Coupling Numerical Deformable Models in Global and Reduced Coordinates for the Simulation of the Direct and the Inverse Kinematics of Soft Robots

In this letter, we propose a method to combine the Finite Element Method (FEM) with Discrete Cosserat Modeling (DCM) to capture the mechanics and the actuation of soft robots. The FEM is used to simulate the non-linear behavior of the volume of the soft structure while the cable/rod used for the act...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 6; no. 2; pp. 3910 - 3917
Main Authors Adagolodjo, Yinoussa, Renda, Federico, Duriez, Christian
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SeriesIEEE Robotics and Automation Letters
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2021.3061977

Cover

Abstract In this letter, we propose a method to combine the Finite Element Method (FEM) with Discrete Cosserat Modeling (DCM) to capture the mechanics and the actuation of soft robots. The FEM is used to simulate the non-linear behavior of the volume of the soft structure while the cable/rod used for the actuation is modeled using the DCM. The two models are linked using kinematic constraints without imposing meshing rules. We demonstrate that both direct and inverse kinematic models can be obtained by quadratic optimization. The originality of this coupling is that the FEM model uses global coordinates (the position of the nodes of its mesh in space) where the Cosserat model uses local coordinates (successive strain values). The coupling of these mechanical models allows to combine the best of each parametrization. On the one hand, FEM allows to capture the behavior of the volume structure of the robot while accounting for its geometry with a complex mesh. On the other hand, the DCM allows efficient modeling of 1D structures such as rods, (concentric) tubes, cables, etc. that are used to deform the volume structure of the soft robots. DCM handles large deformation, torsion and (in)-extensibility and is efficient to compute. Moreover, the approach is compatible with complementarity constraints introduced when modeling contact and friction of the robot with its environment as well as the self-collision.
AbstractList In this letter, we propose a method to combine the Finite Element Method (FEM) with Discrete Cosserat Modeling (DCM) to capture the mechanics and the actuation of soft robots. The FEM is used to simulate the non-linear behavior of the volume of the soft structure while the cable/rod used for the actuation is modeled using the DCM. The two models are linked using kinematic constraints without imposing meshing rules. We demonstrate that both direct and inverse kinematic models can be obtained by quadratic optimization. The originality of this coupling is that the FEM model uses global coordinates (the position of the nodes of its mesh in space) where the Cosserat model uses local coordinates (successive strain values). The coupling of these mechanical models allows to combine the best of each parametrization. On the one hand, FEM allows to capture the behavior of the volume structure of the robot while accounting for its geometry with a complex mesh. On the other hand, the DCM allows efficient modeling of 1D structures such as rods, (concentric) tubes, cables, etc. that are used to deform the volume structure of the soft robots. DCM handles large deformation, torsion and (in)-extensibility and is efficient to compute. Moreover, the approach is compatible with complementarity constraints introduced when modeling contact and friction of the robot with its environment as well as the self-collision.
In this paper, we propose a method to combine the Finite Element Method (FEM) with Discrete Cosserat Modeling (DCM) to capture the mechanics and the actuation of soft robots. The FEM is used to simulate the non-linear behavior of the volume of the soft structure while the cable/rod used for the actuation is modeled using the DCM. The two models are linked using kinematic constraints without imposing meshing rules. We demonstrate that both direct and inverse kinematic models can be obtained by quadratic optimization. The originality of this coupling is that the FEM model uses global coordinates (the position of the nodes of its mesh in space) where the Cosserat model uses local coordinates (successive strain values). The coupling of these mechanical models allows to combine the best of each parametrization. On the one hand, FEM allows to capture the behavior of the volume structure of the robot while accounting for its geometry with a complex mesh. On the other hand, the DCM allows efficient modeling of 1D structures such as rods, (concentric) tubes, cables, etc. that are used to deform the volume structure of the soft robots. DCM handles large deformation, torsion and (in)-extensibility and is efficient to compute. Moreover, the approach is compatible with complementarity constraints introduced when modeling contact and friction of the robot with its environment as well as the self-collision.
Author Renda, Federico
Adagolodjo, Yinoussa
Duriez, Christian
Author_xml – sequence: 1
  givenname: Yinoussa
  orcidid: 0000-0002-1547-7421
  surname: Adagolodjo
  fullname: Adagolodjo, Yinoussa
  email: yinoussa.adagolodjo@inria.fr
  organization: Inria, CNRS, Centrale Lille, Team DEFROST, University Lille, Lille, France
– sequence: 2
  givenname: Federico
  orcidid: 0000-0002-1833-9809
  surname: Renda
  fullname: Renda, Federico
  email: federico.renda@ku.ac.ae
  organization: Khalifa University Center for Autonomous Robotic Systems (KUCARS), Khalifa University of Science and Technology, Abu Dhabi, UAE
– sequence: 3
  givenname: Christian
  orcidid: 0000-0001-6030-7117
  surname: Duriez
  fullname: Duriez, Christian
  email: christian.duriez@inria.fr
  organization: Inria, CNRS, Centrale Lille, Team DEFROST, University Lille, Lille, France
BackLink https://hal.science/hal-03192168$$DView record in HAL
BookMark eNp9kU9vFCEYh4mpibX2buKFxJOHXfkzA8txs9W26arJVs-EgRdLMwMrME38GH7jzuw2jfHgCXh5nvcl_F6jk5giIPSWkiWlRH3c7tZLRhhdciKokvIFOmVcygWXQpz8tX-Fzku5J4TQlkmu2lP0Z5PGfR_iT_x1HCAHa3p8AT7lwXQ94C_JQV9wiPiyT910Z6LDO3CjBYc3KWUXoqlQ8GTgegf4Ngxjb2pIESd_qFyEDLYexPl4HR8gF8A3IcIwgbbM4G3yFe9Sl2p5g1560xc4f1rP0I_Pn75vrhbbb5fXm_V2YRvO64IL0TarRknggnjPGRHOtdJw2_GVa6nrDDDVei-sEF0LjaJUEgW-W3EiieNn6MOx753p9T6HweTfOpmgr9ZbPdcIp4pRsXqgE_v-yO5z-jVCqfo-jTlOz9OspaRhgjQzRY6UzamUDP65LSV6zklPOek5J_2U06SIfxQb6uH7ajah_5_47igGAHieo7hgjEr-CNdVoPw
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_TIE_2022_3183334
crossref_primary_10_3390_biomimetics10020071
crossref_primary_10_1109_LRA_2023_3329752
crossref_primary_10_1177_02783649241262333
crossref_primary_10_1109_JPROC_2022_3141338
crossref_primary_10_1109_TRO_2022_3231360
crossref_primary_10_1016_j_engappai_2023_107693
crossref_primary_10_5194_ms_15_407_2024
crossref_primary_10_1080_01691864_2023_2279600
crossref_primary_10_1109_MCS_2023_3253419
crossref_primary_10_23939_mmc2024_04_946
crossref_primary_10_1089_soro_2021_0123
crossref_primary_10_1109_LRA_2023_3301272
crossref_primary_10_1038_s42254_022_00481_z
Cites_doi 10.1109/TRO.2008.924923
10.1089/soro.2017.0079
10.1109/LRA.2020.2985620
10.1109/TRO.2018.2861900
10.1109/TRO.2018.2885923
10.1109/TRO.2010.2062570
10.1109/IROS.2016.7759810
10.1080/01691864.2017.1395362
10.1111/1467-8659.00594
10.1007/s12532-014-0071-1
10.1109/LRA.2017.2669367
10.1177/0278364920910487
10.1109/IROS.2016.7759808
10.1109/EMBC.2015.7319176
10.1109/ROBOSOFT.2019.8722815
10.1002/nme.1620120508
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Attribution
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
– notice: Attribution
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/LRA.2021.3061977
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
Computer Science
EISSN 2377-3766
EndPage 3917
ExternalDocumentID oai_HAL_hal_03192168v1
10_1109_LRA_2021_3061977
9362217
Genre orig-research
GrantInformation_xml – fundername: ADEK Award for Research Excellence
  grantid: AARE-2018-105
– fundername: Region Hauts-de-France, the project DATA
– fundername: Khalifa University of Science and Technology
  grantid: FSU-2018-08; CIRA-2020-074
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c433t-366548497e360ff3206dd57a3cb38d51dbae295ff6c66b5e4911709efb83070d3
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Thu Jun 19 06:40:53 EDT 2025
Mon Jun 30 05:38:16 EDT 2025
Tue Jul 01 03:54:05 EDT 2025
Thu Apr 24 23:10:26 EDT 2025
Wed Aug 27 02:41:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Flexible Robotics
Tendon/Wire Mechanism
Control and Learning for Soft Robots
Grasping
Soft Robot Applications
Simulation and Animation
Modeling
Contact Modeling
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-366548497e360ff3206dd57a3cb38d51dbae295ff6c66b5e4911709efb83070d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6030-7117
0000-0002-1833-9809
0000-0002-1547-7421
OpenAccessLink https://hal.science/hal-03192168
PQID 2510426041
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2021_3061977
hal_primary_oai_HAL_hal_03192168v1
crossref_citationtrail_10_1109_LRA_2021_3061977
proquest_journals_2510426041
ieee_primary_9362217
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationSeriesTitle IEEE Robotics and Automation Letters
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
wang (ref16) 2019; 38
ref14
ref20
ref11
ref10
rucker (ref3) 2010; 26
ref21
ref1
ref17
ref18
ref8
ref7
nesme (ref12) 2005
ref9
ref4
ref6
ref5
faure (ref19) 2012
spillmann (ref2) 0
References_xml – start-page: 283
  year: 2012
  ident: ref19
  publication-title: SOFA A Multi-Model Framework for Interactive Physical Simulation
– ident: ref5
  doi: 10.1109/TRO.2008.924923
– ident: ref9
  doi: 10.1089/soro.2017.0079
– start-page: 63
  year: 0
  ident: ref2
  article-title: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects
  publication-title: Proc ACM SIGGRAPH/EUROGRAPH Symp Comput Animat
– ident: ref7
  doi: 10.1109/LRA.2020.2985620
– volume: 38
  start-page: 1
  year: 2019
  ident: ref16
  article-title: RedMax: Efficient & flexible approach for articulated dynamics
  publication-title: ACM Trans Graph
– ident: ref14
  doi: 10.1109/TRO.2018.2861900
– ident: ref4
  doi: 10.1109/TRO.2018.2885923
– year: 2005
  ident: ref12
  article-title: Efficient, physically plausible finite elements
  publication-title: EUROGRAPHICS
– volume: 26
  start-page: 769
  year: 2010
  ident: ref3
  article-title: A geometrically exact model for externally loaded concentric-tube continuum robots
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2010.2062570
– ident: ref17
  doi: 10.1109/IROS.2016.7759810
– ident: ref10
  doi: 10.1080/01691864.2017.1395362
– ident: ref1
  doi: 10.1111/1467-8659.00594
– ident: ref20
  doi: 10.1007/s12532-014-0071-1
– ident: ref8
  doi: 10.1109/LRA.2017.2669367
– ident: ref15
  doi: 10.1177/0278364920910487
– ident: ref18
  doi: 10.1109/LRA.2017.2669367
– ident: ref6
  doi: 10.1109/IROS.2016.7759808
– ident: ref21
  doi: 10.1109/EMBC.2015.7319176
– ident: ref11
  doi: 10.1109/ROBOSOFT.2019.8722815
– ident: ref13
  doi: 10.1002/nme.1620120508
SSID ssj0001527395
Score 2.277647
Snippet In this letter, we propose a method to combine the Finite Element Method (FEM) with Discrete Cosserat Modeling (DCM) to capture the mechanics and the actuation...
In this paper, we propose a method to combine the Finite Element Method (FEM) with Discrete Cosserat Modeling (DCM) to capture the mechanics and the actuation...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3910
SubjectTerms Actuation
Cables
Computer Science
Constraint modelling
contact modeling
control
Coupling
Deformable models
Deformation
Engineering Sciences
Finite element analysis
Finite element method
Flexible robotics
Formability
grasping
Inverse kinematics
Kinematics
learning for soft robots
Mathematical analysis
Mathematical model
Mathematics
modeling
Numerical models
Optimization
Parameterization
Physics
Robot kinematics
Robots
simulation and animation
soft robot applications
Soft robotics
Solid modeling
Strain
tendon/wire mechanism
Tubes
Title Coupling Numerical Deformable Models in Global and Reduced Coordinates for the Simulation of the Direct and the Inverse Kinematics of Soft Robots
URI https://ieeexplore.ieee.org/document/9362217
https://www.proquest.com/docview/2510426041
https://hal.science/hal-03192168
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtNAEB01PcGBAgURWqoV4oKEE9trO95jFFpF0PSQUqk3y7uepRHBRrXNgUP_oX_MzNoJtCDExbJXO9JIM959szvzBuANQexJanPjGSuNF6k89XROD4WEZhmQoOTi5MVZMr-IPlzGlzvwblsLg4gu-QxH_Oru8ovKtHxUNla02hKEHsCA3Kyr1fp1nsJMYire3ET6any6nFL8FwYjQsUBwZw7O8_givMeXUOVP1Zht7Wc7MFio1SXUfJl1DZ6ZH7c42v8X60fw6MeY4pp5xRPYAfLp_DwN-bBfbidVS3X4n4WZ213Z7MW79EBWL1GwR3S1rVYlaLrCSDyshBLZnnFQswqClhXJYNUQRKCIKQ4X33t-4CJyrqRbi11gvzJfB7XNYqPpINjia154jltAmJZ6aqpn8HFyfGn2dzruzN4JpKy8ST3LU4jNUGZ-NbK0E-KIp7k0miZFnFQ6BxDFVubmCTRMUaKm9wotDrldaaQz2G3rEp8AWKiQxkpWVDoQpG6j2lAqIaQR6rJoqH1hzDeWC4zPXU5d9BYZy6E8VVGts7Y1llv6yG83Up862g7_jH3NTnDdhrzbc-npxmPcYlXGCTp92AI-2zZ7azeqEM43PhO1v_8dUaQ0RH_R8HLv0sdwANWoEsAOoTd5rrFV4RtGn0Eg8XN8ZFz7Z_BR_Z4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7tLgfYA68FbWEBC3FBIm0SJ2l8rAqrwrY9dHelvVnxCypKgjYJB_4F_5gZJy1PIS5RYtmSpZnY39gz3wfwAiH2OHeFDrTjOkhEkQeqwIewiGYJkFhOxcmLZTa7TN5dpVd78GpXC2Ot9clndkiv_i7fVLqlo7KRwNUWIfQ-3MB9P0m7aq0fJyrEJSbS7V1kKEbz1QQjwDgaIi6OEOj8svfsf6DMRy-p8sc67DeX0zuw2E6ryyn5OGwbNdRff2Ns_N9534XbPcpkk84t7sGeLe_D4U_cg0fwbVq1VI37ni3b7tZmw15bD2HVxjLSSNvUbF2yThWAFaVhK-J5tYZNKwxZ1yXBVIYjGIJIdr7-1CuBscr5lm419QPpkxg9rmvLznAOnie2po7nuA2wVaWqpn4Al6dvLqazoNdnCHTCeRNwUi7OEzG2PAud43GYGZOOC64Vz00aGVXYWKTOZTrLVGoTQTI3wjqV00pj-EM4KKvSHgMbq5gnghsMXjBWD20eIa5B7JErtGjswgGMtpaTuicvJw2NjfRBTCgk2lqSrWVv6wG83I343BF3_KPvc3SGXTdi3J5N5pLaqMgrjrL8SzSAI7Lsrldv1AGcbH1H9r9_LRE0eur_JHr091HP4ObsYjGX87fLs8dwiybTpQOdwEFz3doniHQa9dQ7-Hf3_viU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+numerical+deformable+models+in+global+and+reduced+coordinates+for+the+simulation+of+the+direct+and+the+inverse+kinematics+of+Soft+Robots&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Adagolodjo%2C+Yinoussa&rft.au=Renda%2C+Federico&rft.au=Duriez%2C+Christian&rft.au=Adagolodjo%2C+Yinoussa&rft.series=IEEE+Robotics+and+Automation+Letters&rft.date=2021-04-01&rft.pub=IEEE&rft.issn=2377-3766&rft.volume=6&rft.issue=2&rft.spage=3910&rft.epage=3917&rft_id=info:doi/10.1109%2FLRA.2021.3061977&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03192168v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon