ghosh, Anand, Prusty, Ray (bib2) 2019; 122 Du, Liu, Zhou, Moody, Mai (bib38) 2012; 50 Kim, Yu, Youk, Lee (bib44) 2012; 4 Ponnamma, Ramachandran, Hussain, Rajaraman, Amarendra, Varughese (bib51) 2015; 77 Chen, Xu, Liu, Mi, Shen (bib14) 2018; 168 Guo, Lu, An (bib24) 2011; 47 De Greef, Zhang, Magrez, Forró, Locquet, Verpoest (bib43) 2015; 51 Gojny, Wichmann, Köpke, Fiedler, Schulte (bib46) 2004; 64 Kim, Kim, Yu, Youk, Lee (bib27) 2013; 54 Zhang, Deng, Sui, Yang (bib1) 2019; 145 Zhang, Pu, Wang, Xue (bib42) 2014; 80 Iijima (bib13) 1991; 354 Agnihotri, Basu, Kar (bib31) 2011; 49 Montazeri, Javadpour, Khavandi, Tcharkhtchi, Mohajeri (bib5) 2010; 31 Hung, Kuo, Ko, Tzeng, Yan (bib21) 2009; 40 Fan, Wang, Wang, Chen, Wang, Yuan (bib17) 2016; 364 Li, Liu, Yang, Jiao, Hao, Wang (bib19) 2020 Islam, Deng, Tong, Faisal, Roy, Minett (bib10) 2016; 96 Bedi, Tiwari, Agnihotri (bib15) 2018; 132 Liu, He, Hamon, Fan, Haghi-Ashtiani, Reiss (bib18) 2018; 167 Arjmand, Sundararaj (bib49) 2015; 55 Yuan, Zhang, Yang, Guo, Men, Liu (bib41) 2017; 102 Gao, Zhang, Hao, Huo, Zhang, Shao (bib22) 2017; 123 Singh, Akhtar, Kar (bib33) 2018; 10 Wang, Li, Tong, Song, Li, Li (bib29) 2014; 69 Wang, Wang, Wang, Wang, Lu, Qin (bib50) 2018; 211 Wang, Fu, Yin, Li, Qi, Fu (bib20) 2018; 139 Lee, Youk, Lee, Sul, Yu (bib36) 2016; 68 Oulanti, Laurent, Le-Huu, Durand, Donnet (bib40) 2015; 95 Chiang, Sankaran (bib35) 2008; 20 Mittal, Rhee (bib7) 2018; 165 Gao, Zhang, Gao, He, Wang, Liu (bib8) 2016; 32 An, Lu, Li, Guo, Lu, Lu (bib6) 2012; 33 Lee, Sung, Youk, Lee, Yu (bib25) 2019; 220 Jia, Chen, Yan (bib48) 2015; 81 Karsli, Ozkan, Aytac, Deniz (bib4) 2013; 34 Garcia, Wardle, John Hart (bib47) 2008; 39 Qian, Bismarck, Greenhalgh, Shaffer (bib32) 2010; 41 He (10.1016/j.carbon.2020.03.060_bib30) 2017; 9 An (10.1016/j.carbon.2020.03.060_bib6) 2012; 33 Bedi (10.1016/j.carbon.2020.03.060_bib15) 2018; 132 Lee (10.1016/j.carbon.2020.03.060_bib36) 2016; 68 Iijima (10.1016/j.carbon.2020.03.060_bib13) 1991; 354 Hung (10.1016/j.carbon.2020.03.060_bib21) 2009; 40 An (10.1016/j.carbon.2020.03.060_bib28) 2011; 258 Zhu (10.1016/j.carbon.2020.03.060_bib34) 2003; 12 Bhanuprakash (10.1016/j.carbon.2020.03.060_bib3) 2019; 179 Montazeri (10.1016/j.carbon.2020.03.060_bib5) 2010; 31 Lee (10.1016/j.carbon.2020.03.060_bib25) 2019; 220 Gao (10.1016/j.carbon.2020.03.060_bib8) 2016; 32 Gojny (10.1016/j.carbon.2020.03.060_bib46) 2004; 64 Qian (10.1016/j.carbon.2020.03.060_bib32) 2010; 41 Karsli (10.1016/j.carbon.2020.03.060_bib4) 2013; 34 Mittal (10.1016/j.carbon.2020.03.060_bib7) 2018; 165 Gangineni (10.1016/j.carbon.2020.03.060_bib2) 2019; 122 Gao (10.1016/j.carbon.2020.03.060_bib22) 2017; 123 Ponnamma (10.1016/j.carbon.2020.03.060_bib51) 2015; 77 Li (10.1016/j.carbon.2020.03.060_bib26) 2018; 166 Fan (10.1016/j.carbon.2020.03.060_bib17) 2016; 364 Dong (10.1016/j.carbon.2020.03.060_bib23) 2014; 56 Garcia (10.1016/j.carbon.2020.03.060_bib47) 2008; 39 Singh (10.1016/j.carbon.2020.03.060_bib33) 2018; 10 Kim (10.1016/j.carbon.2020.03.060_bib44) 2012; 4 Yuan (10.1016/j.carbon.2020.03.060_bib41) 2017; 102 Qin (10.1016/j.carbon.2020.03.060_bib16) 2018; 29 Mei (10.1016/j.carbon.2020.03.060_bib12) 2016; 134 Li (10.1016/j.carbon.2020.03.060_bib19) 2020 Wang (10.1016/j.carbon.2020.03.060_bib20) 2018; 139 Kim (10.1016/j.carbon.2020.03.060_bib27) 2013; 54 Zhang (10.1016/j.carbon.2020.03.060_bib42) 2014; 80 Chen (10.1016/j.carbon.2020.03.060_bib14) 2018; 168 Guo (10.1016/j.carbon.2020.03.060_bib24) 2011; 47 He (10.1016/j.carbon.2020.03.060_bib9) 2012; 50 Zhang (10.1016/j.carbon.2020.03.060_bib11) 2009; 44 Oulanti (10.1016/j.carbon.2020.03.060_bib40) 2015; 95 Liu (10.1016/j.carbon.2020.03.060_bib18) 2018; 167 Du (10.1016/j.carbon.2020.03.060_bib38) 2012; 50 Zhang (10.1016/j.carbon.2020.03.060_bib1) 2019; 145 Arjmand (10.1016/j.carbon.2020.03.060_bib49) 2015; 55 Zou (10.1016/j.carbon.2020.03.060_bib37) 2018; 30 Agnihotri (10.1016/j.carbon.2020.03.060_bib31) 2011; 49 Wang (10.1016/j.carbon.2020.03.060_bib29) 2014; 69 Jia (10.1016/j.carbon.2020.03.060_bib48) 2015; 81 Wang (10.1016/j.carbon.2020.03.060_bib50) 2018; 211 Islam (10.1016/j.carbon.2020.03.060_bib10) 2016; 96 Zhang (10.1016/j.carbon.2020.03.060_bib45) 2017; 126 Sonoyama (10.1016/j.carbon.2020.03.060_bib39) 2006; 44 De Greef (10.1016/j.carbon.2020.03.060_bib43) 2015; 51 Chiang (10.1016/j.carbon.2020.03.060_bib35) 2008; 20 |
