Coupling Numerical Deformable Models in Global and Reduced Coordinates for the Simulation of the Direct and the Inverse Kinematics of Soft Robots
In this letter, we propose a method to combine the Finite Element Method (FEM) with Discrete Cosserat Modeling (DCM) to capture the mechanics and the actuation of soft robots. The FEM is used to simulate the non-linear behavior of the volume of the soft structure while the cable/rod used for the act...
Saved in:
Published in | IEEE robotics and automation letters Vol. 6; no. 2; pp. 3910 - 3917 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Series | IEEE Robotics and Automation Letters |
Subjects | |
Online Access | Get full text |
ISSN | 2377-3766 2377-3766 |
DOI | 10.1109/LRA.2021.3061977 |
Cover
Abstract | In this letter, we propose a method to combine the Finite Element Method (FEM) with Discrete Cosserat Modeling (DCM) to capture the mechanics and the actuation of soft robots. The FEM is used to simulate the non-linear behavior of the volume of the soft structure while the cable/rod used for the actuation is modeled using the DCM. The two models are linked using kinematic constraints without imposing meshing rules. We demonstrate that both direct and inverse kinematic models can be obtained by quadratic optimization. The originality of this coupling is that the FEM model uses global coordinates (the position of the nodes of its mesh in space) where the Cosserat model uses local coordinates (successive strain values). The coupling of these mechanical models allows to combine the best of each parametrization. On the one hand, FEM allows to capture the behavior of the volume structure of the robot while accounting for its geometry with a complex mesh. On the other hand, the DCM allows efficient modeling of 1D structures such as rods, (concentric) tubes, cables, etc. that are used to deform the volume structure of the soft robots. DCM handles large deformation, torsion and (in)-extensibility and is efficient to compute. Moreover, the approach is compatible with complementarity constraints introduced when modeling contact and friction of the robot with its environment as well as the self-collision. |
---|---|
AbstractList | In this letter, we propose a method to combine the Finite Element Method (FEM) with Discrete Cosserat Modeling (DCM) to capture the mechanics and the actuation of soft robots. The FEM is used to simulate the non-linear behavior of the volume of the soft structure while the cable/rod used for the actuation is modeled using the DCM. The two models are linked using kinematic constraints without imposing meshing rules. We demonstrate that both direct and inverse kinematic models can be obtained by quadratic optimization. The originality of this coupling is that the FEM model uses global coordinates (the position of the nodes of its mesh in space) where the Cosserat model uses local coordinates (successive strain values). The coupling of these mechanical models allows to combine the best of each parametrization. On the one hand, FEM allows to capture the behavior of the volume structure of the robot while accounting for its geometry with a complex mesh. On the other hand, the DCM allows efficient modeling of 1D structures such as rods, (concentric) tubes, cables, etc. that are used to deform the volume structure of the soft robots. DCM handles large deformation, torsion and (in)-extensibility and is efficient to compute. Moreover, the approach is compatible with complementarity constraints introduced when modeling contact and friction of the robot with its environment as well as the self-collision. In this paper, we propose a method to combine the Finite Element Method (FEM) with Discrete Cosserat Modeling (DCM) to capture the mechanics and the actuation of soft robots. The FEM is used to simulate the non-linear behavior of the volume of the soft structure while the cable/rod used for the actuation is modeled using the DCM. The two models are linked using kinematic constraints without imposing meshing rules. We demonstrate that both direct and inverse kinematic models can be obtained by quadratic optimization. The originality of this coupling is that the FEM model uses global coordinates (the position of the nodes of its mesh in space) where the Cosserat model uses local coordinates (successive strain values). The coupling of these mechanical models allows to combine the best of each parametrization. On the one hand, FEM allows to capture the behavior of the volume structure of the robot while accounting for its geometry with a complex mesh. On the other hand, the DCM allows efficient modeling of 1D structures such as rods, (concentric) tubes, cables, etc. that are used to deform the volume structure of the soft robots. DCM handles large deformation, torsion and (in)-extensibility and is efficient to compute. Moreover, the approach is compatible with complementarity constraints introduced when modeling contact and friction of the robot with its environment as well as the self-collision. |
Author | Renda, Federico Adagolodjo, Yinoussa Duriez, Christian |
Author_xml | – sequence: 1 givenname: Yinoussa orcidid: 0000-0002-1547-7421 surname: Adagolodjo fullname: Adagolodjo, Yinoussa email: yinoussa.adagolodjo@inria.fr organization: Inria, CNRS, Centrale Lille, Team DEFROST, University Lille, Lille, France – sequence: 2 givenname: Federico orcidid: 0000-0002-1833-9809 surname: Renda fullname: Renda, Federico email: federico.renda@ku.ac.ae organization: Khalifa University Center for Autonomous Robotic Systems (KUCARS), Khalifa University of Science and Technology, Abu Dhabi, UAE – sequence: 3 givenname: Christian orcidid: 0000-0001-6030-7117 surname: Duriez fullname: Duriez, Christian email: christian.duriez@inria.fr organization: Inria, CNRS, Centrale Lille, Team DEFROST, University Lille, Lille, France |
BackLink | https://hal.science/hal-03192168$$DView record in HAL |
BookMark | eNp9kU9vFCEYh4mpibX2buKFxJOHXfkzA8txs9W26arJVs-EgRdLMwMrME38GH7jzuw2jfHgCXh5nvcl_F6jk5giIPSWkiWlRH3c7tZLRhhdciKokvIFOmVcygWXQpz8tX-Fzku5J4TQlkmu2lP0Z5PGfR_iT_x1HCAHa3p8AT7lwXQ94C_JQV9wiPiyT910Z6LDO3CjBYc3KWUXoqlQ8GTgegf4Ngxjb2pIESd_qFyEDLYexPl4HR8gF8A3IcIwgbbM4G3yFe9Sl2p5g1560xc4f1rP0I_Pn75vrhbbb5fXm_V2YRvO64IL0TarRknggnjPGRHOtdJw2_GVa6nrDDDVei-sEF0LjaJUEgW-W3EiieNn6MOx753p9T6HweTfOpmgr9ZbPdcIp4pRsXqgE_v-yO5z-jVCqfo-jTlOz9OspaRhgjQzRY6UzamUDP65LSV6zklPOek5J_2U06SIfxQb6uH7ajah_5_47igGAHieo7hgjEr-CNdVoPw |
CODEN | IRALC6 |
CitedBy_id | crossref_primary_10_1109_TIE_2022_3183334 crossref_primary_10_3390_biomimetics10020071 crossref_primary_10_1109_LRA_2023_3329752 crossref_primary_10_1177_02783649241262333 crossref_primary_10_1109_JPROC_2022_3141338 crossref_primary_10_1109_TRO_2022_3231360 crossref_primary_10_1016_j_engappai_2023_107693 crossref_primary_10_5194_ms_15_407_2024 crossref_primary_10_1080_01691864_2023_2279600 crossref_primary_10_1109_MCS_2023_3253419 crossref_primary_10_23939_mmc2024_04_946 crossref_primary_10_1089_soro_2021_0123 crossref_primary_10_1109_LRA_2023_3301272 crossref_primary_10_1038_s42254_022_00481_z |
Cites_doi | 10.1109/TRO.2008.924923 10.1089/soro.2017.0079 10.1109/LRA.2020.2985620 10.1109/TRO.2018.2861900 10.1109/TRO.2018.2885923 10.1109/TRO.2010.2062570 10.1109/IROS.2016.7759810 10.1080/01691864.2017.1395362 10.1111/1467-8659.00594 10.1007/s12532-014-0071-1 10.1109/LRA.2017.2669367 10.1177/0278364920910487 10.1109/IROS.2016.7759808 10.1109/EMBC.2015.7319176 10.1109/ROBOSOFT.2019.8722815 10.1002/nme.1620120508 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 Attribution |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 – notice: Attribution |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC VOOES |
DOI | 10.1109/LRA.2021.3061977 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Physics Computer Science |
EISSN | 2377-3766 |
EndPage | 3917 |
ExternalDocumentID | oai_HAL_hal_03192168v1 10_1109_LRA_2021_3061977 9362217 |
Genre | orig-research |
GrantInformation_xml | – fundername: ADEK Award for Research Excellence grantid: AARE-2018-105 – fundername: Region Hauts-de-France, the project DATA – fundername: Khalifa University of Science and Technology grantid: FSU-2018-08; CIRA-2020-074 |
GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c433t-366548497e360ff3206dd57a3cb38d51dbae295ff6c66b5e4911709efb83070d3 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Thu Jun 19 06:40:53 EDT 2025 Mon Jun 30 05:38:16 EDT 2025 Tue Jul 01 03:54:05 EDT 2025 Thu Apr 24 23:10:26 EDT 2025 Wed Aug 27 02:41:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Flexible Robotics Tendon/Wire Mechanism Control and Learning for Soft Robots Grasping Soft Robot Applications Simulation and Animation Modeling Contact Modeling |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-366548497e360ff3206dd57a3cb38d51dbae295ff6c66b5e4911709efb83070d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6030-7117 0000-0002-1833-9809 0000-0002-1547-7421 |
OpenAccessLink | https://hal.science/hal-03192168 |
PQID | 2510426041 |
PQPubID | 4437225 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_LRA_2021_3061977 hal_primary_oai_HAL_hal_03192168v1 crossref_citationtrail_10_1109_LRA_2021_3061977 proquest_journals_2510426041 ieee_primary_9362217 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationSeriesTitle | IEEE Robotics and Automation Letters |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 wang (ref16) 2019; 38 ref14 ref20 ref11 ref10 rucker (ref3) 2010; 26 ref21 ref1 ref17 ref18 ref8 ref7 nesme (ref12) 2005 ref9 ref4 ref6 ref5 faure (ref19) 2012 spillmann (ref2) 0 |
References_xml | – start-page: 283 year: 2012 ident: ref19 publication-title: SOFA A Multi-Model Framework for Interactive Physical Simulation – ident: ref5 doi: 10.1109/TRO.2008.924923 – ident: ref9 doi: 10.1089/soro.2017.0079 – start-page: 63 year: 0 ident: ref2 article-title: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects publication-title: Proc ACM SIGGRAPH/EUROGRAPH Symp Comput Animat – ident: ref7 doi: 10.1109/LRA.2020.2985620 – volume: 38 start-page: 1 year: 2019 ident: ref16 article-title: RedMax: Efficient & flexible approach for articulated dynamics publication-title: ACM Trans Graph – ident: ref14 doi: 10.1109/TRO.2018.2861900 – ident: ref4 doi: 10.1109/TRO.2018.2885923 – year: 2005 ident: ref12 article-title: Efficient, physically plausible finite elements publication-title: EUROGRAPHICS – volume: 26 start-page: 769 year: 2010 ident: ref3 article-title: A geometrically exact model for externally loaded concentric-tube continuum robots publication-title: IEEE Trans Robot doi: 10.1109/TRO.2010.2062570 – ident: ref17 doi: 10.1109/IROS.2016.7759810 – ident: ref10 doi: 10.1080/01691864.2017.1395362 – ident: ref1 doi: 10.1111/1467-8659.00594 – ident: ref20 doi: 10.1007/s12532-014-0071-1 – ident: ref8 doi: 10.1109/LRA.2017.2669367 – ident: ref15 doi: 10.1177/0278364920910487 – ident: ref18 doi: 10.1109/LRA.2017.2669367 – ident: ref6 doi: 10.1109/IROS.2016.7759808 – ident: ref21 doi: 10.1109/EMBC.2015.7319176 – ident: ref11 doi: 10.1109/ROBOSOFT.2019.8722815 – ident: ref13 doi: 10.1002/nme.1620120508 |
SSID | ssj0001527395 |
Score | 2.277647 |
Snippet | In this letter, we propose a method to combine the Finite Element Method (FEM) with Discrete Cosserat Modeling (DCM) to capture the mechanics and the actuation... In this paper, we propose a method to combine the Finite Element Method (FEM) with Discrete Cosserat Modeling (DCM) to capture the mechanics and the actuation... |
SourceID | hal proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3910 |
SubjectTerms | Actuation Cables Computer Science Constraint modelling contact modeling control Coupling Deformable models Deformation Engineering Sciences Finite element analysis Finite element method Flexible robotics Formability grasping Inverse kinematics Kinematics learning for soft robots Mathematical analysis Mathematical model Mathematics modeling Numerical models Optimization Parameterization Physics Robot kinematics Robots simulation and animation soft robot applications Soft robotics Solid modeling Strain tendon/wire mechanism Tubes |
Title | Coupling Numerical Deformable Models in Global and Reduced Coordinates for the Simulation of the Direct and the Inverse Kinematics of Soft Robots |
URI | https://ieeexplore.ieee.org/document/9362217 https://www.proquest.com/docview/2510426041 https://hal.science/hal-03192168 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtNAEB01PcGBAgURWqoV4oKEE9trO95jFFpF0PSQUqk3y7uepRHBRrXNgUP_oX_MzNoJtCDExbJXO9JIM959szvzBuANQexJanPjGSuNF6k89XROD4WEZhmQoOTi5MVZMr-IPlzGlzvwblsLg4gu-QxH_Oru8ovKtHxUNla02hKEHsCA3Kyr1fp1nsJMYire3ET6any6nFL8FwYjQsUBwZw7O8_givMeXUOVP1Zht7Wc7MFio1SXUfJl1DZ6ZH7c42v8X60fw6MeY4pp5xRPYAfLp_DwN-bBfbidVS3X4n4WZ213Z7MW79EBWL1GwR3S1rVYlaLrCSDyshBLZnnFQswqClhXJYNUQRKCIKQ4X33t-4CJyrqRbi11gvzJfB7XNYqPpINjia154jltAmJZ6aqpn8HFyfGn2dzruzN4JpKy8ST3LU4jNUGZ-NbK0E-KIp7k0miZFnFQ6BxDFVubmCTRMUaKm9wotDrldaaQz2G3rEp8AWKiQxkpWVDoQpG6j2lAqIaQR6rJoqH1hzDeWC4zPXU5d9BYZy6E8VVGts7Y1llv6yG83Up862g7_jH3NTnDdhrzbc-npxmPcYlXGCTp92AI-2zZ7azeqEM43PhO1v_8dUaQ0RH_R8HLv0sdwANWoEsAOoTd5rrFV4RtGn0Eg8XN8ZFz7Z_BR_Z4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7tLgfYA68FbWEBC3FBIm0SJ2l8rAqrwrY9dHelvVnxCypKgjYJB_4F_5gZJy1PIS5RYtmSpZnY39gz3wfwAiH2OHeFDrTjOkhEkQeqwIewiGYJkFhOxcmLZTa7TN5dpVd78GpXC2Ot9clndkiv_i7fVLqlo7KRwNUWIfQ-3MB9P0m7aq0fJyrEJSbS7V1kKEbz1QQjwDgaIi6OEOj8svfsf6DMRy-p8sc67DeX0zuw2E6ryyn5OGwbNdRff2Ns_N9534XbPcpkk84t7sGeLe_D4U_cg0fwbVq1VI37ni3b7tZmw15bD2HVxjLSSNvUbF2yThWAFaVhK-J5tYZNKwxZ1yXBVIYjGIJIdr7-1CuBscr5lm419QPpkxg9rmvLznAOnie2po7nuA2wVaWqpn4Al6dvLqazoNdnCHTCeRNwUi7OEzG2PAud43GYGZOOC64Vz00aGVXYWKTOZTrLVGoTQTI3wjqV00pj-EM4KKvSHgMbq5gnghsMXjBWD20eIa5B7JErtGjswgGMtpaTuicvJw2NjfRBTCgk2lqSrWVv6wG83I343BF3_KPvc3SGXTdi3J5N5pLaqMgrjrL8SzSAI7Lsrldv1AGcbH1H9r9_LRE0eur_JHr091HP4ObsYjGX87fLs8dwiybTpQOdwEFz3doniHQa9dQ7-Hf3_viU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+numerical+deformable+models+in+global+and+reduced+coordinates+for+the+simulation+of+the+direct+and+the+inverse+kinematics+of+Soft+Robots&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Adagolodjo%2C+Yinoussa&rft.au=Renda%2C+Federico&rft.au=Duriez%2C+Christian&rft.au=Adagolodjo%2C+Yinoussa&rft.series=IEEE+Robotics+and+Automation+Letters&rft.date=2021-04-01&rft.pub=IEEE&rft.issn=2377-3766&rft.volume=6&rft.issue=2&rft.spage=3910&rft.epage=3917&rft_id=info:doi/10.1109%2FLRA.2021.3061977&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03192168v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |