Active Structure From Motion: Application to Point, Sphere, and Cylinder

In this paper, we illustrate the application of a nonlinear active structure estimation from motion (SfM) strategy to three problems, namely 3-D structure estimation for 1) a point, 2) a sphere, and 3) a cylinder. In all three cases, an appropriate parameterization reduces the problem to the estimat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 30; no. 6; pp. 1499 - 1513
Main Authors Spica, Riccardo, Giordano, Paolo Robuffo, Chaumette, Francois
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1552-3098
1941-0468
DOI10.1109/TRO.2014.2365652

Cover

More Information
Summary:In this paper, we illustrate the application of a nonlinear active structure estimation from motion (SfM) strategy to three problems, namely 3-D structure estimation for 1) a point, 2) a sphere, and 3) a cylinder. In all three cases, an appropriate parameterization reduces the problem to the estimation of a single quantity. Knowledge of this estimated quantity and of the available measurements allows for then retrieving the full 3-D structure of the observed objects. Furthermore, in the point feature case, two different parameterizations based on either a planar or a spherical projection model are critically compared. Indeed, the two models yield, somehow unexpectedly, to different convergence properties for the SfM estimation task. The reported simulative and experimental results fully support the theoretical analysis and clearly show the benefits of the proposed active estimation strategy, which is in particular able to impose a desired transient response to the estimation error equivalent to that of a reference linear second-order system with assigned poles.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2014.2365652