References_xml | – volume: 165 start-page: 84 year: 2018 end-page: 94 ident: bib7 article-title: Chemical vapor deposition-based grafting of CNTs onto basalt fabric and their reinforcement in epoxy-based composites publication-title: Compos. Sci. Technol. – volume: 145 start-page: 629 year: 2019 end-page: 639 ident: bib1 article-title: Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites publication-title: Carbon – volume: 20 start-page: 4857 year: 2008 end-page: 4861 ident: bib35 article-title: Synergistic effects in bimetallic nanoparticles for low temperature carbon nanotube growth publication-title: Adv. Mater. – volume: 102 start-page: 243 year: 2017 end-page: 252 ident: bib41 article-title: Carbon nanotubes coated hybrid-fabric composites with enhanced mechanical and thermal properties for tribological applications publication-title: Composites Part a-Appl. S – volume: 9 start-page: 2948 year: 2017 end-page: 2958 ident: bib30 article-title: Design of electrically conductive structural composites by modulating aligned CVD-grown carbon nanotube length on glass fibers publication-title: ACS Appl. Mater. Interfaces – volume: 122 start-page: 36 year: 2019 end-page: 44 ident: bib2 article-title: Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: an assessment of the influence of functional groups publication-title: Compos. Appl. Sci. Manuf. – volume: 32 start-page: 8339 year: 2016 end-page: 8349 ident: bib8 article-title: Interfacial microstructure and enhanced mechanical properties of carbon fiber composites caused by growing generation 1-4 dendritic poly(amidoamine) on a fiber surface publication-title: Langmuir – volume: 168 start-page: 20 year: 2018 end-page: 27 ident: bib14 article-title: The effect of double grafted interface layer on the properties of carbon fiber reinforced polyamide 66 composites publication-title: Compos. Sci. Technol. – volume: 80 start-page: 734 year: 2014 end-page: 745 ident: bib42 article-title: Frictional dependence of graphene and carbon nanotube in diamond-like carbon/ionic liquids hybrid films in vacuum publication-title: Carbon – volume: 50 start-page: 3782 year: 2012 end-page: 3788 ident: bib9 article-title: Direct measurement of grafting strength between an individual carbon nanotube and a carbon fiber publication-title: Carbon – volume: 68 start-page: 118 year: 2016 end-page: 126 ident: bib36 article-title: Low-temperature grafting of carbon nanotubes on carbon fibers using a bimetallic floating catalyst publication-title: Diam. Relat. Mater. – volume: 56 start-page: 248 year: 2014 end-page: 255 ident: bib23 article-title: Preparation of continuous carbon nanotube networks in carbon fiber/epoxy composite publication-title: Composites Part a-Appl S – volume: 258 start-page: 1069 year: 2011 end-page: 1076 ident: bib28 article-title: Preparation of vertically aligned carbon nanotube arrays grown onto carbon fiber fabric and evaluating its wettability on effect of composite publication-title: Appl. Surf. Sci. – volume: 44 start-page: 1754 year: 2006 end-page: 1761 ident: bib39 article-title: Synthesis of carbon nanotubes on carbon fibers by means of two-step thermochemical vapor deposition publication-title: Carbon – volume: 47 start-page: 2831 year: 2011 end-page: 2836 ident: bib24 article-title: Effect of electrophoretically deposited carbon nanotubes on the interface of carbon fiber reinforced epoxy composite publication-title: J. Mater. Sci. – start-page: 187 year: 2020 ident: bib19 article-title: Interfacial reinforcement of hybrid composite by electrophoretic deposition for vertically aligned carbon nanotubes on carbon fiber publication-title: Compos. Sci. Technol. – volume: 167 start-page: 331 year: 2018 end-page: 338 ident: bib18 article-title: Comparison of different surface treatments of carbon fibers used as reinforcements in epoxy composites: interfacial strength measurements by in-situ scanning electron microscope tensile tests publication-title: Compos. Sci. Technol. – volume: 95 start-page: 261 year: 2015 end-page: 267 ident: bib40 article-title: Growth of carbon nanotubes on carbon fibers using the combustion flame oxy-acetylene method publication-title: Carbon – volume: 40 start-page: 1299 year: 2009 end-page: 1304 ident: bib21 article-title: Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibers publication-title: Compos. Appl. Sci. Manuf. – volume: 179 start-page: 134 year: 2019 end-page: 144 ident: bib3 article-title: Experimental investigation on graphene oxides coated carbon fibre/epoxy hybrid composites: mechanical and electrical properties publication-title: Compos. Sci. Technol. – volume: 49 start-page: 3098 year: 2011 end-page: 3106 ident: bib31 article-title: Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites publication-title: Carbon – volume: 134 start-page: 89 year: 2016 end-page: 95 ident: bib12 article-title: Interfacial modification and enhancement of toughening mechanisms in epoxy composites with CNTs grafted on carbon fibers publication-title: Compos. Sci. Technol. – volume: 123 start-page: 548 year: 2017 end-page: 557 ident: bib22 article-title: In-situ modification of carbon fibers with hyperbranched polyglycerol via anionic ring-opening polymerization for use in high-performance composites publication-title: Carbon – volume: 81 start-page: 64 year: 2015 end-page: 71 ident: bib48 article-title: A numerical study on carbon nanotube pullout to understand its bridging effect in carbon nanotube reinforced composites publication-title: Compos. B Eng. – volume: 44 start-page: 3574 year: 2009 end-page: 3577 ident: bib11 article-title: Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid publication-title: J. Mater. Sci. – volume: 50 start-page: 2347 year: 2012 end-page: 2350 ident: bib38 article-title: On the flame synthesis of carbon nanotubes grafted onto carbon fibers and the bonding force between them publication-title: Carbon – volume: 39 start-page: 1065 year: 2008 end-page: 1070 ident: bib47 article-title: Joining prepreg composite interfaces with aligned carbon nanotubes publication-title: Compos. Appl. Sci. Manuf. – volume: 55 start-page: 173 year: 2015 end-page: 179 ident: bib49 article-title: Broadband dielectric properties of multiwalled carbon nanotube/polystyrene composites publication-title: Polym. Eng. Sci. – volume: 132 start-page: 181 year: 2018 end-page: 190 ident: bib15 article-title: Quantitative determination of size and properties of interphases in carbon nanotube-based multiscale composites publication-title: Carbon – volume: 30 year: 2018 ident: bib37 article-title: Single carbon fibers with a macroscopic-thickness, 3D highly porous carbon nanotube coating publication-title: Adv. Mater. – volume: 41 start-page: 1107 year: 2010 end-page: 1114 ident: bib32 article-title: Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation publication-title: Composites Part a-Appl S – volume: 54 start-page: 258 year: 2013 end-page: 267 ident: bib27 article-title: Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface publication-title: Carbon – volume: 220 start-page: 580 year: 2019 end-page: 591 ident: bib25 article-title: Improved tensile strength of carbon nanotube-grafted carbon fiber reinforced composites publication-title: Compos. Struct. – volume: 34 start-page: 1583 year: 2013 end-page: 1590 ident: bib4 article-title: Effects of sizing materials on the properties of carbon fiber-reinforced polyamide 6,6 composites publication-title: Polym. Compos. – volume: 166 start-page: 176 year: 2018 end-page: 182 ident: bib26 article-title: Mechanical enhancement effect of the interlayer hybrid, CNT film/carbon fiber/epoxy, composite publication-title: Compos. Sci. Technol. – volume: 77 start-page: 164 year: 2015 end-page: 171 ident: bib51 article-title: Free-volume correlation with mechanical and dielectric properties of natural rubber/multi walled carbon nanotubes composites publication-title: Compos. Appl. Sci. Manuf. – volume: 69 start-page: 239 year: 2014 end-page: 246 ident: bib29 article-title: The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites publication-title: Carbon – volume: 29 start-page: 395602 year: 2018 ident: bib16 article-title: Synthesis and growth mechanism of carbon nanotubes growing on carbon fiber surfaces with improved tensile strength publication-title: Nanotechnology – volume: 64 start-page: 2363 year: 2004 end-page: 2371 ident: bib46 article-title: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content publication-title: Compos. Sci. Technol. – volume: 96 start-page: 701 year: 2016 end-page: 710 ident: bib10 article-title: Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: towards next generation aerospace composites and energy storage applications publication-title: Carbon – volume: 33 start-page: 197 year: 2012 end-page: 202 ident: bib6 article-title: Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite publication-title: Mater. Des. – volume: 51 start-page: 39 year: 2015 end-page: 48 ident: bib43 article-title: Direct growth of carbon nanotubes on carbon fibers: effect of the CVD parameters on the degradation of mechanical properties of carbon fibers publication-title: Diam. Relat. Mater. – volume: 10 start-page: 24816 year: 2018 end-page: 24828 ident: bib33 article-title: Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 2250 year: 2012 end-page: 2258 ident: bib44 article-title: Degradation and healing mechanisms of carbon fibers during the catalytic growth of carbon nanotubes on their surfaces publication-title: ACS Appl. Mater. Interfaces – volume: 139 start-page: 45 year: 2018 end-page: 51 ident: bib20 article-title: Grafting CNTs on carbon fabrics with enhanced mechanical and thermal properties for tribological applications of carbon fabrics/phenolic composites publication-title: Carbon – volume: 12 start-page: 1825 year: 2003 end-page: 1828 ident: bib34 article-title: Carbon nanotube growth on carbon fibers publication-title: Diam. Relat. Mater. – volume: 354 start-page: 56 year: 1991 end-page: 58 ident: bib13 article-title: Helical microtubules of graphitic carbon publication-title: Nature – volume: 211 start-page: 273 year: 2018 end-page: 276 ident: bib50 article-title: Colossal permittivity of carbon nanotubes grafted carbon fiber-reinforced epoxy composites publication-title: Mater. Lett. – volume: 31 start-page: 4202 year: 2010 end-page: 4208 ident: bib5 article-title: Mechanical properties of multi-walled carbon nanotube/epoxy composites publication-title: Mater. Des. – volume: 126 start-page: 202 year: 2017 end-page: 210 ident: bib45 article-title: Carbon nanotube-grafted carbon fiber polymer composites: damage characterization on the micro-scale publication-title: Compos. B Eng. – volume: 364 start-page: 539 year: 2016 end-page: 551 ident: bib17 article-title: High efficient preparation of carbon nanotube-grafted carbon fibers with the improved tensile strength publication-title: Appl. Surf. Sci. – volume: 44 start-page: 3574 year: 2009 ident: 10.1016/j.carbon.2020.03.060_bib11 article-title: Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-3484-x – volume: 166 start-page: 176 year: 2018 ident: 10.1016/j.carbon.2020.03.060_bib26 article-title: Mechanical enhancement effect of the interlayer hybrid, CNT film/carbon fiber/epoxy, composite publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.02.007 – volume: 51 start-page: 39 year: 2015 ident: 10.1016/j.carbon.2020.03.060_bib43 article-title: Direct growth of carbon nanotubes on carbon fibers: effect of the CVD parameters on the degradation of mechanical properties of carbon fibers publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2014.11.002 – volume: 122 start-page: 36 year: 2019 ident: 10.1016/j.carbon.2020.03.060_bib2 article-title: Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: an assessment of the influence of functional groups publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2019.04.017 – volume: 258 start-page: 1069 year: 2011 ident: 10.1016/j.carbon.2020.03.060_bib28 article-title: Preparation of vertically aligned carbon nanotube arrays grown onto carbon fiber fabric and evaluating its wettability on effect of composite publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.09.003 – volume: 20 start-page: 4857 year: 2008 ident: 10.1016/j.carbon.2020.03.060_bib35 article-title: Synergistic effects in bimetallic nanoparticles for low temperature carbon nanotube growth publication-title: Adv. Mater. doi: 10.1002/adma.200801006 – volume: 95 start-page: 261 year: 2015 ident: 10.1016/j.carbon.2020.03.060_bib40 article-title: Growth of carbon nanotubes on carbon fibers using the combustion flame oxy-acetylene method publication-title: Carbon doi: 10.1016/j.carbon.2015.08.041 – volume: 364 start-page: 539 year: 2016 ident: 10.1016/j.carbon.2020.03.060_bib17 article-title: High efficient preparation of carbon nanotube-grafted carbon fibers with the improved tensile strength publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.12.189 – volume: 31 start-page: 4202 year: 2010 ident: 10.1016/j.carbon.2020.03.060_bib5 article-title: Mechanical properties of multi-walled carbon nanotube/epoxy composites publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.04.018 – volume: 41 start-page: 1107 year: 2010 ident: 10.1016/j.carbon.2020.03.060_bib32 article-title: Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation publication-title: Composites Part a-Appl S doi: 10.1016/j.compositesa.2010.04.004 – volume: 145 start-page: 629 year: 2019 ident: 10.1016/j.carbon.2020.03.060_bib1 article-title: Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites publication-title: Carbon doi: 10.1016/j.carbon.2019.01.063 – volume: 69 start-page: 239 year: 2014 ident: 10.1016/j.carbon.2020.03.060_bib29 article-title: The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites publication-title: Carbon doi: 10.1016/j.carbon.2013.12.020 – volume: 47 start-page: 2831 year: 2011 ident: 10.1016/j.carbon.2020.03.060_bib24 article-title: Effect of electrophoretically deposited carbon nanotubes on the interface of carbon fiber reinforced epoxy composite publication-title: J. Mater. Sci. doi: 10.1007/s10853-011-6112-5 – volume: 4 start-page: 2250 year: 2012 ident: 10.1016/j.carbon.2020.03.060_bib44 article-title: Degradation and healing mechanisms of carbon fibers during the catalytic growth of carbon nanotubes on their surfaces publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3002499 – volume: 220 start-page: 580 year: 2019 ident: 10.1016/j.carbon.2020.03.060_bib25 article-title: Improved tensile strength of carbon nanotube-grafted carbon fiber reinforced composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.04.037 – volume: 9 start-page: 2948 year: 2017 ident: 10.1016/j.carbon.2020.03.060_bib30 article-title: Design of electrically conductive structural composites by modulating aligned CVD-grown carbon nanotube length on glass fibers publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13397 – volume: 40 start-page: 1299 year: 2009 ident: 10.1016/j.carbon.2020.03.060_bib21 article-title: Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibers publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2009.06.002 – volume: 77 start-page: 164 year: 2015 ident: 10.1016/j.carbon.2020.03.060_bib51 article-title: Free-volume correlation with mechanical and dielectric properties of natural rubber/multi walled carbon nanotubes composites publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.06.023 – volume: 126 start-page: 202 year: 2017 ident: 10.1016/j.carbon.2020.03.060_bib45 article-title: Carbon nanotube-grafted carbon fiber polymer composites: damage characterization on the micro-scale publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2017.06.004 – volume: 139 start-page: 45 year: 2018 ident: 10.1016/j.carbon.2020.03.060_bib20 article-title: Grafting CNTs on carbon fabrics with enhanced mechanical and thermal properties for tribological applications of carbon fabrics/phenolic composites publication-title: Carbon doi: 10.1016/j.carbon.2018.06.032 – volume: 102 start-page: 243 year: 2017 ident: 10.1016/j.carbon.2020.03.060_bib41 article-title: Carbon nanotubes coated hybrid-fabric composites with enhanced mechanical and thermal properties for tribological applications publication-title: Composites Part a-Appl. S doi: 10.1016/j.compositesa.2017.08.006 – volume: 68 start-page: 118 year: 2016 ident: 10.1016/j.carbon.2020.03.060_bib36 article-title: Low-temperature grafting of carbon nanotubes on carbon fibers using a bimetallic floating catalyst publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2016.06.012 – volume: 50 start-page: 2347 year: 2012 ident: 10.1016/j.carbon.2020.03.060_bib38 article-title: On the flame synthesis of carbon nanotubes grafted onto carbon fibers and the bonding force between them publication-title: Carbon doi: 10.1016/j.carbon.2012.01.003 – volume: 34 start-page: 1583 year: 2013 ident: 10.1016/j.carbon.2020.03.060_bib4 article-title: Effects of sizing materials on the properties of carbon fiber-reinforced polyamide 6,6 composites publication-title: Polym. Compos. doi: 10.1002/pc.22556 – volume: 39 start-page: 1065 year: 2008 ident: 10.1016/j.carbon.2020.03.060_bib47 article-title: Joining prepreg composite interfaces with aligned carbon nanotubes publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2008.03.011 – volume: 80 start-page: 734 year: 2014 ident: 10.1016/j.carbon.2020.03.060_bib42 article-title: Frictional dependence of graphene and carbon nanotube in diamond-like carbon/ionic liquids hybrid films in vacuum publication-title: Carbon doi: 10.1016/j.carbon.2014.09.022 – volume: 64 start-page: 2363 year: 2004 ident: 10.1016/j.carbon.2020.03.060_bib46 article-title: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2004.04.002 – volume: 33 start-page: 197 year: 2012 ident: 10.1016/j.carbon.2020.03.060_bib6 article-title: Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite publication-title: Mater. Des. doi: 10.1016/j.matdes.2011.07.027 – volume: 49 start-page: 3098 year: 2011 ident: 10.1016/j.carbon.2020.03.060_bib31 article-title: Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites publication-title: Carbon doi: 10.1016/j.carbon.2011.03.032 – volume: 56 start-page: 248 year: 2014 ident: 10.1016/j.carbon.2020.03.060_bib23 article-title: Preparation of continuous carbon nanotube networks in carbon fiber/epoxy composite publication-title: Composites Part a-Appl S doi: 10.1016/j.compositesa.2013.10.016 – volume: 12 start-page: 1825 year: 2003 ident: 10.1016/j.carbon.2020.03.060_bib34 article-title: Carbon nanotube growth on carbon fibers publication-title: Diam. Relat. Mater. doi: 10.1016/S0925-9635(03)00205-X – volume: 81 start-page: 64 year: 2015 ident: 10.1016/j.carbon.2020.03.060_bib48 article-title: A numerical study on carbon nanotube pullout to understand its bridging effect in carbon nanotube reinforced composites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2015.07.003 – volume: 10 start-page: 24816 year: 2018 ident: 10.1016/j.carbon.2020.03.060_bib33 article-title: Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06673 – volume: 44 start-page: 1754 year: 2006 ident: 10.1016/j.carbon.2020.03.060_bib39 article-title: Synthesis of carbon nanotubes on carbon fibers by means of two-step thermochemical vapor deposition publication-title: Carbon doi: 10.1016/j.carbon.2005.12.039 – volume: 32 start-page: 8339 year: 2016 ident: 10.1016/j.carbon.2020.03.060_bib8 article-title: Interfacial microstructure and enhanced mechanical properties of carbon fiber composites caused by growing generation 1-4 dendritic poly(amidoamine) on a fiber surface publication-title: Langmuir doi: 10.1021/acs.langmuir.6b01485 – volume: 96 start-page: 701 year: 2016 ident: 10.1016/j.carbon.2020.03.060_bib10 article-title: Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: towards next generation aerospace composites and energy storage applications publication-title: Carbon doi: 10.1016/j.carbon.2015.10.002 – volume: 167 start-page: 331 year: 2018 ident: 10.1016/j.carbon.2020.03.060_bib18 article-title: Comparison of different surface treatments of carbon fibers used as reinforcements in epoxy composites: interfacial strength measurements by in-situ scanning electron microscope tensile tests publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.08.018 – volume: 55 start-page: 173 year: 2015 ident: 10.1016/j.carbon.2020.03.060_bib49 article-title: Broadband dielectric properties of multiwalled carbon nanotube/polystyrene composites publication-title: Polym. Eng. Sci. doi: 10.1002/pen.23881 – volume: 29 start-page: 395602 year: 2018 ident: 10.1016/j.carbon.2020.03.060_bib16 article-title: Synthesis and growth mechanism of carbon nanotubes growing on carbon fiber surfaces with improved tensile strength publication-title: Nanotechnology doi: 10.1088/1361-6528/aad10c – volume: 211 start-page: 273 year: 2018 ident: 10.1016/j.carbon.2020.03.060_bib50 article-title: Colossal permittivity of carbon nanotubes grafted carbon fiber-reinforced epoxy composites publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.10.026 – volume: 50 start-page: 3782 year: 2012 ident: 10.1016/j.carbon.2020.03.060_bib9 article-title: Direct measurement of grafting strength between an individual carbon nanotube and a carbon fiber publication-title: Carbon doi: 10.1016/j.carbon.2012.03.053 – volume: 354 start-page: 56 year: 1991 ident: 10.1016/j.carbon.2020.03.060_bib13 article-title: Helical microtubules of graphitic carbon publication-title: Nature doi: 10.1038/354056a0 – volume: 179 start-page: 134 year: 2019 ident: 10.1016/j.carbon.2020.03.060_bib3 article-title: Experimental investigation on graphene oxides coated carbon fibre/epoxy hybrid composites: mechanical and electrical properties publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.04.034 – volume: 168 start-page: 20 year: 2018 ident: 10.1016/j.carbon.2020.03.060_bib14 article-title: The effect of double grafted interface layer on the properties of carbon fiber reinforced polyamide 66 composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.09.007 – volume: 132 start-page: 181 year: 2018 ident: 10.1016/j.carbon.2020.03.060_bib15 article-title: Quantitative determination of size and properties of interphases in carbon nanotube-based multiscale composites publication-title: Carbon doi: 10.1016/j.carbon.2018.02.059 – volume: 134 start-page: 89 year: 2016 ident: 10.1016/j.carbon.2020.03.060_bib12 article-title: Interfacial modification and enhancement of toughening mechanisms in epoxy composites with CNTs grafted on carbon fibers publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.08.010 – volume: 165 start-page: 84 year: 2018 ident: 10.1016/j.carbon.2020.03.060_bib7 article-title: Chemical vapor deposition-based grafting of CNTs onto basalt fabric and their reinforcement in epoxy-based composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.06.018 – volume: 123 start-page: 548 year: 2017 ident: 10.1016/j.carbon.2020.03.060_bib22 article-title: In-situ modification of carbon fibers with hyperbranched polyglycerol via anionic ring-opening polymerization for use in high-performance composites publication-title: Carbon doi: 10.1016/j.carbon.2017.08.008 – volume: 30 year: 2018 ident: 10.1016/j.carbon.2020.03.060_bib37 article-title: Single carbon fibers with a macroscopic-thickness, 3D highly porous carbon nanotube coating publication-title: Adv. Mater. doi: 10.1002/adma.201704419 – start-page: 187 year: 2020 ident: 10.1016/j.carbon.2020.03.060_bib19 article-title: Interfacial reinforcement of hybrid composite by electrophoretic deposition for vertically aligned carbon nanotubes on carbon fiber publication-title: Compos. Sci. Technol. – volume: 54 start-page: 258 year: 2013 ident: 10.1016/j.carbon.2020.03.060_bib27 article-title: Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface publication-title: Carbon doi: 10.1016/j.carbon.2012.11.037 |
SSID | ssj0004814 |
Score | 2.6349204 |
Snippet | This paper focuses on improving the out-of-plane properties of carbon fiber/epoxy composites to extend their applications. Carbon nanotubes (CNTs) were... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 133 |
SubjectTerms | Carbon fiber reinforced plastics Carbon fibers Carbon nanotubes Carbon-epoxy composites catalysts Chemical vapor deposition Coated fibers Composite materials Dielectric properties epoxides Fracture mechanics Grafting Hybrid composites Interfacial shear strength Low temperature Morphology Nanotubes shear strength Stress transfer temperature Tensile strength vapors Weibull modulus Weibull statistics |
Title | Interfacial improvement of carbon fiber/epoxy composites using one-step method for grafting carbon nanotubes on the fibers at ultra-low temperatures |
URI | https://dx.doi.org/10.1016/j.carbon.2020.03.060 https://www.proquest.com/docview/2441886398 https://www.proquest.com/docview/2439426544 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS_QwEA6iB9_Li5-86xcRvMZdm0mbHmVRVkVPCt5C2iayL0u77HZRL_4Kf7AzaasoguCxbdKvmUyeTp88w9iRTEFGOC2IZJB6AZBaGlJKSJ3HqpAnOQR1_uubeHQHl_fqfokNu7UwRKtsY38T00O0bvf027fZn47HtMaX4DgiAvRTiQOeVrBDQl5-_PJB8wDd6HvTb35q3S2fCxyv3M6yilRQo0GQOg1Cld9OT18CdZh9ztfY3xY28tPmztbZkis32Oqwq9a2yV5Das9byoDzccgUhMQfrzxvrs89kUP6CLifnjkxyYmu5eacmO8PvCqdQINPeVNSmiOW5Q8z64kV3Z2gtGVVLzLsgxsIHJszzrmt-WJSz6yYVI-ctK5aoeb5Frs7P7sdjkRbcUHkIGUtZOHwqzKGTKbexUUivfVJkqqsSKWCQulUe0h9EYN1CqIc4WGGiAtybQmLObnNlku84X-MU2Vd73ykCh-Dy5QlcIdwMI4KjYFD9ZjsXrTJWzlyqooxMR3v7L9pns6QecxAGjRPj4n3XtNGjuOH9klnQ_PJrQzOGD_03OtMbtphPTeIhU60RlCne-zw_TBamv6y2NJVC2qD_h_FCmDn1xffZX9oK-SuB3tsuZ4t3D6Cnzo7CN59wFZOL65GN2_47QVY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6x8sBe0NhAlDFmJF6tlthOnEdUDZUBfQKJN8tJbFRUJVWbatv_sT94d47DtAkJicfEP-Ozz1_O5-8AzkQuRYLbAs_GuedS5paWlOJCl6mqxHkpAzv_7Syd3svvD-phCyb9XRhyq4y6v9PpQVvHN6M4mqPlfE53fAmOIyLAeSpwwb-DbWKnUgPYvri6ns7-Xo_UHcU3nfRTgf4GXXDzKu2qaIgINRkHttPAVfniDvWfrg4b0OUH2I3IkV10nduDLVd_hJ1JH7DtE_wO1j1vyQjO5sFYEGx_rPGsa5958g8ZIeb--YuRMzl5bLk1I-f3R9bUjqPMl6yLKs0QzrLHlfXkGN1XUNu6aTcFlsEHxI5djWtmW7ZZtCvLF80PRnRXkat5vQ_3l9_uJlMegy7wUgrRclE5_LFMZSFy79IqE976LMtVUeVCyUrpXHuZ-yqV1imZlIgQCwRdstSW4JgTBzCoscOHwCi4rnc-UZVPpSuUJXyHiDBNKo26Qw1B9ANtyshIToExFqZ3PXsy3dcZEo8ZC4PiGQJ_LrXsGDleyZ_1MjT_zCyDm8YrJY97kZu4stcG4dC51ojr9BBOn5NR0nTQYmvXbCgPLoEkVVIevbnxr7Azvbu9MTdXs-vP8J5Sgil7fAyDdrVxXxALtcVJnOt_AN3zCAk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+improvement+of+carbon+fiber%2Fepoxy+composites+using+one-step+method+for+grafting+carbon+nanotubes+on+the+fibers+at+ultra-low+temperatures&rft.jtitle=Carbon+%28New+York%29&rft.au=Yao%2C+Zhiqiang&rft.au=Wang%2C+Chengguo&rft.au=Qin%2C+Jianjie&rft.au=Su%2C+Shunsheng&rft.date=2020-08-30&rft.issn=0008-6223&rft.volume=164+p.133-142&rft.spage=133&rft.epage=142&rft_id=info:doi/10.1016%2Fj.carbon.2020.03.060&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |