Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine
The power and thrust characteristics of an offshore floating wind turbine (OFWT) not only depend on the tip speed ratio λ and the blade pitch angle θ, but also closely relate to the platform motions. In this paper, the influences of the platform surge motion on the behaviors of the power output and...
Saved in:
Published in | Energy (Oxford) Vol. 141; pp. 2054 - 2068 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.12.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The power and thrust characteristics of an offshore floating wind turbine (OFWT) not only depend on the tip speed ratio λ and the blade pitch angle θ, but also closely relate to the platform motions. In this paper, the influences of the platform surge motion on the behaviors of the power output and rotor thrust of a typical Spar-type OFWT are investigated using Free Vortex Method (FVM). The influences of the surge frequency and amplitude are analyzed separately at first. Afterwards, a reduced frequency k is proposed to combine the influences of surge frequency and amplitude. The power and thrust curves are derived as functions of the tip speed ratio λ and reduced frequency k with blade pitch angle θ constant at zero. Results show that when the reduced frequency increases, mean power output decreases at low tip speed ratios but increases at high tip speed ratios; mean thrust decreases slightly for all tip speed ratios except λ = 12. Power and thrust variations increase as tip speed ratio or reduced frequency increases. Power and thrust coefficients decline with an increasing reduced frequency.
•A modification is made to FVM to maintain computational accuracy and reduce cost.•Fluctuation in angle of attack dominates in power and thrust fluctuations.•The reduced frequency k is introduced as an independent variable of power and thrust.•Effect of k on mean power/thrust varies with the tip speed ratio.•As k or tip speed ratio increases, the power and thrust variations increase. |
---|---|
AbstractList | The power and thrust characteristics of an offshore floating wind turbine (OFWT) not only depend on the tip speed ratio λ and the blade pitch angle θ, but also closely relate to the platform motions. In this paper, the influences of the platform surge motion on the behaviors of the power output and rotor thrust of a typical Spar-type OFWT are investigated using Free Vortex Method (FVM). The influences of the surge frequency and amplitude are analyzed separately at first. Afterwards, a reduced frequency k is proposed to combine the influences of surge frequency and amplitude. The power and thrust curves are derived as functions of the tip speed ratio λ and reduced frequency k with blade pitch angle θ constant at zero. Results show that when the reduced frequency increases, mean power output decreases at low tip speed ratios but increases at high tip speed ratios; mean thrust decreases slightly for all tip speed ratios except λ = 12. Power and thrust variations increase as tip speed ratio or reduced frequency increases. Power and thrust coefficients decline with an increasing reduced frequency. The power and thrust characteristics of an offshore floating wind turbine (OFWT) not only depend on the tip speed ratio λ and the blade pitch angle θ, but also closely relate to the platform motions. In this paper, the influences of the platform surge motion on the behaviors of the power output and rotor thrust of a typical Spar-type OFWT are investigated using Free Vortex Method (FVM). The influences of the surge frequency and amplitude are analyzed separately at first. Afterwards, a reduced frequency κ is proposed to combine the influences of surge frequency and amplitude. The power and thrust curves are derived as functions of the tip speed ratio λ and reduced frequency κ with blade pitch angle θ constant at zero. Results show that when the reduced frequency increases, mean power output decreases at low tip speed ratios but increases at high tip speed ratios; mean thrust decreases slightly for all tip speed ratios except λ = 12. Power and thrust variations increase as tip speed ratio or reduced frequency increases. Power and thrust coefficients decline with an increasing reduced frequency. The power and thrust characteristics of an offshore floating wind turbine (OFWT) not only depend on the tip speed ratio λ and the blade pitch angle θ, but also closely relate to the platform motions. In this paper, the influences of the platform surge motion on the behaviors of the power output and rotor thrust of a typical Spar-type OFWT are investigated using Free Vortex Method (FVM). The influences of the surge frequency and amplitude are analyzed separately at first. Afterwards, a reduced frequency k is proposed to combine the influences of surge frequency and amplitude. The power and thrust curves are derived as functions of the tip speed ratio λ and reduced frequency k with blade pitch angle θ constant at zero. Results show that when the reduced frequency increases, mean power output decreases at low tip speed ratios but increases at high tip speed ratios; mean thrust decreases slightly for all tip speed ratios except λ = 12. Power and thrust variations increase as tip speed ratio or reduced frequency increases. Power and thrust coefficients decline with an increasing reduced frequency. •A modification is made to FVM to maintain computational accuracy and reduce cost.•Fluctuation in angle of attack dominates in power and thrust fluctuations.•The reduced frequency k is introduced as an independent variable of power and thrust.•Effect of k on mean power/thrust varies with the tip speed ratio.•As k or tip speed ratio increases, the power and thrust variations increase. |
Author | Dong, Xingjian Zhang, Wenming Wen, Binrong Tian, Xinliang Peng, Zhike |
Author_xml | – sequence: 1 givenname: Binrong surname: Wen fullname: Wen, Binrong email: wenbinrong@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 2 givenname: Xinliang surname: Tian fullname: Tian, Xinliang email: tianxinliang@sjtu.edu.cn organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 3 givenname: Xingjian orcidid: 0000-0003-1246-7604 surname: Dong fullname: Dong, Xingjian email: donxij@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 4 givenname: Zhike surname: Peng fullname: Peng, Zhike email: z.peng@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 5 givenname: Wenming surname: Zhang fullname: Zhang, Wenming email: wenmingz@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China |
BookMark | eNqFkcFq3DAURUVJoZO0f9CFoJtu7DzJsmx3UQghaQKBbtq1kOWnGQ0eaSrJCfn7yp2uskiEQAjOuTzePSdnPngk5DODmgGTl_saPcbtc82BdTVjNQzwjmxY3zWV7Pr2jGygkVC1QvAP5DylPQC0_TBsyPbe23lBbzDRYGla4hbpIWQXPC0375AewxNGqv1UfnFJmZqdjtpkjC5lZ_55utDWpl2ISO0cdHZ-S5_c6ixxdB4_kvdWzwk__X8vyO_bm1_Xd9XDzx_311cPlRFNkyveTnIcoZ2EwY6VI3ozjRo6bvTAeTu2bOQN9FJIycBa27NGcjtMYhiZaGRzQb6eco8x_FkwZXVwyeA8a49hSYoDLzbnvSjolxfoPizRl-kKxQoBvF8Dv50oE0NKEa0yLut1PzlqNysGau1A7dWpg9XtFGOqdFBk8UI-RnfQ8fkt7ftJw7KpR4dRJePWjiYX0WQ1Bfd6wF_MbaUu |
CitedBy_id | crossref_primary_10_1016_j_enconman_2024_119188 crossref_primary_10_1016_j_renene_2018_12_034 crossref_primary_10_1016_j_renene_2019_10_147 crossref_primary_10_1016_j_oceaneng_2024_117445 crossref_primary_10_3390_jmse9070699 crossref_primary_10_3390_en15020579 crossref_primary_10_1016_j_renene_2025_122861 crossref_primary_10_1016_j_energy_2023_128252 crossref_primary_10_1016_j_renene_2021_11_009 crossref_primary_10_1016_j_seta_2024_103931 crossref_primary_10_1016_j_energy_2023_129619 crossref_primary_10_3390_en17174269 crossref_primary_10_3390_jmse9111215 crossref_primary_10_1016_j_apenergy_2024_124767 crossref_primary_10_1016_j_marstruc_2022_103172 crossref_primary_10_3390_jmse12122205 crossref_primary_10_1016_j_renene_2021_10_003 crossref_primary_10_1017_jfm_2023_454 crossref_primary_10_1016_j_energy_2023_129538 crossref_primary_10_1155_2022_8297972 crossref_primary_10_1016_j_renene_2023_119255 crossref_primary_10_1016_j_rser_2022_113144 crossref_primary_10_4271_14_13_02_0010 crossref_primary_10_1007_s13344_020_0010_z crossref_primary_10_1016_j_enconman_2022_116560 crossref_primary_10_1016_j_oceaneng_2021_109070 crossref_primary_10_1088_1742_6596_2265_4_042016 crossref_primary_10_1016_j_apenergy_2020_115459 crossref_primary_10_1016_j_oceaneng_2023_115556 crossref_primary_10_1016_j_marstruc_2020_102729 crossref_primary_10_1016_j_oceaneng_2023_115351 crossref_primary_10_3390_su12010246 crossref_primary_10_1016_j_oceaneng_2020_107909 crossref_primary_10_1016_j_apenergy_2022_118608 crossref_primary_10_3390_su152416878 crossref_primary_10_1016_j_energy_2024_130769 crossref_primary_10_1016_j_renene_2021_12_060 crossref_primary_10_3390_en16020710 crossref_primary_10_1063_5_0161759 crossref_primary_10_5194_wes_9_1827_2024 crossref_primary_10_1016_j_marstruc_2022_103300 crossref_primary_10_1063_5_0076029 crossref_primary_10_1002_we_2215 crossref_primary_10_1016_j_energy_2018_11_082 crossref_primary_10_1016_j_oceaneng_2023_115629 crossref_primary_10_1016_j_renene_2020_02_030 crossref_primary_10_1016_j_renene_2020_04_071 crossref_primary_10_1002_we_2608 crossref_primary_10_1088_1742_6596_2626_1_012064 crossref_primary_10_1016_j_jweia_2020_104390 crossref_primary_10_1016_j_enconman_2024_119402 crossref_primary_10_5194_wes_7_469_2022 crossref_primary_10_5194_wes_9_665_2024 crossref_primary_10_1016_j_oceaneng_2019_106712 crossref_primary_10_1016_j_renene_2020_03_105 crossref_primary_10_1016_j_energy_2024_131845 crossref_primary_10_1007_s12206_023_0821_y crossref_primary_10_1016_j_rser_2022_112525 crossref_primary_10_1088_1742_6596_1934_1_012009 crossref_primary_10_1016_j_renene_2018_12_096 crossref_primary_10_1016_j_energy_2020_119519 crossref_primary_10_1063_5_0092267 crossref_primary_10_1002_we_2482 crossref_primary_10_1016_j_enconman_2020_113268 crossref_primary_10_1016_j_energy_2023_128788 crossref_primary_10_1007_s40722_022_00227_0 crossref_primary_10_1016_j_energy_2018_04_140 crossref_primary_10_1016_j_oceaneng_2020_107061 crossref_primary_10_1016_j_oceaneng_2023_115579 crossref_primary_10_1016_j_renene_2022_10_034 crossref_primary_10_1016_j_renene_2023_04_144 crossref_primary_10_1061_PPSCFX_SCENG_1486 crossref_primary_10_1063_5_0079843 crossref_primary_10_1016_j_oceaneng_2023_115974 crossref_primary_10_1080_19942060_2023_2301524 crossref_primary_10_3390_jmse7040115 crossref_primary_10_1080_19942060_2023_2260470 crossref_primary_10_1088_1742_6596_1618_5_052045 crossref_primary_10_1016_j_enconman_2023_116957 crossref_primary_10_3390_jmse12030392 crossref_primary_10_1002_we_2670 crossref_primary_10_1016_j_oceaneng_2024_118061 crossref_primary_10_1016_j_oceaneng_2024_119303 crossref_primary_10_1063_5_0095420 crossref_primary_10_1007_s11831_019_09316_0 crossref_primary_10_1016_j_oceaneng_2024_118935 crossref_primary_10_1016_j_renene_2019_06_116 |
Cites_doi | 10.1016/j.renene.2014.03.071 10.2514/3.46875 10.1016/j.renene.2011.01.002 10.1016/j.renene.2013.09.009 10.1016/j.renene.2013.12.043 10.1016/j.energy.2012.02.054 10.3329/jname.v9i1.10732 10.1002/we.464 10.1002/we.1730 10.1029/2004JD005462 10.1002/we.274 10.1098/rsta.2014.0080 10.1016/j.energy.2017.03.087 10.3390/en5040968 10.1016/j.oceaneng.2016.09.045 10.1016/j.renene.2011.03.031 10.1115/1.4032684 10.1016/j.renene.2015.08.063 10.1016/j.renene.2015.01.013 10.1016/j.renene.2015.12.013 10.1016/j.renene.2015.05.016 10.1115/1.4031872 10.1115/1.4025804 10.1002/we.1562 10.1016/j.jweia.2015.03.009 10.1088/1742-6596/753/8/082012 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Dec 15, 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Dec 15, 2017 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.energy.2017.11.090 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
EndPage | 2068 |
ExternalDocumentID | 10_1016_j_energy_2017_11_090 S0360544217319485 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-25d6bb05d4ce7111148cdba072ca9225b51b2308646610fff81362f9d49b14363 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Fri Jul 11 17:01:29 EDT 2025 Wed Aug 13 06:09:46 EDT 2025 Thu Apr 24 22:55:21 EDT 2025 Tue Jul 01 00:53:13 EDT 2025 Fri Feb 23 02:33:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Offshore floating wind turbine Free vortex method Surge Power Thrust |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-25d6bb05d4ce7111148cdba072ca9225b51b2308646610fff81362f9d49b14363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1246-7604 |
PQID | 2012840286 |
PQPubID | 2045484 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2020862284 proquest_journals_2012840286 crossref_citationtrail_10_1016_j_energy_2017_11_090 crossref_primary_10_1016_j_energy_2017_11_090 elsevier_sciencedirect_doi_10_1016_j_energy_2017_11_090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-15 |
PublicationDateYYYYMMDD | 2017-12-15 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Okulov, Sørensen (bib42) 2008; 11 Burton, Sharpe, Jenkins, Bossanyi (bib23) 2001 Sant (bib27) 2007 Goupee, Koo, Kimball, Lambrakos, Dagher (bib5) 2014; 136 Sant, Cuschieri (bib14) 2016; 138 Khosravi, Sarkar, Hu (bib21) 2015 Farrugia, Sant, Micallef (bib19) 2014; 70 Bagai, Leishman (bib33) 1995; 32 Salehyar, Zhu (bib38) 2015; 78 Marten, Lennie, Pechlivanoglou, Nayeri, Paschereit (bib30) 2015; 138 Zambrano, MacCready, Kiceniuk, Roddier, Cermelli (bib6) 2006 Marten, Wendler (bib29) 2013 Xu, Wang, Yuan, Cao (bib34) 2015; 373 Kjellin, Bülow, Eriksson, Deglaire, Leijon, Bernhoff (bib43) 2011; 36 Micallef, Sant (bib15) 2015; 83 Jeon, Lee, Lee (bib12) 2014; 65 Wendler, Marten, Pechlivanoglou, Nayeri, Paschereit (bib31) 2016; vol. 9 Kaldellis, Zafirakis (bib4) 2011; 36 Lei, Zhou, Bao, Chen, Ma, Han (bib22) 2017; 127 Archer, Jacobson (bib3) 2005; 110 Bonnici, Agius, Sant, Micallef (bib44) 2011 Sant, Bonnici, Farrugia, Micallef (bib18) 2015; 18 Lennie, Marten, Pechlivanoglou, Nayeri, Paschereit (bib32) 2016; 753 Birjandi, Bibeau (bib39) 2016; 127 Jonkman (bib25) 2010 Sun, Huang, Wu (bib2) 2012; 41 Gupta, Leishman (bib28) 2005 Tran, Kim (bib11) 2015; 142 Jonkman, Butterfield, Musial, Scott (bib24) 2009 Farrugia, Sant, Micallef (bib20) 2016; 86 Av (bib35) 2003 Sebastian (bib8) 2012 Tran, Kim (bib17) 2016; 90 de Vaal, Hansen, Moan (bib26) 2014; 17 Simms, Schreck, Hand (bib37) 2001 Wu, Ding, He, Zhao (bib10) 2015 Butterfield, Musial, Jonkman (bib1) 2007 Schepers (bib13) 2012 Tran, Kim, Nguyen (bib16) 2015; 137 Sebastian, Lackner (bib9) 2012; 5 Qiu, Wang, Kang, Zhao, Liang (bib36) 2014; 70 Mostafa, Murai, Nishimura, Fujita, Nihei (bib7) 2012; 9 Bayati, Belloli, Giappino (bib40) 2012 Okulov, van Kuik (bib41) 2012; 15 Mostafa (10.1016/j.energy.2017.11.090_bib7) 2012; 9 Salehyar (10.1016/j.energy.2017.11.090_bib38) 2015; 78 Kaldellis (10.1016/j.energy.2017.11.090_bib4) 2011; 36 Tran (10.1016/j.energy.2017.11.090_bib11) 2015; 142 Gupta (10.1016/j.energy.2017.11.090_bib28) 2005 Micallef (10.1016/j.energy.2017.11.090_bib15) 2015; 83 Bonnici (10.1016/j.energy.2017.11.090_bib44) 2011 Simms (10.1016/j.energy.2017.11.090_bib37) 2001 Wu (10.1016/j.energy.2017.11.090_bib10) 2015 Jonkman (10.1016/j.energy.2017.11.090_bib25) 2010 Schepers (10.1016/j.energy.2017.11.090_bib13) 2012 Khosravi (10.1016/j.energy.2017.11.090_bib21) 2015 Jonkman (10.1016/j.energy.2017.11.090_bib24) 2009 de Vaal (10.1016/j.energy.2017.11.090_bib26) 2014; 17 Farrugia (10.1016/j.energy.2017.11.090_bib19) 2014; 70 Goupee (10.1016/j.energy.2017.11.090_bib5) 2014; 136 Sant (10.1016/j.energy.2017.11.090_bib18) 2015; 18 Farrugia (10.1016/j.energy.2017.11.090_bib20) 2016; 86 Okulov (10.1016/j.energy.2017.11.090_bib42) 2008; 11 Burton (10.1016/j.energy.2017.11.090_bib23) 2001 Tran (10.1016/j.energy.2017.11.090_bib17) 2016; 90 Marten (10.1016/j.energy.2017.11.090_bib29) 2013 Sun (10.1016/j.energy.2017.11.090_bib2) 2012; 41 Jeon (10.1016/j.energy.2017.11.090_bib12) 2014; 65 Lei (10.1016/j.energy.2017.11.090_bib22) 2017; 127 Bagai (10.1016/j.energy.2017.11.090_bib33) 1995; 32 Av (10.1016/j.energy.2017.11.090_bib35) 2003 Sant (10.1016/j.energy.2017.11.090_bib27) 2007 Bayati (10.1016/j.energy.2017.11.090_bib40) 2012 Sant (10.1016/j.energy.2017.11.090_bib14) 2016; 138 Kjellin (10.1016/j.energy.2017.11.090_bib43) 2011; 36 Zambrano (10.1016/j.energy.2017.11.090_bib6) 2006 Marten (10.1016/j.energy.2017.11.090_bib30) 2015; 138 Xu (10.1016/j.energy.2017.11.090_bib34) 2015; 373 Birjandi (10.1016/j.energy.2017.11.090_bib39) 2016; 127 Wendler (10.1016/j.energy.2017.11.090_bib31) 2016; vol. 9 Sebastian (10.1016/j.energy.2017.11.090_bib9) 2012; 5 Okulov (10.1016/j.energy.2017.11.090_bib41) 2012; 15 Qiu (10.1016/j.energy.2017.11.090_bib36) 2014; 70 Lennie (10.1016/j.energy.2017.11.090_bib32) 2016; 753 Sebastian (10.1016/j.energy.2017.11.090_bib8) 2012 Butterfield (10.1016/j.energy.2017.11.090_bib1) 2007 Archer (10.1016/j.energy.2017.11.090_bib3) 2005; 110 Tran (10.1016/j.energy.2017.11.090_bib16) 2015; 137 |
References_xml | – volume: 9 start-page: 67 year: 2012 end-page: 79 ident: bib7 article-title: Study of motion of spar-type floating wind turbines in waves with effect of gyro moment at inclination publication-title: J Nav Archit Mar Eng – volume: 142 start-page: 65 year: 2015 end-page: 81 ident: bib11 article-title: The platform pitching motion of floating offshore wind turbine: a preliminary unsteady aerodynamic analysis publication-title: J Wind Eng Ind. Aerodyn. – start-page: 1 year: 2015 end-page: 18 ident: bib21 article-title: An experimental investigation on the performance and the wake characteristics of a wind turbine subjected to surge motion publication-title: 33rd wind energy symposium – volume: 17 start-page: 105 year: 2014 end-page: 121 ident: bib26 article-title: Effect of wind turbine surge motion on rotor thrust and induced velocity publication-title: Wind Energy – start-page: 45 year: 2012 end-page: 53 ident: bib40 article-title: An experimental test rig to simulate hydrodynamic forcing on floating offshore wind turbine platforms publication-title: Offshore wind and other marine renewable energy in mediterranean and european seas. Rome, Italy – volume: 86 start-page: 770 year: 2016 end-page: 784 ident: bib20 article-title: A study on the aerodynamics of a floating wind turbine rotor publication-title: Renew Energy – year: 2001 ident: bib23 article-title: Wind energy handbook – volume: 70 start-page: 24 year: 2014 end-page: 30 ident: bib19 article-title: Investigating the aerodynamic performance of a model offshore floating wind turbine publication-title: Renew Energy – volume: 32 start-page: 1276 year: 1995 end-page: 1285 ident: bib33 article-title: Rotor free-wake modeling using a pseudo implicit relaxation algorithm publication-title: J Aircr – volume: vol. 9 start-page: 641 year: 2016 end-page: 651 ident: bib31 article-title: An unsteady aerodynamics model for lifting line free vortex wake simulations of HQWT and VAWT in QBlade publication-title: Proceedings of the ASME turbo expo: turbine technical conference and exposition – volume: 65 start-page: 207 year: 2014 end-page: 212 ident: bib12 article-title: Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method publication-title: Renew Energy – volume: 753 year: 2016 ident: bib32 article-title: Modern methods for investigating the stability of a pitching floating platform wind turbine publication-title: J Phys Conf Ser – volume: 36 start-page: 1887 year: 2011 end-page: 1901 ident: bib4 article-title: The wind energy (r)evolution: a short review of a long history publication-title: Renew Energy – volume: 137 year: 2015 ident: bib16 article-title: Aerodynamic interference effect of huge wind turbine blades with periodic surge motions using overset grid-based computational fluid dynamics approach publication-title: J Sol Energy Eng – year: 2003 ident: bib35 article-title: Development of a wind turbine aerodynamics simulation module: ECN-C–03–079 – year: 2013 ident: bib29 article-title: QBlade guidelines v0. 6 – volume: 138 year: 2015 ident: bib30 article-title: Implementation, optimization, and validation of a nonlinear lifting line-free vortex wake module within the wind turbine simulation code QBlade publication-title: J Eng Gas Turbines Power – volume: 136 year: 2014 ident: bib5 article-title: Experimental comparison of three floating wind turbine concepts publication-title: J Offshore Mech Arct Eng – volume: 138 year: 2016 ident: bib14 article-title: Comparing three aerodynamic models for predicting the thrust and power characteristics of a yawed floating wind turbine rotor publication-title: J Sol Energy Eng – volume: 70 start-page: 93 year: 2014 end-page: 106 ident: bib36 article-title: Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method publication-title: Renew Energy – volume: 36 start-page: 3050 year: 2011 end-page: 3053 ident: bib43 article-title: Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine publication-title: Renew Energy – volume: 78 start-page: 119 year: 2015 end-page: 127 ident: bib38 article-title: Aerodynamic dissipation effects on the rotating blades of floating wind turbines publication-title: Renew Energy – volume: 11 start-page: 415 year: 2008 end-page: 426 ident: bib42 article-title: Refined Betz limit for rotors with a finite number of blades publication-title: Wind Energy – volume: 127 start-page: 1 year: 2017 end-page: 17 ident: bib22 article-title: Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion publication-title: Energy – year: 2012 ident: bib8 article-title: The aerodynamics and near wake of an offshore floating horizontal axis wind turbine – volume: 18 start-page: 811 year: 2015 end-page: 834 ident: bib18 article-title: Measurements and modelling of the power performance of a model floating wind turbine under controlled conditions publication-title: Wind Energy – year: 2005 ident: bib28 article-title: Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines publication-title: 43rd AIAA aerospace sciences meeting and exhibit – year: 2007 ident: bib1 article-title: Engineering challenges for floating offshore wind turbines. Conference Paper NREL/CP-500–387760 publication-title: Natl Renew Energy Lab Gold Co U. S. A – volume: 5 start-page: 968 year: 2012 end-page: 1000 ident: bib9 article-title: Analysis of the induction and wake evolution of an offshore floating wind turbine publication-title: Energies – year: 2012 ident: bib13 article-title: Engineering models in wind Energy aerodynamics-development, implementation and analysis using dedicated aerodynamic measurements – volume: 83 start-page: 737 year: 2015 end-page: 748 ident: bib15 article-title: Loading effects on floating offshore horizontal axis wind turbines in surge motion publication-title: Renew Energy – volume: 15 start-page: 335 year: 2012 end-page: 344 ident: bib41 article-title: The Betz-Joukowsky limit: on the contribution to rotor aerodynamics by the British, German and Russian scientific schools publication-title: Wind Energy – volume: 110 year: 2005 ident: bib3 article-title: Evaluation of global wind power publication-title: J Geophys Res – year: 2010 ident: bib25 article-title: Definition of the floating system for phase IV of OC3. Technical Report NREL/TP-500–47535 – year: 2015 ident: bib10 article-title: Study on unsteady aerodynamic performance of floating offshore wind turbine by CFD method publication-title: The 25th international ocean and polar engineering conference – volume: 41 start-page: 298 year: 2012 end-page: 312 ident: bib2 article-title: The current state of offshore wind energy technology development publication-title: Energy – volume: 90 start-page: 204 year: 2016 end-page: 228 ident: bib17 article-title: A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion publication-title: Renew Energy – volume: 373 year: 2015 ident: bib34 article-title: Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions publication-title: Philos Trans A – year: 2001 ident: bib37 article-title: NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements – year: 2007 ident: bib27 article-title: Improving BEM-based aerodynamic models in wind turbine design codes – year: 2009 ident: bib24 article-title: Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500–38060 – volume: 127 start-page: 325 year: 2016 end-page: 334 ident: bib39 article-title: Frequency analysis of the power output for a vertical axis marine turbine operating in the wake publication-title: Ocean Eng – year: 2011 ident: bib44 article-title: Motion and performance analysis of an experimental model floating wind turbine publication-title: EWEA Offshore Conf – start-page: 629 year: 2006 end-page: 634 ident: bib6 article-title: Dynamic modeling of deepwater offshore wind turbine structures in Gulf of Mexico storm conditions publication-title: 25th international conference on offshore mechanics and arctic engineering – volume: 70 start-page: 93 year: 2014 ident: 10.1016/j.energy.2017.11.090_bib36 article-title: Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method publication-title: Renew Energy doi: 10.1016/j.renene.2014.03.071 – year: 2011 ident: 10.1016/j.energy.2017.11.090_bib44 article-title: Motion and performance analysis of an experimental model floating wind turbine publication-title: EWEA Offshore Conf – volume: 32 start-page: 1276 issue: 6 year: 1995 ident: 10.1016/j.energy.2017.11.090_bib33 article-title: Rotor free-wake modeling using a pseudo implicit relaxation algorithm publication-title: J Aircr doi: 10.2514/3.46875 – volume: 36 start-page: 1887 issue: 7 year: 2011 ident: 10.1016/j.energy.2017.11.090_bib4 article-title: The wind energy (r)evolution: a short review of a long history publication-title: Renew Energy doi: 10.1016/j.renene.2011.01.002 – volume: 65 start-page: 207 year: 2014 ident: 10.1016/j.energy.2017.11.090_bib12 article-title: Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method publication-title: Renew Energy doi: 10.1016/j.renene.2013.09.009 – year: 2015 ident: 10.1016/j.energy.2017.11.090_bib10 article-title: Study on unsteady aerodynamic performance of floating offshore wind turbine by CFD method – volume: 70 start-page: 24 year: 2014 ident: 10.1016/j.energy.2017.11.090_bib19 article-title: Investigating the aerodynamic performance of a model offshore floating wind turbine publication-title: Renew Energy doi: 10.1016/j.renene.2013.12.043 – volume: 41 start-page: 298 issue: 1 year: 2012 ident: 10.1016/j.energy.2017.11.090_bib2 article-title: The current state of offshore wind energy technology development publication-title: Energy doi: 10.1016/j.energy.2012.02.054 – volume: 9 start-page: 67 issue: 1 year: 2012 ident: 10.1016/j.energy.2017.11.090_bib7 article-title: Study of motion of spar-type floating wind turbines in waves with effect of gyro moment at inclination publication-title: J Nav Archit Mar Eng doi: 10.3329/jname.v9i1.10732 – volume: 15 start-page: 335 issue: 2 year: 2012 ident: 10.1016/j.energy.2017.11.090_bib41 article-title: The Betz-Joukowsky limit: on the contribution to rotor aerodynamics by the British, German and Russian scientific schools publication-title: Wind Energy doi: 10.1002/we.464 – start-page: 629 year: 2006 ident: 10.1016/j.energy.2017.11.090_bib6 article-title: Dynamic modeling of deepwater offshore wind turbine structures in Gulf of Mexico storm conditions – year: 2001 ident: 10.1016/j.energy.2017.11.090_bib23 – volume: 18 start-page: 811 issue: 5 year: 2015 ident: 10.1016/j.energy.2017.11.090_bib18 article-title: Measurements and modelling of the power performance of a model floating wind turbine under controlled conditions publication-title: Wind Energy doi: 10.1002/we.1730 – year: 2001 ident: 10.1016/j.energy.2017.11.090_bib37 – volume: 110 issue: D12 year: 2005 ident: 10.1016/j.energy.2017.11.090_bib3 article-title: Evaluation of global wind power publication-title: J Geophys Res doi: 10.1029/2004JD005462 – volume: 11 start-page: 415 year: 2008 ident: 10.1016/j.energy.2017.11.090_bib42 article-title: Refined Betz limit for rotors with a finite number of blades publication-title: Wind Energy doi: 10.1002/we.274 – volume: 373 year: 2015 ident: 10.1016/j.energy.2017.11.090_bib34 article-title: Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions publication-title: Philos Trans A doi: 10.1098/rsta.2014.0080 – volume: 127 start-page: 1 year: 2017 ident: 10.1016/j.energy.2017.11.090_bib22 article-title: Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion publication-title: Energy doi: 10.1016/j.energy.2017.03.087 – start-page: 1 year: 2015 ident: 10.1016/j.energy.2017.11.090_bib21 article-title: An experimental investigation on the performance and the wake characteristics of a wind turbine subjected to surge motion – start-page: 45 year: 2012 ident: 10.1016/j.energy.2017.11.090_bib40 article-title: An experimental test rig to simulate hydrodynamic forcing on floating offshore wind turbine platforms – volume: 5 start-page: 968 issue: 4 year: 2012 ident: 10.1016/j.energy.2017.11.090_bib9 article-title: Analysis of the induction and wake evolution of an offshore floating wind turbine publication-title: Energies doi: 10.3390/en5040968 – volume: 127 start-page: 325 year: 2016 ident: 10.1016/j.energy.2017.11.090_bib39 article-title: Frequency analysis of the power output for a vertical axis marine turbine operating in the wake publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2016.09.045 – volume: 36 start-page: 3050 issue: 11 year: 2011 ident: 10.1016/j.energy.2017.11.090_bib43 article-title: Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine publication-title: Renew Energy doi: 10.1016/j.renene.2011.03.031 – year: 2007 ident: 10.1016/j.energy.2017.11.090_bib1 article-title: Engineering challenges for floating offshore wind turbines. Conference Paper NREL/CP-500–387760 publication-title: Natl Renew Energy Lab Gold Co U. S. A – year: 2013 ident: 10.1016/j.energy.2017.11.090_bib29 – volume: vol. 9 start-page: 641 year: 2016 ident: 10.1016/j.energy.2017.11.090_bib31 article-title: An unsteady aerodynamics model for lifting line free vortex wake simulations of HQWT and VAWT in QBlade – year: 2005 ident: 10.1016/j.energy.2017.11.090_bib28 article-title: Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines – year: 2003 ident: 10.1016/j.energy.2017.11.090_bib35 – volume: 138 issue: 3 year: 2016 ident: 10.1016/j.energy.2017.11.090_bib14 article-title: Comparing three aerodynamic models for predicting the thrust and power characteristics of a yawed floating wind turbine rotor publication-title: J Sol Energy Eng doi: 10.1115/1.4032684 – volume: 86 start-page: 770 year: 2016 ident: 10.1016/j.energy.2017.11.090_bib20 article-title: A study on the aerodynamics of a floating wind turbine rotor publication-title: Renew Energy doi: 10.1016/j.renene.2015.08.063 – year: 2010 ident: 10.1016/j.energy.2017.11.090_bib25 – volume: 78 start-page: 119 year: 2015 ident: 10.1016/j.energy.2017.11.090_bib38 article-title: Aerodynamic dissipation effects on the rotating blades of floating wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2015.01.013 – volume: 90 start-page: 204 year: 2016 ident: 10.1016/j.energy.2017.11.090_bib17 article-title: A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion publication-title: Renew Energy doi: 10.1016/j.renene.2015.12.013 – year: 2007 ident: 10.1016/j.energy.2017.11.090_bib27 – volume: 83 start-page: 737 year: 2015 ident: 10.1016/j.energy.2017.11.090_bib15 article-title: Loading effects on floating offshore horizontal axis wind turbines in surge motion publication-title: Renew Energy doi: 10.1016/j.renene.2015.05.016 – volume: 138 issue: 7 year: 2015 ident: 10.1016/j.energy.2017.11.090_bib30 article-title: Implementation, optimization, and validation of a nonlinear lifting line-free vortex wake module within the wind turbine simulation code QBlade publication-title: J Eng Gas Turbines Power doi: 10.1115/1.4031872 – year: 2012 ident: 10.1016/j.energy.2017.11.090_bib8 – year: 2012 ident: 10.1016/j.energy.2017.11.090_bib13 – volume: 136 issue: 2 year: 2014 ident: 10.1016/j.energy.2017.11.090_bib5 article-title: Experimental comparison of three floating wind turbine concepts publication-title: J Offshore Mech Arct Eng doi: 10.1115/1.4025804 – year: 2009 ident: 10.1016/j.energy.2017.11.090_bib24 – volume: 17 start-page: 105 issue: 1 year: 2014 ident: 10.1016/j.energy.2017.11.090_bib26 article-title: Effect of wind turbine surge motion on rotor thrust and induced velocity publication-title: Wind Energy doi: 10.1002/we.1562 – volume: 142 start-page: 65 year: 2015 ident: 10.1016/j.energy.2017.11.090_bib11 article-title: The platform pitching motion of floating offshore wind turbine: a preliminary unsteady aerodynamic analysis publication-title: J Wind Eng Ind. Aerodyn. doi: 10.1016/j.jweia.2015.03.009 – volume: 753 year: 2016 ident: 10.1016/j.energy.2017.11.090_bib32 article-title: Modern methods for investigating the stability of a pitching floating platform wind turbine publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/753/8/082012 – volume: 137 issue: 6 year: 2015 ident: 10.1016/j.energy.2017.11.090_bib16 article-title: Aerodynamic interference effect of huge wind turbine blades with periodic surge motions using overset grid-based computational fluid dynamics approach publication-title: J Sol Energy Eng |
SSID | ssj0005899 |
Score | 2.5221796 |
Snippet | The power and thrust characteristics of an offshore floating wind turbine (OFWT) not only depend on the tip speed ratio λ and the blade pitch angle θ, but also... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2054 |
SubjectTerms | blades Free vortex method Offshore drilling rigs Offshore floating wind turbine Pitch (inclination) Power Surge Thrust Tip speed Turbines Vortices water waves Wind power Wind turbines |
Title | Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine |
URI | https://dx.doi.org/10.1016/j.energy.2017.11.090 https://www.proquest.com/docview/2012840286 https://www.proquest.com/docview/2020862284 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsNAcJB60Iv4KlarrOB1bZpsNslRRKmKXlTwFnazu1opSWlavPntzuThC6Eg5LLZGRIy7-w8AE6C0NLhVMyF0YYL6UVchdrxJLCBUkbGvqFfA7d3cvQorp_CpxU4b2thKK2y0f21Tq-0dXNn0HzNwXQ8Htyj7kV_Q6BPjWwkYio0FyIiLj99_5bmEVczJAmYE3RbPlfleNmqvo4SvKJT6uVJmvlv8_RLUVfW53ITNhq3kZ3Vb7YFKzbfhrW2qrjchu7FV8UaAjYiW-7A81U7hqRkhWMllUGzenYPwwv9PzalSWlM5QZXVILBsp9dnAlPIbRz5Usxs8xNCkXZ0uxtTDiLGUbXdhceLy8ezke8ma7AMxEEc-6HRmrthUZkNiLFKeLMaOVFfqYSlHIdDjXGJ7EUaMI951w8RGPnEiMSjU6WDLrQyYvc7gHz_cT5YZxJg8Y-MRhUe0GihRQ6EVZJrwdB-1HTrGk9ThMwJmmbY_aa1qRIiRQYlaRIih7wT6xp3XpjCXzU0iv9wUIpWoclmP2WvGkjwiXto-lG90v24PhzG4WPTlRUbosFwfgUEiLc_r8ffgDrtKIUmWHYh858trCH6OjM9VHFyUewenZ1M7r7AG36_bQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcigXBIWKhQJGgqO7WcdxkgMHBK126ceFVurN2LENi6pktdlVxYU_xR9kJokLRUiVkCrlknicWB7nzZtkxgPwOs08_ZwquHTWcamSnJvMBl6mPjXGqUI4-jRwfKKmZ_LjeXa-AT9jLgyFVQ7Y32N6h9bDlfEwm-PFfD7-hNiLfEMip8ZlJIsYWXnov1-i39a-nX1AJb8R4mD_9P2UD6UFeCXTdMVF5pS1SeZk5XNCDVlUzpokF5UpcYnbbGKRnBdKov1KQgjFBJE-lE6WFhmGSvG-d-CuRLigsgl7P_6IKym6opU0Ok7Di_l6XVCZ7xL6KKIs36PNQ8kU_Nse_mUZOnN38ADuDzyVveun4iFs-HobtmIac7sNO_u_U-RQcMCI9hF8mcW6Jy1rAmsp75r1xYIYHkg42YJKszFTOzyjnA9WXd82mvoZlA6h_dosPQsXjaHwbHY5pz7rJbrz_jGc3cqc78Bm3dT-CTAhyiCyolIO2UXp0ItP0tJKJW0pvVHJCNI4qboa9jqnkhsXOga1fdO9KjSpAt0gjaoYAb_qtej3-rhBPo_60tfWrEZzdEPP3ahePWBGS-3IFZDvqRG8umrGt51-4ZjaN2uSEeSDotzT_374S9ianh4f6aPZyeEzuEctFJ8zyXZhc7Vc--fIslb2RbeqGXy-7dfoF_0ON3c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+of+surge+motion+on+the+power+and+thrust+characteristics+of+an+offshore+floating+wind+turbine&rft.jtitle=Energy+%28Oxford%29&rft.au=Wen%2C+Binrong&rft.au=Tian%2C+Xinliang&rft.au=Dong%2C+Xingjian&rft.au=Peng%2C+Zhike&rft.date=2017-12-15&rft.issn=0360-5442&rft.volume=141+p.2054-2068&rft.spage=2054&rft.epage=2068&rft_id=info:doi/10.1016%2Fj.energy.2017.11.090&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |