Effective Improvement of the Accuracy of Snow Cover Discrimination Using a Random Forests Algorithm Considering Multiple Factors: A Case Study of the Three-Rivers Headwater Region, Tibet Plateau

Accurate information on snow cover extent plays a crucial role in understanding regional and global climate change, as well as the water cycle, and supports the sustainable development of socioeconomic systems. Remote sensing technology is a vital tool for monitoring snow cover’ extent, but accurate...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 19; p. 4644
Main Authors He, Rui, Qin, Yan, Zhao, Qiudong, Chang, Yaping, Jin, Zizhen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate information on snow cover extent plays a crucial role in understanding regional and global climate change, as well as the water cycle, and supports the sustainable development of socioeconomic systems. Remote sensing technology is a vital tool for monitoring snow cover’ extent, but accurate identification of shallow snow cover on the Tibetan Plateau has remained challenging. Focusing on the Three-Rivers Headwater Region (THR), this study addressed this issue by developing a snow cover discrimination model (SCDM) using a random forests (RF) algorithm. Using daily observed snow depth (SD) data from 15 stations in the THR during the period 2001–2013, a comprehensive analysis was conducted, considering various factors influencing regional snow cover distribution, such as land surface reflectance, land surface temperature (LST), Normalized Difference Snow Index (NDSI), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Forest Snow Index (NDFSI). The key results were as follows: (1) Optimal model performance was achieved with the parameters Ntree, Mtry, and ratio set to 1000, 2, and 19, respectively. The SCDM outperformed other snow cover products in both pixel-scale and local spatial-scale discrimination. (2) Spectral information of snow cover proved to be the most influential auxiliary variable in discrimination, and the combined inclusion of NDVI and LST improved model performance. (3) The SCDM achieved accuracy of 99.04% for thick snow cover (SD > 4 cm) and 98.54% for shallow snow cover (SD ≤ 4 cm), significantly (p < 0.01) surpassing the traditional dynamic threshold method. This study can offer valuable reference for monitoring snow cover dynamics in regions with limited data availability.
AbstractList Accurate information on snow cover extent plays a crucial role in understanding regional and global climate change, as well as the water cycle, and supports the sustainable development of socioeconomic systems. Remote sensing technology is a vital tool for monitoring snow cover’ extent, but accurate identification of shallow snow cover on the Tibetan Plateau has remained challenging. Focusing on the Three-Rivers Headwater Region (THR), this study addressed this issue by developing a snow cover discrimination model (SCDM) using a random forests (RF) algorithm. Using daily observed snow depth (SD) data from 15 stations in the THR during the period 2001–2013, a comprehensive analysis was conducted, considering various factors influencing regional snow cover distribution, such as land surface reflectance, land surface temperature (LST), Normalized Difference Snow Index (NDSI), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Forest Snow Index (NDFSI). The key results were as follows: (1) Optimal model performance was achieved with the parameters Ntree, Mtry, and ratio set to 1000, 2, and 19, respectively. The SCDM outperformed other snow cover products in both pixel-scale and local spatial-scale discrimination. (2) Spectral information of snow cover proved to be the most influential auxiliary variable in discrimination, and the combined inclusion of NDVI and LST improved model performance. (3) The SCDM achieved accuracy of 99.04% for thick snow cover (SD > 4 cm) and 98.54% for shallow snow cover (SD ≤ 4 cm), significantly (p < 0.01) surpassing the traditional dynamic threshold method. This study can offer valuable reference for monitoring snow cover dynamics in regions with limited data availability.
Audience Academic
Author He, Rui
Zhao, Qiudong
Chang, Yaping
Qin, Yan
Jin, Zizhen
Author_xml – sequence: 1
  givenname: Rui
  surname: He
  fullname: He, Rui
– sequence: 2
  givenname: Yan
  surname: Qin
  fullname: Qin, Yan
– sequence: 3
  givenname: Qiudong
  surname: Zhao
  fullname: Zhao, Qiudong
– sequence: 4
  givenname: Yaping
  orcidid: 0000-0002-1010-9275
  surname: Chang
  fullname: Chang, Yaping
– sequence: 5
  givenname: Zizhen
  surname: Jin
  fullname: Jin, Zizhen
BookMark eNptUttuEzEQXaEiUUpf-AJLvCBEim-7jnmLQtNGKgKl6fPK8c4mjnbtYHtb5ff4MiZNuajCfrBndOYc-8y8Lk588FAUbxm9EELTTzGxkmlZSfmiOOVU8ZHkmp_8c39VnKe0pbiEYJrK0-LnZduCze4eyLzfxXAPPfhMQkvyBsjE2iEauz_Etz48kCkCIvniko2ud95kFzy5S86viSEL45vQk1mIkHIik24dosubHqt8cg3EA-zr0GW364DMjM0hps9kQqYmAbnNQ7P_LbzcRIDRAp8VE7kG0zyYjMILWKPgR7J0K8jke4dJM7wpXramS3D-dJ4Vd7PL5fR6dPPtaj6d3IysFCKPhCq5MHysS1npihohzSECyVTbcCEAeDNuSkbLVoCiUnCqtQWG_kgAbcVZMT_yNsFs6x0aYOK-DsbVj4kQ17WJ2dkOaqkVp7yqWi6UtNLoleByJVipx2VllEau90cutPzHgHbVPXoKXWc8hCHVgkoqZSUURei7Z9BtGKLHn9Z8rKqKcVUxRF0cUWuD-s63IWPjcDfQO4tz0jrMT5TiHLvPD7QfjgU2hpQitH9-xGh9GKf67zghmD4DW5cfm48qrvtfyS-VeM3W
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_176946
Cites_doi 10.1038/s41558-019-0592-8
10.1029/2019WR024932
10.1002/2016JD025427
10.1016/0034-4257(89)90101-6
10.3390/rs11192261
10.3390/rs15071793
10.3189/172756408787814690
10.1016/S0034-4257(02)00095-0
10.3390/rs13010053
10.1109/JSTARS.2023.3253804
10.1038/nclimate3240
10.1016/j.scitotenv.2018.10.128
10.1002/hyp.5611
10.1080/2150704X.2021.1937371
10.1016/j.rse.2011.07.018
10.1016/j.rse.2022.113017
10.1007/BF02346818
10.1016/j.rse.2013.12.022
10.1016/j.rse.2017.11.021
10.1029/2003JF000113
10.1038/s41597-020-0369-y
10.1016/j.rse.2020.111781
10.1080/17538947.2017.1421721
10.1016/j.rse.2016.12.028
10.1073/pnas.2237157100
10.1016/j.jhydrol.2021.126662
10.1016/0034-4257(95)00137-P
10.1111/j.1466-8238.2007.00358.x
10.1007/s11069-005-6581-4
10.1016/j.jhydrol.2020.125548
10.1109/JSTARS.2022.3189277
10.1016/j.rse.2021.112437
10.5194/tc-12-1629-2018
10.1109/TGRS.2019.2892417
10.1016/S0924-2716(02)00124-7
10.5194/essd-13-4711-2021
10.1016/j.rse.2021.112665
10.1016/j.scitotenv.2021.149533
10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2
10.1007/s13351-021-0196-x
10.1109/JSTARS.2020.2983550
10.1016/j.rse.2009.01.001
10.1016/S0034-4257(97)00085-0
10.3390/rs14143380
10.3390/rs14225812
10.1126/science.aaa8415
10.1016/j.eswa.2019.05.028
10.1016/j.rse.2021.112294
10.1017/aog.2017.47
10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2
10.3390/rs10010136
10.1029/2008JD011559
10.3390/rs14133098
10.1007/BF00058655
10.5194/tc-2016-134
10.3390/rs13071250
10.1016/j.rse.2012.12.008
10.1007/978-1-4419-9326-7_5
10.3390/rs9101045
10.1016/j.acags.2020.100040
10.3390/rs71215882
10.1038/nature13625
10.1080/01431161.2019.1582114
10.1029/2007JD008428
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15194644
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
AGRICOLA
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_49720266f2374c4a9b324b3159856a79
A772200020
10_3390_rs15194644
GeographicLocations China
Tibet
Tibetan Plateau
GeographicLocations_xml – name: China
– name: Tibetan Plateau
– name: Tibet
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-37523a289546960a34aa289e417fd233ee2d8d5105f3e70432099ce1ffe4ee9c3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:14:15 EDT 2025
Fri Jul 11 03:26:26 EDT 2025
Fri Jul 25 11:47:01 EDT 2025
Tue Jun 10 20:58:28 EDT 2025
Tue Jul 01 03:11:19 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-37523a289546960a34aa289e417fd233ee2d8d5105f3e70432099ce1ffe4ee9c3
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1010-9275
OpenAccessLink https://www.proquest.com/docview/2876612761?pq-origsite=%requestingapplication%
PQID 2876612761
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_49720266f2374c4a9b324b3159856a79
proquest_miscellaneous_3040446370
proquest_journals_2876612761
gale_infotracacademiconefile_A772200020
crossref_primary_10_3390_rs15194644
crossref_citationtrail_10_3390_rs15194644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Nicolet (ref_15) 2016; 121
Garg (ref_22) 2021; 800
(ref_14) 2014; 512
Natali (ref_6) 2019; 9
ref_58
ref_12
Barnett (ref_18) 1989; 46
Lobo (ref_64) 2008; 17
ref_10
ref_54
Rabus (ref_59) 2003; 57
Yang (ref_32) 2014; 143
ref_16
Luo (ref_45) 2022; 275
Li (ref_46) 2021; 601
ref_60
Bintanja (ref_7) 2017; 7
Changnon (ref_17) 2006; 37
Yang (ref_57) 2021; 35
Chen (ref_20) 2022; 15
ref_68
Foster (ref_34) 1997; 62
ref_66
Hall (ref_24) 1995; 54
ref_65
Jordan (ref_37) 2015; 349
Notarnicola (ref_13) 2020; 243
Tong (ref_50) 2020; 590
ref_63
ref_62
Huang (ref_1) 2017; 190
Arnold (ref_8) 2005; 19
He (ref_40) 2015; 12
Painter (ref_47) 2009; 113
ref_27
Speiser (ref_61) 2019; 134
Zhang (ref_30) 2019; 651
Hao (ref_67) 2019; 12
Li (ref_55) 2013; 131
Allchin (ref_2) 2017; 58
Dobreva (ref_41) 2011; 115
ref_36
ref_35
Douville (ref_9) 1996; 12
Wang (ref_53) 2021; 265
Kuter (ref_44) 2021; 255
ref_39
ref_38
Liu (ref_49) 2020; 13
Stillinger (ref_48) 2019; 55
Hao (ref_29) 2021; 13
Haerer (ref_26) 2018; 12
Zhang (ref_52) 2019; 57
Hansen (ref_19) 2004; 101
Dozier (ref_23) 1989; 28
Kuter (ref_42) 2018; 205
Wang (ref_28) 2015; 7
Armstrong (ref_3) 2001; 28
Kaushik (ref_21) 2019; 40
Hall (ref_31) 2002; 83
Palermo (ref_33) 2023; 16
Wu (ref_11) 2003; 16
He (ref_56) 2020; 7
Breiman (ref_43) 1996; 24
Zhang (ref_51) 2021; 260
Sood (ref_25) 2020; 8
ref_5
ref_4
References_xml – volume: 9
  start-page: 852
  year: 2019
  ident: ref_6
  article-title: Large loss of CO2 in winter observed across the northern permafrost region
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-019-0592-8
– volume: 55
  start-page: 6169
  year: 2019
  ident: ref_48
  article-title: Cloud Masking for Landsat 8 and MODIS Terra Over Snow-Covered Terrain: Error Analysis and Spectral Similarity Between Snow and Cloud
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR024932
– volume: 121
  start-page: 8297
  year: 2016
  ident: ref_15
  article-title: Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2016JD025427
– volume: 28
  start-page: 9
  year: 1989
  ident: ref_23
  article-title: Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(89)90101-6
– ident: ref_27
  doi: 10.3390/rs11192261
– ident: ref_38
  doi: 10.3390/rs15071793
– ident: ref_35
  doi: 10.3189/172756408787814690
– volume: 83
  start-page: 181
  year: 2002
  ident: ref_31
  article-title: MODIS snow-cover products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00095-0
– ident: ref_68
– ident: ref_36
  doi: 10.3390/rs13010053
– volume: 16
  start-page: 2868
  year: 2023
  ident: ref_33
  article-title: Using Artificial Neural Networks to Couple Satellite C-Band Synthetic Aperture Radar Interferometry and Alpine3D Numerical Model for the Estimation of Snow Cover Extent, Height, and Density
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2023.3253804
– ident: ref_65
– volume: 28
  start-page: 3673
  year: 2001
  ident: ref_3
  article-title: Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors
  publication-title: GeoRL
– volume: 7
  start-page: 263
  year: 2017
  ident: ref_7
  article-title: Towards a rain-dominated Arctic
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate3240
– volume: 651
  start-page: 2712
  year: 2019
  ident: ref_30
  article-title: Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.128
– volume: 19
  start-page: 563
  year: 2005
  ident: ref_8
  article-title: SWAT2000: Current capabilities and research opportunities in applied watershed modelling
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.5611
– volume: 12
  start-page: 1136
  year: 2015
  ident: ref_40
  article-title: Extracting Snow Cover in Mountain Areas Based on SAR and Optical Data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1080/2150704X.2021.1937371
– volume: 115
  start-page: 3355
  year: 2011
  ident: ref_41
  article-title: Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.07.018
– volume: 275
  start-page: 113017
  year: 2022
  ident: ref_45
  article-title: Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photography
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113017
– volume: 12
  start-page: 449
  year: 1996
  ident: ref_9
  article-title: Sensitivity of the Asian summer monsoon to an anomalous Eurasian snow cover within the Meteo-France GCM
  publication-title: Clim. Dyn.
  doi: 10.1007/BF02346818
– volume: 143
  start-page: 192
  year: 2014
  ident: ref_32
  article-title: Monitoring snow cover using Chinese meteorological satellite data over China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.12.022
– volume: 205
  start-page: 236
  year: 2018
  ident: ref_42
  article-title: Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.021
– ident: ref_60
  doi: 10.1029/2003JF000113
– volume: 7
  start-page: 25
  year: 2020
  ident: ref_56
  article-title: The first high-resolution meteorological forcing dataset for land process studies over China
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0369-y
– volume: 243
  start-page: 111781
  year: 2020
  ident: ref_13
  article-title: Hotspots of snow cover changes in global mountain regions over 2000–2018
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111781
– volume: 12
  start-page: 375
  year: 2019
  ident: ref_67
  article-title: accuracy assessment of four cloud-free snow cover products over the Qinghai-Tibetan Plateau
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2017.1421721
– volume: 190
  start-page: 274
  year: 2017
  ident: ref_1
  article-title: Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.028
– volume: 101
  start-page: 423
  year: 2004
  ident: ref_19
  article-title: Soot climate forcing via snow and ice albedos
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2237157100
– volume: 601
  start-page: 126662
  year: 2021
  ident: ref_46
  article-title: Hydrological effects of multiphase water transformation in Three-River Headwaters Region, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126662
– volume: 54
  start-page: 127
  year: 1995
  ident: ref_24
  article-title: Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00137-P
– volume: 17
  start-page: 145
  year: 2008
  ident: ref_64
  article-title: AUC: A misleading measure of the performance of predictive distribution models
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2007.00358.x
– volume: 37
  start-page: 373
  year: 2006
  ident: ref_17
  article-title: A spatial and temporal analysis of damaging snowstorms in the United States
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-005-6581-4
– volume: 590
  start-page: 125548
  year: 2020
  ident: ref_50
  article-title: Mapping snow cover from daily Collection 6 MODIS products over Austria
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125548
– volume: 15
  start-page: 5734
  year: 2022
  ident: ref_20
  article-title: Long Time-Series Glacier Outlines in the Three-Rivers Headwater Region from 1986 to 2021 Based on Deep Learning
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3189277
– volume: 260
  start-page: 112437
  year: 2021
  ident: ref_51
  article-title: A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112437
– volume: 12
  start-page: 1629
  year: 2018
  ident: ref_26
  article-title: On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales
  publication-title: Cryosphere
  doi: 10.5194/tc-12-1629-2018
– volume: 57
  start-page: 4670
  year: 2019
  ident: ref_52
  article-title: A Method Based on Temporal Component Decomposition for Estimating 1-km All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared and Passive Microwave Observations
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2892417
– volume: 57
  start-page: 241
  year: 2003
  ident: ref_59
  article-title: The shuttle radar topography mission—A new class of digital elevation modelsacquired by spaceborne radar
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/S0924-2716(02)00124-7
– volume: 13
  start-page: 4711
  year: 2021
  ident: ref_29
  article-title: The NIEER AVHRR snow cover extent product over China: A long-termdaily snow record for regional climate research
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-4711-2021
– volume: 265
  start-page: 112665
  year: 2021
  ident: ref_53
  article-title: A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112665
– volume: 800
  start-page: 149533
  year: 2021
  ident: ref_22
  article-title: Revisiting the 24 year (1994–2018) record of glacier mass budget in the Suru sub-basin, western Himalaya: Overall response and controlling factors
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149533
– volume: 46
  start-page: 661
  year: 1989
  ident: ref_18
  article-title: The Effect of Eurasian Snow Cover on Regional and Global Climate Variations
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2
– volume: 35
  start-page: 663
  year: 2021
  ident: ref_57
  article-title: Performance of the CRA-40/Land, CMFD, and ERA-Interim Datasets in Reflecting Changes in Surface Air Temperature over the Tibetan Plateau
  publication-title: J. Meteorol. Res.
  doi: 10.1007/s13351-021-0196-x
– volume: 13
  start-page: 1467
  year: 2020
  ident: ref_49
  article-title: An Assessment and Error Analysis of MOD10A1 Snow Product Using Landsat and Ground Observations Over China During 2000–2016
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2983550
– volume: 113
  start-page: 868
  year: 2009
  ident: ref_47
  article-title: Retrieval of subpixel snow covered area, grain size, and albedo from MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.01.001
– volume: 62
  start-page: 132
  year: 1997
  ident: ref_34
  article-title: Comparison of snow mass estimates from prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00085-0
– ident: ref_63
– ident: ref_58
  doi: 10.3390/rs14143380
– ident: ref_39
  doi: 10.3390/rs14225812
– volume: 349
  start-page: 255
  year: 2015
  ident: ref_37
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 134
  start-page: 93
  year: 2019
  ident: ref_61
  article-title: A comparison of random forest variable selection methods for classification prediction modeling
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.05.028
– volume: 255
  start-page: 112294
  year: 2021
  ident: ref_44
  article-title: Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: Random forests versus support vector regression
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112294
– volume: 58
  start-page: 21
  year: 2017
  ident: ref_2
  article-title: A spatio-temporal analysis of trends in Northern Hemisphere snow-dominated area and duration, 1971–2014
  publication-title: Ann. Glaciol.
  doi: 10.1017/aog.2017.47
– volume: 16
  start-page: 2038
  year: 2003
  ident: ref_11
  article-title: The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2
– ident: ref_4
  doi: 10.3390/rs10010136
– ident: ref_12
  doi: 10.1029/2008JD011559
– ident: ref_16
  doi: 10.3390/rs14133098
– volume: 24
  start-page: 123
  year: 1996
  ident: ref_43
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– ident: ref_10
  doi: 10.5194/tc-2016-134
– ident: ref_66
  doi: 10.3390/rs13071250
– volume: 131
  start-page: 14
  year: 2013
  ident: ref_55
  article-title: Satellite-derived land surface temperature: Current status and perspectives
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.008
– ident: ref_62
  doi: 10.1007/978-1-4419-9326-7_5
– ident: ref_5
  doi: 10.3390/rs9101045
– volume: 8
  start-page: 100040
  year: 2020
  ident: ref_25
  article-title: Monitoring and mapping of snow cover variability using topographically derived NDSI model over north Indian Himalayas during the period 2008-19
  publication-title: Appl. Comput. Geosci.
  doi: 10.1016/j.acags.2020.100040
– volume: 7
  start-page: 17246
  year: 2015
  ident: ref_28
  article-title: An Effective Method for Snow-Cover Mapping of Dense Coniferous Forests in the Upper Heihe River Basin Using Landsat Operational Land Imager Data
  publication-title: Remote Sens.
  doi: 10.3390/rs71215882
– volume: 512
  start-page: 416
  year: 2014
  ident: ref_14
  article-title: Contrasting responses of mean and extreme snowfall to climate change
  publication-title: Nature
  doi: 10.1038/nature13625
– volume: 40
  start-page: 6607
  year: 2019
  ident: ref_21
  article-title: Development of glacier mapping in Indian Himalaya: A review of approaches
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1582114
– ident: ref_54
  doi: 10.1029/2007JD008428
SSID ssj0000331904
Score 2.3518019
Snippet Accurate information on snow cover extent plays a crucial role in understanding regional and global climate change, as well as the water cycle, and supports...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4644
SubjectTerms Accuracy
Algorithms
Automation
case studies
China
Classification
Climate change
Decision trees
forests
Global climate
Hydrologic cycle
Hydrology
Land surface temperature
Machine learning
Maximum likelihood method
model validation
Monitoring
Normalized difference vegetative index
random forests algorithm
reflectance
Regions
Remote sensing
Rivers
shallow snow cover
Snow
Snow cover
snow cover discrimination model
Snow depth
snowpack
surface temperature
Sustainable development
Three-Rivers Headwater Region
vegetation index
water
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF6kL_VF_ImxVaYoiGBoktkkF9_Sq8chVOS8Qt-WzWZjD66JJDnK_Xv-Zc5scmcFxRcfkyxkk_l25vuS2Rkh3pQZZokJKj-IDPqSMOFnWTzxSx0VWVjxdlDe4HzxOZlfyk9X8dWdVl-cEzaUBx5e3KnMUtLnSVJFmEojdVYQBSiQovAkTnTqtu5RzLsjppwPRoJWIId6pEi6_rTtKLZlksL_bxHIFer_mzt2MWb2UDwYySHkw6QeiXu2fiwOxz7l19sn4sdQbJg8FAxfA9zHPWgqIB4HuTGbVpstH3-tm1uYcn4mnK_YNXDKCxsBXJIAaFjoumxugHtzdn0H-fpb06766xvY9fDkYRdjviHMhr48HyCHKQU-4PzD7e7GSwKE9RcuxQPmhJpbYrAtLCwnO7-H5aqwPXxZ00m9eSouZx-X07k_dmHwjUTsyQORVtWky2JS0kmgUWo-sjJMqzJCtDYqJyXztAptyhX-iHQaG9L7kNZmBp-Jg7qp7XMBGk0pK2JIUWyJhmEREn3SEcrAYoqYeuLdzjLKjCXKuVPGWpFUYSuqX1b0xOv92O9DYY4_jjpjA-9HcDFtd4IgpkaIqX9BzBNvGR6KlzxNx-hx5wI9FBfPUjkplMj90_XE8Q5BavQFnSJNSiQoSpPQEyf7y7SK-deMrm2z6RSSLyVhjmnw4n_M-Ejcp-tj0uGxOOjbjX1J5KkvXrl18hOJRRRh
  priority: 102
  providerName: Directory of Open Access Journals
Title Effective Improvement of the Accuracy of Snow Cover Discrimination Using a Random Forests Algorithm Considering Multiple Factors: A Case Study of the Three-Rivers Headwater Region, Tibet Plateau
URI https://www.proquest.com/docview/2876612761
https://www.proquest.com/docview/3040446370
https://doaj.org/article/49720266f2374c4a9b324b3159856a79
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9NADD-x9gFeEJ-iMCojkBAS0dL40iS8oKxbqRCdpq6T9hZdLpdtUpeMJNXUf4-_DDu5dkICHpOc8mWf_bPP558QH7IIo7F2c8f1NDqSdMKJIj90MuWl0Sjn7aC8wXl-Mp6dy-8X_oVNuNW2rHJrE1tDnZWac-QHhOzJlXgUdX-9_ekwaxSvrloKjT3RJxMchj3RPzw-OV3ssiwukoq5sutLihTfH1Q1-bhIEgz4wxO1Dfv_ZZZbXzN9Ih5bkAhxJ9Wn4oEpnomHlq_8avNc_OqaDpOlgi4r0Cb5oMyB8BzEWq8rpTd8fFaUdzDhOk04umYTwaUvLAxoiwVAwUIVWXkDzNFZNzXEq0v67ObqBrZcnjxsbusOYdrx83yBGCbkAIHrEDfbBy9JMYyzaEs9YEbac0dItoKF4aLnz7C8Tk0Dpys6qdYvxPn0eDmZOZaNwdESsSFLRDGrovjMp4h67CqUio-MHAV55iEa42VhxngtRxNwpz8Cn9qM6H9IYyKNL0WvKAvzSoBCncmckJLnG4JjmI4IRikPpWswQAwG4tNWMom2rcqZMWOVUMjCUkzupTgQ73djb7sGHX8ddcgC3o3gptrtibK6TOwcTWQUeBSSjnMPA6mlilJCmykS4Av9sQqigfjI6pHw1KfX0cruYKCP4iZaSUyRiteu7Q7E_laDEmsT6uRegwfi3e4yzWZeolGFKdd1gmRTKUDHwH39_1u8EY-Y-L4rK9wXvaZam7cEj5p0KPbC6beh6MdH8x9nQzsjhm2y4TedMxLO
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbG-DC-IF5FYMAhQAiJaKntJjUSQqWjdGydUOmkffMcx9kmdcloUlX9U_wIfhl3eemEBHzbxziW83Lnu-exz3eMvUqUUKENUj_gVvgSdcJXqtvzE8Nj1UnpOCgdcB4fhqMj-fW4e7zBfrZnYSissrWJlaFOcktr5DuI7NGVcGTdHy9_-FQ1inZX2xIatVrsu9USKVvxYW8X5fua8-Hn6WDkN1UFfCuFKHFGIfcyyDO6yAzDwAhp6MrJTpQmXAjneNJLCHekwkWUsQ5BlHWdNHXSOWUFjnuD3cSxFJG93vDLek0nEKjQgayzoOL9YGdeoEdVEkHHH36vKg_wLydQebbhHXa7gaTQr3XoLttw2T221VRHP1vdZ7_qFMdoF6Feg6iWFCFPAdEj9K1dzI1d0fX3LF_CgKJCYfecDBIF2pDooQpNAAMTkyX5BVBF0KIsoD87xZ9cnl1AWzmUuo2bKEcY1tWA3kMfBuhugaIeV-2Dp6iGzp9UgSUwQl1dIm6ew8RRiPU7mJ7HroRvM2w0iwfs6Fqk9JBtZnnmHjEwwiYyRVzGuw7Bn4g7CNoMFzJwIhIi8tjbVjLaNonRqT7HTCNBIinqKyl67OW672WdDuSvvT6RgNc9KIV31ZDPT3VjEbRUEUcCHKZcRNJKo2LEtrFAeNnrhiZSHntD6qHJ0ODrWNOcl8CPopRduo-8iFc7yR7bbjVINxao0FfzxWMv1rfRdtCGkMlcvii0QAsuZSii4PH_h3jOtkbT8YE-2Dvcf8Ju4Xs3AY3bbLOcL9xTBGZl_KyaDcBOrnv6_QY9ekmZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuiKdIW2AQIISEFWd3Y8dICKVJo5TSKAqp1Nt2vV63lVK7xI6i_DWO_DJm_EiFBNx6tL3ya17f7H47w9jbKBCBZ9zYcbkRjkSdcIKg03UizcOgHdN2UNrgfDz2Rify62nndIv9rPfCEK2y9omFo45SQ3PkLUT2GEo4Zt2tuKJFTAbDL9c_HOogRSutdTuNUkWO7HqF6Vv2-XCAsn7H-fBg1h85VYcBx0ghcrQuzMM05hwdzBI9Vwup6cjKth9HXAhredSNCIPEwvpUvQ4BlbHtOLbS2sAIvO8dtu1TVtRg2_sH48l0M8PjClRvV5Y1UYUI3NYiw_gaSIQgf0TBolnAv0JCEeeGD9mDCqBCr9SoR2zLJo_ZvapX-sX6CftVFjxGLwnljEQxwQhpDIgloWfMcqHNmo6_J-kK-sQRhcEluSei3ZAiQEFUAA1TnUTpFVB_0CzPoDc_x9-cX1xB3UeUhh1XnEcYlr2BPkEP-hh8gTiQ6_rBM1RK60wLmgmMUHNXiKIXMLVEuP4Is8vQ5jCZ40m9fMpObkVOz1gjSRP7nIEWJpIxojTesQgFRdhGCKe5kK4VvhB-k32oJaNMVSadunXMFaZLJEV1I8Ume7MZe10WB_nrqH0S8GYEFfQuTqSLc1X5ByUDn2M67MVc-NJIHYSIdEOBYLPb8bQfNNl7Ug9Fbgdfx-hq9wR-FBXwUj3Mknixrtxke7UGqcofZerGeprs9eYyehJaHtKJTZeZEujPpfSE7-78_xav2F00PfXtcHy0y-7ja1fsxj3WyBdL-wJRWh6-rMwB2NltW-BvG51PKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Improvement+of+the+Accuracy+of+Snow+Cover+Discrimination+Using+a+Random+Forests+Algorithm+Considering+Multiple+Factors%3A+A+Case+Study+of+the+Three-Rivers+Headwater+Region%2C+Tibet+Plateau&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=He%2C+Rui&rft.au=Qin%2C+Yan&rft.au=Zhao%2C+Qiudong&rft.au=Chang%2C+Yaping&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=19&rft_id=info:doi/10.3390%2Frs15194644&rft.externalDocID=A772200020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon