Linear versus nonlinear dissipation for critical NLS equation
The focusing nonlinear Schrödinger equation at critical dimension is considered in the presence of a weak damping, either linear or involving a power of the wave intensity. Special attention is paid to the case of a diffusive damping term, that describes Landau damping for a low-frequency Alfvén wav...
Saved in:
Published in | Physica. D Vol. 203; no. 3; pp. 167 - 184 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.04.2005
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The focusing nonlinear Schrödinger equation at critical dimension is considered in the presence of a weak damping, either linear or involving a power of the wave intensity. Special attention is paid to the case of a diffusive damping term, that describes Landau damping for a low-frequency Alfvén wave subject to filamentation instability. When compared with the nonlinear damping classically used to model multi-photon absorption in nonlinear optics, significant differences concerning the wave energy dissipation are numerically observed and interpreted by means of an asymptotic ODE model resulting from a modulation analysis of the solution near collapse. It is in particular shown that whereas for a nonlinear damping, dissipation is almost totally concentrated in the collapse events, it remains sizeable while the wave defocuses when the damping is linear. |
---|---|
AbstractList | The focusing nonlinear Schrödinger equation at critical dimension is considered in the presence of a weak damping, either linear or involving a power of the wave intensity. Special attention is paid to the case of a diffusive damping term, that describes Landau damping for a low-frequency Alfvén wave subject to filamentation instability. When compared with the nonlinear damping classically used to model multi-photon absorption in nonlinear optics, significant differences concerning the wave energy dissipation are numerically observed and interpreted by means of an asymptotic ODE model resulting from a modulation analysis of the solution near collapse. It is in particular shown that whereas for a nonlinear damping, dissipation is almost totally concentrated in the collapse events, it remains sizeable while the wave defocuses when the damping is linear. |
Author | Sulem, C. Passot, T. Sulem, P.L. |
Author_xml | – sequence: 1 givenname: T. surname: Passot fullname: Passot, T. email: passot@obs-nice.fr organization: CNRS, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France – sequence: 2 givenname: C. surname: Sulem fullname: Sulem, C. organization: Department of Mathematics, University of Toronto, Toronto, Canada M5S 3G3 – sequence: 3 givenname: P.L. surname: Sulem fullname: Sulem, P.L. organization: CNRS, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16787680$$DView record in Pascal Francis https://hal.science/hal-00388301$$DView record in HAL |
BookMark | eNqFkEFLwzAUgINMcJv-Ai-9ePDQ-pI3l-SwwxjqhKIH9RzSNGUZtZ1JN9i_N1tFwYOeAi_f93h8IzJo2sYSckkho0CnN-tss9qHMmMAtxlgBpSekCEVnKUCGBuQYaR4yriQZ2QUwhoAKEc-JLPcNVb7ZGd92IYk7q37QelCcBvdubZJqtYnxrvOGV0nT_lLYj-2x59zclrpOtiLr3dM3u7vXhfLNH9-eFzM89RMELsUBbOskMBtRSlKKUXBtCkQLCsl0MpWJWMTg4wxigWdSI4aLEpqDNfIShyT637vStdq49279nvVaqeW81wdZgAoBALd0che9exGh3hv5XVjXPi2YgfBpwIihz1nfBuCt9UPAupQVa3Vsao6VFWAKlaNlvxlGdcdW3Reu_ofd9a7NqbaOetVMM42xpbOW9OpsnV_-p-o8ZTz |
CODEN | PDNPDT |
CitedBy_id | crossref_primary_10_1093_imrn_rnt217 crossref_primary_10_1016_j_physd_2011_11_008 crossref_primary_10_3934_cpaa_2014_13_2377 crossref_primary_10_1016_j_aml_2020_106936 crossref_primary_10_1016_j_physd_2023_133944 crossref_primary_10_1142_S0219891624500176 crossref_primary_10_1364_AOP_9_000720 crossref_primary_10_1080_03605300903540943 crossref_primary_10_1142_S0129055X15500233 crossref_primary_10_1002_mma_1096 crossref_primary_10_1002_mma_4792 crossref_primary_10_1103_PhysRevA_102_033523 crossref_primary_10_1007_s40819_024_01809_2 crossref_primary_10_1063_1_4965225 crossref_primary_10_1016_j_jmaa_2013_04_001 crossref_primary_10_1103_PhysRevLett_110_013901 crossref_primary_10_1016_j_jmaa_2011_04_001 crossref_primary_10_1088_0951_7715_24_7_006 |
Cites_doi | 10.1016/S0167-2789(99)00198-0 10.1137/S0036139999362609 10.1137/S0036139997322407 10.1016/S0375-9601(98)00744-0 10.1016/0167-2789(92)90090-A 10.1364/JOSAB.7.001125 10.1088/0951-7715/10/1/014 10.1016/S0370-1573(97)00092-6 10.1103/PhysRevA.38.3837 10.1063/1.1600441 10.1016/0167-2789(93)90258-3 10.1017/S0022112077001049 10.1017/S0022112077001037 10.1016/0167-2789(88)90052-8 10.1063/1.1611487 10.1088/0305-4470/37/12/006 10.1016/S0167-2789(98)90022-7 10.1016/0375-9601(88)90264-2 |
ContentType | Journal Article |
Copyright | 2004 Elsevier B.V. 2005 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2004 Elsevier B.V. – notice: 2005 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION IQODW 1XC |
DOI | 10.1016/j.physd.2005.03.011 |
DatabaseName | CrossRef Pascal-Francis Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1872-8022 |
EndPage | 184 |
ExternalDocumentID | oai_HAL_hal_00388301v1 16787680 10_1016_j_physd_2005_03_011 S0167278905001181 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEKER AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W K-O KOM M38 M41 MHUIS MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSW SSZ T5K TN5 TWZ WUQ XJT XPP YNT YYP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 1XC |
ID | FETCH-LOGICAL-c433t-382e2b907ef1139998b2acb30e2d901fefd224c322213b14973a0e391cc7a32d3 |
IEDL.DBID | .~1 |
ISSN | 0167-2789 |
IngestDate | Tue Jun 24 07:03:37 EDT 2025 Mon Jul 21 09:14:40 EDT 2025 Tue Jul 01 02:39:45 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 Fri Feb 23 02:29:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 05.45. − a 42.65.Jx Weak dissipation 52.35 Bj 52.35 Mw Nonlinear Schrödinger equation Wave collapse Collapse Alfven waves 42.65.Jx Nonlinear Schrödinger equation Linear damping Intensity Photon absorption Non linear phenomenon 05.45.-a Landau damping Non linear damping Energy dissipation Differential equations Filamentation instabilities Schroedinger equation Models Nonlinear optics |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-382e2b907ef1139998b2acb30e2d901fefd224c322213b14973a0e391cc7a32d3 |
ORCID | 0000-0002-6845-9729 |
PageCount | 18 |
ParticipantIDs | hal_primary_oai_HAL_hal_00388301v1 pascalfrancis_primary_16787680 crossref_primary_10_1016_j_physd_2005_03_011 crossref_citationtrail_10_1016_j_physd_2005_03_011 elsevier_sciencedirect_doi_10_1016_j_physd_2005_03_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-04-15 |
PublicationDateYYYYMMDD | 2005-04-15 |
PublicationDate_xml | – month: 04 year: 2005 text: 2005-04-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Physica. D |
PublicationYear | 2005 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Lake, Yuen, Rungaldier, Ferguson (bib4) 1977; 83 Newell, Rand, Russel (bib10) 1988; 33 LeMesurier (bib15) 2000; 138 Kuksin, Shirikyan (bib14) 2004; 37 Fibich, Levy (bib20) 1998; 249 Lake, Yuen (bib5) 1977; 83 Passot, Sulem (bib13) 2003; 10 Strauss (bib22) 1989; 73 Newell, Rand, Russel (bib11) 1988; 132 Dyachenko, Newell, Pushkarev, Zakharov (bib3) 1992; 57 Fibich (bib16) 2001; 61 Hasegawa, Kodama (bib6) 1995 Passot, Sulem (bib12) 2003; 10 C. Sulem, P.L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave-collapse (Springer-Verlag), Appl. Math. Sci. 139 (1999). Mielke (bib8) 1997; 10 Fibich, Papanicolaou (bib21) 1999; 60 C.J. Budd, V. Rottschäfer, J.F. Williams, Multi-bump, blow up, self-similar solutions of the complex Ginzburg–Landau equation, preprint. Landman, Papanicolaou, Sulem, Sulem (bib18) 1988; 38 Lemesurier, Papanicolaou, Sulem, Sulem (bib17) 1888; 32 Luther, McKinstrie (bib7) 1990; 7 Malkin (bib19) 1993; 64 Bergé (bib2) 1998; 303 Passot (10.1016/j.physd.2005.03.011_bib13) 2003; 10 Landman (10.1016/j.physd.2005.03.011_bib18) 1988; 38 Kuksin (10.1016/j.physd.2005.03.011_bib14) 2004; 37 Lake (10.1016/j.physd.2005.03.011_bib4) 1977; 83 Passot (10.1016/j.physd.2005.03.011_bib12) 2003; 10 Bergé (10.1016/j.physd.2005.03.011_bib2) 1998; 303 Fibich (10.1016/j.physd.2005.03.011_bib16) 2001; 61 Lemesurier (10.1016/j.physd.2005.03.011_bib17) 1888; 32 Fibich (10.1016/j.physd.2005.03.011_bib21) 1999; 60 Malkin (10.1016/j.physd.2005.03.011_bib19) 1993; 64 Strauss (10.1016/j.physd.2005.03.011_bib22) 1989; 73 Hasegawa (10.1016/j.physd.2005.03.011_bib6) 1995 Mielke (10.1016/j.physd.2005.03.011_bib8) 1997; 10 10.1016/j.physd.2005.03.011_bib9 Fibich (10.1016/j.physd.2005.03.011_bib20) 1998; 249 Lake (10.1016/j.physd.2005.03.011_bib5) 1977; 83 Dyachenko (10.1016/j.physd.2005.03.011_bib3) 1992; 57 Luther (10.1016/j.physd.2005.03.011_bib7) 1990; 7 Newell (10.1016/j.physd.2005.03.011_bib10) 1988; 33 LeMesurier (10.1016/j.physd.2005.03.011_bib15) 2000; 138 10.1016/j.physd.2005.03.011_bib1 Newell (10.1016/j.physd.2005.03.011_bib11) 1988; 132 |
References_xml | – volume: 249 start-page: 286 year: 1998 end-page: 294 ident: bib20 article-title: Self-focusing in the complex Ginzburg–Landau limit of the critical nonlinear Schrödinger equation publication-title: Phys. Lett. A – volume: 60 start-page: 183 year: 1999 end-page: 240 ident: bib21 article-title: Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension publication-title: SIAM J. Appl. Math. – volume: 83 start-page: 49 year: 1977 end-page: 74 ident: bib4 article-title: Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train publication-title: J. Fluid Mech. – volume: 32 start-page: 210 year: 1888 end-page: 226 ident: bib17 article-title: Local structure of the sel-focusing singularity of the nonlinear Schrödinger equation publication-title: Physica D – volume: 10 start-page: 199 year: 1997 end-page: 222 ident: bib8 article-title: The complex Ginsburg–Landau equation and unbounded domains: sharper bounds and attractors publication-title: Nonlinearity – volume: 33 start-page: 282 year: 1988 end-page: 303 ident: bib10 article-title: Turbulent transport and the random occurence of coherent events publication-title: Physica D – year: 1995 ident: bib6 article-title: Solitons in Optical Communications – volume: 7 start-page: 1125 year: 1990 end-page: 1141 ident: bib7 article-title: Transverse modulational instability of collinear waves publication-title: J. Opt. Soc. Am. B – volume: 64 start-page: 251 year: 1993 end-page: 266 ident: bib19 article-title: On the analytical theory for stationary self-focusing of radiation publication-title: Physica D – volume: 10 start-page: 3914 year: 2003 end-page: 3921 ident: bib12 article-title: Filamentation instability of long Alfvén waves in warm collisionless plasmas publication-title: Phys. Plasmas – volume: 83 start-page: 75 year: 1977 end-page: 81 ident: bib5 article-title: A note on some water-wave experiments and the comparison of data with theory publication-title: J. Fluid Mech. – volume: 138 start-page: 334 year: 2000 end-page: 343 ident: bib15 article-title: Dissipation at singularities of the nonlinear Schrödinger equation through limits of regularisations publication-title: Physica D – volume: 57 start-page: 96 year: 1992 end-page: 160 ident: bib3 article-title: Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation publication-title: Physica D – volume: 303 start-page: 259 year: 1998 end-page: 370 ident: bib2 article-title: Wave collapse in physics: principles and applications to light and plasma waves publication-title: Phys. Reports – volume: 38 start-page: 3837 year: 1988 end-page: 3843 ident: bib18 article-title: Rate of blow-up for the solutions of the nonlinear Schrödinger equation at critical dimension publication-title: Phys. Rev. A – volume: 132 start-page: 112 year: 1988 end-page: 123 ident: bib11 article-title: Turbulent dissipation rates and the random occurence of coherent events publication-title: Phys. Lett. A – volume: 61 start-page: 1680 year: 2001 end-page: 1705 ident: bib16 article-title: Self-focusing in the damped nonlinear Schrödinger equation publication-title: SIAM J. Appl. Math. – volume: 37 start-page: 3805 year: 2004 end-page: 3822 ident: bib14 article-title: Randomly forced CGL equation: stationary measures and the inviscid limit publication-title: J. Phys. A: Math. Gen. – volume: 73 year: 1989 ident: bib22 article-title: Nonlinear wave equations. Regional series in mathematics publication-title: Am. Math. Soc. – reference: C. Sulem, P.L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave-collapse (Springer-Verlag), Appl. Math. Sci. 139 (1999). – reference: C.J. Budd, V. Rottschäfer, J.F. Williams, Multi-bump, blow up, self-similar solutions of the complex Ginzburg–Landau equation, preprint. – volume: 10 start-page: 3887 year: 2003 end-page: 3905 ident: bib13 article-title: A long-wave model for Alfvén wave trains in a collisionless plasma. I. Kinetic theory publication-title: Phys. Plasmas – volume: 138 start-page: 334 year: 2000 ident: 10.1016/j.physd.2005.03.011_bib15 article-title: Dissipation at singularities of the nonlinear Schrödinger equation through limits of regularisations publication-title: Physica D doi: 10.1016/S0167-2789(99)00198-0 – volume: 61 start-page: 1680 year: 2001 ident: 10.1016/j.physd.2005.03.011_bib16 article-title: Self-focusing in the damped nonlinear Schrödinger equation publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139999362609 – volume: 60 start-page: 183 year: 1999 ident: 10.1016/j.physd.2005.03.011_bib21 article-title: Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139997322407 – year: 1995 ident: 10.1016/j.physd.2005.03.011_bib6 – volume: 249 start-page: 286 year: 1998 ident: 10.1016/j.physd.2005.03.011_bib20 article-title: Self-focusing in the complex Ginzburg–Landau limit of the critical nonlinear Schrödinger equation publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(98)00744-0 – volume: 57 start-page: 96 year: 1992 ident: 10.1016/j.physd.2005.03.011_bib3 article-title: Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation publication-title: Physica D doi: 10.1016/0167-2789(92)90090-A – volume: 7 start-page: 1125 year: 1990 ident: 10.1016/j.physd.2005.03.011_bib7 article-title: Transverse modulational instability of collinear waves publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.7.001125 – volume: 10 start-page: 199 year: 1997 ident: 10.1016/j.physd.2005.03.011_bib8 article-title: The complex Ginsburg–Landau equation and unbounded domains: sharper bounds and attractors publication-title: Nonlinearity doi: 10.1088/0951-7715/10/1/014 – volume: 303 start-page: 259 year: 1998 ident: 10.1016/j.physd.2005.03.011_bib2 article-title: Wave collapse in physics: principles and applications to light and plasma waves publication-title: Phys. Reports doi: 10.1016/S0370-1573(97)00092-6 – volume: 38 start-page: 3837 year: 1988 ident: 10.1016/j.physd.2005.03.011_bib18 article-title: Rate of blow-up for the solutions of the nonlinear Schrödinger equation at critical dimension publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3837 – volume: 10 start-page: 3887 year: 2003 ident: 10.1016/j.physd.2005.03.011_bib13 article-title: A long-wave model for Alfvén wave trains in a collisionless plasma. I. Kinetic theory publication-title: Phys. Plasmas doi: 10.1063/1.1600441 – volume: 64 start-page: 251 year: 1993 ident: 10.1016/j.physd.2005.03.011_bib19 article-title: On the analytical theory for stationary self-focusing of radiation publication-title: Physica D doi: 10.1016/0167-2789(93)90258-3 – ident: 10.1016/j.physd.2005.03.011_bib1 – volume: 83 start-page: 75 year: 1977 ident: 10.1016/j.physd.2005.03.011_bib5 article-title: A note on some water-wave experiments and the comparison of data with theory publication-title: J. Fluid Mech. doi: 10.1017/S0022112077001049 – volume: 83 start-page: 49 year: 1977 ident: 10.1016/j.physd.2005.03.011_bib4 article-title: Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train publication-title: J. Fluid Mech. doi: 10.1017/S0022112077001037 – volume: 32 start-page: 210 year: 1888 ident: 10.1016/j.physd.2005.03.011_bib17 article-title: Local structure of the sel-focusing singularity of the nonlinear Schrödinger equation publication-title: Physica D doi: 10.1016/0167-2789(88)90052-8 – volume: 73 year: 1989 ident: 10.1016/j.physd.2005.03.011_bib22 article-title: Nonlinear wave equations. Regional series in mathematics publication-title: Am. Math. Soc. – ident: 10.1016/j.physd.2005.03.011_bib9 – volume: 10 start-page: 3914 year: 2003 ident: 10.1016/j.physd.2005.03.011_bib12 article-title: Filamentation instability of long Alfvén waves in warm collisionless plasmas publication-title: Phys. Plasmas doi: 10.1063/1.1611487 – volume: 37 start-page: 3805 year: 2004 ident: 10.1016/j.physd.2005.03.011_bib14 article-title: Randomly forced CGL equation: stationary measures and the inviscid limit publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/37/12/006 – volume: 33 start-page: 282 year: 1988 ident: 10.1016/j.physd.2005.03.011_bib10 article-title: Turbulent transport and the random occurence of coherent events publication-title: Physica D doi: 10.1016/S0167-2789(98)90022-7 – volume: 132 start-page: 112 year: 1988 ident: 10.1016/j.physd.2005.03.011_bib11 article-title: Turbulent dissipation rates and the random occurence of coherent events publication-title: Phys. Lett. A doi: 10.1016/0375-9601(88)90264-2 |
SSID | ssj0001737 |
Score | 1.8809884 |
Snippet | The focusing nonlinear Schrödinger equation at critical dimension is considered in the presence of a weak damping, either linear or involving a power of the... |
SourceID | hal pascalfrancis crossref elsevier |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 167 |
SubjectTerms | Exact sciences and technology Nonlinear Schrödinger equation Physics Wave collapse Weak dissipation |
Title | Linear versus nonlinear dissipation for critical NLS equation |
URI | https://dx.doi.org/10.1016/j.physd.2005.03.011 https://hal.science/hal-00388301 |
Volume | 203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QY6IxRlEjPsjGeHRh2-4DDh4IkayKXJCE26btdiPGEBTw6G93ptsVOMjBa9OmzXQyj_abbwi5SZnpLapcJmTkYuNtV2hPuGHLDyBakKln6tae-2E89B9HwahEOkUtDMIqre3Pbbqx1nakYaXZmI7HjQEC6E0dZ2CIzEwFux-hlte_lzAPGuW8mcjvjbML5iGD8cLXg9Q-rPC6R-lf3mnrFWGS-1MxA8llecuLFT_UPSQHNoB02vkZj0hJTypkb4VWsEJ2DKxTzY7JHaSaoMoOYi8WM2eS82LAAH7DWzC1A2Gro2zHA6ffGzj6I-f_PiHD7v1LJ3ZtwwRX-ZzPXd5kmklId3VGIbKDTEoyoST3NEvB72c6S8FjK_xcoVxCbhRx4WneokpFgrOUn5IynESfEYc1tQy11lIw7VOZCT9rpSnjQmTU45moElYIKlGWTRybWrwnBWzsLTHSxT6XQeLxBKRbJbe_i6Y5mcbm6WFxA8maTiRg7jcvvIb7-t0CGbTjdi_BMfwJbYJR-4JJtbXrXJ4I_DckYd75f7e_ILuG4BUZIYNLUp5_LvQVhC5zWTO6WSPb7YenuP8DFAnsYw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4QY9QYo6gRP3AxHh1s7Tbg4IEQCSpwARJuTdt1EWMICnj0t_u-XcfHQQ9em27t3jbvx_r0eQi5i6nRFlUuFbLqovC2K7Qn3KgehJAtyNgz99a6vag9DJ5H4ShHmtldGIRVWt-f-nTjrW1LxVqzMh2PK30E0Jt7nKEhMoMSaBveX0MZg_L3CufhV1PiTCT4xu4Z9ZABeeHvg9j-WWFlz_d_C09br4iTPJiKGZguSTUv1gJR64gc2gzSaaSTPCY5PSmQ_TVewQLZMbhONTshD1Brwl52EHyxmDmTlBgDGvAc3qKpHchbHWUlD5xep-_oj5QA_JQMW4-DZtu1igmuChibu_D1mkqod3XiQ2oHpZSkQknmaRpD4E90EkPIVni64jMJxVGVCU-zuq9UVTAaszOSh5noc-LQmpaR1loKqgNfJiJI6nFMmRCJ77FEFAnNDMWVpRNHVYt3nuHG3rixLgpdhtxjHKxbJPfLh6Ypm8bf3aNsBfjGpuDg7_9-8BbWazkEUmi3Gx2ObXgUWgOv9gWdShvLuZoRBHCowryL_w5_Q3bbg26Hd556L5dkz7C9Ij1keEXy88-FvoY8Zi5LZp_-AISi7fE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+versus+nonlinear+dissipation+for+critical+NLS+equation&rft.jtitle=Physica.+D&rft.au=PASSOT%2C+T&rft.au=SULEM%2C+C&rft.au=SULEM%2C+P.+L&rft.date=2005-04-15&rft.pub=Elsevier&rft.issn=0167-2789&rft.volume=203&rft.issue=3-4&rft.spage=167&rft.epage=184&rft_id=info:doi/10.1016%2Fj.physd.2005.03.011&rft.externalDBID=n%2Fa&rft.externalDocID=16787680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon |