Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and Initial Evaluation

The phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) using the electronic health record (EHR). The goal of this paper was to develop and perform an initial evaluation of maps fro...

Full description

Saved in:
Bibliographic Details
Published inJMIR medical informatics Vol. 7; no. 4; p. e14325
Main Authors Wu, Patrick, Gifford, Aliya, Meng, Xiangrui, Li, Xue, Campbell, Harry, Varley, Tim, Zhao, Juan, Carroll, Robert, Bastarache, Lisa, Denny, Joshua C, Theodoratou, Evropi, Wei, Wei-Qi
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 29.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) using the electronic health record (EHR). The goal of this paper was to develop and perform an initial evaluation of maps from the International Classification of Diseases, 10th Revision (ICD-10) and the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) codes to phecodes. We mapped ICD-10 and ICD-10-CM codes to phecodes using a number of methods and resources, such as concept relationships and explicit mappings from the Centers for Medicare & Medicaid Services, the Unified Medical Language System, Observational Health Data Sciences and Informatics, Systematized Nomenclature of Medicine-Clinical Terms, and the National Library of Medicine. We assessed the coverage of the maps in two databases: Vanderbilt University Medical Center (VUMC) using ICD-10-CM and the UK Biobank (UKBB) using ICD-10. We assessed the fidelity of the ICD-10-CM map in comparison to the gold-standard ICD-9-CM phecode map by investigating phenotype reproducibility and conducting a PheWAS. We mapped >75% of ICD-10 and ICD-10-CM codes to phecodes. Of the unique codes observed in the UKBB (ICD-10) and VUMC (ICD-10-CM) cohorts, >90% were mapped to phecodes. We observed 70-75% reproducibility for chronic diseases and <10% for an acute disease for phenotypes sourced from the ICD-10-CM phecode map. Using the ICD-9-CM and ICD-10-CM maps, we conducted a PheWAS with a Lipoprotein(a) genetic variant, rs10455872, which replicated two known genotype-phenotype associations with similar effect sizes: coronary atherosclerosis (ICD-9-CM: P<.001; odds ratio (OR) 1.60 [95% CI 1.43-1.80] vs ICD-10-CM: P<.001; OR 1.60 [95% CI 1.43-1.80]) and chronic ischemic heart disease (ICD-9-CM: P<.001; OR 1.56 [95% CI 1.35-1.79] vs ICD-10-CM: P<.001; OR 1.47 [95% CI 1.22-1.77]). This study introduces the beta versions of ICD-10 and ICD-10-CM to phecode maps that enable researchers to leverage accumulated ICD-10 and ICD-10-CM data for PheWAS in the EHR.
AbstractList The phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) using the electronic health record (EHR). The goal of this paper was to develop and perform an initial evaluation of maps from the International Classification of Diseases, 10th Revision (ICD-10) and the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) codes to phecodes. We mapped ICD-10 and ICD-10-CM codes to phecodes using a number of methods and resources, such as concept relationships and explicit mappings from the Centers for Medicare & Medicaid Services, the Unified Medical Language System, Observational Health Data Sciences and Informatics, Systematized Nomenclature of Medicine-Clinical Terms, and the National Library of Medicine. We assessed the coverage of the maps in two databases: Vanderbilt University Medical Center (VUMC) using ICD-10-CM and the UK Biobank (UKBB) using ICD-10. We assessed the fidelity of the ICD-10-CM map in comparison to the gold-standard ICD-9-CM phecode map by investigating phenotype reproducibility and conducting a PheWAS. We mapped >75% of ICD-10 and ICD-10-CM codes to phecodes. Of the unique codes observed in the UKBB (ICD-10) and VUMC (ICD-10-CM) cohorts, >90% were mapped to phecodes. We observed 70-75% reproducibility for chronic diseases and <10% for an acute disease for phenotypes sourced from the ICD-10-CM phecode map. Using the ICD-9-CM and ICD-10-CM maps, we conducted a PheWAS with a Lipoprotein(a) genetic variant, rs10455872, which replicated two known genotype-phenotype associations with similar effect sizes: coronary atherosclerosis (ICD-9-CM: P<.001; odds ratio (OR) 1.60 [95% CI 1.43-1.80] vs ICD-10-CM: P<.001; OR 1.60 [95% CI 1.43-1.80]) and chronic ischemic heart disease (ICD-9-CM: P<.001; OR 1.56 [95% CI 1.35-1.79] vs ICD-10-CM: P<.001; OR 1.47 [95% CI 1.22-1.77]). This study introduces the beta versions of ICD-10 and ICD-10-CM to phecode maps that enable researchers to leverage accumulated ICD-10 and ICD-10-CM data for PheWAS in the EHR.
The phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) using the electronic health record (EHR).BACKGROUNDThe phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) using the electronic health record (EHR).The goal of this paper was to develop and perform an initial evaluation of maps from the International Classification of Diseases, 10th Revision (ICD-10) and the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) codes to phecodes.OBJECTIVEThe goal of this paper was to develop and perform an initial evaluation of maps from the International Classification of Diseases, 10th Revision (ICD-10) and the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) codes to phecodes.We mapped ICD-10 and ICD-10-CM codes to phecodes using a number of methods and resources, such as concept relationships and explicit mappings from the Centers for Medicare & Medicaid Services, the Unified Medical Language System, Observational Health Data Sciences and Informatics, Systematized Nomenclature of Medicine-Clinical Terms, and the National Library of Medicine. We assessed the coverage of the maps in two databases: Vanderbilt University Medical Center (VUMC) using ICD-10-CM and the UK Biobank (UKBB) using ICD-10. We assessed the fidelity of the ICD-10-CM map in comparison to the gold-standard ICD-9-CM phecode map by investigating phenotype reproducibility and conducting a PheWAS.METHODSWe mapped ICD-10 and ICD-10-CM codes to phecodes using a number of methods and resources, such as concept relationships and explicit mappings from the Centers for Medicare & Medicaid Services, the Unified Medical Language System, Observational Health Data Sciences and Informatics, Systematized Nomenclature of Medicine-Clinical Terms, and the National Library of Medicine. We assessed the coverage of the maps in two databases: Vanderbilt University Medical Center (VUMC) using ICD-10-CM and the UK Biobank (UKBB) using ICD-10. We assessed the fidelity of the ICD-10-CM map in comparison to the gold-standard ICD-9-CM phecode map by investigating phenotype reproducibility and conducting a PheWAS.We mapped >75% of ICD-10 and ICD-10-CM codes to phecodes. Of the unique codes observed in the UKBB (ICD-10) and VUMC (ICD-10-CM) cohorts, >90% were mapped to phecodes. We observed 70-75% reproducibility for chronic diseases and <10% for an acute disease for phenotypes sourced from the ICD-10-CM phecode map. Using the ICD-9-CM and ICD-10-CM maps, we conducted a PheWAS with a Lipoprotein(a) genetic variant, rs10455872, which replicated two known genotype-phenotype associations with similar effect sizes: coronary atherosclerosis (ICD-9-CM: P<.001; odds ratio (OR) 1.60 [95% CI 1.43-1.80] vs ICD-10-CM: P<.001; OR 1.60 [95% CI 1.43-1.80]) and chronic ischemic heart disease (ICD-9-CM: P<.001; OR 1.56 [95% CI 1.35-1.79] vs ICD-10-CM: P<.001; OR 1.47 [95% CI 1.22-1.77]).RESULTSWe mapped >75% of ICD-10 and ICD-10-CM codes to phecodes. Of the unique codes observed in the UKBB (ICD-10) and VUMC (ICD-10-CM) cohorts, >90% were mapped to phecodes. We observed 70-75% reproducibility for chronic diseases and <10% for an acute disease for phenotypes sourced from the ICD-10-CM phecode map. Using the ICD-9-CM and ICD-10-CM maps, we conducted a PheWAS with a Lipoprotein(a) genetic variant, rs10455872, which replicated two known genotype-phenotype associations with similar effect sizes: coronary atherosclerosis (ICD-9-CM: P<.001; odds ratio (OR) 1.60 [95% CI 1.43-1.80] vs ICD-10-CM: P<.001; OR 1.60 [95% CI 1.43-1.80]) and chronic ischemic heart disease (ICD-9-CM: P<.001; OR 1.56 [95% CI 1.35-1.79] vs ICD-10-CM: P<.001; OR 1.47 [95% CI 1.22-1.77]).This study introduces the beta versions of ICD-10 and ICD-10-CM to phecode maps that enable researchers to leverage accumulated ICD-10 and ICD-10-CM data for PheWAS in the EHR.CONCLUSIONSThis study introduces the beta versions of ICD-10 and ICD-10-CM to phecode maps that enable researchers to leverage accumulated ICD-10 and ICD-10-CM data for PheWAS in the EHR.
Author Varley, Tim
Gifford, Aliya
Wu, Patrick
Bastarache, Lisa
Meng, Xiangrui
Li, Xue
Campbell, Harry
Carroll, Robert
Zhao, Juan
Theodoratou, Evropi
Denny, Joshua C
Wei, Wei-Qi
AuthorAffiliation 3 Centre for Global Health Research Usher Institute of Population Health Sciences and Informatics The University of Edinburgh Edinburgh United Kingdom
4 Public Health and Intelligence Strategic Business Unit National Services Scotland Edinburgh United Kingdom
5 Department of Medicine Vanderbilt University Medical Center Nashville, TN United States
2 Medical Scientist Training Program Vanderbilt University School of Medicine Nashville, TN United States
6 Edinburgh Cancer Research Centre Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh United Kingdom
1 Department of Biomedical Informatics Vanderbilt University Medical Center Nashville, TN United States
AuthorAffiliation_xml – name: 1 Department of Biomedical Informatics Vanderbilt University Medical Center Nashville, TN United States
– name: 6 Edinburgh Cancer Research Centre Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh United Kingdom
– name: 2 Medical Scientist Training Program Vanderbilt University School of Medicine Nashville, TN United States
– name: 5 Department of Medicine Vanderbilt University Medical Center Nashville, TN United States
– name: 4 Public Health and Intelligence Strategic Business Unit National Services Scotland Edinburgh United Kingdom
– name: 3 Centre for Global Health Research Usher Institute of Population Health Sciences and Informatics The University of Edinburgh Edinburgh United Kingdom
Author_xml – sequence: 1
  givenname: Patrick
  orcidid: 0000-0002-1437-6688
  surname: Wu
  fullname: Wu, Patrick
– sequence: 2
  givenname: Aliya
  orcidid: 0000-0001-8931-8362
  surname: Gifford
  fullname: Gifford, Aliya
– sequence: 3
  givenname: Xiangrui
  orcidid: 0000-0003-4889-4640
  surname: Meng
  fullname: Meng, Xiangrui
– sequence: 4
  givenname: Xue
  orcidid: 0000-0001-6880-2577
  surname: Li
  fullname: Li, Xue
– sequence: 5
  givenname: Harry
  orcidid: 0000-0002-6169-6262
  surname: Campbell
  fullname: Campbell, Harry
– sequence: 6
  givenname: Tim
  orcidid: 0000-0002-6106-568X
  surname: Varley
  fullname: Varley, Tim
– sequence: 7
  givenname: Juan
  orcidid: 0000-0003-1429-0662
  surname: Zhao
  fullname: Zhao, Juan
– sequence: 8
  givenname: Robert
  orcidid: 0000-0003-3802-8183
  surname: Carroll
  fullname: Carroll, Robert
– sequence: 9
  givenname: Lisa
  orcidid: 0000-0003-3020-447X
  surname: Bastarache
  fullname: Bastarache, Lisa
– sequence: 10
  givenname: Joshua C
  orcidid: 0000-0002-3049-7332
  surname: Denny
  fullname: Denny, Joshua C
– sequence: 11
  givenname: Evropi
  orcidid: 0000-0001-5887-9132
  surname: Theodoratou
  fullname: Theodoratou, Evropi
– sequence: 12
  givenname: Wei-Qi
  orcidid: 0000-0003-4985-056X
  surname: Wei
  fullname: Wei, Wei-Qi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31553307$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtLxDAUhYMojo_5C9KNIEi1N0mTiQtB6hNGdKG4cBHSNHWimaQ2nRH_vdUZRV3lQL57zuXcTbTqgzcIDSE7wCDYIVCC8xW0gbGAVDBBV3_pARrG-JxlGVBgjPF1NCCQ54RkfAM9Xqumsf4puSpOU8gS5aulTIvrpAiViUkXktuJ0Z_6KHkI7UvtwltyaubGhWZqfLeY8razyiVnc-VmqrPBb6O1Wrlohst3C92fn90Vl-n45uKqOBmnmhLSpQSzvGKVIMbwCrgoaVUqqoFwUXNaU8V5yfvtGUAuhCoB55TjSishMNXMkC10vPBtZuXUVLrfqFVONq2dqvZdBmXl3x9vJ_IpzCUTABjz3mBvadCG15mJnZzaqI1zypswi7KvkgMewYj16M7vrJ-Q70Z7YH8B6DbE2Jpaatt91dFHWychk58nk18n6-ndf_S34V_uA0YykTc
CitedBy_id crossref_primary_10_1016_j_jbi_2022_104237
crossref_primary_10_1038_s41562_024_02080_7
crossref_primary_10_1016_j_cell_2021_03_034
crossref_primary_10_1038_s41467_020_20086_3
crossref_primary_10_1210_clinem_dgz326
crossref_primary_10_1146_annurev_genom_121120_125204
crossref_primary_10_1016_j_biopsych_2020_06_026
crossref_primary_10_1016_j_joca_2021_02_564
crossref_primary_10_1093_database_baad026
crossref_primary_10_1016_j_ajhg_2021_11_008
crossref_primary_10_1371_journal_pgen_1009337
crossref_primary_10_1016_j_mayocp_2024_08_005
crossref_primary_10_3233_CBM_230340
crossref_primary_10_1111_cge_14073
crossref_primary_10_1186_s12885_021_09067_x
crossref_primary_10_1007_s11606_020_06469_8
crossref_primary_10_1159_000527363
crossref_primary_10_1093_bioinformatics_btac822
crossref_primary_10_1093_jamia_ocaa343
crossref_primary_10_1111_bdi_70018
crossref_primary_10_1016_j_xhgg_2024_100302
crossref_primary_10_1186_s40246_024_00710_9
crossref_primary_10_1038_s41380_024_02530_8
crossref_primary_10_1038_s41467_025_55879_x
crossref_primary_10_1038_s43856_023_00412_8
crossref_primary_10_1371_journal_pone_0286469
crossref_primary_10_1161_JAHA_123_029575
crossref_primary_10_1016_j_patter_2022_100570
crossref_primary_10_1093_brain_awab253
crossref_primary_10_1093_jamiaopen_ooad007
crossref_primary_10_1002_oby_23859
crossref_primary_10_1038_s41467_022_30765_y
crossref_primary_10_1038_s41380_021_01387_5
crossref_primary_10_1186_s41927_023_00349_4
crossref_primary_10_1186_s12864_022_08888_9
crossref_primary_10_1186_s12916_024_03807_z
crossref_primary_10_1186_s12916_023_02922_7
crossref_primary_10_1038_s41525_025_00464_w
crossref_primary_10_1038_s41588_024_01827_2
crossref_primary_10_1038_s41746_022_00623_8
crossref_primary_10_1038_s41525_022_00296_y
crossref_primary_10_1038_s41588_022_01083_2
crossref_primary_10_2196_41775
crossref_primary_10_1371_journal_pone_0269017
crossref_primary_10_3390_nu14235031
crossref_primary_10_1186_s12916_021_02198_9
crossref_primary_10_1016_j_ajhg_2023_12_018
crossref_primary_10_1016_j_focus_2022_100015
crossref_primary_10_1016_j_xfss_2022_02_001
crossref_primary_10_1038_s41591_024_03010_w
crossref_primary_10_1016_j_ebiom_2023_104629
crossref_primary_10_1038_s41586_024_08264_5
crossref_primary_10_1038_s43856_023_00382_x
crossref_primary_10_1093_jamia_ocae072
crossref_primary_10_1016_j_tig_2021_12_002
crossref_primary_10_1016_j_ajhg_2022_02_010
crossref_primary_10_1161_CIRCULATIONAHA_124_068669
crossref_primary_10_1038_s41591_021_01371_0
crossref_primary_10_1161_JAHA_122_025578
crossref_primary_10_1016_j_jacc_2023_01_044
crossref_primary_10_1038_s44161_022_00206_6
crossref_primary_10_1001_jamapsychiatry_2021_4080
crossref_primary_10_1038_s41467_022_32219_x
crossref_primary_10_1016_j_ajhg_2024_12_007
crossref_primary_10_1093_hmg_ddab197
crossref_primary_10_1186_s11689_023_09485_x
crossref_primary_10_1016_j_jacc_2023_03_401
crossref_primary_10_1038_s41588_025_02094_5
crossref_primary_10_1161_CIRCOUTCOMES_123_010602
crossref_primary_10_1136_jmedgenet_2021_107696
crossref_primary_10_1038_s41366_021_00942_y
crossref_primary_10_1038_s41398_023_02412_7
crossref_primary_10_1109_TNNLS_2023_3266490
crossref_primary_10_1186_s12911_024_02453_y
crossref_primary_10_1093_jamia_ocae005
crossref_primary_10_1038_s41591_024_03039_x
crossref_primary_10_1038_s41531_025_00901_8
crossref_primary_10_1007_s43657_021_00033_y
crossref_primary_10_1186_s12864_022_08600_x
crossref_primary_10_1007_s00535_021_01822_y
crossref_primary_10_1016_j_xgen_2023_100361
crossref_primary_10_1016_j_ebiom_2024_105116
crossref_primary_10_1093_pcmedi_pbac015
crossref_primary_10_1161_CIRCULATIONAHA_121_057709
crossref_primary_10_1186_s12916_021_02115_0
crossref_primary_10_1007_s12021_021_09553_4
crossref_primary_10_1093_ajcn_nqac148
crossref_primary_10_1001_jamapsychiatry_2023_4141
crossref_primary_10_1093_bioinformatics_btae126
crossref_primary_10_1016_j_jaip_2022_04_016
crossref_primary_10_1097_SLA_0000000000006106
crossref_primary_10_7554_eLife_88538_3
crossref_primary_10_1177_09612033211014952
crossref_primary_10_1126_sciadv_adj3747
crossref_primary_10_1038_s41467_023_40977_5
crossref_primary_10_1016_j_lanwpc_2023_100948
crossref_primary_10_1038_s41398_024_03011_w
crossref_primary_10_7554_eLife_88538
crossref_primary_10_1111_bjd_21762
crossref_primary_10_1016_j_biopsych_2022_06_004
crossref_primary_10_1016_j_cmpb_2021_106397
crossref_primary_10_1016_j_surg_2022_10_026
crossref_primary_10_1038_s41398_023_02341_5
crossref_primary_10_1038_s41467_024_47804_5
crossref_primary_10_1038_s41591_022_02046_0
crossref_primary_10_1007_s00432_022_03972_9
crossref_primary_10_1186_s13073_024_01335_2
crossref_primary_10_1097_DCR_0000000000002943
crossref_primary_10_1146_annurev_pharmtox_051421_111324
crossref_primary_10_1038_s41588_023_01464_1
crossref_primary_10_1016_j_xcrm_2024_101871
crossref_primary_10_1093_eurheartj_ehab502
crossref_primary_10_1093_hmg_ddab068
crossref_primary_10_1109_JBHI_2023_3288768
crossref_primary_10_1016_j_biopsych_2023_08_023
crossref_primary_10_1126_scitranslmed_adg4517
crossref_primary_10_3390_jcm12041328
crossref_primary_10_1016_j_surg_2022_08_021
crossref_primary_10_1001_jamanetworkopen_2023_13964
crossref_primary_10_1038_s41588_022_01070_7
crossref_primary_10_7554_eLife_58914
crossref_primary_10_1093_jamia_ocaa079
crossref_primary_10_1093_jamia_ocac016
crossref_primary_10_1002_ajmg_b_32949
crossref_primary_10_1016_j_sleh_2023_11_002
crossref_primary_10_1038_s41598_024_51724_1
crossref_primary_10_1177_09612033231172660
crossref_primary_10_1038_s41467_024_48568_8
crossref_primary_10_1038_s41467_024_49782_0
crossref_primary_10_1038_s41562_024_01909_5
crossref_primary_10_1007_s10995_023_03853_8
crossref_primary_10_2196_52615
crossref_primary_10_3389_fgene_2021_738485
crossref_primary_10_1016_j_heliyon_2024_e28034
crossref_primary_10_1016_j_jbi_2020_103657
crossref_primary_10_1038_s41467_020_20079_2
crossref_primary_10_1016_j_bbi_2020_10_019
crossref_primary_10_1200_JCO_23_02761
crossref_primary_10_1016_j_xhgg_2024_100388
crossref_primary_10_1093_eurjpc_zwae271
crossref_primary_10_1016_j_jpeds_2025_114491
crossref_primary_10_1016_j_bbadis_2025_167680
crossref_primary_10_2147_PGPM_S281645
crossref_primary_10_1136_bmjopen_2023_081351
crossref_primary_10_1093_gerona_glab035
crossref_primary_10_1038_s41746_022_00676_9
crossref_primary_10_1186_s13059_024_03269_9
crossref_primary_10_1038_s41467_023_41876_5
crossref_primary_10_1371_journal_pgen_1009723
crossref_primary_10_1016_j_apsb_2025_01_027
crossref_primary_10_3390_nu12103174
crossref_primary_10_1038_s41380_024_02717_z
crossref_primary_10_1016_j_eclinm_2020_100488
crossref_primary_10_1016_j_xhgg_2022_100136
crossref_primary_10_1093_jamia_ocac234
crossref_primary_10_3389_fnut_2023_1308622
crossref_primary_10_1016_j_eclinm_2021_100960
crossref_primary_10_1038_s41588_024_01978_2
crossref_primary_10_1093_jamia_ocab264
crossref_primary_10_1002_oby_23561
crossref_primary_10_1016_j_patter_2021_100337
crossref_primary_10_1016_j_ajhg_2023_10_010
crossref_primary_10_1038_s41588_021_00962_4
crossref_primary_10_1097_j_pain_0000000000002221
crossref_primary_10_1016_j_ebiom_2024_105280
crossref_primary_10_1093_eurheartj_ehae790
crossref_primary_10_1109_TNSRE_2022_3181690
crossref_primary_10_1038_s41467_025_57315_6
crossref_primary_10_1161_CIRCRESAHA_123_323973
crossref_primary_10_1161_CIRCULATIONAHA_123_064974
crossref_primary_10_1093_jamia_ocab019
crossref_primary_10_1172_jci_insight_181238
crossref_primary_10_1093_jamia_ocac226
crossref_primary_10_7554_eLife_70382
crossref_primary_10_1038_s41398_024_03213_2
crossref_primary_10_1016_j_xhgg_2024_100284
crossref_primary_10_1016_j_tig_2022_05_003
crossref_primary_10_1186_s12916_023_03227_5
crossref_primary_10_1038_s41467_020_17718_z
crossref_primary_10_1016_j_ajhg_2023_01_005
crossref_primary_10_1016_j_psychres_2024_115950
crossref_primary_10_1038_s42003_022_03820_z
crossref_primary_10_1093_bioinformatics_btad655
crossref_primary_10_1097_ICO_0000000000003311
crossref_primary_10_1186_s12916_024_03298_y
crossref_primary_10_1038_s41562_024_01853_4
crossref_primary_10_1016_j_xcrm_2024_101704
crossref_primary_10_1093_jamiaopen_ooaf006
crossref_primary_10_1016_j_ebiom_2023_104581
crossref_primary_10_1093_jamiaopen_ooae157
crossref_primary_10_1016_j_biopsych_2022_07_019
crossref_primary_10_1371_journal_pone_0248602
crossref_primary_10_1016_j_xhgg_2022_100112
crossref_primary_10_1038_s41591_024_03214_0
crossref_primary_10_1093_sleep_zsaa176
crossref_primary_10_1016_j_celrep_2023_113439
crossref_primary_10_1038_s41588_024_01894_5
crossref_primary_10_1097_MOL_0000000000000662
crossref_primary_10_1186_s13073_025_01456_2
crossref_primary_10_1001_jamanetworkopen_2021_12820
crossref_primary_10_1093_jamia_ocad260
crossref_primary_10_1111_biom_13713
crossref_primary_10_1126_scitranslmed_ade4510
crossref_primary_10_3390_jpm12121974
crossref_primary_10_1016_j_ajhg_2023_12_001
crossref_primary_10_1038_s41467_022_31757_8
crossref_primary_10_1038_s41591_022_01891_3
crossref_primary_10_1038_s41596_023_00853_4
crossref_primary_10_1152_physiolgenomics_00026_2023
crossref_primary_10_1002_cpt_2441
crossref_primary_10_1001_jamaoncol_2022_0373
crossref_primary_10_1038_s43587_024_00573_8
crossref_primary_10_7554_eLife_83116
crossref_primary_10_1038_s41588_023_01522_8
crossref_primary_10_1038_s41467_021_26138_6
crossref_primary_10_1038_s41467_020_15823_7
crossref_primary_10_1038_s41588_021_00954_4
crossref_primary_10_1371_journal_pone_0275934
crossref_primary_10_1038_s41467_022_30875_7
crossref_primary_10_1038_s44294_024_00007_1
crossref_primary_10_1371_journal_pgen_1010193
crossref_primary_10_3390_jcm11195784
crossref_primary_10_5664_jcsm_10930
crossref_primary_10_1093_jamia_ocac159
crossref_primary_10_1038_s43856_024_00506_x
crossref_primary_10_1111_cts_13462
crossref_primary_10_1016_j_cell_2023_12_016
crossref_primary_10_1016_j_ajhg_2025_01_019
crossref_primary_10_1001_jamapsychiatry_2024_3426
crossref_primary_10_1002_alz_12352
crossref_primary_10_1200_CCI_22_00006
crossref_primary_10_1038_s41591_024_03155_8
crossref_primary_10_1038_s43856_023_00280_2
crossref_primary_10_3389_fgene_2021_680560
crossref_primary_10_1038_s41467_022_31030_y
crossref_primary_10_1161_CIRCGEN_122_003716
crossref_primary_10_1016_j_bpsgos_2024_100337
crossref_primary_10_1145_3490234
crossref_primary_10_1038_s41598_023_45102_6
crossref_primary_10_1093_jamiaopen_ooad018
crossref_primary_10_1007_s00439_020_02249_w
crossref_primary_10_1017_S0033291721004554
crossref_primary_10_1038_s41586_023_05844_9
crossref_primary_10_1038_s41598_025_86222_5
crossref_primary_10_1038_s42003_022_03554_y
crossref_primary_10_1093_jamia_ocad233
crossref_primary_10_1172_jci_insight_146580
crossref_primary_10_1016_j_ajhg_2020_06_003
crossref_primary_10_1038_s41591_023_02440_2
crossref_primary_10_1038_s41598_021_95637_9
crossref_primary_10_1016_j_ajhg_2021_08_007
crossref_primary_10_1016_j_jnma_2020_08_009
crossref_primary_10_1016_j_medj_2023_02_009
crossref_primary_10_1002_jpen_2379
crossref_primary_10_1161_CIRCGEN_122_003708
crossref_primary_10_1038_s41598_023_32799_8
Cites_doi 10.1038/s41588-018-0154-4
10.1001/jama.2016.0649
10.2196/jmir.4976
10.1371/journal.pmed.1001779
10.1542/peds.2013-0819
10.13063/2327-9214.1211
10.1371/journal.pone.0175508
10.1093/eurheartj/ehq386
10.1371/journal.pone.0212112
10.1038/s41588-018-0184-y
10.1038/s41588-018-0171-3
10.1038/nbt.3183
10.1136/jmedgenet-2016-103867
10.1093/jamia/ocv202
10.2196/10047
10.1161/CIRCULATIONAHA.117.031356
10.1038/nbt.2749
10.1126/science.aal4043
10.1371/journal.pone.0186405
10.1038/s41598-018-36745-x
10.1038/srep16645
10.1109/JBHI.2018.2890084
10.1371/journal.pone.0122271
10.1371/journal.pcbi.1003405
10.1038/clpt.2008.89
10.1093/bioinformatics/btu197
10.1136/annrheumdis-2017-212534
10.1093/jamia/ocy124
10.1126/science.aad2149
10.1136/jamia.2009.001230
ContentType Journal Article
Copyright Patrick Wu, Aliya Gifford, Xiangrui Meng, Xue Li, Harry Campbell, Tim Varley, Juan Zhao, Robert Carroll, Lisa Bastarache, Joshua C Denny, Evropi Theodoratou, Wei-Qi Wei. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 29.11.2019.
Patrick Wu, Aliya Gifford, Xiangrui Meng, Xue Li, Harry Campbell, Tim Varley, Juan Zhao, Robert Carroll, Lisa Bastarache, Joshua C Denny, Evropi Theodoratou, Wei-Qi Wei. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 29.11.2019. 2019
Copyright_xml – notice: Patrick Wu, Aliya Gifford, Xiangrui Meng, Xue Li, Harry Campbell, Tim Varley, Juan Zhao, Robert Carroll, Lisa Bastarache, Joshua C Denny, Evropi Theodoratou, Wei-Qi Wei. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 29.11.2019.
– notice: Patrick Wu, Aliya Gifford, Xiangrui Meng, Xue Li, Harry Campbell, Tim Varley, Juan Zhao, Robert Carroll, Lisa Bastarache, Joshua C Denny, Evropi Theodoratou, Wei-Qi Wei. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 29.11.2019. 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.2196/14325
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID PMC6911227
31553307
10_2196_14325
Genre Journal Article
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: T15 LM007450
– fundername: NIGMS NIH HHS
  grantid: T32 GM007347
– fundername: Cancer Research UK
  grantid: 22804
– fundername: NIGMS NIH HHS
  grantid: P50 GM115305
– fundername: NIGMS NIH HHS
  grantid: T32 GM152284
– fundername: NLM NIH HHS
  grantid: R01 LM010685
– fundername: NHLBI NIH HHS
  grantid: R01 HL133786
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
PJZUB
PPXIY
7X8
5PM
ID FETCH-LOGICAL-c433t-3265d6d93ee7d179b4dba4c1379f74f4a77b7001611599ab125472dca9924c6e3
IEDL.DBID M48
ISSN 2291-9694
IngestDate Thu Aug 21 18:03:36 EDT 2025
Tue Aug 05 10:01:22 EDT 2025
Mon Jul 21 05:42:42 EDT 2025
Tue Jul 01 04:31:17 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords medical informatics applications
phenome-wide association study
data science
electronic health record
phenotyping
genome-wide association study
Language English
License Patrick Wu, Aliya Gifford, Xiangrui Meng, Xue Li, Harry Campbell, Tim Varley, Juan Zhao, Robert Carroll, Lisa Bastarache, Joshua C Denny, Evropi Theodoratou, Wei-Qi Wei. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 29.11.2019.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-3265d6d93ee7d179b4dba4c1379f74f4a77b7001611599ab125472dca9924c6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6880-2577
0000-0001-5887-9132
0000-0003-3020-447X
0000-0003-4985-056X
0000-0001-8931-8362
0000-0002-1437-6688
0000-0003-1429-0662
0000-0002-6106-568X
0000-0003-3802-8183
0000-0002-6169-6262
0000-0003-4889-4640
0000-0002-3049-7332
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/14325
PMID 31553307
PQID 2297128186
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6911227
proquest_miscellaneous_2297128186
pubmed_primary_31553307
crossref_citationtrail_10_2196_14325
crossref_primary_10_2196_14325
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191129
PublicationDateYYYYMMDD 2019-11-29
PublicationDate_xml – month: 11
  year: 2019
  text: 20191129
  day: 29
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2019
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref38
ref19
ref18
Fung, KW (ref24) 2005
Giuse, DA (ref27) 2003
Shi, X (ref37) 2019
Hripcsak, G (ref26) 2015; 216
ref23
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref29
ref8
ref7
ref9
ref4
ref3
Topaz, M (ref16) 2013; 10
ref6
ref5
ref40
References_xml – ident: ref2
  doi: 10.1038/s41588-018-0154-4
– ident: ref40
  doi: 10.1001/jama.2016.0649
– ident: ref41
  doi: 10.2196/jmir.4976
– ident: ref39
– start-page: 266
  year: 2005
  ident: ref24
  publication-title: AMIA Annu Symp Proc
– ident: ref21
  doi: 10.1371/journal.pmed.1001779
– volume: 216
  start-page: 574
  year: 2015
  ident: ref26
  publication-title: Stud Health Technol Inform
– ident: ref11
  doi: 10.1542/peds.2013-0819
– ident: ref17
  doi: 10.13063/2327-9214.1211
– ident: ref20
  doi: 10.1371/journal.pone.0175508
– ident: ref28
  doi: 10.1093/eurheartj/ehq386
– ident: ref22
– ident: ref25
– ident: ref29
  doi: 10.1371/journal.pone.0212112
– ident: ref33
  doi: 10.1038/s41588-018-0184-y
– ident: ref32
– ident: ref3
  doi: 10.1038/s41588-018-0171-3
– ident: ref6
  doi: 10.1038/nbt.3183
– ident: ref9
  doi: 10.1136/jmedgenet-2016-103867
– ident: ref1
  doi: 10.1093/jamia/ocv202
– ident: ref36
  doi: 10.2196/10047
– ident: ref30
  doi: 10.1161/CIRCULATIONAHA.117.031356
– ident: ref19
  doi: 10.1038/nbt.2749
– ident: ref38
  doi: 10.1126/science.aal4043
– ident: ref8
  doi: 10.1371/journal.pone.0186405
– volume: 10
  start-page: 1d
  year: 2013
  ident: ref16
  publication-title: Perspect Health Inf Manag
– ident: ref35
  doi: 10.1038/s41598-018-36745-x
– ident: ref42
– ident: ref7
  doi: 10.1038/srep16645
– start-page: 1065
  year: 2003
  ident: ref27
  publication-title: AMIA Annu Symp Proc
– ident: ref34
  doi: 10.1109/JBHI.2018.2890084
– ident: ref23
– ident: ref5
  doi: 10.1371/journal.pone.0122271
– ident: ref10
  doi: 10.1371/journal.pcbi.1003405
– ident: ref31
  doi: 10.1038/clpt.2008.89
– ident: ref13
  doi: 10.1093/bioinformatics/btu197
– ident: ref12
  doi: 10.1136/annrheumdis-2017-212534
– ident: ref43
  doi: 10.1093/jamia/ocy124
– ident: ref4
  doi: 10.1126/science.aad2149
– ident: ref18
– ident: ref15
  doi: 10.1136/jamia.2009.001230
– year: 2019
  ident: ref37
  publication-title: arXiv preprint
– ident: ref14
SSID ssj0001416667
Score 2.6538022
Snippet The phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e14325
SubjectTerms Original Paper
Title Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and Initial Evaluation
URI https://www.ncbi.nlm.nih.gov/pubmed/31553307
https://www.proquest.com/docview/2297128186
https://pubmed.ncbi.nlm.nih.gov/PMC6911227
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rS8MwED98gAgivp2PEmFfq67NmkYQ0TlRoTLEgeCHkjSpE0are6D-9951dWwq-K3QpC13ae53ubvfAVS18hGEI3Lj6bF2eZiEbhgGxIyY-F6dOKyKCu_oLrhu89vH-kQ2YSnA_p-uHfWTave6hx9vn2f4w59SGjMuoCM0-V59FubRGAlqYhCVCL84ZuEUF6Oiac-TNVcGki_A0tTMaYv0C2b-zJacMD9XK7Bc4kZ2PlL0KszYbA0WojIyvg5PkSKmhWd207jETY-pzJSXbiNijdzYPhvkrNWxVMTeP2F0Sp5283c2kTY0mkXpRPiq5pgHfAPaV82HxrVbNk5wE-77AxchWd0ERvrWCoN_nOZGK57UfCFTwVOuhNCiAHsIZqTSCHK48EyiJHpjSWD9TZjL8sxuA9M4CT3GRKYh54abUNWUDhDmhVYgWFAVqH4LL05KVnFqbtGN0bsgGceFjCvgjIe9jmg0fg44-JZ8jAucohYqs_mwH6PeBIX7wqACWyNNjB_hU9cj3KUqIKZ0NB5A5NnTd7KXTkGiHeAu73li578P24VFxEiSyg89uQdzg97Q7iMOGWgHZsWjcGD-onnXuncKb94pVt8XLCPbaA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+ICD-10+and+ICD-10-CM+Codes+to+Phecodes%3A+Workflow+Development+and+Initial+Evaluation&rft.jtitle=JMIR+medical+informatics&rft.au=Wu%2C+Patrick&rft.au=Gifford%2C+Aliya&rft.au=Meng%2C+Xiangrui&rft.au=Li%2C+Xue&rft.date=2019-11-29&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=7&rft.issue=4&rft.spage=e14325&rft_id=info:doi/10.2196%2F14325&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_14325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon