Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine

The power and thrust characteristics of an offshore floating wind turbine (OFWT) not only depend on the tip speed ratio λ and the blade pitch angle θ, but also closely relate to the platform motions. In this paper, the influences of the platform surge motion on the behaviors of the power output and...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 141; pp. 2054 - 2068
Main Authors Wen, Binrong, Tian, Xinliang, Dong, Xingjian, Peng, Zhike, Zhang, Wenming
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.12.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The power and thrust characteristics of an offshore floating wind turbine (OFWT) not only depend on the tip speed ratio λ and the blade pitch angle θ, but also closely relate to the platform motions. In this paper, the influences of the platform surge motion on the behaviors of the power output and rotor thrust of a typical Spar-type OFWT are investigated using Free Vortex Method (FVM). The influences of the surge frequency and amplitude are analyzed separately at first. Afterwards, a reduced frequency k is proposed to combine the influences of surge frequency and amplitude. The power and thrust curves are derived as functions of the tip speed ratio λ and reduced frequency k with blade pitch angle θ constant at zero. Results show that when the reduced frequency increases, mean power output decreases at low tip speed ratios but increases at high tip speed ratios; mean thrust decreases slightly for all tip speed ratios except λ = 12. Power and thrust variations increase as tip speed ratio or reduced frequency increases. Power and thrust coefficients decline with an increasing reduced frequency. •A modification is made to FVM to maintain computational accuracy and reduce cost.•Fluctuation in angle of attack dominates in power and thrust fluctuations.•The reduced frequency k is introduced as an independent variable of power and thrust.•Effect of k on mean power/thrust varies with the tip speed ratio.•As k or tip speed ratio increases, the power and thrust variations increase.
AbstractList The power and thrust characteristics of an offshore floating wind turbine (OFWT) not only depend on the tip speed ratio λ and the blade pitch angle θ, but also closely relate to the platform motions. In this paper, the influences of the platform surge motion on the behaviors of the power output and rotor thrust of a typical Spar-type OFWT are investigated using Free Vortex Method (FVM). The influences of the surge frequency and amplitude are analyzed separately at first. Afterwards, a reduced frequency k is proposed to combine the influences of surge frequency and amplitude. The power and thrust curves are derived as functions of the tip speed ratio λ and reduced frequency k with blade pitch angle θ constant at zero. Results show that when the reduced frequency increases, mean power output decreases at low tip speed ratios but increases at high tip speed ratios; mean thrust decreases slightly for all tip speed ratios except λ = 12. Power and thrust variations increase as tip speed ratio or reduced frequency increases. Power and thrust coefficients decline with an increasing reduced frequency.
The power and thrust characteristics of an offshore floating wind turbine (OFWT) not only depend on the tip speed ratio λ and the blade pitch angle θ, but also closely relate to the platform motions. In this paper, the influences of the platform surge motion on the behaviors of the power output and rotor thrust of a typical Spar-type OFWT are investigated using Free Vortex Method (FVM). The influences of the surge frequency and amplitude are analyzed separately at first. Afterwards, a reduced frequency κ is proposed to combine the influences of surge frequency and amplitude. The power and thrust curves are derived as functions of the tip speed ratio λ and reduced frequency κ with blade pitch angle θ constant at zero. Results show that when the reduced frequency increases, mean power output decreases at low tip speed ratios but increases at high tip speed ratios; mean thrust decreases slightly for all tip speed ratios except λ = 12. Power and thrust variations increase as tip speed ratio or reduced frequency increases. Power and thrust coefficients decline with an increasing reduced frequency.
The power and thrust characteristics of an offshore floating wind turbine (OFWT) not only depend on the tip speed ratio λ and the blade pitch angle θ, but also closely relate to the platform motions. In this paper, the influences of the platform surge motion on the behaviors of the power output and rotor thrust of a typical Spar-type OFWT are investigated using Free Vortex Method (FVM). The influences of the surge frequency and amplitude are analyzed separately at first. Afterwards, a reduced frequency k is proposed to combine the influences of surge frequency and amplitude. The power and thrust curves are derived as functions of the tip speed ratio λ and reduced frequency k with blade pitch angle θ constant at zero. Results show that when the reduced frequency increases, mean power output decreases at low tip speed ratios but increases at high tip speed ratios; mean thrust decreases slightly for all tip speed ratios except λ = 12. Power and thrust variations increase as tip speed ratio or reduced frequency increases. Power and thrust coefficients decline with an increasing reduced frequency. •A modification is made to FVM to maintain computational accuracy and reduce cost.•Fluctuation in angle of attack dominates in power and thrust fluctuations.•The reduced frequency k is introduced as an independent variable of power and thrust.•Effect of k on mean power/thrust varies with the tip speed ratio.•As k or tip speed ratio increases, the power and thrust variations increase.
Author Dong, Xingjian
Zhang, Wenming
Wen, Binrong
Tian, Xinliang
Peng, Zhike
Author_xml – sequence: 1
  givenname: Binrong
  surname: Wen
  fullname: Wen, Binrong
  email: wenbinrong@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 2
  givenname: Xinliang
  surname: Tian
  fullname: Tian, Xinliang
  email: tianxinliang@sjtu.edu.cn
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 3
  givenname: Xingjian
  orcidid: 0000-0003-1246-7604
  surname: Dong
  fullname: Dong, Xingjian
  email: donxij@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 4
  givenname: Zhike
  surname: Peng
  fullname: Peng, Zhike
  email: z.peng@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 5
  givenname: Wenming
  surname: Zhang
  fullname: Zhang, Wenming
  email: wenmingz@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
BookMark eNqFkcFq3DAURUVJoZO0f9CFoJtu7DzJsmx3UQghaQKBbtq1kOWnGQ0eaSrJCfn7yp2uskiEQAjOuTzePSdnPngk5DODmgGTl_saPcbtc82BdTVjNQzwjmxY3zWV7Pr2jGygkVC1QvAP5DylPQC0_TBsyPbe23lBbzDRYGla4hbpIWQXPC0375AewxNGqv1UfnFJmZqdjtpkjC5lZ_55utDWpl2ISO0cdHZ-S5_c6ixxdB4_kvdWzwk__X8vyO_bm1_Xd9XDzx_311cPlRFNkyveTnIcoZ2EwY6VI3ozjRo6bvTAeTu2bOQN9FJIycBa27NGcjtMYhiZaGRzQb6eco8x_FkwZXVwyeA8a49hSYoDLzbnvSjolxfoPizRl-kKxQoBvF8Dv50oE0NKEa0yLut1PzlqNysGau1A7dWpg9XtFGOqdFBk8UI-RnfQ8fkt7ftJw7KpR4dRJePWjiYX0WQ1Bfd6wF_MbaUu
CitedBy_id crossref_primary_10_1016_j_enconman_2024_119188
crossref_primary_10_1016_j_renene_2018_12_034
crossref_primary_10_1016_j_renene_2019_10_147
crossref_primary_10_1016_j_oceaneng_2024_117445
crossref_primary_10_3390_jmse9070699
crossref_primary_10_3390_en15020579
crossref_primary_10_1016_j_renene_2025_122861
crossref_primary_10_1016_j_energy_2023_128252
crossref_primary_10_1016_j_renene_2021_11_009
crossref_primary_10_1016_j_seta_2024_103931
crossref_primary_10_1016_j_energy_2023_129619
crossref_primary_10_3390_en17174269
crossref_primary_10_3390_jmse9111215
crossref_primary_10_1016_j_apenergy_2024_124767
crossref_primary_10_1016_j_marstruc_2022_103172
crossref_primary_10_3390_jmse12122205
crossref_primary_10_1016_j_renene_2021_10_003
crossref_primary_10_1017_jfm_2023_454
crossref_primary_10_1016_j_energy_2023_129538
crossref_primary_10_1155_2022_8297972
crossref_primary_10_1016_j_renene_2023_119255
crossref_primary_10_1016_j_rser_2022_113144
crossref_primary_10_4271_14_13_02_0010
crossref_primary_10_1007_s13344_020_0010_z
crossref_primary_10_1016_j_enconman_2022_116560
crossref_primary_10_1016_j_oceaneng_2021_109070
crossref_primary_10_1088_1742_6596_2265_4_042016
crossref_primary_10_1016_j_apenergy_2020_115459
crossref_primary_10_1016_j_oceaneng_2023_115556
crossref_primary_10_1016_j_marstruc_2020_102729
crossref_primary_10_1016_j_oceaneng_2023_115351
crossref_primary_10_3390_su12010246
crossref_primary_10_1016_j_oceaneng_2020_107909
crossref_primary_10_1016_j_apenergy_2022_118608
crossref_primary_10_3390_su152416878
crossref_primary_10_1016_j_energy_2024_130769
crossref_primary_10_1016_j_renene_2021_12_060
crossref_primary_10_3390_en16020710
crossref_primary_10_1063_5_0161759
crossref_primary_10_5194_wes_9_1827_2024
crossref_primary_10_1016_j_marstruc_2022_103300
crossref_primary_10_1063_5_0076029
crossref_primary_10_1002_we_2215
crossref_primary_10_1016_j_energy_2018_11_082
crossref_primary_10_1016_j_oceaneng_2023_115629
crossref_primary_10_1016_j_renene_2020_02_030
crossref_primary_10_1016_j_renene_2020_04_071
crossref_primary_10_1002_we_2608
crossref_primary_10_1088_1742_6596_2626_1_012064
crossref_primary_10_1016_j_jweia_2020_104390
crossref_primary_10_1016_j_enconman_2024_119402
crossref_primary_10_5194_wes_7_469_2022
crossref_primary_10_5194_wes_9_665_2024
crossref_primary_10_1016_j_oceaneng_2019_106712
crossref_primary_10_1016_j_renene_2020_03_105
crossref_primary_10_1016_j_energy_2024_131845
crossref_primary_10_1007_s12206_023_0821_y
crossref_primary_10_1016_j_rser_2022_112525
crossref_primary_10_1088_1742_6596_1934_1_012009
crossref_primary_10_1016_j_renene_2018_12_096
crossref_primary_10_1016_j_energy_2020_119519
crossref_primary_10_1063_5_0092267
crossref_primary_10_1002_we_2482
crossref_primary_10_1016_j_enconman_2020_113268
crossref_primary_10_1016_j_energy_2023_128788
crossref_primary_10_1007_s40722_022_00227_0
crossref_primary_10_1016_j_energy_2018_04_140
crossref_primary_10_1016_j_oceaneng_2020_107061
crossref_primary_10_1016_j_oceaneng_2023_115579
crossref_primary_10_1016_j_renene_2022_10_034
crossref_primary_10_1016_j_renene_2023_04_144
crossref_primary_10_1061_PPSCFX_SCENG_1486
crossref_primary_10_1063_5_0079843
crossref_primary_10_1016_j_oceaneng_2023_115974
crossref_primary_10_1080_19942060_2023_2301524
crossref_primary_10_3390_jmse7040115
crossref_primary_10_1080_19942060_2023_2260470
crossref_primary_10_1088_1742_6596_1618_5_052045
crossref_primary_10_1016_j_enconman_2023_116957
crossref_primary_10_3390_jmse12030392
crossref_primary_10_1002_we_2670
crossref_primary_10_1016_j_oceaneng_2024_118061
crossref_primary_10_1016_j_oceaneng_2024_119303
crossref_primary_10_1063_5_0095420
crossref_primary_10_1007_s11831_019_09316_0
crossref_primary_10_1016_j_oceaneng_2024_118935
crossref_primary_10_1016_j_renene_2019_06_116
Cites_doi 10.1016/j.renene.2014.03.071
10.2514/3.46875
10.1016/j.renene.2011.01.002
10.1016/j.renene.2013.09.009
10.1016/j.renene.2013.12.043
10.1016/j.energy.2012.02.054
10.3329/jname.v9i1.10732
10.1002/we.464
10.1002/we.1730
10.1029/2004JD005462
10.1002/we.274
10.1098/rsta.2014.0080
10.1016/j.energy.2017.03.087
10.3390/en5040968
10.1016/j.oceaneng.2016.09.045
10.1016/j.renene.2011.03.031
10.1115/1.4032684
10.1016/j.renene.2015.08.063
10.1016/j.renene.2015.01.013
10.1016/j.renene.2015.12.013
10.1016/j.renene.2015.05.016
10.1115/1.4031872
10.1115/1.4025804
10.1002/we.1562
10.1016/j.jweia.2015.03.009
10.1088/1742-6596/753/8/082012
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Dec 15, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 15, 2017
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2017.11.090
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 2068
ExternalDocumentID 10_1016_j_energy_2017_11_090
S0360544217319485
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c433t-25d6bb05d4ce7111148cdba072ca9225b51b2308646610fff81362f9d49b14363
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Fri Jul 11 17:01:29 EDT 2025
Wed Aug 13 06:09:46 EDT 2025
Thu Apr 24 22:55:21 EDT 2025
Tue Jul 01 00:53:13 EDT 2025
Fri Feb 23 02:33:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Offshore floating wind turbine
Free vortex method
Surge
Power
Thrust
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-25d6bb05d4ce7111148cdba072ca9225b51b2308646610fff81362f9d49b14363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1246-7604
PQID 2012840286
PQPubID 2045484
PageCount 15
ParticipantIDs proquest_miscellaneous_2020862284
proquest_journals_2012840286
crossref_citationtrail_10_1016_j_energy_2017_11_090
crossref_primary_10_1016_j_energy_2017_11_090
elsevier_sciencedirect_doi_10_1016_j_energy_2017_11_090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-15
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Okulov, Sørensen (bib42) 2008; 11
Burton, Sharpe, Jenkins, Bossanyi (bib23) 2001
Sant (bib27) 2007
Goupee, Koo, Kimball, Lambrakos, Dagher (bib5) 2014; 136
Sant, Cuschieri (bib14) 2016; 138
Khosravi, Sarkar, Hu (bib21) 2015
Farrugia, Sant, Micallef (bib19) 2014; 70
Bagai, Leishman (bib33) 1995; 32
Salehyar, Zhu (bib38) 2015; 78
Marten, Lennie, Pechlivanoglou, Nayeri, Paschereit (bib30) 2015; 138
Zambrano, MacCready, Kiceniuk, Roddier, Cermelli (bib6) 2006
Marten, Wendler (bib29) 2013
Xu, Wang, Yuan, Cao (bib34) 2015; 373
Kjellin, Bülow, Eriksson, Deglaire, Leijon, Bernhoff (bib43) 2011; 36
Micallef, Sant (bib15) 2015; 83
Jeon, Lee, Lee (bib12) 2014; 65
Wendler, Marten, Pechlivanoglou, Nayeri, Paschereit (bib31) 2016; vol. 9
Kaldellis, Zafirakis (bib4) 2011; 36
Lei, Zhou, Bao, Chen, Ma, Han (bib22) 2017; 127
Archer, Jacobson (bib3) 2005; 110
Bonnici, Agius, Sant, Micallef (bib44) 2011
Sant, Bonnici, Farrugia, Micallef (bib18) 2015; 18
Lennie, Marten, Pechlivanoglou, Nayeri, Paschereit (bib32) 2016; 753
Birjandi, Bibeau (bib39) 2016; 127
Jonkman (bib25) 2010
Sun, Huang, Wu (bib2) 2012; 41
Gupta, Leishman (bib28) 2005
Tran, Kim (bib11) 2015; 142
Jonkman, Butterfield, Musial, Scott (bib24) 2009
Farrugia, Sant, Micallef (bib20) 2016; 86
Av (bib35) 2003
Sebastian (bib8) 2012
Tran, Kim (bib17) 2016; 90
de Vaal, Hansen, Moan (bib26) 2014; 17
Simms, Schreck, Hand (bib37) 2001
Wu, Ding, He, Zhao (bib10) 2015
Butterfield, Musial, Jonkman (bib1) 2007
Schepers (bib13) 2012
Tran, Kim, Nguyen (bib16) 2015; 137
Sebastian, Lackner (bib9) 2012; 5
Qiu, Wang, Kang, Zhao, Liang (bib36) 2014; 70
Mostafa, Murai, Nishimura, Fujita, Nihei (bib7) 2012; 9
Bayati, Belloli, Giappino (bib40) 2012
Okulov, van Kuik (bib41) 2012; 15
Mostafa (10.1016/j.energy.2017.11.090_bib7) 2012; 9
Salehyar (10.1016/j.energy.2017.11.090_bib38) 2015; 78
Kaldellis (10.1016/j.energy.2017.11.090_bib4) 2011; 36
Tran (10.1016/j.energy.2017.11.090_bib11) 2015; 142
Gupta (10.1016/j.energy.2017.11.090_bib28) 2005
Micallef (10.1016/j.energy.2017.11.090_bib15) 2015; 83
Bonnici (10.1016/j.energy.2017.11.090_bib44) 2011
Simms (10.1016/j.energy.2017.11.090_bib37) 2001
Wu (10.1016/j.energy.2017.11.090_bib10) 2015
Jonkman (10.1016/j.energy.2017.11.090_bib25) 2010
Schepers (10.1016/j.energy.2017.11.090_bib13) 2012
Khosravi (10.1016/j.energy.2017.11.090_bib21) 2015
Jonkman (10.1016/j.energy.2017.11.090_bib24) 2009
de Vaal (10.1016/j.energy.2017.11.090_bib26) 2014; 17
Farrugia (10.1016/j.energy.2017.11.090_bib19) 2014; 70
Goupee (10.1016/j.energy.2017.11.090_bib5) 2014; 136
Sant (10.1016/j.energy.2017.11.090_bib18) 2015; 18
Farrugia (10.1016/j.energy.2017.11.090_bib20) 2016; 86
Okulov (10.1016/j.energy.2017.11.090_bib42) 2008; 11
Burton (10.1016/j.energy.2017.11.090_bib23) 2001
Tran (10.1016/j.energy.2017.11.090_bib17) 2016; 90
Marten (10.1016/j.energy.2017.11.090_bib29) 2013
Sun (10.1016/j.energy.2017.11.090_bib2) 2012; 41
Jeon (10.1016/j.energy.2017.11.090_bib12) 2014; 65
Lei (10.1016/j.energy.2017.11.090_bib22) 2017; 127
Bagai (10.1016/j.energy.2017.11.090_bib33) 1995; 32
Av (10.1016/j.energy.2017.11.090_bib35) 2003
Sant (10.1016/j.energy.2017.11.090_bib27) 2007
Bayati (10.1016/j.energy.2017.11.090_bib40) 2012
Sant (10.1016/j.energy.2017.11.090_bib14) 2016; 138
Kjellin (10.1016/j.energy.2017.11.090_bib43) 2011; 36
Zambrano (10.1016/j.energy.2017.11.090_bib6) 2006
Marten (10.1016/j.energy.2017.11.090_bib30) 2015; 138
Xu (10.1016/j.energy.2017.11.090_bib34) 2015; 373
Birjandi (10.1016/j.energy.2017.11.090_bib39) 2016; 127
Wendler (10.1016/j.energy.2017.11.090_bib31) 2016; vol. 9
Sebastian (10.1016/j.energy.2017.11.090_bib9) 2012; 5
Okulov (10.1016/j.energy.2017.11.090_bib41) 2012; 15
Qiu (10.1016/j.energy.2017.11.090_bib36) 2014; 70
Lennie (10.1016/j.energy.2017.11.090_bib32) 2016; 753
Sebastian (10.1016/j.energy.2017.11.090_bib8) 2012
Butterfield (10.1016/j.energy.2017.11.090_bib1) 2007
Archer (10.1016/j.energy.2017.11.090_bib3) 2005; 110
Tran (10.1016/j.energy.2017.11.090_bib16) 2015; 137
References_xml – volume: 9
  start-page: 67
  year: 2012
  end-page: 79
  ident: bib7
  article-title: Study of motion of spar-type floating wind turbines in waves with effect of gyro moment at inclination
  publication-title: J Nav Archit Mar Eng
– volume: 142
  start-page: 65
  year: 2015
  end-page: 81
  ident: bib11
  article-title: The platform pitching motion of floating offshore wind turbine: a preliminary unsteady aerodynamic analysis
  publication-title: J Wind Eng Ind. Aerodyn.
– start-page: 1
  year: 2015
  end-page: 18
  ident: bib21
  article-title: An experimental investigation on the performance and the wake characteristics of a wind turbine subjected to surge motion
  publication-title: 33rd wind energy symposium
– volume: 17
  start-page: 105
  year: 2014
  end-page: 121
  ident: bib26
  article-title: Effect of wind turbine surge motion on rotor thrust and induced velocity
  publication-title: Wind Energy
– start-page: 45
  year: 2012
  end-page: 53
  ident: bib40
  article-title: An experimental test rig to simulate hydrodynamic forcing on floating offshore wind turbine platforms
  publication-title: Offshore wind and other marine renewable energy in mediterranean and european seas. Rome, Italy
– volume: 86
  start-page: 770
  year: 2016
  end-page: 784
  ident: bib20
  article-title: A study on the aerodynamics of a floating wind turbine rotor
  publication-title: Renew Energy
– year: 2001
  ident: bib23
  article-title: Wind energy handbook
– volume: 70
  start-page: 24
  year: 2014
  end-page: 30
  ident: bib19
  article-title: Investigating the aerodynamic performance of a model offshore floating wind turbine
  publication-title: Renew Energy
– volume: 32
  start-page: 1276
  year: 1995
  end-page: 1285
  ident: bib33
  article-title: Rotor free-wake modeling using a pseudo implicit relaxation algorithm
  publication-title: J Aircr
– volume: vol. 9
  start-page: 641
  year: 2016
  end-page: 651
  ident: bib31
  article-title: An unsteady aerodynamics model for lifting line free vortex wake simulations of HQWT and VAWT in QBlade
  publication-title: Proceedings of the ASME turbo expo: turbine technical conference and exposition
– volume: 65
  start-page: 207
  year: 2014
  end-page: 212
  ident: bib12
  article-title: Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method
  publication-title: Renew Energy
– volume: 753
  year: 2016
  ident: bib32
  article-title: Modern methods for investigating the stability of a pitching floating platform wind turbine
  publication-title: J Phys Conf Ser
– volume: 36
  start-page: 1887
  year: 2011
  end-page: 1901
  ident: bib4
  article-title: The wind energy (r)evolution: a short review of a long history
  publication-title: Renew Energy
– volume: 137
  year: 2015
  ident: bib16
  article-title: Aerodynamic interference effect of huge wind turbine blades with periodic surge motions using overset grid-based computational fluid dynamics approach
  publication-title: J Sol Energy Eng
– year: 2003
  ident: bib35
  article-title: Development of a wind turbine aerodynamics simulation module: ECN-C–03–079
– year: 2013
  ident: bib29
  article-title: QBlade guidelines v0. 6
– volume: 138
  year: 2015
  ident: bib30
  article-title: Implementation, optimization, and validation of a nonlinear lifting line-free vortex wake module within the wind turbine simulation code QBlade
  publication-title: J Eng Gas Turbines Power
– volume: 136
  year: 2014
  ident: bib5
  article-title: Experimental comparison of three floating wind turbine concepts
  publication-title: J Offshore Mech Arct Eng
– volume: 138
  year: 2016
  ident: bib14
  article-title: Comparing three aerodynamic models for predicting the thrust and power characteristics of a yawed floating wind turbine rotor
  publication-title: J Sol Energy Eng
– volume: 70
  start-page: 93
  year: 2014
  end-page: 106
  ident: bib36
  article-title: Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method
  publication-title: Renew Energy
– volume: 36
  start-page: 3050
  year: 2011
  end-page: 3053
  ident: bib43
  article-title: Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine
  publication-title: Renew Energy
– volume: 78
  start-page: 119
  year: 2015
  end-page: 127
  ident: bib38
  article-title: Aerodynamic dissipation effects on the rotating blades of floating wind turbines
  publication-title: Renew Energy
– volume: 11
  start-page: 415
  year: 2008
  end-page: 426
  ident: bib42
  article-title: Refined Betz limit for rotors with a finite number of blades
  publication-title: Wind Energy
– volume: 127
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib22
  article-title: Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion
  publication-title: Energy
– year: 2012
  ident: bib8
  article-title: The aerodynamics and near wake of an offshore floating horizontal axis wind turbine
– volume: 18
  start-page: 811
  year: 2015
  end-page: 834
  ident: bib18
  article-title: Measurements and modelling of the power performance of a model floating wind turbine under controlled conditions
  publication-title: Wind Energy
– year: 2005
  ident: bib28
  article-title: Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines
  publication-title: 43rd AIAA aerospace sciences meeting and exhibit
– year: 2007
  ident: bib1
  article-title: Engineering challenges for floating offshore wind turbines. Conference Paper NREL/CP-500–387760
  publication-title: Natl Renew Energy Lab Gold Co U. S. A
– volume: 5
  start-page: 968
  year: 2012
  end-page: 1000
  ident: bib9
  article-title: Analysis of the induction and wake evolution of an offshore floating wind turbine
  publication-title: Energies
– year: 2012
  ident: bib13
  article-title: Engineering models in wind Energy aerodynamics-development, implementation and analysis using dedicated aerodynamic measurements
– volume: 83
  start-page: 737
  year: 2015
  end-page: 748
  ident: bib15
  article-title: Loading effects on floating offshore horizontal axis wind turbines in surge motion
  publication-title: Renew Energy
– volume: 15
  start-page: 335
  year: 2012
  end-page: 344
  ident: bib41
  article-title: The Betz-Joukowsky limit: on the contribution to rotor aerodynamics by the British, German and Russian scientific schools
  publication-title: Wind Energy
– volume: 110
  year: 2005
  ident: bib3
  article-title: Evaluation of global wind power
  publication-title: J Geophys Res
– year: 2010
  ident: bib25
  article-title: Definition of the floating system for phase IV of OC3. Technical Report NREL/TP-500–47535
– year: 2015
  ident: bib10
  article-title: Study on unsteady aerodynamic performance of floating offshore wind turbine by CFD method
  publication-title: The 25th international ocean and polar engineering conference
– volume: 41
  start-page: 298
  year: 2012
  end-page: 312
  ident: bib2
  article-title: The current state of offshore wind energy technology development
  publication-title: Energy
– volume: 90
  start-page: 204
  year: 2016
  end-page: 228
  ident: bib17
  article-title: A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion
  publication-title: Renew Energy
– volume: 373
  year: 2015
  ident: bib34
  article-title: Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions
  publication-title: Philos Trans A
– year: 2001
  ident: bib37
  article-title: NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements
– year: 2007
  ident: bib27
  article-title: Improving BEM-based aerodynamic models in wind turbine design codes
– year: 2009
  ident: bib24
  article-title: Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500–38060
– volume: 127
  start-page: 325
  year: 2016
  end-page: 334
  ident: bib39
  article-title: Frequency analysis of the power output for a vertical axis marine turbine operating in the wake
  publication-title: Ocean Eng
– year: 2011
  ident: bib44
  article-title: Motion and performance analysis of an experimental model floating wind turbine
  publication-title: EWEA Offshore Conf
– start-page: 629
  year: 2006
  end-page: 634
  ident: bib6
  article-title: Dynamic modeling of deepwater offshore wind turbine structures in Gulf of Mexico storm conditions
  publication-title: 25th international conference on offshore mechanics and arctic engineering
– volume: 70
  start-page: 93
  year: 2014
  ident: 10.1016/j.energy.2017.11.090_bib36
  article-title: Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.03.071
– year: 2011
  ident: 10.1016/j.energy.2017.11.090_bib44
  article-title: Motion and performance analysis of an experimental model floating wind turbine
  publication-title: EWEA Offshore Conf
– volume: 32
  start-page: 1276
  issue: 6
  year: 1995
  ident: 10.1016/j.energy.2017.11.090_bib33
  article-title: Rotor free-wake modeling using a pseudo implicit relaxation algorithm
  publication-title: J Aircr
  doi: 10.2514/3.46875
– volume: 36
  start-page: 1887
  issue: 7
  year: 2011
  ident: 10.1016/j.energy.2017.11.090_bib4
  article-title: The wind energy (r)evolution: a short review of a long history
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.01.002
– volume: 65
  start-page: 207
  year: 2014
  ident: 10.1016/j.energy.2017.11.090_bib12
  article-title: Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.09.009
– year: 2015
  ident: 10.1016/j.energy.2017.11.090_bib10
  article-title: Study on unsteady aerodynamic performance of floating offshore wind turbine by CFD method
– volume: 70
  start-page: 24
  year: 2014
  ident: 10.1016/j.energy.2017.11.090_bib19
  article-title: Investigating the aerodynamic performance of a model offshore floating wind turbine
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.12.043
– volume: 41
  start-page: 298
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2017.11.090_bib2
  article-title: The current state of offshore wind energy technology development
  publication-title: Energy
  doi: 10.1016/j.energy.2012.02.054
– volume: 9
  start-page: 67
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2017.11.090_bib7
  article-title: Study of motion of spar-type floating wind turbines in waves with effect of gyro moment at inclination
  publication-title: J Nav Archit Mar Eng
  doi: 10.3329/jname.v9i1.10732
– volume: 15
  start-page: 335
  issue: 2
  year: 2012
  ident: 10.1016/j.energy.2017.11.090_bib41
  article-title: The Betz-Joukowsky limit: on the contribution to rotor aerodynamics by the British, German and Russian scientific schools
  publication-title: Wind Energy
  doi: 10.1002/we.464
– start-page: 629
  year: 2006
  ident: 10.1016/j.energy.2017.11.090_bib6
  article-title: Dynamic modeling of deepwater offshore wind turbine structures in Gulf of Mexico storm conditions
– year: 2001
  ident: 10.1016/j.energy.2017.11.090_bib23
– volume: 18
  start-page: 811
  issue: 5
  year: 2015
  ident: 10.1016/j.energy.2017.11.090_bib18
  article-title: Measurements and modelling of the power performance of a model floating wind turbine under controlled conditions
  publication-title: Wind Energy
  doi: 10.1002/we.1730
– year: 2001
  ident: 10.1016/j.energy.2017.11.090_bib37
– volume: 110
  issue: D12
  year: 2005
  ident: 10.1016/j.energy.2017.11.090_bib3
  article-title: Evaluation of global wind power
  publication-title: J Geophys Res
  doi: 10.1029/2004JD005462
– volume: 11
  start-page: 415
  year: 2008
  ident: 10.1016/j.energy.2017.11.090_bib42
  article-title: Refined Betz limit for rotors with a finite number of blades
  publication-title: Wind Energy
  doi: 10.1002/we.274
– volume: 373
  year: 2015
  ident: 10.1016/j.energy.2017.11.090_bib34
  article-title: Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions
  publication-title: Philos Trans A
  doi: 10.1098/rsta.2014.0080
– volume: 127
  start-page: 1
  year: 2017
  ident: 10.1016/j.energy.2017.11.090_bib22
  article-title: Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.087
– start-page: 1
  year: 2015
  ident: 10.1016/j.energy.2017.11.090_bib21
  article-title: An experimental investigation on the performance and the wake characteristics of a wind turbine subjected to surge motion
– start-page: 45
  year: 2012
  ident: 10.1016/j.energy.2017.11.090_bib40
  article-title: An experimental test rig to simulate hydrodynamic forcing on floating offshore wind turbine platforms
– volume: 5
  start-page: 968
  issue: 4
  year: 2012
  ident: 10.1016/j.energy.2017.11.090_bib9
  article-title: Analysis of the induction and wake evolution of an offshore floating wind turbine
  publication-title: Energies
  doi: 10.3390/en5040968
– volume: 127
  start-page: 325
  year: 2016
  ident: 10.1016/j.energy.2017.11.090_bib39
  article-title: Frequency analysis of the power output for a vertical axis marine turbine operating in the wake
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2016.09.045
– volume: 36
  start-page: 3050
  issue: 11
  year: 2011
  ident: 10.1016/j.energy.2017.11.090_bib43
  article-title: Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.03.031
– year: 2007
  ident: 10.1016/j.energy.2017.11.090_bib1
  article-title: Engineering challenges for floating offshore wind turbines. Conference Paper NREL/CP-500–387760
  publication-title: Natl Renew Energy Lab Gold Co U. S. A
– year: 2013
  ident: 10.1016/j.energy.2017.11.090_bib29
– volume: vol. 9
  start-page: 641
  year: 2016
  ident: 10.1016/j.energy.2017.11.090_bib31
  article-title: An unsteady aerodynamics model for lifting line free vortex wake simulations of HQWT and VAWT in QBlade
– year: 2005
  ident: 10.1016/j.energy.2017.11.090_bib28
  article-title: Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines
– year: 2003
  ident: 10.1016/j.energy.2017.11.090_bib35
– volume: 138
  issue: 3
  year: 2016
  ident: 10.1016/j.energy.2017.11.090_bib14
  article-title: Comparing three aerodynamic models for predicting the thrust and power characteristics of a yawed floating wind turbine rotor
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.4032684
– volume: 86
  start-page: 770
  year: 2016
  ident: 10.1016/j.energy.2017.11.090_bib20
  article-title: A study on the aerodynamics of a floating wind turbine rotor
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.08.063
– year: 2010
  ident: 10.1016/j.energy.2017.11.090_bib25
– volume: 78
  start-page: 119
  year: 2015
  ident: 10.1016/j.energy.2017.11.090_bib38
  article-title: Aerodynamic dissipation effects on the rotating blades of floating wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.01.013
– volume: 90
  start-page: 204
  year: 2016
  ident: 10.1016/j.energy.2017.11.090_bib17
  article-title: A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.12.013
– year: 2007
  ident: 10.1016/j.energy.2017.11.090_bib27
– volume: 83
  start-page: 737
  year: 2015
  ident: 10.1016/j.energy.2017.11.090_bib15
  article-title: Loading effects on floating offshore horizontal axis wind turbines in surge motion
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.05.016
– volume: 138
  issue: 7
  year: 2015
  ident: 10.1016/j.energy.2017.11.090_bib30
  article-title: Implementation, optimization, and validation of a nonlinear lifting line-free vortex wake module within the wind turbine simulation code QBlade
  publication-title: J Eng Gas Turbines Power
  doi: 10.1115/1.4031872
– year: 2012
  ident: 10.1016/j.energy.2017.11.090_bib8
– year: 2012
  ident: 10.1016/j.energy.2017.11.090_bib13
– volume: 136
  issue: 2
  year: 2014
  ident: 10.1016/j.energy.2017.11.090_bib5
  article-title: Experimental comparison of three floating wind turbine concepts
  publication-title: J Offshore Mech Arct Eng
  doi: 10.1115/1.4025804
– year: 2009
  ident: 10.1016/j.energy.2017.11.090_bib24
– volume: 17
  start-page: 105
  issue: 1
  year: 2014
  ident: 10.1016/j.energy.2017.11.090_bib26
  article-title: Effect of wind turbine surge motion on rotor thrust and induced velocity
  publication-title: Wind Energy
  doi: 10.1002/we.1562
– volume: 142
  start-page: 65
  year: 2015
  ident: 10.1016/j.energy.2017.11.090_bib11
  article-title: The platform pitching motion of floating offshore wind turbine: a preliminary unsteady aerodynamic analysis
  publication-title: J Wind Eng Ind. Aerodyn.
  doi: 10.1016/j.jweia.2015.03.009
– volume: 753
  year: 2016
  ident: 10.1016/j.energy.2017.11.090_bib32
  article-title: Modern methods for investigating the stability of a pitching floating platform wind turbine
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/753/8/082012
– volume: 137
  issue: 6
  year: 2015
  ident: 10.1016/j.energy.2017.11.090_bib16
  article-title: Aerodynamic interference effect of huge wind turbine blades with periodic surge motions using overset grid-based computational fluid dynamics approach
  publication-title: J Sol Energy Eng
SSID ssj0005899
Score 2.5221796
Snippet The power and thrust characteristics of an offshore floating wind turbine (OFWT) not only depend on the tip speed ratio λ and the blade pitch angle θ, but also...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2054
SubjectTerms blades
Free vortex method
Offshore drilling rigs
Offshore floating wind turbine
Pitch (inclination)
Power
Surge
Thrust
Tip speed
Turbines
Vortices
water waves
Wind power
Wind turbines
Title Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine
URI https://dx.doi.org/10.1016/j.energy.2017.11.090
https://www.proquest.com/docview/2012840286
https://www.proquest.com/docview/2020862284
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsNAcJB60Iv4KlarrOB1bZpsNslRRKmKXlTwFnazu1opSWlavPntzuThC6Eg5LLZGRIy7-w8AE6C0NLhVMyF0YYL6UVchdrxJLCBUkbGvqFfA7d3cvQorp_CpxU4b2thKK2y0f21Tq-0dXNn0HzNwXQ8Htyj7kV_Q6BPjWwkYio0FyIiLj99_5bmEVczJAmYE3RbPlfleNmqvo4SvKJT6uVJmvlv8_RLUVfW53ITNhq3kZ3Vb7YFKzbfhrW2qrjchu7FV8UaAjYiW-7A81U7hqRkhWMllUGzenYPwwv9PzalSWlM5QZXVILBsp9dnAlPIbRz5Usxs8xNCkXZ0uxtTDiLGUbXdhceLy8ezke8ma7AMxEEc-6HRmrthUZkNiLFKeLMaOVFfqYSlHIdDjXGJ7EUaMI951w8RGPnEiMSjU6WDLrQyYvc7gHz_cT5YZxJg8Y-MRhUe0GihRQ6EVZJrwdB-1HTrGk9ThMwJmmbY_aa1qRIiRQYlaRIih7wT6xp3XpjCXzU0iv9wUIpWoclmP2WvGkjwiXto-lG90v24PhzG4WPTlRUbosFwfgUEiLc_r8ffgDrtKIUmWHYh858trCH6OjM9VHFyUewenZ1M7r7AG36_bQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcigXBIWKhQJGgqO7WcdxkgMHBK126ceFVurN2LENi6pktdlVxYU_xR9kJokLRUiVkCrlknicWB7nzZtkxgPwOs08_ZwquHTWcamSnJvMBl6mPjXGqUI4-jRwfKKmZ_LjeXa-AT9jLgyFVQ7Y32N6h9bDlfEwm-PFfD7-hNiLfEMip8ZlJIsYWXnov1-i39a-nX1AJb8R4mD_9P2UD6UFeCXTdMVF5pS1SeZk5XNCDVlUzpokF5UpcYnbbGKRnBdKov1KQgjFBJE-lE6WFhmGSvG-d-CuRLigsgl7P_6IKym6opU0Ok7Di_l6XVCZ7xL6KKIs36PNQ8kU_Nse_mUZOnN38ADuDzyVveun4iFs-HobtmIac7sNO_u_U-RQcMCI9hF8mcW6Jy1rAmsp75r1xYIYHkg42YJKszFTOzyjnA9WXd82mvoZlA6h_dosPQsXjaHwbHY5pz7rJbrz_jGc3cqc78Bm3dT-CTAhyiCyolIO2UXp0ItP0tJKJW0pvVHJCNI4qboa9jqnkhsXOga1fdO9KjSpAt0gjaoYAb_qtej3-rhBPo_60tfWrEZzdEPP3ahePWBGS-3IFZDvqRG8umrGt51-4ZjaN2uSEeSDotzT_374S9ianh4f6aPZyeEzuEctFJ8zyXZhc7Vc--fIslb2RbeqGXy-7dfoF_0ON3c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+of+surge+motion+on+the+power+and+thrust+characteristics+of+an+offshore+floating+wind+turbine&rft.jtitle=Energy+%28Oxford%29&rft.au=Wen%2C+Binrong&rft.au=Tian%2C+Xinliang&rft.au=Dong%2C+Xingjian&rft.au=Peng%2C+Zhike&rft.date=2017-12-15&rft.issn=0360-5442&rft.volume=141+p.2054-2068&rft.spage=2054&rft.epage=2068&rft_id=info:doi/10.1016%2Fj.energy.2017.11.090&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon