Hyperspectral Anomaly Detection with Auto-Encoder and Independent Target
As an unsupervised data representation neural network, auto-encoder (AE) has shown great potential in denoising, dimensionality reduction, and data reconstruction. Many AE-based background (BKG) modeling methods have been developed for hyperspectral anomaly detection (HAD). However, their performanc...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 22; p. 5266 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs15225266 |
Cover
Loading…
Abstract | As an unsupervised data representation neural network, auto-encoder (AE) has shown great potential in denoising, dimensionality reduction, and data reconstruction. Many AE-based background (BKG) modeling methods have been developed for hyperspectral anomaly detection (HAD). However, their performance is subject to their unbiased reconstruction of BKG and target pixels. This article presents a rather different low rank and sparse matrix decomposition (LRaSMD) method based on AE, named auto-encoder and independent target (AE-IT), for hyperspectral anomaly detection. First, the encoder weight matrix, obtained by a designed AE network, is utilized to construct a projector for generating a low-rank component in the encoder subspace. By adaptively and reasonably determining the number of neurons in the latent layer, the designed AE-based method can promote the reconstruction of BKG. Second, to ensure independence and representativeness, the component in the encoder orthogonal subspace is made into a sphere and followed by finding of unsupervised targets to construct an anomaly space. In order to mitigate the influence of noise on anomaly detection, sparse cardinality (SC) constraint is enforced on the component in the anomaly space for obtaining the sparse anomaly component. Finally, anomaly detector is constructed by combining Mahalanobi distance and multi-components, which include encoder component and sparse anomaly component, to detect anomalies. The experimental results demonstrate that AE-IT performs competitively compared to the LRaSMD-based models and AE-based approaches. |
---|---|
AbstractList | As an unsupervised data representation neural network, auto-encoder (AE) has shown great potential in denoising, dimensionality reduction, and data reconstruction. Many AE-based background (BKG) modeling methods have been developed for hyperspectral anomaly detection (HAD). However, their performance is subject to their unbiased reconstruction of BKG and target pixels. This article presents a rather different low rank and sparse matrix decomposition (LRaSMD) method based on AE, named auto-encoder and independent target (AE-IT), for hyperspectral anomaly detection. First, the encoder weight matrix, obtained by a designed AE network, is utilized to construct a projector for generating a low-rank component in the encoder subspace. By adaptively and reasonably determining the number of neurons in the latent layer, the designed AE-based method can promote the reconstruction of BKG. Second, to ensure independence and representativeness, the component in the encoder orthogonal subspace is made into a sphere and followed by finding of unsupervised targets to construct an anomaly space. In order to mitigate the influence of noise on anomaly detection, sparse cardinality (SC) constraint is enforced on the component in the anomaly space for obtaining the sparse anomaly component. Finally, anomaly detector is constructed by combining Mahalanobi distance and multi-components, which include encoder component and sparse anomaly component, to detect anomalies. The experimental results demonstrate that AE-IT performs competitively compared to the LRaSMD-based models and AE-based approaches. |
Audience | Academic |
Author | Yan, Yunfeng Chen, Shuhan Li, Xiaorun |
Author_xml | – sequence: 1 givenname: Shuhan surname: Chen fullname: Chen, Shuhan – sequence: 2 givenname: Xiaorun surname: Li fullname: Li, Xiaorun – sequence: 3 givenname: Yunfeng surname: Yan fullname: Yan, Yunfeng |
BookMark | eNptkV1rFDEUhoNUsNbe-AsGvBFhaiYfk8nlUqu7UPCmXoczyZk1y2wyJllk_32zrthSTCAfJ897DifvW3IRYkBC3nf0hnNNP6fcScYk6_tX5JJRxVrBNLt4dn5DrnPe0To47zQVl2S9Pi6Y8oK2JJibVYh7mI_NFyw14mNofvvys1kdSmzvgo0OUwPBNZvgcMG6hNI8QNpieUdeTzBnvP67X5EfX-8ebtft_fdvm9vVfWsF56VlVMrBMm6ddp10KAdqsRvpqKwepJrqq3McB4mg3Sh7BKR2AsV7OQw4cn5FNue8LsLOLMnvIR1NBG_-BGLaGkjF2xmNpQLVxIF1TgjQWgPtUY2TRFcvrq-5Pp5zLSn-OmAuZu-zxXmGgPGQDaeCil5Iyir64QW6i4cUaqeGDZrzE0QrdXOmtlDr-zDF-qu2Tod7b6tbk6_xlVKCMymZqoJPZ4FNMeeE07-OOmpOpponUytMX8DWFzi5VKv4-X-SR-C-pF8 |
CitedBy_id | crossref_primary_10_3390_rs16010135 crossref_primary_10_3390_rs16152692 crossref_primary_10_1109_JSTARS_2024_3478848 |
Cites_doi | 10.1109/TGRS.2014.2343955 10.1109/JSTARS.2022.3172120 10.3390/rs14081784 10.1109/JSTARS.2022.3214508 10.1109/JSTARS.2017.2782706 10.1016/j.infrared.2018.06.001 10.1109/TGRS.2022.3211786 10.1109/TGRS.2023.3247660 10.1016/j.isprsjprs.2020.09.008 10.1109/TGRS.2021.3097097 10.1109/TGRS.2020.2965961 10.1109/TGRS.2021.3098814 10.1109/TGRS.2020.3004478 10.1109/TGRS.2006.873019 10.1109/JSTARS.2021.3068983 10.1109/TGRS.2020.3021671 10.1109/LGRS.2013.2257670 10.1109/LGRS.2022.3156057 10.1109/TGRS.2019.2936609 10.1109/JSTARS.2022.3191725 10.1109/TGRS.2020.3002724 10.1109/TGRS.2022.3218826 10.1109/29.60107 10.1109/TGRS.2015.2493201 10.1109/TGRS.2012.2237554 10.3390/rs14122730 10.1109/TCYB.2020.2968750 10.1109/TGRS.2017.2786718 10.3390/rs14040943 10.1109/TGRS.2018.2872590 10.1109/TNNLS.2020.3038659 10.1109/TGRS.2022.3207165 10.1109/TSP.2007.901645 10.1126/science.1127647 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15225266 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Open Access资源_DOAJ |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_c04e7f3a21d44a999a06e7bf5ed999d6 A774325527 10_3390_rs15225266 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-20558c23cd9d15de580ce1b0b7c9857f558dd3e85ea9db56eae0cfa736588eb33 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:28:13 EDT 2025 Fri Jul 11 05:26:26 EDT 2025 Fri Jul 25 11:50:28 EDT 2025 Tue Jun 10 21:08:52 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Tue Jul 01 03:11:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-20558c23cd9d15de580ce1b0b7c9857f558dd3e85ea9db56eae0cfa736588eb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2893345020?pq-origsite=%requestingapplication% |
PQID | 2893345020 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c04e7f3a21d44a999a06e7bf5ed999d6 proquest_miscellaneous_3040464502 proquest_journals_2893345020 gale_infotracacademiconefile_A774325527 crossref_primary_10_3390_rs15225266 crossref_citationtrail_10_3390_rs15225266 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Chen (ref_20) 2022; 60 Huyan (ref_21) 2018; 57 Matteoli (ref_3) 2014; 11 Xu (ref_9) 2015; 54 Wu (ref_8) 2022; 60 Chang (ref_45) 2023; 61 ref_14 Zhao (ref_30) 2018; 92 Reed (ref_2) 1990; 38 Jiang (ref_34) 2020; 58 Xiang (ref_35) 2022; 60 Chang (ref_43) 2022; 60 Xu (ref_18) 2018; 56 Cheng (ref_10) 2019; 58 Zhao (ref_12) 2022; 60 Chang (ref_40) 2021; 59 Jiang (ref_36) 2021; 35 Wei (ref_42) 2015; 53 Su (ref_26) 2020; 169 Yuan (ref_6) 2022; 19 Chang (ref_1) 2022; 60 Chang (ref_15) 2021; 59 Chang (ref_41) 2022; 60 Lin (ref_25) 2022; 16 Chang (ref_37) 2018; 11 Wang (ref_7) 2022; 15 Chang (ref_19) 2021; 14 Li (ref_16) 2021; 51 Chang (ref_44) 2022; 60 Wang (ref_33) 2022; 60 ref_22 Wang (ref_5) 2022; 15 Fan (ref_31) 2022; 60 Li (ref_17) 2022; 33 Kuybeda (ref_39) 2007; 55 ref_28 Chang (ref_38) 2014; 52 ref_27 Feng (ref_11) 2022; 60 Wang (ref_32) 2022; 60 Banerjee (ref_4) 2006; 44 Candes (ref_13) 2009; 58 Wu (ref_24) 2022; 60 Cheng (ref_23) 2020; 59 Hinton (ref_29) 2006; 313 |
References_xml | – volume: 53 start-page: 1463 year: 2015 ident: ref_42 article-title: Collaborative representation for hyperspectral anomaly detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2343955 – volume: 15 start-page: 3672 year: 2022 ident: ref_7 article-title: Self-adaptive low-rank and sparse decomposition for hyperspectral anomaly detection publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3172120 – ident: ref_22 doi: 10.3390/rs14081784 – volume: 16 start-page: 2009 year: 2022 ident: ref_25 article-title: Dual Collaborative Constraints Regularized Low-Rank and Sparse Representation via Robust Dictionaries Construction for Hyperspectral Anomaly Detection publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3214508 – volume: 11 start-page: 1285 year: 2018 ident: ref_37 article-title: A review of virtual dimensionality for hyperspectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2782706 – volume: 58 start-page: 1027 year: 2009 ident: ref_13 article-title: Robust principal component analysis? publication-title: J. ACM – volume: 35 start-page: 4139 year: 2021 ident: ref_36 article-title: LREN: Low-rank embedded network for sample-free hyperspectral anomaly detection publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 60 start-page: 5516222 year: 2022 ident: ref_20 article-title: Component Decomposition Analysis for Hyperspectral Anomaly Detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 92 start-page: 166 year: 2018 ident: ref_30 article-title: Spectral-spatial stacked autoencoders based on low-rank and sparse matrix decomposition for hyperspectral anomaly detection publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2018.06.001 – volume: 60 start-page: 5533417 year: 2022 ident: ref_8 article-title: Hyperspectral anomaly detection with relaxed collaborative representation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 60 start-page: 5541124 year: 2022 ident: ref_41 article-title: Comprehensive Analysis of Receiver Operating Characteristic (ROC) Curves for Hyperspectral Anomaly Detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3211786 – volume: 61 start-page: 5504330 year: 2023 ident: ref_45 article-title: Iterative Spectral-Spatial Hyperspectral Anomaly Detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3247660 – volume: 60 start-page: 5511720 year: 2022 ident: ref_1 article-title: Hyperspectral anomaly detection: A dual theory of hyperspectral target detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 169 start-page: 195 year: 2020 ident: ref_26 article-title: Low rank and collaborative representation for hyperspectral anomaly detection via robust dictionary construction publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.09.008 – volume: 60 start-page: 5511314 year: 2022 ident: ref_31 article-title: Hyperspectral anomaly detection with robust graph autoencoders publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2021.3097097 – volume: 58 start-page: 4666 year: 2020 ident: ref_34 article-title: Discriminative reconstruction constrained generative adversarial network for hyperspectral anomaly detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2965961 – ident: ref_14 – volume: 60 start-page: 5512216 year: 2022 ident: ref_11 article-title: Local spatial constraint and total variation for hyperspectral anomaly detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2021.3098814 – volume: 59 start-page: 1472 year: 2020 ident: ref_23 article-title: Total variation and sparsity regularized decomposition model with union dictionary for hyperspectral anomaly detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3004478 – volume: 60 start-page: 5527017 year: 2022 ident: ref_33 article-title: Deep Low-Rank Prior for Hyperspectral Anomaly Detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 44 start-page: 2282 year: 2006 ident: ref_4 article-title: A support vector method for anomaly detection in hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.873019 – volume: 14 start-page: 4915 year: 2021 ident: ref_19 article-title: Orthogonal subspace projection target detector for hyperspectral anomaly detection publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3068983 – volume: 59 start-page: 5131 year: 2021 ident: ref_40 article-title: An effective evaluation tool for hyperspectral target detection: 3D receiver operating characteristic curve analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3021671 – volume: 11 start-page: 323 year: 2014 ident: ref_3 article-title: A locally adaptive background density estimator: An evolution for RX-based anomaly detectors publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2257670 – volume: 19 start-page: 6007505 year: 2022 ident: ref_6 article-title: A hyperspectral anomaly detection algorithm using sub-features grouping and binary accumulation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2022.3156057 – volume: 58 start-page: 391 year: 2019 ident: ref_10 article-title: Graph and total variation regularized low-rank representation for hyperspectral anomaly detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2936609 – volume: 15 start-page: 5943 year: 2022 ident: ref_5 article-title: Subfeature Ensemble-Based Hyperspectral Anomaly Detection Algorithm publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3191725 – volume: 59 start-page: 2403 year: 2021 ident: ref_15 article-title: Orthogonal subspace projection-based GoDec for low rank and sparsity matrix decomposition for hyperspectral anomaly detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3002724 – volume: 60 start-page: 5542916 year: 2022 ident: ref_24 article-title: Kernel-Based Decomposition Model with Total Variation and Sparsity Regularizations via Union Dictionary for Nonlinear Hyperspectral Anomaly Detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3218826 – volume: 38 start-page: 1760 year: 1990 ident: ref_2 article-title: Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.60107 – volume: 54 start-page: 1990 year: 2015 ident: ref_9 article-title: Anomaly detection in hyperspectral images based on low-rank and sparse representation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2493201 – volume: 52 start-page: 188 year: 2014 ident: ref_38 article-title: A theory of high order statistics-based virtual dimensionality for hyperspectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2237554 – volume: 60 start-page: 5518312 year: 2022 ident: ref_12 article-title: Enhanced total variation regularized representation model with endmember background dictionary for hyperspectral anomaly detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 60 start-page: 5540428 year: 2022 ident: ref_44 article-title: Target-to-anomaly conversion for hyperspectral anomaly detection publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_28 doi: 10.3390/rs14122730 – volume: 60 start-page: 5526624 year: 2022 ident: ref_43 article-title: Effective anomaly space for hyperspectral anomaly detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 51 start-page: 4363 year: 2021 ident: ref_16 article-title: Low-rank and sparse decomposition with mixture of Gaussian for hyperspectral anomaly detection publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2968750 – volume: 56 start-page: 2919 year: 2018 ident: ref_18 article-title: Joint reconstruction and anomaly detection from compressive hyperspectral images using Mahalanobis distance-regularized tensor RPCA publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2786718 – ident: ref_27 doi: 10.3390/rs14040943 – volume: 57 start-page: 2263 year: 2018 ident: ref_21 article-title: Hyperspectral anomaly detection via background and potential anomaly dictionaries construction publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2872590 – volume: 33 start-page: 1037 year: 2022 ident: ref_17 article-title: Prior-based tensor approximation for anomaly detection in hyperspectral imagery publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3038659 – volume: 60 start-page: 5538818 year: 2022 ident: ref_35 article-title: Hyperspectral anomaly detection with guided autoencoder publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3207165 – volume: 55 start-page: 5579 year: 2007 ident: ref_39 article-title: Rank estimation and redundancy reduction of high-dimensional noisy signals with preservation of rare vectors publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.901645 – volume: 60 start-page: 5503314 year: 2022 ident: ref_32 article-title: Auto-AD: Autonomous Hyperspectral Anomaly Detection Network Based on Fully Convolutional Autoencoder publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 313 start-page: 504 year: 2006 ident: ref_29 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 |
SSID | ssj0000331904 |
Score | 2.3664253 |
Snippet | As an unsupervised data representation neural network, auto-encoder (AE) has shown great potential in denoising, dimensionality reduction, and data... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5266 |
SubjectTerms | Algorithms Anomalies Artificial intelligence auto-encoder Coders Collaboration Comparative analysis Construction Decomposition detectors Dictionaries Image processing independent target subspace (ITS) low rank and sparse decomposition (LRaSMD) Methods Multispectral photography Neural networks neurons Normal distribution Reconstruction remote sensing Sensors Sparse matrices sparsity cardinality (SC) Technology application unsupervised independent target |
SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCyyIpwgUFAQSYojqxnbijAVaBSSYWqmb5VfEUFLUpkP_PWcnTTuAWBiTXCTnzr67L_Z9h9AdIC6WKiojTKQCgJImEWcqjhLKwWPCS9RX8b-9J_mYvk7YZKvVlzsTVtMD14rrakxtWhAZ9wylEtIZiRObqoJZAxfGk21DzNsCU94HE5hamNZ8pARwfXe-gEgVs9jTIW4ikCfq_80d-xgzPEQHTXIY9utBHaEdWx6jvaZP-cfqBOU5wMa6OnLuBMvZp5yuwmdb-RNVZeh-q4b9ZTWLBqWrVp-HsjThS9vrtgpH_uj3KRoPB6OnPGp6IUSaElLBZGaM65hok5keM5ZxrG1PYZXqjLO0gKfGEMuZlZlRLLHSYl3IlECGwQEwkzO0W85Ke45CnSlFjaLMcEtZEXNJJGFWFSnmhhYqQA9r_QjdEIW7fhVTAYDB6VJsdBmg21b2q6bH-FHq0am5lXCU1v4GGFo0hhZ_GTpA985Iwi08GI6WTf0AfJSjsBJ9SGRJ7AjlAtRZ21E0K3IhAFgSQhlkxwG6aR_DWnIbJLK0s-VCEPBobqcXxxf_MeJLtO-a09eVix20W82X9gpSmEpd-9n6DZyz7tk priority: 102 providerName: Directory of Open Access Journals |
Title | Hyperspectral Anomaly Detection with Auto-Encoder and Independent Target |
URI | https://www.proquest.com/docview/2893345020 https://www.proquest.com/docview/3040464502 https://doaj.org/article/c04e7f3a21d44a999a06e7bf5ed999d6 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo9wAXRHmIhbIKAglxiOr1I_Ge0JbusiBaIWil3iy_AoeSlGz20H_PjOPNXtoek0ysZDwznhl75iPkPURcsrTC5JQbCwFKWeRKWpYXQoHFhJdErOI_PStWF-LbpbxMCbd1Ola5tYnRUPvGYY78iCEuvJDg3Xy6_pcjahTuriYIjT0yAhOsIPgaHS_OfvwcsiyUg4hR0fcl5RDfH7VrWLGYZLEt4m4lig377zLLca1ZPiGPk5OYzftZPSAPQv2UPEx45X9unpHVCsLHvkqyRcK6-WuubrKT0MWTVXWG6dVsvumafFFj1XqbmdpnXwfM2y47j0fAn5OL5eL88ypPmAi5E5x3INRSKse48zM_lT5IRV2YWmpLN1OyrOCp9zwoGczMW1kEE6irTMnB01AQOPMXZL9u6vCSZG5mrfBWSK-CkBVThhsug61Kqryo7Jh83PJHu9QwHHErrjQEDshLvePlmLwbaK_7Nhm3Uh0jmwcKbG0dbzTtb500RTsqQllxw6ZeCAP-q6FFKG0lg4cLD4N8wEnSqIDwOc6kOgL4KWxlpefg0HKGjeXG5HA7jzpp5lrv5GhM3g6PQadwo8TUodmsNQfLhju-lL26f4jX5BHCz_e1iYdkv2s34Q04KZ2dkD21_DIho_nJ6fdfkySXkxjy_wcJ_uqB |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWCgQBQhyiev1InANCC-2SpY_TVurN-JVyKEnJZoX2T_EbmclrL8Ctx6xnrWQ8T9szHyFvIOOSqRUmptxYSFDSJFbSsjgRCiwm_Em0VfynZ0l-Lr5eyIsd8nuohcFrlYNNbA21rxzukR8wxIUXEqKbj9c_Y0SNwtPVAUKjE4vjsPkFKdvqw-IQ1vctY_Oj5ec87lEFYic4b0AspFSOceczP5U-SEVdmFpqU5cpmRYw6j0PSgaTeSuTYAJ1hUk5-GoFqSeHeW-R2zBXhhql5l_GPR3KQaCp6Lqgwjg9qFfgH5lkbRPGrd9r4QH-5QRazza_R-72IWk062ToPtkJ5QOy16Ojf988JHkOyWpXk1kjYVn9MFeb6DA07T2uMsLN3Gi2bqr4qMQa-ToypY8WI8JuEy3bC-ePyPmN8Oox2S2rMjwhkcusFd4K6VUQsmDKcMNlsEVKlReFnZD3A3-069uTI0rGlYY0BXmpt7yckNcj7XXXlOOvVJ-QzSMFNtJuf6jqS93rpXZUhLTghk29EAaiZUOTkNpCBg8PHiZ5h4ukUd3hdZzpqxbgo7Bxlp5B-MwZtrGbkP1hHXVvB1Z6K7UT8mocBg3GYxlThmq90hzsKJ4vU_b0_1O8JHv58vREnyzOjp-ROwh831VF7pPdpl6H5xAeNfZFK5MR-XbTSvAH2Gsjqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNA9KmkEnBBrCKlgBEgxMHKZBYvB4RSkiihEFWolXqbzmY4tHZxHKH8Gl_HG2-5ALce7Xkeed68deYtAG_Q4xKx5iokTGl0UOIoTISmYcQTlJj4Ea-z-L-uosUZ_3wuzvfgd5cL48MqO5lYC2pbGH9GPqK-LzwXaN2MsjYs4mQ6_3j9M_QdpPxNa9dOoyGRY7f9he7b-sNyinv9ltL57PTTImw7DISGM1YhiQiRGMqMTe1YWCcSYtxYEx2bNBFxhqPWMpcIp1KrReSUIyZTMUO9naAbynDeW7Af4xrJAPaPZquTb_0JD2FI3oQ3NVEZS8moXKO2pILWJRl3WrBuFvAvlVDrufl9uNcaqMGkoagHsOfyh3Cn7ZX-Y_sIFgt0XZsMzdID5sWVutwGU1fVUV154I92g8mmKsJZ7jPmy0DlNlj2_Xar4LQOP38MZzeCrScwyIvcPYXApFpzq7mwieMio4liigmns5gklmd6CO87_EjTFiv3PTMuJTotHpdyh8shvO5hr5sSHX-FOvJo7iF8We36RVF-ly2XSkO4izOm6NhyrtB2ViRysc6Es_hgcZJ3fpOkZ378HaPaHAZclC-jJSdoTDPqi9oN4bDbR9lKhbXc0fAQXvXDyM_-kkblrtisJUOp6m-bCT34_xQv4TYygPyyXB0_g7sUba8mRfIQBlW5cc_RVqr0i5YoA7i4aT74Aw-zKT0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Anomaly+Detection+with+Auto-Encoder+and+Independent+Target&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Shuhan&rft.au=Li%2C+Xiaorun&rft.au=Yan%2C+Yunfeng&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=22&rft.spage=5266&rft_id=info:doi/10.3390%2Frs15225266&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |