Linear versus nonlinear dissipation for critical NLS equation

The focusing nonlinear Schrödinger equation at critical dimension is considered in the presence of a weak damping, either linear or involving a power of the wave intensity. Special attention is paid to the case of a diffusive damping term, that describes Landau damping for a low-frequency Alfvén wav...

Full description

Saved in:
Bibliographic Details
Published inPhysica. D Vol. 203; no. 3; pp. 167 - 184
Main Authors Passot, T., Sulem, C., Sulem, P.L.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.04.2005
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The focusing nonlinear Schrödinger equation at critical dimension is considered in the presence of a weak damping, either linear or involving a power of the wave intensity. Special attention is paid to the case of a diffusive damping term, that describes Landau damping for a low-frequency Alfvén wave subject to filamentation instability. When compared with the nonlinear damping classically used to model multi-photon absorption in nonlinear optics, significant differences concerning the wave energy dissipation are numerically observed and interpreted by means of an asymptotic ODE model resulting from a modulation analysis of the solution near collapse. It is in particular shown that whereas for a nonlinear damping, dissipation is almost totally concentrated in the collapse events, it remains sizeable while the wave defocuses when the damping is linear.
AbstractList The focusing nonlinear Schrödinger equation at critical dimension is considered in the presence of a weak damping, either linear or involving a power of the wave intensity. Special attention is paid to the case of a diffusive damping term, that describes Landau damping for a low-frequency Alfvén wave subject to filamentation instability. When compared with the nonlinear damping classically used to model multi-photon absorption in nonlinear optics, significant differences concerning the wave energy dissipation are numerically observed and interpreted by means of an asymptotic ODE model resulting from a modulation analysis of the solution near collapse. It is in particular shown that whereas for a nonlinear damping, dissipation is almost totally concentrated in the collapse events, it remains sizeable while the wave defocuses when the damping is linear.
Author Sulem, C.
Passot, T.
Sulem, P.L.
Author_xml – sequence: 1
  givenname: T.
  surname: Passot
  fullname: Passot, T.
  email: passot@obs-nice.fr
  organization: CNRS, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France
– sequence: 2
  givenname: C.
  surname: Sulem
  fullname: Sulem, C.
  organization: Department of Mathematics, University of Toronto, Toronto, Canada M5S 3G3
– sequence: 3
  givenname: P.L.
  surname: Sulem
  fullname: Sulem, P.L.
  organization: CNRS, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16787680$$DView record in Pascal Francis
https://hal.science/hal-00388301$$DView record in HAL
BookMark eNqFkEFLwzAUgINMcJv-Ai-9ePDQ-pI3l-SwwxjqhKIH9RzSNGUZtZ1JN9i_N1tFwYOeAi_f93h8IzJo2sYSckkho0CnN-tss9qHMmMAtxlgBpSekCEVnKUCGBuQYaR4yriQZ2QUwhoAKEc-JLPcNVb7ZGd92IYk7q37QelCcBvdubZJqtYnxrvOGV0nT_lLYj-2x59zclrpOtiLr3dM3u7vXhfLNH9-eFzM89RMELsUBbOskMBtRSlKKUXBtCkQLCsl0MpWJWMTg4wxigWdSI4aLEpqDNfIShyT637vStdq49279nvVaqeW81wdZgAoBALd0che9exGh3hv5XVjXPi2YgfBpwIihz1nfBuCt9UPAupQVa3Vsao6VFWAKlaNlvxlGdcdW3Reu_ofd9a7NqbaOetVMM42xpbOW9OpsnV_-p-o8ZTz
CODEN PDNPDT
CitedBy_id crossref_primary_10_1093_imrn_rnt217
crossref_primary_10_1016_j_physd_2011_11_008
crossref_primary_10_3934_cpaa_2014_13_2377
crossref_primary_10_1016_j_aml_2020_106936
crossref_primary_10_1016_j_physd_2023_133944
crossref_primary_10_1142_S0219891624500176
crossref_primary_10_1364_AOP_9_000720
crossref_primary_10_1080_03605300903540943
crossref_primary_10_1142_S0129055X15500233
crossref_primary_10_1002_mma_1096
crossref_primary_10_1002_mma_4792
crossref_primary_10_1103_PhysRevA_102_033523
crossref_primary_10_1007_s40819_024_01809_2
crossref_primary_10_1063_1_4965225
crossref_primary_10_1016_j_jmaa_2013_04_001
crossref_primary_10_1103_PhysRevLett_110_013901
crossref_primary_10_1016_j_jmaa_2011_04_001
crossref_primary_10_1088_0951_7715_24_7_006
Cites_doi 10.1016/S0167-2789(99)00198-0
10.1137/S0036139999362609
10.1137/S0036139997322407
10.1016/S0375-9601(98)00744-0
10.1016/0167-2789(92)90090-A
10.1364/JOSAB.7.001125
10.1088/0951-7715/10/1/014
10.1016/S0370-1573(97)00092-6
10.1103/PhysRevA.38.3837
10.1063/1.1600441
10.1016/0167-2789(93)90258-3
10.1017/S0022112077001049
10.1017/S0022112077001037
10.1016/0167-2789(88)90052-8
10.1063/1.1611487
10.1088/0305-4470/37/12/006
10.1016/S0167-2789(98)90022-7
10.1016/0375-9601(88)90264-2
ContentType Journal Article
Copyright 2004 Elsevier B.V.
2005 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2004 Elsevier B.V.
– notice: 2005 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
1XC
DOI 10.1016/j.physd.2005.03.011
DatabaseName CrossRef
Pascal-Francis
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-8022
EndPage 184
ExternalDocumentID oai_HAL_hal_00388301v1
16787680
10_1016_j_physd_2005_03_011
S0167278905001181
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSW
SSZ
T5K
TN5
TWZ
WUQ
XJT
XPP
YNT
YYP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
1XC
ID FETCH-LOGICAL-c433t-382e2b907ef1139998b2acb30e2d901fefd224c322213b14973a0e391cc7a32d3
IEDL.DBID .~1
ISSN 0167-2789
IngestDate Tue Jun 24 07:03:37 EDT 2025
Mon Jul 21 09:14:40 EDT 2025
Tue Jul 01 02:39:45 EDT 2025
Thu Apr 24 23:02:56 EDT 2025
Fri Feb 23 02:29:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 05.45. − a
42.65.Jx
Weak dissipation
52.35 Bj
52.35 Mw
Nonlinear Schrödinger equation
Wave collapse
Collapse
Alfven waves
42.65.Jx Nonlinear Schrödinger equation
Linear damping
Intensity
Photon absorption
Non linear phenomenon
05.45.-a
Landau damping
Non linear damping
Energy dissipation
Differential equations
Filamentation instabilities
Schroedinger equation
Models
Nonlinear optics
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-382e2b907ef1139998b2acb30e2d901fefd224c322213b14973a0e391cc7a32d3
ORCID 0000-0002-6845-9729
PageCount 18
ParticipantIDs hal_primary_oai_HAL_hal_00388301v1
pascalfrancis_primary_16787680
crossref_primary_10_1016_j_physd_2005_03_011
crossref_citationtrail_10_1016_j_physd_2005_03_011
elsevier_sciencedirect_doi_10_1016_j_physd_2005_03_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-04-15
PublicationDateYYYYMMDD 2005-04-15
PublicationDate_xml – month: 04
  year: 2005
  text: 2005-04-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Physica. D
PublicationYear 2005
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lake, Yuen, Rungaldier, Ferguson (bib4) 1977; 83
Newell, Rand, Russel (bib10) 1988; 33
LeMesurier (bib15) 2000; 138
Kuksin, Shirikyan (bib14) 2004; 37
Fibich, Levy (bib20) 1998; 249
Lake, Yuen (bib5) 1977; 83
Passot, Sulem (bib13) 2003; 10
Strauss (bib22) 1989; 73
Newell, Rand, Russel (bib11) 1988; 132
Dyachenko, Newell, Pushkarev, Zakharov (bib3) 1992; 57
Fibich (bib16) 2001; 61
Hasegawa, Kodama (bib6) 1995
Passot, Sulem (bib12) 2003; 10
C. Sulem, P.L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave-collapse (Springer-Verlag), Appl. Math. Sci. 139 (1999).
Mielke (bib8) 1997; 10
Fibich, Papanicolaou (bib21) 1999; 60
C.J. Budd, V. Rottschäfer, J.F. Williams, Multi-bump, blow up, self-similar solutions of the complex Ginzburg–Landau equation, preprint.
Landman, Papanicolaou, Sulem, Sulem (bib18) 1988; 38
Lemesurier, Papanicolaou, Sulem, Sulem (bib17) 1888; 32
Luther, McKinstrie (bib7) 1990; 7
Malkin (bib19) 1993; 64
Bergé (bib2) 1998; 303
Passot (10.1016/j.physd.2005.03.011_bib13) 2003; 10
Landman (10.1016/j.physd.2005.03.011_bib18) 1988; 38
Kuksin (10.1016/j.physd.2005.03.011_bib14) 2004; 37
Lake (10.1016/j.physd.2005.03.011_bib4) 1977; 83
Passot (10.1016/j.physd.2005.03.011_bib12) 2003; 10
Bergé (10.1016/j.physd.2005.03.011_bib2) 1998; 303
Fibich (10.1016/j.physd.2005.03.011_bib16) 2001; 61
Lemesurier (10.1016/j.physd.2005.03.011_bib17) 1888; 32
Fibich (10.1016/j.physd.2005.03.011_bib21) 1999; 60
Malkin (10.1016/j.physd.2005.03.011_bib19) 1993; 64
Strauss (10.1016/j.physd.2005.03.011_bib22) 1989; 73
Hasegawa (10.1016/j.physd.2005.03.011_bib6) 1995
Mielke (10.1016/j.physd.2005.03.011_bib8) 1997; 10
10.1016/j.physd.2005.03.011_bib9
Fibich (10.1016/j.physd.2005.03.011_bib20) 1998; 249
Lake (10.1016/j.physd.2005.03.011_bib5) 1977; 83
Dyachenko (10.1016/j.physd.2005.03.011_bib3) 1992; 57
Luther (10.1016/j.physd.2005.03.011_bib7) 1990; 7
Newell (10.1016/j.physd.2005.03.011_bib10) 1988; 33
LeMesurier (10.1016/j.physd.2005.03.011_bib15) 2000; 138
10.1016/j.physd.2005.03.011_bib1
Newell (10.1016/j.physd.2005.03.011_bib11) 1988; 132
References_xml – volume: 249
  start-page: 286
  year: 1998
  end-page: 294
  ident: bib20
  article-title: Self-focusing in the complex Ginzburg–Landau limit of the critical nonlinear Schrödinger equation
  publication-title: Phys. Lett. A
– volume: 60
  start-page: 183
  year: 1999
  end-page: 240
  ident: bib21
  article-title: Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension
  publication-title: SIAM J. Appl. Math.
– volume: 83
  start-page: 49
  year: 1977
  end-page: 74
  ident: bib4
  article-title: Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train
  publication-title: J. Fluid Mech.
– volume: 32
  start-page: 210
  year: 1888
  end-page: 226
  ident: bib17
  article-title: Local structure of the sel-focusing singularity of the nonlinear Schrödinger equation
  publication-title: Physica D
– volume: 10
  start-page: 199
  year: 1997
  end-page: 222
  ident: bib8
  article-title: The complex Ginsburg–Landau equation and unbounded domains: sharper bounds and attractors
  publication-title: Nonlinearity
– volume: 33
  start-page: 282
  year: 1988
  end-page: 303
  ident: bib10
  article-title: Turbulent transport and the random occurence of coherent events
  publication-title: Physica D
– year: 1995
  ident: bib6
  article-title: Solitons in Optical Communications
– volume: 7
  start-page: 1125
  year: 1990
  end-page: 1141
  ident: bib7
  article-title: Transverse modulational instability of collinear waves
  publication-title: J. Opt. Soc. Am. B
– volume: 64
  start-page: 251
  year: 1993
  end-page: 266
  ident: bib19
  article-title: On the analytical theory for stationary self-focusing of radiation
  publication-title: Physica D
– volume: 10
  start-page: 3914
  year: 2003
  end-page: 3921
  ident: bib12
  article-title: Filamentation instability of long Alfvén waves in warm collisionless plasmas
  publication-title: Phys. Plasmas
– volume: 83
  start-page: 75
  year: 1977
  end-page: 81
  ident: bib5
  article-title: A note on some water-wave experiments and the comparison of data with theory
  publication-title: J. Fluid Mech.
– volume: 138
  start-page: 334
  year: 2000
  end-page: 343
  ident: bib15
  article-title: Dissipation at singularities of the nonlinear Schrödinger equation through limits of regularisations
  publication-title: Physica D
– volume: 57
  start-page: 96
  year: 1992
  end-page: 160
  ident: bib3
  article-title: Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation
  publication-title: Physica D
– volume: 303
  start-page: 259
  year: 1998
  end-page: 370
  ident: bib2
  article-title: Wave collapse in physics: principles and applications to light and plasma waves
  publication-title: Phys. Reports
– volume: 38
  start-page: 3837
  year: 1988
  end-page: 3843
  ident: bib18
  article-title: Rate of blow-up for the solutions of the nonlinear Schrödinger equation at critical dimension
  publication-title: Phys. Rev. A
– volume: 132
  start-page: 112
  year: 1988
  end-page: 123
  ident: bib11
  article-title: Turbulent dissipation rates and the random occurence of coherent events
  publication-title: Phys. Lett. A
– volume: 61
  start-page: 1680
  year: 2001
  end-page: 1705
  ident: bib16
  article-title: Self-focusing in the damped nonlinear Schrödinger equation
  publication-title: SIAM J. Appl. Math.
– volume: 37
  start-page: 3805
  year: 2004
  end-page: 3822
  ident: bib14
  article-title: Randomly forced CGL equation: stationary measures and the inviscid limit
  publication-title: J. Phys. A: Math. Gen.
– volume: 73
  year: 1989
  ident: bib22
  article-title: Nonlinear wave equations. Regional series in mathematics
  publication-title: Am. Math. Soc.
– reference: C. Sulem, P.L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave-collapse (Springer-Verlag), Appl. Math. Sci. 139 (1999).
– reference: C.J. Budd, V. Rottschäfer, J.F. Williams, Multi-bump, blow up, self-similar solutions of the complex Ginzburg–Landau equation, preprint.
– volume: 10
  start-page: 3887
  year: 2003
  end-page: 3905
  ident: bib13
  article-title: A long-wave model for Alfvén wave trains in a collisionless plasma. I. Kinetic theory
  publication-title: Phys. Plasmas
– volume: 138
  start-page: 334
  year: 2000
  ident: 10.1016/j.physd.2005.03.011_bib15
  article-title: Dissipation at singularities of the nonlinear Schrödinger equation through limits of regularisations
  publication-title: Physica D
  doi: 10.1016/S0167-2789(99)00198-0
– volume: 61
  start-page: 1680
  year: 2001
  ident: 10.1016/j.physd.2005.03.011_bib16
  article-title: Self-focusing in the damped nonlinear Schrödinger equation
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139999362609
– volume: 60
  start-page: 183
  year: 1999
  ident: 10.1016/j.physd.2005.03.011_bib21
  article-title: Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139997322407
– year: 1995
  ident: 10.1016/j.physd.2005.03.011_bib6
– volume: 249
  start-page: 286
  year: 1998
  ident: 10.1016/j.physd.2005.03.011_bib20
  article-title: Self-focusing in the complex Ginzburg–Landau limit of the critical nonlinear Schrödinger equation
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(98)00744-0
– volume: 57
  start-page: 96
  year: 1992
  ident: 10.1016/j.physd.2005.03.011_bib3
  article-title: Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90090-A
– volume: 7
  start-page: 1125
  year: 1990
  ident: 10.1016/j.physd.2005.03.011_bib7
  article-title: Transverse modulational instability of collinear waves
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.7.001125
– volume: 10
  start-page: 199
  year: 1997
  ident: 10.1016/j.physd.2005.03.011_bib8
  article-title: The complex Ginsburg–Landau equation and unbounded domains: sharper bounds and attractors
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/10/1/014
– volume: 303
  start-page: 259
  year: 1998
  ident: 10.1016/j.physd.2005.03.011_bib2
  article-title: Wave collapse in physics: principles and applications to light and plasma waves
  publication-title: Phys. Reports
  doi: 10.1016/S0370-1573(97)00092-6
– volume: 38
  start-page: 3837
  year: 1988
  ident: 10.1016/j.physd.2005.03.011_bib18
  article-title: Rate of blow-up for the solutions of the nonlinear Schrödinger equation at critical dimension
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3837
– volume: 10
  start-page: 3887
  year: 2003
  ident: 10.1016/j.physd.2005.03.011_bib13
  article-title: A long-wave model for Alfvén wave trains in a collisionless plasma. I. Kinetic theory
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1600441
– volume: 64
  start-page: 251
  year: 1993
  ident: 10.1016/j.physd.2005.03.011_bib19
  article-title: On the analytical theory for stationary self-focusing of radiation
  publication-title: Physica D
  doi: 10.1016/0167-2789(93)90258-3
– ident: 10.1016/j.physd.2005.03.011_bib1
– volume: 83
  start-page: 75
  year: 1977
  ident: 10.1016/j.physd.2005.03.011_bib5
  article-title: A note on some water-wave experiments and the comparison of data with theory
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112077001049
– volume: 83
  start-page: 49
  year: 1977
  ident: 10.1016/j.physd.2005.03.011_bib4
  article-title: Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112077001037
– volume: 32
  start-page: 210
  year: 1888
  ident: 10.1016/j.physd.2005.03.011_bib17
  article-title: Local structure of the sel-focusing singularity of the nonlinear Schrödinger equation
  publication-title: Physica D
  doi: 10.1016/0167-2789(88)90052-8
– volume: 73
  year: 1989
  ident: 10.1016/j.physd.2005.03.011_bib22
  article-title: Nonlinear wave equations. Regional series in mathematics
  publication-title: Am. Math. Soc.
– ident: 10.1016/j.physd.2005.03.011_bib9
– volume: 10
  start-page: 3914
  year: 2003
  ident: 10.1016/j.physd.2005.03.011_bib12
  article-title: Filamentation instability of long Alfvén waves in warm collisionless plasmas
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1611487
– volume: 37
  start-page: 3805
  year: 2004
  ident: 10.1016/j.physd.2005.03.011_bib14
  article-title: Randomly forced CGL equation: stationary measures and the inviscid limit
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/37/12/006
– volume: 33
  start-page: 282
  year: 1988
  ident: 10.1016/j.physd.2005.03.011_bib10
  article-title: Turbulent transport and the random occurence of coherent events
  publication-title: Physica D
  doi: 10.1016/S0167-2789(98)90022-7
– volume: 132
  start-page: 112
  year: 1988
  ident: 10.1016/j.physd.2005.03.011_bib11
  article-title: Turbulent dissipation rates and the random occurence of coherent events
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(88)90264-2
SSID ssj0001737
Score 1.8809884
Snippet The focusing nonlinear Schrödinger equation at critical dimension is considered in the presence of a weak damping, either linear or involving a power of the...
SourceID hal
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 167
SubjectTerms Exact sciences and technology
Nonlinear Schrödinger equation
Physics
Wave collapse
Weak dissipation
Title Linear versus nonlinear dissipation for critical NLS equation
URI https://dx.doi.org/10.1016/j.physd.2005.03.011
https://hal.science/hal-00388301
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QY6IxRlEjPsjGeHRh2-4DDh4IkayKXJCE26btdiPGEBTw6G93ptsVOMjBa9OmzXQyj_abbwi5SZnpLapcJmTkYuNtV2hPuGHLDyBakKln6tae-2E89B9HwahEOkUtDMIqre3Pbbqx1nakYaXZmI7HjQEC6E0dZ2CIzEwFux-hlte_lzAPGuW8mcjvjbML5iGD8cLXg9Q-rPC6R-lf3mnrFWGS-1MxA8llecuLFT_UPSQHNoB02vkZj0hJTypkb4VWsEJ2DKxTzY7JHaSaoMoOYi8WM2eS82LAAH7DWzC1A2Gro2zHA6ffGzj6I-f_PiHD7v1LJ3ZtwwRX-ZzPXd5kmklId3VGIbKDTEoyoST3NEvB72c6S8FjK_xcoVxCbhRx4WneokpFgrOUn5IynESfEYc1tQy11lIw7VOZCT9rpSnjQmTU45moElYIKlGWTRybWrwnBWzsLTHSxT6XQeLxBKRbJbe_i6Y5mcbm6WFxA8maTiRg7jcvvIb7-t0CGbTjdi_BMfwJbYJR-4JJtbXrXJ4I_DckYd75f7e_ILuG4BUZIYNLUp5_LvQVhC5zWTO6WSPb7YenuP8DFAnsYw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4QY9QYo6gRP3AxHh1s7Tbg4IEQCSpwARJuTdt1EWMICnj0t_u-XcfHQQ9em27t3jbvx_r0eQi5i6nRFlUuFbLqovC2K7Qn3KgehJAtyNgz99a6vag9DJ5H4ShHmtldGIRVWt-f-nTjrW1LxVqzMh2PK30E0Jt7nKEhMoMSaBveX0MZg_L3CufhV1PiTCT4xu4Z9ZABeeHvg9j-WWFlz_d_C09br4iTPJiKGZguSTUv1gJR64gc2gzSaaSTPCY5PSmQ_TVewQLZMbhONTshD1Brwl52EHyxmDmTlBgDGvAc3qKpHchbHWUlD5xep-_oj5QA_JQMW4-DZtu1igmuChibu_D1mkqod3XiQ2oHpZSkQknmaRpD4E90EkPIVni64jMJxVGVCU-zuq9UVTAaszOSh5noc-LQmpaR1loKqgNfJiJI6nFMmRCJ77FEFAnNDMWVpRNHVYt3nuHG3rixLgpdhtxjHKxbJPfLh6Ypm8bf3aNsBfjGpuDg7_9-8BbWazkEUmi3Gx2ObXgUWgOv9gWdShvLuZoRBHCowryL_w5_Q3bbg26Hd556L5dkz7C9Ij1keEXy88-FvoY8Zi5LZp_-AISi7fE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+versus+nonlinear+dissipation+for+critical+NLS+equation&rft.jtitle=Physica.+D&rft.au=PASSOT%2C+T&rft.au=SULEM%2C+C&rft.au=SULEM%2C+P.+L&rft.date=2005-04-15&rft.pub=Elsevier&rft.issn=0167-2789&rft.volume=203&rft.issue=3-4&rft.spage=167&rft.epage=184&rft_id=info:doi/10.1016%2Fj.physd.2005.03.011&rft.externalDBID=n%2Fa&rft.externalDocID=16787680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon