Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and Initial Evaluation
The phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) using the electronic health record (EHR). The goal of this paper was to develop and perform an initial evaluation of maps fro...
Saved in:
Published in | JMIR medical informatics Vol. 7; no. 4; p. e14325 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
JMIR Publications
29.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) using the electronic health record (EHR).
The goal of this paper was to develop and perform an initial evaluation of maps from the International Classification of Diseases, 10th Revision (ICD-10) and the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) codes to phecodes.
We mapped ICD-10 and ICD-10-CM codes to phecodes using a number of methods and resources, such as concept relationships and explicit mappings from the Centers for Medicare & Medicaid Services, the Unified Medical Language System, Observational Health Data Sciences and Informatics, Systematized Nomenclature of Medicine-Clinical Terms, and the National Library of Medicine. We assessed the coverage of the maps in two databases: Vanderbilt University Medical Center (VUMC) using ICD-10-CM and the UK Biobank (UKBB) using ICD-10. We assessed the fidelity of the ICD-10-CM map in comparison to the gold-standard ICD-9-CM phecode map by investigating phenotype reproducibility and conducting a PheWAS.
We mapped >75% of ICD-10 and ICD-10-CM codes to phecodes. Of the unique codes observed in the UKBB (ICD-10) and VUMC (ICD-10-CM) cohorts, >90% were mapped to phecodes. We observed 70-75% reproducibility for chronic diseases and <10% for an acute disease for phenotypes sourced from the ICD-10-CM phecode map. Using the ICD-9-CM and ICD-10-CM maps, we conducted a PheWAS with a Lipoprotein(a) genetic variant, rs10455872, which replicated two known genotype-phenotype associations with similar effect sizes: coronary atherosclerosis (ICD-9-CM: P<.001; odds ratio (OR) 1.60 [95% CI 1.43-1.80] vs ICD-10-CM: P<.001; OR 1.60 [95% CI 1.43-1.80]) and chronic ischemic heart disease (ICD-9-CM: P<.001; OR 1.56 [95% CI 1.35-1.79] vs ICD-10-CM: P<.001; OR 1.47 [95% CI 1.22-1.77]).
This study introduces the beta versions of ICD-10 and ICD-10-CM to phecode maps that enable researchers to leverage accumulated ICD-10 and ICD-10-CM data for PheWAS in the EHR. |
---|---|
AbstractList | The phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) using the electronic health record (EHR).
The goal of this paper was to develop and perform an initial evaluation of maps from the International Classification of Diseases, 10th Revision (ICD-10) and the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) codes to phecodes.
We mapped ICD-10 and ICD-10-CM codes to phecodes using a number of methods and resources, such as concept relationships and explicit mappings from the Centers for Medicare & Medicaid Services, the Unified Medical Language System, Observational Health Data Sciences and Informatics, Systematized Nomenclature of Medicine-Clinical Terms, and the National Library of Medicine. We assessed the coverage of the maps in two databases: Vanderbilt University Medical Center (VUMC) using ICD-10-CM and the UK Biobank (UKBB) using ICD-10. We assessed the fidelity of the ICD-10-CM map in comparison to the gold-standard ICD-9-CM phecode map by investigating phenotype reproducibility and conducting a PheWAS.
We mapped >75% of ICD-10 and ICD-10-CM codes to phecodes. Of the unique codes observed in the UKBB (ICD-10) and VUMC (ICD-10-CM) cohorts, >90% were mapped to phecodes. We observed 70-75% reproducibility for chronic diseases and <10% for an acute disease for phenotypes sourced from the ICD-10-CM phecode map. Using the ICD-9-CM and ICD-10-CM maps, we conducted a PheWAS with a Lipoprotein(a) genetic variant, rs10455872, which replicated two known genotype-phenotype associations with similar effect sizes: coronary atherosclerosis (ICD-9-CM: P<.001; odds ratio (OR) 1.60 [95% CI 1.43-1.80] vs ICD-10-CM: P<.001; OR 1.60 [95% CI 1.43-1.80]) and chronic ischemic heart disease (ICD-9-CM: P<.001; OR 1.56 [95% CI 1.35-1.79] vs ICD-10-CM: P<.001; OR 1.47 [95% CI 1.22-1.77]).
This study introduces the beta versions of ICD-10 and ICD-10-CM to phecode maps that enable researchers to leverage accumulated ICD-10 and ICD-10-CM data for PheWAS in the EHR. The phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) using the electronic health record (EHR).BACKGROUNDThe phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) using the electronic health record (EHR).The goal of this paper was to develop and perform an initial evaluation of maps from the International Classification of Diseases, 10th Revision (ICD-10) and the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) codes to phecodes.OBJECTIVEThe goal of this paper was to develop and perform an initial evaluation of maps from the International Classification of Diseases, 10th Revision (ICD-10) and the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) codes to phecodes.We mapped ICD-10 and ICD-10-CM codes to phecodes using a number of methods and resources, such as concept relationships and explicit mappings from the Centers for Medicare & Medicaid Services, the Unified Medical Language System, Observational Health Data Sciences and Informatics, Systematized Nomenclature of Medicine-Clinical Terms, and the National Library of Medicine. We assessed the coverage of the maps in two databases: Vanderbilt University Medical Center (VUMC) using ICD-10-CM and the UK Biobank (UKBB) using ICD-10. We assessed the fidelity of the ICD-10-CM map in comparison to the gold-standard ICD-9-CM phecode map by investigating phenotype reproducibility and conducting a PheWAS.METHODSWe mapped ICD-10 and ICD-10-CM codes to phecodes using a number of methods and resources, such as concept relationships and explicit mappings from the Centers for Medicare & Medicaid Services, the Unified Medical Language System, Observational Health Data Sciences and Informatics, Systematized Nomenclature of Medicine-Clinical Terms, and the National Library of Medicine. We assessed the coverage of the maps in two databases: Vanderbilt University Medical Center (VUMC) using ICD-10-CM and the UK Biobank (UKBB) using ICD-10. We assessed the fidelity of the ICD-10-CM map in comparison to the gold-standard ICD-9-CM phecode map by investigating phenotype reproducibility and conducting a PheWAS.We mapped >75% of ICD-10 and ICD-10-CM codes to phecodes. Of the unique codes observed in the UKBB (ICD-10) and VUMC (ICD-10-CM) cohorts, >90% were mapped to phecodes. We observed 70-75% reproducibility for chronic diseases and <10% for an acute disease for phenotypes sourced from the ICD-10-CM phecode map. Using the ICD-9-CM and ICD-10-CM maps, we conducted a PheWAS with a Lipoprotein(a) genetic variant, rs10455872, which replicated two known genotype-phenotype associations with similar effect sizes: coronary atherosclerosis (ICD-9-CM: P<.001; odds ratio (OR) 1.60 [95% CI 1.43-1.80] vs ICD-10-CM: P<.001; OR 1.60 [95% CI 1.43-1.80]) and chronic ischemic heart disease (ICD-9-CM: P<.001; OR 1.56 [95% CI 1.35-1.79] vs ICD-10-CM: P<.001; OR 1.47 [95% CI 1.22-1.77]).RESULTSWe mapped >75% of ICD-10 and ICD-10-CM codes to phecodes. Of the unique codes observed in the UKBB (ICD-10) and VUMC (ICD-10-CM) cohorts, >90% were mapped to phecodes. We observed 70-75% reproducibility for chronic diseases and <10% for an acute disease for phenotypes sourced from the ICD-10-CM phecode map. Using the ICD-9-CM and ICD-10-CM maps, we conducted a PheWAS with a Lipoprotein(a) genetic variant, rs10455872, which replicated two known genotype-phenotype associations with similar effect sizes: coronary atherosclerosis (ICD-9-CM: P<.001; odds ratio (OR) 1.60 [95% CI 1.43-1.80] vs ICD-10-CM: P<.001; OR 1.60 [95% CI 1.43-1.80]) and chronic ischemic heart disease (ICD-9-CM: P<.001; OR 1.56 [95% CI 1.35-1.79] vs ICD-10-CM: P<.001; OR 1.47 [95% CI 1.22-1.77]).This study introduces the beta versions of ICD-10 and ICD-10-CM to phecode maps that enable researchers to leverage accumulated ICD-10 and ICD-10-CM data for PheWAS in the EHR.CONCLUSIONSThis study introduces the beta versions of ICD-10 and ICD-10-CM to phecode maps that enable researchers to leverage accumulated ICD-10 and ICD-10-CM data for PheWAS in the EHR. |
Author | Varley, Tim Gifford, Aliya Wu, Patrick Bastarache, Lisa Meng, Xiangrui Li, Xue Campbell, Harry Carroll, Robert Zhao, Juan Theodoratou, Evropi Denny, Joshua C Wei, Wei-Qi |
AuthorAffiliation | 3 Centre for Global Health Research Usher Institute of Population Health Sciences and Informatics The University of Edinburgh Edinburgh United Kingdom 4 Public Health and Intelligence Strategic Business Unit National Services Scotland Edinburgh United Kingdom 5 Department of Medicine Vanderbilt University Medical Center Nashville, TN United States 2 Medical Scientist Training Program Vanderbilt University School of Medicine Nashville, TN United States 6 Edinburgh Cancer Research Centre Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh United Kingdom 1 Department of Biomedical Informatics Vanderbilt University Medical Center Nashville, TN United States |
AuthorAffiliation_xml | – name: 1 Department of Biomedical Informatics Vanderbilt University Medical Center Nashville, TN United States – name: 6 Edinburgh Cancer Research Centre Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh United Kingdom – name: 2 Medical Scientist Training Program Vanderbilt University School of Medicine Nashville, TN United States – name: 5 Department of Medicine Vanderbilt University Medical Center Nashville, TN United States – name: 4 Public Health and Intelligence Strategic Business Unit National Services Scotland Edinburgh United Kingdom – name: 3 Centre for Global Health Research Usher Institute of Population Health Sciences and Informatics The University of Edinburgh Edinburgh United Kingdom |
Author_xml | – sequence: 1 givenname: Patrick orcidid: 0000-0002-1437-6688 surname: Wu fullname: Wu, Patrick – sequence: 2 givenname: Aliya orcidid: 0000-0001-8931-8362 surname: Gifford fullname: Gifford, Aliya – sequence: 3 givenname: Xiangrui orcidid: 0000-0003-4889-4640 surname: Meng fullname: Meng, Xiangrui – sequence: 4 givenname: Xue orcidid: 0000-0001-6880-2577 surname: Li fullname: Li, Xue – sequence: 5 givenname: Harry orcidid: 0000-0002-6169-6262 surname: Campbell fullname: Campbell, Harry – sequence: 6 givenname: Tim orcidid: 0000-0002-6106-568X surname: Varley fullname: Varley, Tim – sequence: 7 givenname: Juan orcidid: 0000-0003-1429-0662 surname: Zhao fullname: Zhao, Juan – sequence: 8 givenname: Robert orcidid: 0000-0003-3802-8183 surname: Carroll fullname: Carroll, Robert – sequence: 9 givenname: Lisa orcidid: 0000-0003-3020-447X surname: Bastarache fullname: Bastarache, Lisa – sequence: 10 givenname: Joshua C orcidid: 0000-0002-3049-7332 surname: Denny fullname: Denny, Joshua C – sequence: 11 givenname: Evropi orcidid: 0000-0001-5887-9132 surname: Theodoratou fullname: Theodoratou, Evropi – sequence: 12 givenname: Wei-Qi orcidid: 0000-0003-4985-056X surname: Wei fullname: Wei, Wei-Qi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31553307$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtLxDAUhYMojo_5C9KNIEi1N0mTiQtB6hNGdKG4cBHSNHWimaQ2nRH_vdUZRV3lQL57zuXcTbTqgzcIDSE7wCDYIVCC8xW0gbGAVDBBV3_pARrG-JxlGVBgjPF1NCCQ54RkfAM9Xqumsf4puSpOU8gS5aulTIvrpAiViUkXktuJ0Z_6KHkI7UvtwltyaubGhWZqfLeY8razyiVnc-VmqrPBb6O1Wrlohst3C92fn90Vl-n45uKqOBmnmhLSpQSzvGKVIMbwCrgoaVUqqoFwUXNaU8V5yfvtGUAuhCoB55TjSishMNXMkC10vPBtZuXUVLrfqFVONq2dqvZdBmXl3x9vJ_IpzCUTABjz3mBvadCG15mJnZzaqI1zypswi7KvkgMewYj16M7vrJ-Q70Z7YH8B6DbE2Jpaatt91dFHWychk58nk18n6-ndf_S34V_uA0YykTc |
CitedBy_id | crossref_primary_10_1016_j_jbi_2022_104237 crossref_primary_10_1038_s41562_024_02080_7 crossref_primary_10_1016_j_cell_2021_03_034 crossref_primary_10_1038_s41467_020_20086_3 crossref_primary_10_1210_clinem_dgz326 crossref_primary_10_1146_annurev_genom_121120_125204 crossref_primary_10_1016_j_biopsych_2020_06_026 crossref_primary_10_1016_j_joca_2021_02_564 crossref_primary_10_1093_database_baad026 crossref_primary_10_1016_j_ajhg_2021_11_008 crossref_primary_10_1371_journal_pgen_1009337 crossref_primary_10_1016_j_mayocp_2024_08_005 crossref_primary_10_3233_CBM_230340 crossref_primary_10_1111_cge_14073 crossref_primary_10_1186_s12885_021_09067_x crossref_primary_10_1007_s11606_020_06469_8 crossref_primary_10_1159_000527363 crossref_primary_10_1093_bioinformatics_btac822 crossref_primary_10_1093_jamia_ocaa343 crossref_primary_10_1111_bdi_70018 crossref_primary_10_1016_j_xhgg_2024_100302 crossref_primary_10_1186_s40246_024_00710_9 crossref_primary_10_1038_s41380_024_02530_8 crossref_primary_10_1038_s41467_025_55879_x crossref_primary_10_1038_s43856_023_00412_8 crossref_primary_10_1371_journal_pone_0286469 crossref_primary_10_1161_JAHA_123_029575 crossref_primary_10_1016_j_patter_2022_100570 crossref_primary_10_1093_brain_awab253 crossref_primary_10_1093_jamiaopen_ooad007 crossref_primary_10_1002_oby_23859 crossref_primary_10_1038_s41467_022_30765_y crossref_primary_10_1038_s41380_021_01387_5 crossref_primary_10_1186_s41927_023_00349_4 crossref_primary_10_1186_s12864_022_08888_9 crossref_primary_10_1186_s12916_024_03807_z crossref_primary_10_1186_s12916_023_02922_7 crossref_primary_10_1038_s41525_025_00464_w crossref_primary_10_1038_s41588_024_01827_2 crossref_primary_10_1038_s41746_022_00623_8 crossref_primary_10_1038_s41525_022_00296_y crossref_primary_10_1038_s41588_022_01083_2 crossref_primary_10_2196_41775 crossref_primary_10_1371_journal_pone_0269017 crossref_primary_10_3390_nu14235031 crossref_primary_10_1186_s12916_021_02198_9 crossref_primary_10_1016_j_ajhg_2023_12_018 crossref_primary_10_1016_j_focus_2022_100015 crossref_primary_10_1016_j_xfss_2022_02_001 crossref_primary_10_1038_s41591_024_03010_w crossref_primary_10_1016_j_ebiom_2023_104629 crossref_primary_10_1038_s41586_024_08264_5 crossref_primary_10_1038_s43856_023_00382_x crossref_primary_10_1093_jamia_ocae072 crossref_primary_10_1016_j_tig_2021_12_002 crossref_primary_10_1016_j_ajhg_2022_02_010 crossref_primary_10_1161_CIRCULATIONAHA_124_068669 crossref_primary_10_1038_s41591_021_01371_0 crossref_primary_10_1161_JAHA_122_025578 crossref_primary_10_1016_j_jacc_2023_01_044 crossref_primary_10_1038_s44161_022_00206_6 crossref_primary_10_1001_jamapsychiatry_2021_4080 crossref_primary_10_1038_s41467_022_32219_x crossref_primary_10_1016_j_ajhg_2024_12_007 crossref_primary_10_1093_hmg_ddab197 crossref_primary_10_1186_s11689_023_09485_x crossref_primary_10_1016_j_jacc_2023_03_401 crossref_primary_10_1038_s41588_025_02094_5 crossref_primary_10_1161_CIRCOUTCOMES_123_010602 crossref_primary_10_1136_jmedgenet_2021_107696 crossref_primary_10_1038_s41366_021_00942_y crossref_primary_10_1038_s41398_023_02412_7 crossref_primary_10_1109_TNNLS_2023_3266490 crossref_primary_10_1186_s12911_024_02453_y crossref_primary_10_1093_jamia_ocae005 crossref_primary_10_1038_s41591_024_03039_x crossref_primary_10_1038_s41531_025_00901_8 crossref_primary_10_1007_s43657_021_00033_y crossref_primary_10_1186_s12864_022_08600_x crossref_primary_10_1007_s00535_021_01822_y crossref_primary_10_1016_j_xgen_2023_100361 crossref_primary_10_1016_j_ebiom_2024_105116 crossref_primary_10_1093_pcmedi_pbac015 crossref_primary_10_1161_CIRCULATIONAHA_121_057709 crossref_primary_10_1186_s12916_021_02115_0 crossref_primary_10_1007_s12021_021_09553_4 crossref_primary_10_1093_ajcn_nqac148 crossref_primary_10_1001_jamapsychiatry_2023_4141 crossref_primary_10_1093_bioinformatics_btae126 crossref_primary_10_1016_j_jaip_2022_04_016 crossref_primary_10_1097_SLA_0000000000006106 crossref_primary_10_7554_eLife_88538_3 crossref_primary_10_1177_09612033211014952 crossref_primary_10_1126_sciadv_adj3747 crossref_primary_10_1038_s41467_023_40977_5 crossref_primary_10_1016_j_lanwpc_2023_100948 crossref_primary_10_1038_s41398_024_03011_w crossref_primary_10_7554_eLife_88538 crossref_primary_10_1111_bjd_21762 crossref_primary_10_1016_j_biopsych_2022_06_004 crossref_primary_10_1016_j_cmpb_2021_106397 crossref_primary_10_1016_j_surg_2022_10_026 crossref_primary_10_1038_s41398_023_02341_5 crossref_primary_10_1038_s41467_024_47804_5 crossref_primary_10_1038_s41591_022_02046_0 crossref_primary_10_1007_s00432_022_03972_9 crossref_primary_10_1186_s13073_024_01335_2 crossref_primary_10_1097_DCR_0000000000002943 crossref_primary_10_1146_annurev_pharmtox_051421_111324 crossref_primary_10_1038_s41588_023_01464_1 crossref_primary_10_1016_j_xcrm_2024_101871 crossref_primary_10_1093_eurheartj_ehab502 crossref_primary_10_1093_hmg_ddab068 crossref_primary_10_1109_JBHI_2023_3288768 crossref_primary_10_1016_j_biopsych_2023_08_023 crossref_primary_10_1126_scitranslmed_adg4517 crossref_primary_10_3390_jcm12041328 crossref_primary_10_1016_j_surg_2022_08_021 crossref_primary_10_1001_jamanetworkopen_2023_13964 crossref_primary_10_1038_s41588_022_01070_7 crossref_primary_10_7554_eLife_58914 crossref_primary_10_1093_jamia_ocaa079 crossref_primary_10_1093_jamia_ocac016 crossref_primary_10_1002_ajmg_b_32949 crossref_primary_10_1016_j_sleh_2023_11_002 crossref_primary_10_1038_s41598_024_51724_1 crossref_primary_10_1177_09612033231172660 crossref_primary_10_1038_s41467_024_48568_8 crossref_primary_10_1038_s41467_024_49782_0 crossref_primary_10_1038_s41562_024_01909_5 crossref_primary_10_1007_s10995_023_03853_8 crossref_primary_10_2196_52615 crossref_primary_10_3389_fgene_2021_738485 crossref_primary_10_1016_j_heliyon_2024_e28034 crossref_primary_10_1016_j_jbi_2020_103657 crossref_primary_10_1038_s41467_020_20079_2 crossref_primary_10_1016_j_bbi_2020_10_019 crossref_primary_10_1200_JCO_23_02761 crossref_primary_10_1016_j_xhgg_2024_100388 crossref_primary_10_1093_eurjpc_zwae271 crossref_primary_10_1016_j_jpeds_2025_114491 crossref_primary_10_1016_j_bbadis_2025_167680 crossref_primary_10_2147_PGPM_S281645 crossref_primary_10_1136_bmjopen_2023_081351 crossref_primary_10_1093_gerona_glab035 crossref_primary_10_1038_s41746_022_00676_9 crossref_primary_10_1186_s13059_024_03269_9 crossref_primary_10_1038_s41467_023_41876_5 crossref_primary_10_1371_journal_pgen_1009723 crossref_primary_10_1016_j_apsb_2025_01_027 crossref_primary_10_3390_nu12103174 crossref_primary_10_1038_s41380_024_02717_z crossref_primary_10_1016_j_eclinm_2020_100488 crossref_primary_10_1016_j_xhgg_2022_100136 crossref_primary_10_1093_jamia_ocac234 crossref_primary_10_3389_fnut_2023_1308622 crossref_primary_10_1016_j_eclinm_2021_100960 crossref_primary_10_1038_s41588_024_01978_2 crossref_primary_10_1093_jamia_ocab264 crossref_primary_10_1002_oby_23561 crossref_primary_10_1016_j_patter_2021_100337 crossref_primary_10_1016_j_ajhg_2023_10_010 crossref_primary_10_1038_s41588_021_00962_4 crossref_primary_10_1097_j_pain_0000000000002221 crossref_primary_10_1016_j_ebiom_2024_105280 crossref_primary_10_1093_eurheartj_ehae790 crossref_primary_10_1109_TNSRE_2022_3181690 crossref_primary_10_1038_s41467_025_57315_6 crossref_primary_10_1161_CIRCRESAHA_123_323973 crossref_primary_10_1161_CIRCULATIONAHA_123_064974 crossref_primary_10_1093_jamia_ocab019 crossref_primary_10_1172_jci_insight_181238 crossref_primary_10_1093_jamia_ocac226 crossref_primary_10_7554_eLife_70382 crossref_primary_10_1038_s41398_024_03213_2 crossref_primary_10_1016_j_xhgg_2024_100284 crossref_primary_10_1016_j_tig_2022_05_003 crossref_primary_10_1186_s12916_023_03227_5 crossref_primary_10_1038_s41467_020_17718_z crossref_primary_10_1016_j_ajhg_2023_01_005 crossref_primary_10_1016_j_psychres_2024_115950 crossref_primary_10_1038_s42003_022_03820_z crossref_primary_10_1093_bioinformatics_btad655 crossref_primary_10_1097_ICO_0000000000003311 crossref_primary_10_1186_s12916_024_03298_y crossref_primary_10_1038_s41562_024_01853_4 crossref_primary_10_1016_j_xcrm_2024_101704 crossref_primary_10_1093_jamiaopen_ooaf006 crossref_primary_10_1016_j_ebiom_2023_104581 crossref_primary_10_1093_jamiaopen_ooae157 crossref_primary_10_1016_j_biopsych_2022_07_019 crossref_primary_10_1371_journal_pone_0248602 crossref_primary_10_1016_j_xhgg_2022_100112 crossref_primary_10_1038_s41591_024_03214_0 crossref_primary_10_1093_sleep_zsaa176 crossref_primary_10_1016_j_celrep_2023_113439 crossref_primary_10_1038_s41588_024_01894_5 crossref_primary_10_1097_MOL_0000000000000662 crossref_primary_10_1186_s13073_025_01456_2 crossref_primary_10_1001_jamanetworkopen_2021_12820 crossref_primary_10_1093_jamia_ocad260 crossref_primary_10_1111_biom_13713 crossref_primary_10_1126_scitranslmed_ade4510 crossref_primary_10_3390_jpm12121974 crossref_primary_10_1016_j_ajhg_2023_12_001 crossref_primary_10_1038_s41467_022_31757_8 crossref_primary_10_1038_s41591_022_01891_3 crossref_primary_10_1038_s41596_023_00853_4 crossref_primary_10_1152_physiolgenomics_00026_2023 crossref_primary_10_1002_cpt_2441 crossref_primary_10_1001_jamaoncol_2022_0373 crossref_primary_10_1038_s43587_024_00573_8 crossref_primary_10_7554_eLife_83116 crossref_primary_10_1038_s41588_023_01522_8 crossref_primary_10_1038_s41467_021_26138_6 crossref_primary_10_1038_s41467_020_15823_7 crossref_primary_10_1038_s41588_021_00954_4 crossref_primary_10_1371_journal_pone_0275934 crossref_primary_10_1038_s41467_022_30875_7 crossref_primary_10_1038_s44294_024_00007_1 crossref_primary_10_1371_journal_pgen_1010193 crossref_primary_10_3390_jcm11195784 crossref_primary_10_5664_jcsm_10930 crossref_primary_10_1093_jamia_ocac159 crossref_primary_10_1038_s43856_024_00506_x crossref_primary_10_1111_cts_13462 crossref_primary_10_1016_j_cell_2023_12_016 crossref_primary_10_1016_j_ajhg_2025_01_019 crossref_primary_10_1001_jamapsychiatry_2024_3426 crossref_primary_10_1002_alz_12352 crossref_primary_10_1200_CCI_22_00006 crossref_primary_10_1038_s41591_024_03155_8 crossref_primary_10_1038_s43856_023_00280_2 crossref_primary_10_3389_fgene_2021_680560 crossref_primary_10_1038_s41467_022_31030_y crossref_primary_10_1161_CIRCGEN_122_003716 crossref_primary_10_1016_j_bpsgos_2024_100337 crossref_primary_10_1145_3490234 crossref_primary_10_1038_s41598_023_45102_6 crossref_primary_10_1093_jamiaopen_ooad018 crossref_primary_10_1007_s00439_020_02249_w crossref_primary_10_1017_S0033291721004554 crossref_primary_10_1038_s41586_023_05844_9 crossref_primary_10_1038_s41598_025_86222_5 crossref_primary_10_1038_s42003_022_03554_y crossref_primary_10_1093_jamia_ocad233 crossref_primary_10_1172_jci_insight_146580 crossref_primary_10_1016_j_ajhg_2020_06_003 crossref_primary_10_1038_s41591_023_02440_2 crossref_primary_10_1038_s41598_021_95637_9 crossref_primary_10_1016_j_ajhg_2021_08_007 crossref_primary_10_1016_j_jnma_2020_08_009 crossref_primary_10_1016_j_medj_2023_02_009 crossref_primary_10_1002_jpen_2379 crossref_primary_10_1161_CIRCGEN_122_003708 crossref_primary_10_1038_s41598_023_32799_8 |
Cites_doi | 10.1038/s41588-018-0154-4 10.1001/jama.2016.0649 10.2196/jmir.4976 10.1371/journal.pmed.1001779 10.1542/peds.2013-0819 10.13063/2327-9214.1211 10.1371/journal.pone.0175508 10.1093/eurheartj/ehq386 10.1371/journal.pone.0212112 10.1038/s41588-018-0184-y 10.1038/s41588-018-0171-3 10.1038/nbt.3183 10.1136/jmedgenet-2016-103867 10.1093/jamia/ocv202 10.2196/10047 10.1161/CIRCULATIONAHA.117.031356 10.1038/nbt.2749 10.1126/science.aal4043 10.1371/journal.pone.0186405 10.1038/s41598-018-36745-x 10.1038/srep16645 10.1109/JBHI.2018.2890084 10.1371/journal.pone.0122271 10.1371/journal.pcbi.1003405 10.1038/clpt.2008.89 10.1093/bioinformatics/btu197 10.1136/annrheumdis-2017-212534 10.1093/jamia/ocy124 10.1126/science.aad2149 10.1136/jamia.2009.001230 |
ContentType | Journal Article |
Copyright | Patrick Wu, Aliya Gifford, Xiangrui Meng, Xue Li, Harry Campbell, Tim Varley, Juan Zhao, Robert Carroll, Lisa Bastarache, Joshua C Denny, Evropi Theodoratou, Wei-Qi Wei. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 29.11.2019. Patrick Wu, Aliya Gifford, Xiangrui Meng, Xue Li, Harry Campbell, Tim Varley, Juan Zhao, Robert Carroll, Lisa Bastarache, Joshua C Denny, Evropi Theodoratou, Wei-Qi Wei. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 29.11.2019. 2019 |
Copyright_xml | – notice: Patrick Wu, Aliya Gifford, Xiangrui Meng, Xue Li, Harry Campbell, Tim Varley, Juan Zhao, Robert Carroll, Lisa Bastarache, Joshua C Denny, Evropi Theodoratou, Wei-Qi Wei. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 29.11.2019. – notice: Patrick Wu, Aliya Gifford, Xiangrui Meng, Xue Li, Harry Campbell, Tim Varley, Juan Zhao, Robert Carroll, Lisa Bastarache, Joshua C Denny, Evropi Theodoratou, Wei-Qi Wei. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 29.11.2019. 2019 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.2196/14325 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2291-9694 |
ExternalDocumentID | PMC6911227 31553307 10_2196_14325 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NLM NIH HHS grantid: T15 LM007450 – fundername: NIGMS NIH HHS grantid: T32 GM007347 – fundername: Cancer Research UK grantid: 22804 – fundername: NIGMS NIH HHS grantid: P50 GM115305 – fundername: NIGMS NIH HHS grantid: T32 GM152284 – fundername: NLM NIH HHS grantid: R01 LM010685 – fundername: NHLBI NIH HHS grantid: R01 HL133786 |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION DIK FYUFA GROUPED_DOAJ HMCUK HYE KQ8 M0T M48 M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP NPM PJZUB PPXIY 7X8 5PM |
ID | FETCH-LOGICAL-c433t-3265d6d93ee7d179b4dba4c1379f74f4a77b7001611599ab125472dca9924c6e3 |
IEDL.DBID | M48 |
ISSN | 2291-9694 |
IngestDate | Thu Aug 21 18:03:36 EDT 2025 Tue Aug 05 10:01:22 EDT 2025 Mon Jul 21 05:42:42 EDT 2025 Tue Jul 01 04:31:17 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | medical informatics applications phenome-wide association study data science electronic health record phenotyping genome-wide association study |
Language | English |
License | Patrick Wu, Aliya Gifford, Xiangrui Meng, Xue Li, Harry Campbell, Tim Varley, Juan Zhao, Robert Carroll, Lisa Bastarache, Joshua C Denny, Evropi Theodoratou, Wei-Qi Wei. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 29.11.2019. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-3265d6d93ee7d179b4dba4c1379f74f4a77b7001611599ab125472dca9924c6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6880-2577 0000-0001-5887-9132 0000-0003-3020-447X 0000-0003-4985-056X 0000-0001-8931-8362 0000-0002-1437-6688 0000-0003-1429-0662 0000-0002-6106-568X 0000-0003-3802-8183 0000-0002-6169-6262 0000-0003-4889-4640 0000-0002-3049-7332 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/14325 |
PMID | 31553307 |
PQID | 2297128186 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6911227 proquest_miscellaneous_2297128186 pubmed_primary_31553307 crossref_citationtrail_10_2196_14325 crossref_primary_10_2196_14325 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191129 |
PublicationDateYYYYMMDD | 2019-11-29 |
PublicationDate_xml | – month: 11 year: 2019 text: 20191129 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Toronto, Canada |
PublicationTitle | JMIR medical informatics |
PublicationTitleAlternate | JMIR Med Inform |
PublicationYear | 2019 |
Publisher | JMIR Publications |
Publisher_xml | – name: JMIR Publications |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref38 ref19 ref18 Fung, KW (ref24) 2005 Giuse, DA (ref27) 2003 Shi, X (ref37) 2019 Hripcsak, G (ref26) 2015; 216 ref23 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref29 ref8 ref7 ref9 ref4 ref3 Topaz, M (ref16) 2013; 10 ref6 ref5 ref40 |
References_xml | – ident: ref2 doi: 10.1038/s41588-018-0154-4 – ident: ref40 doi: 10.1001/jama.2016.0649 – ident: ref41 doi: 10.2196/jmir.4976 – ident: ref39 – start-page: 266 year: 2005 ident: ref24 publication-title: AMIA Annu Symp Proc – ident: ref21 doi: 10.1371/journal.pmed.1001779 – volume: 216 start-page: 574 year: 2015 ident: ref26 publication-title: Stud Health Technol Inform – ident: ref11 doi: 10.1542/peds.2013-0819 – ident: ref17 doi: 10.13063/2327-9214.1211 – ident: ref20 doi: 10.1371/journal.pone.0175508 – ident: ref28 doi: 10.1093/eurheartj/ehq386 – ident: ref22 – ident: ref25 – ident: ref29 doi: 10.1371/journal.pone.0212112 – ident: ref33 doi: 10.1038/s41588-018-0184-y – ident: ref32 – ident: ref3 doi: 10.1038/s41588-018-0171-3 – ident: ref6 doi: 10.1038/nbt.3183 – ident: ref9 doi: 10.1136/jmedgenet-2016-103867 – ident: ref1 doi: 10.1093/jamia/ocv202 – ident: ref36 doi: 10.2196/10047 – ident: ref30 doi: 10.1161/CIRCULATIONAHA.117.031356 – ident: ref19 doi: 10.1038/nbt.2749 – ident: ref38 doi: 10.1126/science.aal4043 – ident: ref8 doi: 10.1371/journal.pone.0186405 – volume: 10 start-page: 1d year: 2013 ident: ref16 publication-title: Perspect Health Inf Manag – ident: ref35 doi: 10.1038/s41598-018-36745-x – ident: ref42 – ident: ref7 doi: 10.1038/srep16645 – start-page: 1065 year: 2003 ident: ref27 publication-title: AMIA Annu Symp Proc – ident: ref34 doi: 10.1109/JBHI.2018.2890084 – ident: ref23 – ident: ref5 doi: 10.1371/journal.pone.0122271 – ident: ref10 doi: 10.1371/journal.pcbi.1003405 – ident: ref31 doi: 10.1038/clpt.2008.89 – ident: ref13 doi: 10.1093/bioinformatics/btu197 – ident: ref12 doi: 10.1136/annrheumdis-2017-212534 – ident: ref43 doi: 10.1093/jamia/ocy124 – ident: ref4 doi: 10.1126/science.aad2149 – ident: ref18 – ident: ref15 doi: 10.1136/jamia.2009.001230 – year: 2019 ident: ref37 publication-title: arXiv preprint – ident: ref14 |
SSID | ssj0001416667 |
Score | 2.6538022 |
Snippet | The phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e14325 |
SubjectTerms | Original Paper |
Title | Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and Initial Evaluation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31553307 https://www.proquest.com/docview/2297128186 https://pubmed.ncbi.nlm.nih.gov/PMC6911227 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rS8MwED98gAgivp2PEmFfq67NmkYQ0TlRoTLEgeCHkjSpE0are6D-9951dWwq-K3QpC13ae53ubvfAVS18hGEI3Lj6bF2eZiEbhgGxIyY-F6dOKyKCu_oLrhu89vH-kQ2YSnA_p-uHfWTave6hx9vn2f4w59SGjMuoCM0-V59FubRGAlqYhCVCL84ZuEUF6Oiac-TNVcGki_A0tTMaYv0C2b-zJacMD9XK7Bc4kZ2PlL0KszYbA0WojIyvg5PkSKmhWd207jETY-pzJSXbiNijdzYPhvkrNWxVMTeP2F0Sp5283c2kTY0mkXpRPiq5pgHfAPaV82HxrVbNk5wE-77AxchWd0ERvrWCoN_nOZGK57UfCFTwVOuhNCiAHsIZqTSCHK48EyiJHpjSWD9TZjL8sxuA9M4CT3GRKYh54abUNWUDhDmhVYgWFAVqH4LL05KVnFqbtGN0bsgGceFjCvgjIe9jmg0fg44-JZ8jAucohYqs_mwH6PeBIX7wqACWyNNjB_hU9cj3KUqIKZ0NB5A5NnTd7KXTkGiHeAu73li578P24VFxEiSyg89uQdzg97Q7iMOGWgHZsWjcGD-onnXuncKb94pVt8XLCPbaA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+ICD-10+and+ICD-10-CM+Codes+to+Phecodes%3A+Workflow+Development+and+Initial+Evaluation&rft.jtitle=JMIR+medical+informatics&rft.au=Wu%2C+Patrick&rft.au=Gifford%2C+Aliya&rft.au=Meng%2C+Xiangrui&rft.au=Li%2C+Xue&rft.date=2019-11-29&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=7&rft.issue=4&rft.spage=e14325&rft_id=info:doi/10.2196%2F14325&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_14325 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon |