Effective Improvement of the Accuracy of Snow Cover Discrimination Using a Random Forests Algorithm Considering Multiple Factors: A Case Study of the Three-Rivers Headwater Region, Tibet Plateau
Accurate information on snow cover extent plays a crucial role in understanding regional and global climate change, as well as the water cycle, and supports the sustainable development of socioeconomic systems. Remote sensing technology is a vital tool for monitoring snow cover’ extent, but accurate...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 19; p. 4644 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate information on snow cover extent plays a crucial role in understanding regional and global climate change, as well as the water cycle, and supports the sustainable development of socioeconomic systems. Remote sensing technology is a vital tool for monitoring snow cover’ extent, but accurate identification of shallow snow cover on the Tibetan Plateau has remained challenging. Focusing on the Three-Rivers Headwater Region (THR), this study addressed this issue by developing a snow cover discrimination model (SCDM) using a random forests (RF) algorithm. Using daily observed snow depth (SD) data from 15 stations in the THR during the period 2001–2013, a comprehensive analysis was conducted, considering various factors influencing regional snow cover distribution, such as land surface reflectance, land surface temperature (LST), Normalized Difference Snow Index (NDSI), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Forest Snow Index (NDFSI). The key results were as follows: (1) Optimal model performance was achieved with the parameters Ntree, Mtry, and ratio set to 1000, 2, and 19, respectively. The SCDM outperformed other snow cover products in both pixel-scale and local spatial-scale discrimination. (2) Spectral information of snow cover proved to be the most influential auxiliary variable in discrimination, and the combined inclusion of NDVI and LST improved model performance. (3) The SCDM achieved accuracy of 99.04% for thick snow cover (SD > 4 cm) and 98.54% for shallow snow cover (SD ≤ 4 cm), significantly (p < 0.01) surpassing the traditional dynamic threshold method. This study can offer valuable reference for monitoring snow cover dynamics in regions with limited data availability. |
---|---|
AbstractList | Accurate information on snow cover extent plays a crucial role in understanding regional and global climate change, as well as the water cycle, and supports the sustainable development of socioeconomic systems. Remote sensing technology is a vital tool for monitoring snow cover’ extent, but accurate identification of shallow snow cover on the Tibetan Plateau has remained challenging. Focusing on the Three-Rivers Headwater Region (THR), this study addressed this issue by developing a snow cover discrimination model (SCDM) using a random forests (RF) algorithm. Using daily observed snow depth (SD) data from 15 stations in the THR during the period 2001–2013, a comprehensive analysis was conducted, considering various factors influencing regional snow cover distribution, such as land surface reflectance, land surface temperature (LST), Normalized Difference Snow Index (NDSI), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Forest Snow Index (NDFSI). The key results were as follows: (1) Optimal model performance was achieved with the parameters Ntree, Mtry, and ratio set to 1000, 2, and 19, respectively. The SCDM outperformed other snow cover products in both pixel-scale and local spatial-scale discrimination. (2) Spectral information of snow cover proved to be the most influential auxiliary variable in discrimination, and the combined inclusion of NDVI and LST improved model performance. (3) The SCDM achieved accuracy of 99.04% for thick snow cover (SD > 4 cm) and 98.54% for shallow snow cover (SD ≤ 4 cm), significantly (p < 0.01) surpassing the traditional dynamic threshold method. This study can offer valuable reference for monitoring snow cover dynamics in regions with limited data availability. |
Audience | Academic |
Author | He, Rui Zhao, Qiudong Chang, Yaping Qin, Yan Jin, Zizhen |
Author_xml | – sequence: 1 givenname: Rui surname: He fullname: He, Rui – sequence: 2 givenname: Yan surname: Qin fullname: Qin, Yan – sequence: 3 givenname: Qiudong surname: Zhao fullname: Zhao, Qiudong – sequence: 4 givenname: Yaping orcidid: 0000-0002-1010-9275 surname: Chang fullname: Chang, Yaping – sequence: 5 givenname: Zizhen surname: Jin fullname: Jin, Zizhen |
BookMark | eNptUttuEzEQXaEiUUpf-AJLvCBEim-7jnmLQtNGKgKl6fPK8c4mjnbtYHtb5ff4MiZNuajCfrBndOYc-8y8Lk588FAUbxm9EELTTzGxkmlZSfmiOOVU8ZHkmp_8c39VnKe0pbiEYJrK0-LnZduCze4eyLzfxXAPPfhMQkvyBsjE2iEauz_Etz48kCkCIvniko2ud95kFzy5S86viSEL45vQk1mIkHIik24dosubHqt8cg3EA-zr0GW364DMjM0hps9kQqYmAbnNQ7P_LbzcRIDRAp8VE7kG0zyYjMILWKPgR7J0K8jke4dJM7wpXramS3D-dJ4Vd7PL5fR6dPPtaj6d3IysFCKPhCq5MHysS1npihohzSECyVTbcCEAeDNuSkbLVoCiUnCqtQWG_kgAbcVZMT_yNsFs6x0aYOK-DsbVj4kQ17WJ2dkOaqkVp7yqWi6UtNLoleByJVipx2VllEau90cutPzHgHbVPXoKXWc8hCHVgkoqZSUURei7Z9BtGKLHn9Z8rKqKcVUxRF0cUWuD-s63IWPjcDfQO4tz0jrMT5TiHLvPD7QfjgU2hpQitH9-xGh9GKf67zghmD4DW5cfm48qrvtfyS-VeM3W |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_176946 |
Cites_doi | 10.1038/s41558-019-0592-8 10.1029/2019WR024932 10.1002/2016JD025427 10.1016/0034-4257(89)90101-6 10.3390/rs11192261 10.3390/rs15071793 10.3189/172756408787814690 10.1016/S0034-4257(02)00095-0 10.3390/rs13010053 10.1109/JSTARS.2023.3253804 10.1038/nclimate3240 10.1016/j.scitotenv.2018.10.128 10.1002/hyp.5611 10.1080/2150704X.2021.1937371 10.1016/j.rse.2011.07.018 10.1016/j.rse.2022.113017 10.1007/BF02346818 10.1016/j.rse.2013.12.022 10.1016/j.rse.2017.11.021 10.1029/2003JF000113 10.1038/s41597-020-0369-y 10.1016/j.rse.2020.111781 10.1080/17538947.2017.1421721 10.1016/j.rse.2016.12.028 10.1073/pnas.2237157100 10.1016/j.jhydrol.2021.126662 10.1016/0034-4257(95)00137-P 10.1111/j.1466-8238.2007.00358.x 10.1007/s11069-005-6581-4 10.1016/j.jhydrol.2020.125548 10.1109/JSTARS.2022.3189277 10.1016/j.rse.2021.112437 10.5194/tc-12-1629-2018 10.1109/TGRS.2019.2892417 10.1016/S0924-2716(02)00124-7 10.5194/essd-13-4711-2021 10.1016/j.rse.2021.112665 10.1016/j.scitotenv.2021.149533 10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2 10.1007/s13351-021-0196-x 10.1109/JSTARS.2020.2983550 10.1016/j.rse.2009.01.001 10.1016/S0034-4257(97)00085-0 10.3390/rs14143380 10.3390/rs14225812 10.1126/science.aaa8415 10.1016/j.eswa.2019.05.028 10.1016/j.rse.2021.112294 10.1017/aog.2017.47 10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2 10.3390/rs10010136 10.1029/2008JD011559 10.3390/rs14133098 10.1007/BF00058655 10.5194/tc-2016-134 10.3390/rs13071250 10.1016/j.rse.2012.12.008 10.1007/978-1-4419-9326-7_5 10.3390/rs9101045 10.1016/j.acags.2020.100040 10.3390/rs71215882 10.1038/nature13625 10.1080/01431161.2019.1582114 10.1029/2007JD008428 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15194644 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection AGRICOLA AGRICOLA - Academic DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_49720266f2374c4a9b324b3159856a79 A772200020 10_3390_rs15194644 |
GeographicLocations | China Tibet Tibetan Plateau |
GeographicLocations_xml | – name: China – name: Tibetan Plateau – name: Tibet |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-37523a289546960a34aa289e417fd233ee2d8d5105f3e70432099ce1ffe4ee9c3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:14:15 EDT 2025 Fri Jul 11 03:26:26 EDT 2025 Fri Jul 25 11:47:01 EDT 2025 Tue Jun 10 20:58:28 EDT 2025 Tue Jul 01 03:11:19 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-37523a289546960a34aa289e417fd233ee2d8d5105f3e70432099ce1ffe4ee9c3 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1010-9275 |
OpenAccessLink | https://www.proquest.com/docview/2876612761?pq-origsite=%requestingapplication% |
PQID | 2876612761 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_49720266f2374c4a9b324b3159856a79 proquest_miscellaneous_3040446370 proquest_journals_2876612761 gale_infotracacademiconefile_A772200020 crossref_primary_10_3390_rs15194644 crossref_citationtrail_10_3390_rs15194644 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Nicolet (ref_15) 2016; 121 Garg (ref_22) 2021; 800 (ref_14) 2014; 512 Natali (ref_6) 2019; 9 ref_58 ref_12 Barnett (ref_18) 1989; 46 Lobo (ref_64) 2008; 17 ref_10 ref_54 Rabus (ref_59) 2003; 57 Yang (ref_32) 2014; 143 ref_16 Luo (ref_45) 2022; 275 Li (ref_46) 2021; 601 ref_60 Bintanja (ref_7) 2017; 7 Changnon (ref_17) 2006; 37 Yang (ref_57) 2021; 35 Chen (ref_20) 2022; 15 ref_68 Foster (ref_34) 1997; 62 ref_66 Hall (ref_24) 1995; 54 ref_65 Jordan (ref_37) 2015; 349 Notarnicola (ref_13) 2020; 243 Tong (ref_50) 2020; 590 ref_63 ref_62 Huang (ref_1) 2017; 190 Arnold (ref_8) 2005; 19 He (ref_40) 2015; 12 Painter (ref_47) 2009; 113 ref_27 Speiser (ref_61) 2019; 134 Zhang (ref_30) 2019; 651 Hao (ref_67) 2019; 12 Li (ref_55) 2013; 131 Allchin (ref_2) 2017; 58 Dobreva (ref_41) 2011; 115 ref_36 ref_35 Douville (ref_9) 1996; 12 Wang (ref_53) 2021; 265 Kuter (ref_44) 2021; 255 ref_39 ref_38 Liu (ref_49) 2020; 13 Stillinger (ref_48) 2019; 55 Hao (ref_29) 2021; 13 Haerer (ref_26) 2018; 12 Zhang (ref_52) 2019; 57 Hansen (ref_19) 2004; 101 Dozier (ref_23) 1989; 28 Kuter (ref_42) 2018; 205 Wang (ref_28) 2015; 7 Armstrong (ref_3) 2001; 28 Kaushik (ref_21) 2019; 40 Hall (ref_31) 2002; 83 Palermo (ref_33) 2023; 16 Wu (ref_11) 2003; 16 He (ref_56) 2020; 7 Breiman (ref_43) 1996; 24 Zhang (ref_51) 2021; 260 Sood (ref_25) 2020; 8 ref_5 ref_4 |
References_xml | – volume: 9 start-page: 852 year: 2019 ident: ref_6 article-title: Large loss of CO2 in winter observed across the northern permafrost region publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-019-0592-8 – volume: 55 start-page: 6169 year: 2019 ident: ref_48 article-title: Cloud Masking for Landsat 8 and MODIS Terra Over Snow-Covered Terrain: Error Analysis and Spectral Similarity Between Snow and Cloud publication-title: Water Resour. Res. doi: 10.1029/2019WR024932 – volume: 121 start-page: 8297 year: 2016 ident: ref_15 article-title: Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2016JD025427 – volume: 28 start-page: 9 year: 1989 ident: ref_23 article-title: Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(89)90101-6 – ident: ref_27 doi: 10.3390/rs11192261 – ident: ref_38 doi: 10.3390/rs15071793 – ident: ref_35 doi: 10.3189/172756408787814690 – volume: 83 start-page: 181 year: 2002 ident: ref_31 article-title: MODIS snow-cover products publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00095-0 – ident: ref_68 – ident: ref_36 doi: 10.3390/rs13010053 – volume: 16 start-page: 2868 year: 2023 ident: ref_33 article-title: Using Artificial Neural Networks to Couple Satellite C-Band Synthetic Aperture Radar Interferometry and Alpine3D Numerical Model for the Estimation of Snow Cover Extent, Height, and Density publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2023.3253804 – ident: ref_65 – volume: 28 start-page: 3673 year: 2001 ident: ref_3 article-title: Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors publication-title: GeoRL – volume: 7 start-page: 263 year: 2017 ident: ref_7 article-title: Towards a rain-dominated Arctic publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate3240 – volume: 651 start-page: 2712 year: 2019 ident: ref_30 article-title: Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.128 – volume: 19 start-page: 563 year: 2005 ident: ref_8 article-title: SWAT2000: Current capabilities and research opportunities in applied watershed modelling publication-title: Hydrol. Process. doi: 10.1002/hyp.5611 – volume: 12 start-page: 1136 year: 2015 ident: ref_40 article-title: Extracting Snow Cover in Mountain Areas Based on SAR and Optical Data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1080/2150704X.2021.1937371 – volume: 115 start-page: 3355 year: 2011 ident: ref_41 article-title: Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.07.018 – volume: 275 start-page: 113017 year: 2022 ident: ref_45 article-title: Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photography publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113017 – volume: 12 start-page: 449 year: 1996 ident: ref_9 article-title: Sensitivity of the Asian summer monsoon to an anomalous Eurasian snow cover within the Meteo-France GCM publication-title: Clim. Dyn. doi: 10.1007/BF02346818 – volume: 143 start-page: 192 year: 2014 ident: ref_32 article-title: Monitoring snow cover using Chinese meteorological satellite data over China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.12.022 – volume: 205 start-page: 236 year: 2018 ident: ref_42 article-title: Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.021 – ident: ref_60 doi: 10.1029/2003JF000113 – volume: 7 start-page: 25 year: 2020 ident: ref_56 article-title: The first high-resolution meteorological forcing dataset for land process studies over China publication-title: Sci. Data doi: 10.1038/s41597-020-0369-y – volume: 243 start-page: 111781 year: 2020 ident: ref_13 article-title: Hotspots of snow cover changes in global mountain regions over 2000–2018 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111781 – volume: 12 start-page: 375 year: 2019 ident: ref_67 article-title: accuracy assessment of four cloud-free snow cover products over the Qinghai-Tibetan Plateau publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2017.1421721 – volume: 190 start-page: 274 year: 2017 ident: ref_1 article-title: Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.028 – volume: 101 start-page: 423 year: 2004 ident: ref_19 article-title: Soot climate forcing via snow and ice albedos publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2237157100 – volume: 601 start-page: 126662 year: 2021 ident: ref_46 article-title: Hydrological effects of multiphase water transformation in Three-River Headwaters Region, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126662 – volume: 54 start-page: 127 year: 1995 ident: ref_24 article-title: Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00137-P – volume: 17 start-page: 145 year: 2008 ident: ref_64 article-title: AUC: A misleading measure of the performance of predictive distribution models publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2007.00358.x – volume: 37 start-page: 373 year: 2006 ident: ref_17 article-title: A spatial and temporal analysis of damaging snowstorms in the United States publication-title: Nat. Hazards doi: 10.1007/s11069-005-6581-4 – volume: 590 start-page: 125548 year: 2020 ident: ref_50 article-title: Mapping snow cover from daily Collection 6 MODIS products over Austria publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125548 – volume: 15 start-page: 5734 year: 2022 ident: ref_20 article-title: Long Time-Series Glacier Outlines in the Three-Rivers Headwater Region from 1986 to 2021 Based on Deep Learning publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3189277 – volume: 260 start-page: 112437 year: 2021 ident: ref_51 article-title: A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112437 – volume: 12 start-page: 1629 year: 2018 ident: ref_26 article-title: On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales publication-title: Cryosphere doi: 10.5194/tc-12-1629-2018 – volume: 57 start-page: 4670 year: 2019 ident: ref_52 article-title: A Method Based on Temporal Component Decomposition for Estimating 1-km All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared and Passive Microwave Observations publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2892417 – volume: 57 start-page: 241 year: 2003 ident: ref_59 article-title: The shuttle radar topography mission—A new class of digital elevation modelsacquired by spaceborne radar publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/S0924-2716(02)00124-7 – volume: 13 start-page: 4711 year: 2021 ident: ref_29 article-title: The NIEER AVHRR snow cover extent product over China: A long-termdaily snow record for regional climate research publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-4711-2021 – volume: 265 start-page: 112665 year: 2021 ident: ref_53 article-title: A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112665 – volume: 800 start-page: 149533 year: 2021 ident: ref_22 article-title: Revisiting the 24 year (1994–2018) record of glacier mass budget in the Suru sub-basin, western Himalaya: Overall response and controlling factors publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149533 – volume: 46 start-page: 661 year: 1989 ident: ref_18 article-title: The Effect of Eurasian Snow Cover on Regional and Global Climate Variations publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2 – volume: 35 start-page: 663 year: 2021 ident: ref_57 article-title: Performance of the CRA-40/Land, CMFD, and ERA-Interim Datasets in Reflecting Changes in Surface Air Temperature over the Tibetan Plateau publication-title: J. Meteorol. Res. doi: 10.1007/s13351-021-0196-x – volume: 13 start-page: 1467 year: 2020 ident: ref_49 article-title: An Assessment and Error Analysis of MOD10A1 Snow Product Using Landsat and Ground Observations Over China During 2000–2016 publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.2983550 – volume: 113 start-page: 868 year: 2009 ident: ref_47 article-title: Retrieval of subpixel snow covered area, grain size, and albedo from MODIS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.01.001 – volume: 62 start-page: 132 year: 1997 ident: ref_34 article-title: Comparison of snow mass estimates from prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00085-0 – ident: ref_63 – ident: ref_58 doi: 10.3390/rs14143380 – ident: ref_39 doi: 10.3390/rs14225812 – volume: 349 start-page: 255 year: 2015 ident: ref_37 article-title: Machine learning: Trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 134 start-page: 93 year: 2019 ident: ref_61 article-title: A comparison of random forest variable selection methods for classification prediction modeling publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.05.028 – volume: 255 start-page: 112294 year: 2021 ident: ref_44 article-title: Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: Random forests versus support vector regression publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112294 – volume: 58 start-page: 21 year: 2017 ident: ref_2 article-title: A spatio-temporal analysis of trends in Northern Hemisphere snow-dominated area and duration, 1971–2014 publication-title: Ann. Glaciol. doi: 10.1017/aog.2017.47 – volume: 16 start-page: 2038 year: 2003 ident: ref_11 article-title: The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation publication-title: J. Clim. doi: 10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2 – ident: ref_4 doi: 10.3390/rs10010136 – ident: ref_12 doi: 10.1029/2008JD011559 – ident: ref_16 doi: 10.3390/rs14133098 – volume: 24 start-page: 123 year: 1996 ident: ref_43 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – ident: ref_10 doi: 10.5194/tc-2016-134 – ident: ref_66 doi: 10.3390/rs13071250 – volume: 131 start-page: 14 year: 2013 ident: ref_55 article-title: Satellite-derived land surface temperature: Current status and perspectives publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.008 – ident: ref_62 doi: 10.1007/978-1-4419-9326-7_5 – ident: ref_5 doi: 10.3390/rs9101045 – volume: 8 start-page: 100040 year: 2020 ident: ref_25 article-title: Monitoring and mapping of snow cover variability using topographically derived NDSI model over north Indian Himalayas during the period 2008-19 publication-title: Appl. Comput. Geosci. doi: 10.1016/j.acags.2020.100040 – volume: 7 start-page: 17246 year: 2015 ident: ref_28 article-title: An Effective Method for Snow-Cover Mapping of Dense Coniferous Forests in the Upper Heihe River Basin Using Landsat Operational Land Imager Data publication-title: Remote Sens. doi: 10.3390/rs71215882 – volume: 512 start-page: 416 year: 2014 ident: ref_14 article-title: Contrasting responses of mean and extreme snowfall to climate change publication-title: Nature doi: 10.1038/nature13625 – volume: 40 start-page: 6607 year: 2019 ident: ref_21 article-title: Development of glacier mapping in Indian Himalaya: A review of approaches publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1582114 – ident: ref_54 doi: 10.1029/2007JD008428 |
SSID | ssj0000331904 |
Score | 2.3518019 |
Snippet | Accurate information on snow cover extent plays a crucial role in understanding regional and global climate change, as well as the water cycle, and supports... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4644 |
SubjectTerms | Accuracy Algorithms Automation case studies China Classification Climate change Decision trees forests Global climate Hydrologic cycle Hydrology Land surface temperature Machine learning Maximum likelihood method model validation Monitoring Normalized difference vegetative index random forests algorithm reflectance Regions Remote sensing Rivers shallow snow cover Snow Snow cover snow cover discrimination model Snow depth snowpack surface temperature Sustainable development Three-Rivers Headwater Region vegetation index water |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF6kL_VF_ImxVaYoiGBoktkkF9_Sq8chVOS8Qt-WzWZjD66JJDnK_Xv-Zc5scmcFxRcfkyxkk_l25vuS2Rkh3pQZZokJKj-IDPqSMOFnWTzxSx0VWVjxdlDe4HzxOZlfyk9X8dWdVl-cEzaUBx5e3KnMUtLnSVJFmEojdVYQBSiQovAkTnTqtu5RzLsjppwPRoJWIId6pEi6_rTtKLZlksL_bxHIFer_mzt2MWb2UDwYySHkw6QeiXu2fiwOxz7l19sn4sdQbJg8FAxfA9zHPWgqIB4HuTGbVpstH3-tm1uYcn4mnK_YNXDKCxsBXJIAaFjoumxugHtzdn0H-fpb06766xvY9fDkYRdjviHMhr48HyCHKQU-4PzD7e7GSwKE9RcuxQPmhJpbYrAtLCwnO7-H5aqwPXxZ00m9eSouZx-X07k_dmHwjUTsyQORVtWky2JS0kmgUWo-sjJMqzJCtDYqJyXztAptyhX-iHQaG9L7kNZmBp-Jg7qp7XMBGk0pK2JIUWyJhmEREn3SEcrAYoqYeuLdzjLKjCXKuVPGWpFUYSuqX1b0xOv92O9DYY4_jjpjA-9HcDFtd4IgpkaIqX9BzBNvGR6KlzxNx-hx5wI9FBfPUjkplMj90_XE8Q5BavQFnSJNSiQoSpPQEyf7y7SK-deMrm2z6RSSLyVhjmnw4n_M-Ejcp-tj0uGxOOjbjX1J5KkvXrl18hOJRRRh priority: 102 providerName: Directory of Open Access Journals |
Title | Effective Improvement of the Accuracy of Snow Cover Discrimination Using a Random Forests Algorithm Considering Multiple Factors: A Case Study of the Three-Rivers Headwater Region, Tibet Plateau |
URI | https://www.proquest.com/docview/2876612761 https://www.proquest.com/docview/3040446370 https://doaj.org/article/49720266f2374c4a9b324b3159856a79 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9NADD-x9gFeEJ-iMCojkBAS0dL40iS8oKxbqRCdpq6T9hZdLpdtUpeMJNXUf4-_DDu5dkICHpOc8mWf_bPP558QH7IIo7F2c8f1NDqSdMKJIj90MuWl0Sjn7aC8wXl-Mp6dy-8X_oVNuNW2rHJrE1tDnZWac-QHhOzJlXgUdX-9_ekwaxSvrloKjT3RJxMchj3RPzw-OV3ssiwukoq5sutLihTfH1Q1-bhIEgz4wxO1Dfv_ZZZbXzN9Ih5bkAhxJ9Wn4oEpnomHlq_8avNc_OqaDpOlgi4r0Cb5oMyB8BzEWq8rpTd8fFaUdzDhOk04umYTwaUvLAxoiwVAwUIVWXkDzNFZNzXEq0v67ObqBrZcnjxsbusOYdrx83yBGCbkAIHrEDfbBy9JMYyzaEs9YEbac0dItoKF4aLnz7C8Tk0Dpys6qdYvxPn0eDmZOZaNwdESsSFLRDGrovjMp4h67CqUio-MHAV55iEa42VhxngtRxNwpz8Cn9qM6H9IYyKNL0WvKAvzSoBCncmckJLnG4JjmI4IRikPpWswQAwG4tNWMom2rcqZMWOVUMjCUkzupTgQ73djb7sGHX8ddcgC3o3gptrtibK6TOwcTWQUeBSSjnMPA6mlilJCmykS4Av9sQqigfjI6pHw1KfX0cruYKCP4iZaSUyRiteu7Q7E_laDEmsT6uRegwfi3e4yzWZeolGFKdd1gmRTKUDHwH39_1u8EY-Y-L4rK9wXvaZam7cEj5p0KPbC6beh6MdH8x9nQzsjhm2y4TedMxLO |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbG-DC-IF5FYMAhQAiJaKntJjUSQqWjdGydUOmkffMcx9kmdcloUlX9U_wIfhl3eemEBHzbxziW83Lnu-exz3eMvUqUUKENUj_gVvgSdcJXqtvzE8Nj1UnpOCgdcB4fhqMj-fW4e7zBfrZnYSissrWJlaFOcktr5DuI7NGVcGTdHy9_-FQ1inZX2xIatVrsu9USKVvxYW8X5fua8-Hn6WDkN1UFfCuFKHFGIfcyyDO6yAzDwAhp6MrJTpQmXAjneNJLCHekwkWUsQ5BlHWdNHXSOWUFjnuD3cSxFJG93vDLek0nEKjQgayzoOL9YGdeoEdVEkHHH36vKg_wLydQebbhHXa7gaTQr3XoLttw2T221VRHP1vdZ7_qFMdoF6Feg6iWFCFPAdEj9K1dzI1d0fX3LF_CgKJCYfecDBIF2pDooQpNAAMTkyX5BVBF0KIsoD87xZ9cnl1AWzmUuo2bKEcY1tWA3kMfBuhugaIeV-2Dp6iGzp9UgSUwQl1dIm6ew8RRiPU7mJ7HroRvM2w0iwfs6Fqk9JBtZnnmHjEwwiYyRVzGuw7Bn4g7CNoMFzJwIhIi8tjbVjLaNonRqT7HTCNBIinqKyl67OW672WdDuSvvT6RgNc9KIV31ZDPT3VjEbRUEUcCHKZcRNJKo2LEtrFAeNnrhiZSHntD6qHJ0ODrWNOcl8CPopRduo-8iFc7yR7bbjVINxao0FfzxWMv1rfRdtCGkMlcvii0QAsuZSii4PH_h3jOtkbT8YE-2Dvcf8Ju4Xs3AY3bbLOcL9xTBGZl_KyaDcBOrnv6_QY9ekmZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuiKdIW2AQIISEFWd3Y8dICKVJo5TSKAqp1Nt2vV63lVK7xI6i_DWO_DJm_EiFBNx6tL3ya17f7H47w9jbKBCBZ9zYcbkRjkSdcIKg03UizcOgHdN2UNrgfDz2Rify62nndIv9rPfCEK2y9omFo45SQ3PkLUT2GEo4Zt2tuKJFTAbDL9c_HOogRSutdTuNUkWO7HqF6Vv2-XCAsn7H-fBg1h85VYcBx0ghcrQuzMM05hwdzBI9Vwup6cjKth9HXAhredSNCIPEwvpUvQ4BlbHtOLbS2sAIvO8dtu1TVtRg2_sH48l0M8PjClRvV5Y1UYUI3NYiw_gaSIQgf0TBolnAv0JCEeeGD9mDCqBCr9SoR2zLJo_ZvapX-sX6CftVFjxGLwnljEQxwQhpDIgloWfMcqHNmo6_J-kK-sQRhcEluSei3ZAiQEFUAA1TnUTpFVB_0CzPoDc_x9-cX1xB3UeUhh1XnEcYlr2BPkEP-hh8gTiQ6_rBM1RK60wLmgmMUHNXiKIXMLVEuP4Is8vQ5jCZ40m9fMpObkVOz1gjSRP7nIEWJpIxojTesQgFRdhGCKe5kK4VvhB-k32oJaNMVSadunXMFaZLJEV1I8Ume7MZe10WB_nrqH0S8GYEFfQuTqSLc1X5ByUDn2M67MVc-NJIHYSIdEOBYLPb8bQfNNl7Ug9Fbgdfx-hq9wR-FBXwUj3Mknixrtxke7UGqcofZerGeprs9eYyehJaHtKJTZeZEujPpfSE7-78_xav2F00PfXtcHy0y-7ja1fsxj3WyBdL-wJRWh6-rMwB2NltW-BvG51PKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Improvement+of+the+Accuracy+of+Snow+Cover+Discrimination+Using+a+Random+Forests+Algorithm+Considering+Multiple+Factors%3A+A+Case+Study+of+the+Three-Rivers+Headwater+Region%2C+Tibet+Plateau&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=He%2C+Rui&rft.au=Qin%2C+Yan&rft.au=Zhao%2C+Qiudong&rft.au=Chang%2C+Yaping&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=19&rft_id=info:doi/10.3390%2Frs15194644&rft.externalDocID=A772200020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |