Hollow Co3O4-x nanoparticles decorated N-doped porous carbon prepared by one-step pyrolysis as an efficient ORR electrocatalyst for rechargeable Zn-air batteries
Composites of cobalt oxides and nitrogen-doped porous carbon, as electrocatalysts for oxygen reduction reaction (ORR), offer considerable potential in new-style energy conversion and storage devices. Herein, a straightforward method for production of N-doped porous carbon (Co3O4-x@N–C) decorated by...
Saved in:
Published in | Carbon (New York) Vol. 181; pp. 87 - 98 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
30.08.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Composites of cobalt oxides and nitrogen-doped porous carbon, as electrocatalysts for oxygen reduction reaction (ORR), offer considerable potential in new-style energy conversion and storage devices. Herein, a straightforward method for production of N-doped porous carbon (Co3O4-x@N–C) decorated by hollow Co3O4-x nanoparticles with oxygen vacancies has been studied by one-step pyrolysis of Co-doped quinone-amine polymer in gas mixture of NH3 and Ar. The nanosized CoO/Co3O4 heterostructure can boost the electron transport, while the hollow structure can ensure the structural and chemical stability of the catalyst, and the oxygen vacancy can change the surface electron structure and lower the activation energy barrier for oxygen reduction. Consequently, the as-prepared catalyst Co3O4-x@N–C exhibits excellent ORR catalytic performance (E1/2 = 0.845 V vs. RHE), exceeding that of Pt/C and most recently reported ORR catalysts. The Zn-air batteries assembled with Co3O4-x@N–C present a high open circuit potential (1.524 V), a large peak power density (105.2 mW cm−2) and great discharge-charge cycling performance, superior to the Zn-air batteries assembled with Pt/C. The excellent electrocatalytic performances of Co3O4-x@N–C make it an ideal alternative for precious metal catalyst (Pt/C) in rechargeable Zn-air batteries.
[Display omitted]
•The combination of hollow Co3O4-x nanoparticles with oxygen vacancies and N-doped porous carbon.•The catalyst possesses great ORR catalytic activity, long-cycle durability and methanol resistance.•The assembled Zn-air battery has a peak power density of 105.2 mW cm−2 and a specific capacity of 799.5 mAh g−1. |
---|---|
AbstractList | Composites of cobalt oxides and nitrogen-doped porous carbon, as electrocatalysts for oxygen reduction reaction (ORR), offer considerable potential in new-style energy conversion and storage devices. Herein, a straightforward method for production of N-doped porous carbon (Co3O4-x@N–C) decorated by hollow Co3O4-x nanoparticles with oxygen vacancies has been studied by one-step pyrolysis of Co-doped quinone-amine polymer in gas mixture of NH3 and Ar. The nanosized CoO/Co3O4 heterostructure can boost the electron transport, while the hollow structure can ensure the structural and chemical stability of the catalyst, and the oxygen vacancy can change the surface electron structure and lower the activation energy barrier for oxygen reduction. Consequently, the as-prepared catalyst Co3O4-x@N–C exhibits excellent ORR catalytic performance (E1/2 = 0.845 V vs. RHE), exceeding that of Pt/C and most recently reported ORR catalysts. The Zn-air batteries assembled with Co3O4-x@N–C present a high open circuit potential (1.524 V), a large peak power density (105.2 mW cm−2) and great discharge-charge cycling performance, superior to the Zn-air batteries assembled with Pt/C. The excellent electrocatalytic performances of Co3O4-x@N–C make it an ideal alternative for precious metal catalyst (Pt/C) in rechargeable Zn-air batteries. Composites of cobalt oxides and nitrogen-doped porous carbon, as electrocatalysts for oxygen reduction reaction (ORR), offer considerable potential in new-style energy conversion and storage devices. Herein, a straightforward method for production of N-doped porous carbon (Co₃O₄₋ₓ@N–C) decorated by hollow Co₃O₄₋ₓ nanoparticles with oxygen vacancies has been studied by one-step pyrolysis of Co-doped quinone-amine polymer in gas mixture of NH₃ and Ar. The nanosized CoO/Co₃O₄ heterostructure can boost the electron transport, while the hollow structure can ensure the structural and chemical stability of the catalyst, and the oxygen vacancy can change the surface electron structure and lower the activation energy barrier for oxygen reduction. Consequently, the as-prepared catalyst Co₃O₄₋ₓ@N–C exhibits excellent ORR catalytic performance (E₁/₂ = 0.845 V vs. RHE), exceeding that of Pt/C and most recently reported ORR catalysts. The Zn-air batteries assembled with Co₃O₄₋ₓ@N–C present a high open circuit potential (1.524 V), a large peak power density (105.2 mW cm⁻²) and great discharge-charge cycling performance, superior to the Zn-air batteries assembled with Pt/C. The excellent electrocatalytic performances of Co₃O₄₋ₓ@N–C make it an ideal alternative for precious metal catalyst (Pt/C) in rechargeable Zn-air batteries. Composites of cobalt oxides and nitrogen-doped porous carbon, as electrocatalysts for oxygen reduction reaction (ORR), offer considerable potential in new-style energy conversion and storage devices. Herein, a straightforward method for production of N-doped porous carbon (Co3O4-x@N–C) decorated by hollow Co3O4-x nanoparticles with oxygen vacancies has been studied by one-step pyrolysis of Co-doped quinone-amine polymer in gas mixture of NH3 and Ar. The nanosized CoO/Co3O4 heterostructure can boost the electron transport, while the hollow structure can ensure the structural and chemical stability of the catalyst, and the oxygen vacancy can change the surface electron structure and lower the activation energy barrier for oxygen reduction. Consequently, the as-prepared catalyst Co3O4-x@N–C exhibits excellent ORR catalytic performance (E1/2 = 0.845 V vs. RHE), exceeding that of Pt/C and most recently reported ORR catalysts. The Zn-air batteries assembled with Co3O4-x@N–C present a high open circuit potential (1.524 V), a large peak power density (105.2 mW cm−2) and great discharge-charge cycling performance, superior to the Zn-air batteries assembled with Pt/C. The excellent electrocatalytic performances of Co3O4-x@N–C make it an ideal alternative for precious metal catalyst (Pt/C) in rechargeable Zn-air batteries. [Display omitted] •The combination of hollow Co3O4-x nanoparticles with oxygen vacancies and N-doped porous carbon.•The catalyst possesses great ORR catalytic activity, long-cycle durability and methanol resistance.•The assembled Zn-air battery has a peak power density of 105.2 mW cm−2 and a specific capacity of 799.5 mAh g−1. |
Author | Liu, Hao Song, Yan Wang, Yali Shi, Jingli Ma, Chang Dirican, Mahmut Gan, Ruihui Wei, Chengbiao Ai, Zhiquan Zhang, Xiangwu |
Author_xml | – sequence: 1 givenname: Yali surname: Wang fullname: Wang, Yali organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China – sequence: 2 givenname: Ruihui surname: Gan fullname: Gan, Ruihui organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China – sequence: 3 givenname: Zhiquan surname: Ai fullname: Ai, Zhiquan organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China – sequence: 4 givenname: Hao surname: Liu fullname: Liu, Hao organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China – sequence: 5 givenname: Chengbiao surname: Wei fullname: Wei, Chengbiao organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China – sequence: 6 givenname: Yan surname: Song fullname: Song, Yan organization: CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China – sequence: 7 givenname: Mahmut surname: Dirican fullname: Dirican, Mahmut organization: Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695-8301, United States – sequence: 8 givenname: Xiangwu surname: Zhang fullname: Zhang, Xiangwu organization: Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695-8301, United States – sequence: 9 givenname: Chang surname: Ma fullname: Ma, Chang email: fdoy_lt54@163.com organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China – sequence: 10 givenname: Jingli orcidid: 0000-0002-5274-8358 surname: Shi fullname: Shi, Jingli email: shijingli1963@163.com organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China |
BookMark | eNqFkcGKFDEQhoOs4OzqG3gIePHSbZLunnR7EGRYXWFxYNGLl1CdrtYM2aStZNR5HN_UDO1pDwqBIj_fX6n8dckuQgzI2HMpaink9tWhtkBjDLUSStaiq4v4iG1kr5uq6Qd5wTZCiL7aKtU8YZcpHcq17WW7Yb9vovfxJ9_FZt9Wv3iAEBeg7KzHxCe0kSDjxD9WU1xKXSLFY-Lre3whLHCRxxMvI1Up48KXE0V_Si5xKCdwnGdnHYbM93d3HD3aTNFChgJlPkfihPYb0FeE0SP_EipwxEfIGclhesoez-ATPvtbr9jnd9efdjfV7f79h93b28q2TZMrOSsttzh0qCbd214PttNqGhvsxn7SndpOjUbVzYOyw6ilEj0IsEKLqQdU0Fyxl2vfheL3I6Zs7l2y6D0ELF82quvkoAYxbAv64gF6iEcKZboz1bZCKD0U6vVKWYopEc7GugzZxZAJnDdSmPP2zMGsaZrz9ozoTBGLuX1gXsjdA53-Z3uz2rAk9cMhmXSO3uLkSsjZTNH9u8EfqY66dQ |
CitedBy_id | crossref_primary_10_3390_nano12152657 crossref_primary_10_1016_j_colsurfa_2022_130347 crossref_primary_10_1016_j_diamond_2023_110145 crossref_primary_10_1016_j_jtice_2023_104880 crossref_primary_10_1002_advs_202104183 crossref_primary_10_1039_D3CC05653H crossref_primary_10_1016_j_est_2024_113964 crossref_primary_10_1016_j_jwpe_2024_105366 crossref_primary_10_1016_j_jcis_2022_12_152 crossref_primary_10_1021_acssuschemeng_3c08100 crossref_primary_10_1039_D2SE01354A crossref_primary_10_1002_solr_202300210 crossref_primary_10_1021_acs_inorgchem_3c01716 crossref_primary_10_1016_j_apcatb_2022_122029 crossref_primary_10_1007_s40843_023_2464_8 crossref_primary_10_1016_j_fuel_2024_131691 crossref_primary_10_1039_D4CY01468E crossref_primary_10_1016_j_jcou_2021_101617 crossref_primary_10_1016_j_ijhydene_2023_05_189 crossref_primary_10_1039_D3SE00011G crossref_primary_10_1016_j_jece_2024_112722 crossref_primary_10_1021_acs_inorgchem_3c01690 crossref_primary_10_1016_j_jcis_2024_02_120 crossref_primary_10_1016_j_jssc_2023_124133 crossref_primary_10_1039_D3GC03576J crossref_primary_10_1016_j_jechem_2021_08_054 crossref_primary_10_1039_D4DT01016G crossref_primary_10_1016_j_ijhydene_2022_06_151 crossref_primary_10_1039_D4CC04069D crossref_primary_10_1016_j_cej_2022_139831 crossref_primary_10_1016_j_jallcom_2023_171479 crossref_primary_10_1002_adfm_202201944 crossref_primary_10_1016_j_micromeso_2021_111639 crossref_primary_10_1016_j_apsusc_2022_154115 crossref_primary_10_1016_j_carbon_2022_05_019 crossref_primary_10_1021_acs_langmuir_1c01947 crossref_primary_10_1016_j_jpcs_2024_112051 crossref_primary_10_1002_slct_202300616 crossref_primary_10_1016_j_fuel_2025_135109 crossref_primary_10_1021_acsanm_3c01730 crossref_primary_10_1016_j_jmst_2023_08_073 crossref_primary_10_1016_j_jcis_2022_12_012 crossref_primary_10_1016_j_cclet_2022_107886 crossref_primary_10_1021_acsami_3c09114 crossref_primary_10_1016_j_jpowsour_2022_231884 crossref_primary_10_1016_j_catcom_2022_106428 crossref_primary_10_1016_j_electacta_2022_140918 crossref_primary_10_1021_acsbiomaterials_2c01248 crossref_primary_10_1039_D2NR04933C crossref_primary_10_1016_j_cej_2022_137709 crossref_primary_10_1016_j_jcis_2023_11_021 crossref_primary_10_1016_j_apsusc_2024_159834 crossref_primary_10_2139_ssrn_4070247 crossref_primary_10_1002_adfm_202404535 crossref_primary_10_1088_1361_6528_ac3d66 crossref_primary_10_3390_su142013417 crossref_primary_10_1007_s40820_024_01366_9 crossref_primary_10_1021_acsami_4c10727 crossref_primary_10_1016_j_jcat_2024_115491 crossref_primary_10_1016_j_jcis_2022_08_088 crossref_primary_10_1016_j_cej_2022_137991 crossref_primary_10_1021_acs_energyfuels_1c02064 crossref_primary_10_2139_ssrn_3992603 crossref_primary_10_1002_cssc_202400570 crossref_primary_10_1016_j_electacta_2024_143858 crossref_primary_10_1039_D2CC04560E crossref_primary_10_1021_acs_energyfuels_3c00452 crossref_primary_10_1039_D3EE03059H |
Cites_doi | 10.1002/adma.201203923 10.1021/acssuschemeng.9b05492 10.1016/j.carbon.2019.07.044 10.1016/j.jcis.2020.02.013 10.1016/j.carbon.2018.12.008 10.1021/nl3004286 10.1016/j.apcatb.2020.118775 10.1016/j.electacta.2018.11.142 10.1021/acs.nanolett.6b05004 10.1016/j.renene.2019.08.071 10.1016/j.carbon.2019.01.039 10.1016/j.carbon.2019.06.026 10.1002/anie.201908736 10.1021/jp402939e 10.1016/j.carbon.2018.08.023 10.1016/j.carbon.2019.08.036 10.1021/acsaem.9b01660 10.1021/acssuschemeng.6b00269 10.1016/j.jallcom.2020.154435 10.1016/j.nanoen.2021.105813 10.1016/j.electacta.2018.05.156 10.1039/D0TA00073F 10.1021/acscatal.8b02504 10.1016/j.apsusc.2018.12.204 10.1002/adfm.201903444 10.1007/s12274-019-2512-7 10.1016/j.carbon.2018.09.079 10.1016/j.jallcom.2020.155030 10.1016/j.jechem.2019.09.002 10.1021/acs.inorgchem.9b03516 10.1016/j.apcatb.2019.04.057 10.1002/adma.201801430 10.1016/j.jpowsour.2020.228570 10.1016/j.compositesb.2019.04.049 10.1016/j.carbon.2019.07.075 10.1016/j.apcatb.2019.04.027 10.1021/acssuschemeng.9b06715 10.1016/j.apsusc.2018.10.192 10.1021/acsanm.0c00614 10.1007/s40843-019-1178-5 10.1016/j.carbon.2019.01.010 10.1016/j.jpowsour.2019.03.051 10.1016/j.carbon.2019.10.023 10.1016/j.carbon.2018.09.080 10.1039/C8RA04256J 10.1016/j.jcis.2018.03.036 10.1016/j.carbon.2020.02.059 10.1016/j.jpowsour.2020.227841 10.1016/j.micromeso.2018.10.020 10.1016/j.cej.2020.125205 10.1016/j.jpowsour.2018.12.056 10.1039/C8TA10158B 10.1016/j.carbon.2019.05.012 10.1039/C8TA01859F 10.1021/acsami.0c12069 10.1016/j.apcatb.2020.119300 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Aug 30, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Aug 30, 2021 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.carbon.2021.05.016 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3891 |
EndPage | 98 |
ExternalDocumentID | 10_1016_j_carbon_2021_05_016 S0008622321005108 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TWZ XPP ZMT ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ IHE R2- RIG SEW SMS WUQ 7SR 8FD JG9 SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-1f2716e95e2d78c879c572db3e5b8d7526d37e25f92c9b71208a0ac070d8ae2a3 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Fri Jul 11 10:42:49 EDT 2025 Fri Jul 25 03:27:48 EDT 2025 Thu Apr 24 23:07:51 EDT 2025 Tue Aug 05 03:08:30 EDT 2025 Fri Feb 23 02:40:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hollow Co3O4-x nanoparticles N-doped porous carbon Oxygen reduction reaction Zn-air batteries |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-1f2716e95e2d78c879c572db3e5b8d7526d37e25f92c9b71208a0ac070d8ae2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5274-8358 |
PQID | 2554400279 |
PQPubID | 2045273 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2551929096 proquest_journals_2554400279 crossref_citationtrail_10_1016_j_carbon_2021_05_016 crossref_primary_10_1016_j_carbon_2021_05_016 elsevier_sciencedirect_doi_10_1016_j_carbon_2021_05_016 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-30 |
PublicationDateYYYYMMDD | 2021-08-30 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Carbon (New York) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wang, Zhang, Meng, Pu, Jin, He, Zhang, Mu (bib14) 2019; 413 Guo, Tian, Wang, Ke, Zhu (bib27) 2019; 473 Sun, Zhou, Li, Zhou, Liu, Zhang, Gao, Meng, Zhou, Ma (bib43) 2019; 467–468 Qian, Guo, Zhang, Yang, Qian, Xu, Qian, Lin, Fan (bib57) 2019; 277 Xie, Ni, Lin, Wu, Sun, Zhang, Wang, Du (bib36) 2020; 396 Yao, Yu, Yao, Wei, Han, Chen, Xie (bib25) 2016; 4 Koo, Xiong, Slater, Prakapenka, Balasubramanian, Podsiadlo, Johnson, Rajh, Shevchenko (bib32) 2012; 12 Galiote, Oliveira, Lima (bib10) 2019; 253 Yu, Lian, Li, Yu, Xi, Wu, Zhao, Mai, Zhou (bib58) 2020; 8 Ha, Moreau, Honrao, Hennig, Robinson (bib28) 2013; 117 Li, Gao, Liang, Zhang, Xiao, Xu, Liu (bib12) 2019; 150 Ding, Yang, Gao, Sun, Sun, Li (bib26) 2019; 3 Xu, Xu, Ban, Zhang, Lin, Qi, Sun, Jia (bib21) 2018; 521 Yan, Wu, Chen, Liu, Wang, Cao, Dai, Li, Jiang (bib49) 2020; 44 Chen, Wang, Liang, Chen, Zhan, Li (bib33) 2019; 63 Li, Wen, Yang, Zhou, Cheng (bib29) 2019; 142 Shu, Chen, Chen, Pan, Zhang (bib3) 2020; 157 Liu, Zhang, Jiang, Zhang, Arandiyan, Wang, Luo, Fang, Sun (bib23) 2020; 834 Qin, Liu, Wu, Yang (bib41) 2020; 278 Chen, Gao, Liu, Yang, Wang, Su, Zhu, Zhao, Wang (bib46) 2020; 828 Tan, Zhu, Zhang, Wu, Chen, Mu, Lv, Cheng (bib4) 2021; 83 Wang, Hung, Ko, Hosseini, Li (bib22) 2020; 452 Ding, Ji, Wang, Linkov, Wang (bib13) 2019; 423 Liu, Yu, Niu, Han, Tan, Huang, Zhao, Li, Guo, Qiu (bib19) 2018; 140 Li, Huang, Chen, Yu, Wang, Ma (bib7) 2019; 12 Li, Fu, Chen, Huang, Wang, Song (bib48) 2019; 171 Ji, Fan, Tao, Sun, Li, Yang, Tran, Ramakrishna, Guo (bib17) 2019; 58 Yi, He, Yin, Chen, Li, Yin (bib35) 2019; 295 Ding, Shen, Chen, Chen, Chen, Fan, Wu, Li (bib40) 2018; 8 Tan, Zhang, Lei, Wu, Zhu, Cheng, Mu (bib11) 2020; 473 Xia, Qu, Liang, Zhao, Dai, Qiu, Jiao, Zhang, Huang, Guo, Dang, Zou, Xia, Xu, Liu (bib34) 2017; 17 Li, Zhang, Feng, Cheng, Qiu, Dong, Liu, Du (bib55) 2019; 29 Meng, Liu, Liu, Pei, Yuan, Li, Zhang (bib16) 2020; 12 Wang, Ang, Zhang, Zhang, Ma, Yan, Liu, Che, Huang, Lu (bib9) 2019; 254 Guan, An, Ashraf, Zhang, Liu, Fan, Li (bib54) 2020; 269 Chen, Kone, Gong, Xie, Hu, Kong, Liu, Tang, Yang, Pang, Wan (bib15) 2019; 152 Xu, Wang, Deng, Tian, He, Lu, Qian, Yuan, Li (bib18) 2019; 8 Wan, Liu, Zhang, Zhang, Jiang, Wang, Luo, Arandiyan, Liu, Sun (bib52) 2018; 281 Li, Liang, Gao, Zhang, Xiao, Xu, Zhang, Liu (bib42) 2019; 154 Xu, Wu, Xu, Wang (bib56) 2020; 8 Li, Li, Zhang, Li, Liu, Zhang, Liu, Sun, Xu, Zhang, Tang (bib50) 2019; 153 Chen, Guo, Cui, Xie, Zhang, Wei, Zhou (bib1) 2018; 6 Han, Shi, Wang, Zhang, Yan, Jiang, Guo, Sun, Guo (bib6) 2019; 153 Song, Zhu, Li, Chen, Duan, Wang, Lv, Xiong, Liu, Gan (bib30) 2019; 7 Huang, Sun, Zhang, Wang, Zhang, Feng (bib31) 2019; 31 Singh, Das, Bothra, Sikdar, Das, Pati, Maji (bib24) 2020; 59 Zhang, Tan, Zeng, Yu, Chen, Cheng, Mu, Sun (bib5) 2020 Liu, Wan, Zhang, Chen, Fang, Jiang, Zhang, Zhou, Arandiyan, Wang, Liu, Wang, Luo, Chen, Sun (bib53) 2020; 3 Li, Jia, Chang, Chen, Liu, Wang, Hu, Xia, Yang, Yao (bib39) 2018; 4 Cheng, Wang, Chen, Zhou (bib38) 2019; 145 Tang, Liu, Liu, Zheng, Lu, Fu, Wu, Zhang, Rong (bib2) 2019; 141 Zhang, Sun, Zhu, Jiao, Mu, Liang, Li (bib45) 2020; 146 Hu, Ni, Yang, Ma, Zhang, Duan, Gao, Zhang (bib37) 2020; 162 Xu, Yan, Zhong, Kang, Yao (bib44) 2019; 145 Li, She, Shen, Liu, Chen, Li, Deng, Chen, Wang (bib20) 2018; 8 Deng, Tian, Shen, Gao, Lin, Ling, Cheng, Liao, Zhang (bib51) 2020; 567 Ai, Liu, Ruan, Lu, Lu (bib47) 2013; 25 Yang, Wang, Lv, Cao (bib8) 2019; 144 Wang (10.1016/j.carbon.2021.05.016_bib22) 2020; 452 Tan (10.1016/j.carbon.2021.05.016_bib4) 2021; 83 Deng (10.1016/j.carbon.2021.05.016_bib51) 2020; 567 Li (10.1016/j.carbon.2021.05.016_bib55) 2019; 29 Chen (10.1016/j.carbon.2021.05.016_bib15) 2019; 152 Ai (10.1016/j.carbon.2021.05.016_bib47) 2013; 25 Chen (10.1016/j.carbon.2021.05.016_bib1) 2018; 6 Huang (10.1016/j.carbon.2021.05.016_bib31) 2019; 31 Li (10.1016/j.carbon.2021.05.016_bib48) 2019; 171 Chen (10.1016/j.carbon.2021.05.016_bib33) 2019; 63 Tang (10.1016/j.carbon.2021.05.016_bib2) 2019; 141 Zhang (10.1016/j.carbon.2021.05.016_bib45) 2020; 146 Han (10.1016/j.carbon.2021.05.016_bib6) 2019; 153 Yan (10.1016/j.carbon.2021.05.016_bib49) 2020; 44 Li (10.1016/j.carbon.2021.05.016_bib42) 2019; 154 Li (10.1016/j.carbon.2021.05.016_bib12) 2019; 150 Li (10.1016/j.carbon.2021.05.016_bib7) 2019; 12 Yao (10.1016/j.carbon.2021.05.016_bib25) 2016; 4 Ding (10.1016/j.carbon.2021.05.016_bib13) 2019; 423 Singh (10.1016/j.carbon.2021.05.016_bib24) 2020; 59 Qian (10.1016/j.carbon.2021.05.016_bib57) 2019; 277 Hu (10.1016/j.carbon.2021.05.016_bib37) 2020; 162 Xia (10.1016/j.carbon.2021.05.016_bib34) 2017; 17 Liu (10.1016/j.carbon.2021.05.016_bib23) 2020; 834 Xu (10.1016/j.carbon.2021.05.016_bib44) 2019; 145 Yi (10.1016/j.carbon.2021.05.016_bib35) 2019; 295 Zhang (10.1016/j.carbon.2021.05.016_bib5) 2020 Xie (10.1016/j.carbon.2021.05.016_bib36) 2020; 396 Cheng (10.1016/j.carbon.2021.05.016_bib38) 2019; 145 Xu (10.1016/j.carbon.2021.05.016_bib21) 2018; 521 Ha (10.1016/j.carbon.2021.05.016_bib28) 2013; 117 Song (10.1016/j.carbon.2021.05.016_bib30) 2019; 7 Li (10.1016/j.carbon.2021.05.016_bib50) 2019; 153 Wang (10.1016/j.carbon.2021.05.016_bib14) 2019; 413 Xu (10.1016/j.carbon.2021.05.016_bib18) 2019; 8 Li (10.1016/j.carbon.2021.05.016_bib39) 2018; 4 Ding (10.1016/j.carbon.2021.05.016_bib40) 2018; 8 Yang (10.1016/j.carbon.2021.05.016_bib8) 2019; 144 Chen (10.1016/j.carbon.2021.05.016_bib46) 2020; 828 Li (10.1016/j.carbon.2021.05.016_bib29) 2019; 142 Ji (10.1016/j.carbon.2021.05.016_bib17) 2019; 58 Galiote (10.1016/j.carbon.2021.05.016_bib10) 2019; 253 Guo (10.1016/j.carbon.2021.05.016_bib27) 2019; 473 Shu (10.1016/j.carbon.2021.05.016_bib3) 2020; 157 Tan (10.1016/j.carbon.2021.05.016_bib11) 2020; 473 Koo (10.1016/j.carbon.2021.05.016_bib32) 2012; 12 Xu (10.1016/j.carbon.2021.05.016_bib56) 2020; 8 Li (10.1016/j.carbon.2021.05.016_bib20) 2018; 8 Ding (10.1016/j.carbon.2021.05.016_bib26) 2019; 3 Wang (10.1016/j.carbon.2021.05.016_bib9) 2019; 254 Meng (10.1016/j.carbon.2021.05.016_bib16) 2020; 12 Qin (10.1016/j.carbon.2021.05.016_bib41) 2020; 278 Wan (10.1016/j.carbon.2021.05.016_bib52) 2018; 281 Liu (10.1016/j.carbon.2021.05.016_bib53) 2020; 3 Liu (10.1016/j.carbon.2021.05.016_bib19) 2018; 140 Yu (10.1016/j.carbon.2021.05.016_bib58) 2020; 8 Guan (10.1016/j.carbon.2021.05.016_bib54) 2020; 269 Sun (10.1016/j.carbon.2021.05.016_bib43) 2019; 467–468 |
References_xml | – volume: 413 start-page: 367 year: 2019 end-page: 375 ident: bib14 article-title: Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries publication-title: J. Power Sources – volume: 83 start-page: 105813 year: 2021 ident: bib4 article-title: Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn–air batteries publication-title: Nano Energy – volume: 140 start-page: 17 year: 2018 end-page: 23 ident: bib19 article-title: Graphite-graphene architecture stabilizing ultrafine Co publication-title: Carbon – volume: 150 start-page: 93 year: 2019 end-page: 100 ident: bib12 article-title: Low content of Fe publication-title: Carbon – volume: 8 start-page: 7879 year: 2018 end-page: 7888 ident: bib40 article-title: Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR publication-title: ACS Catal. – volume: 12 start-page: 2774 year: 2019 end-page: 2780 ident: bib7 article-title: 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe publication-title: Nano Res. – volume: 521 start-page: 141 year: 2018 end-page: 149 ident: bib21 article-title: Cobalt and cobalt oxides N-codoped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions publication-title: J. Colloid Interface Sci. – volume: 58 start-page: 13840 year: 2019 end-page: 13844 ident: bib17 article-title: The Kirkendall effect for engineering oxygen vacancy of hollow Co publication-title: Angew Chem. Int. Ed. Engl. – volume: 154 start-page: 466 year: 2019 end-page: 477 ident: bib42 article-title: Fe, N co-doped carbonaceous hollow spheres with self-grown carbon nanotubes as a high performance binary electrocatalyst publication-title: Carbon – volume: 152 start-page: 325 year: 2019 end-page: 334 ident: bib15 article-title: Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries publication-title: Carbon – volume: 145 start-page: 38 year: 2019 end-page: 46 ident: bib38 article-title: Defect-enriched, nitrogen-doped graphitic carbon microspheres within 3D interconnected super-macropores as efficient oxygen electrocatalysts for breathing Zn-Air battery publication-title: Carbon – volume: 3 start-page: 1328 year: 2019 end-page: 1337 ident: bib26 article-title: Strongly cooperative nano-CoO/Co active phase in hierarchically porous nitrogen-doped carbon microspheres for efficient bifunctional oxygen electrocatalysis publication-title: ACS Appl. Energy Mater. – volume: 145 start-page: 311 year: 2019 end-page: 320 ident: bib44 article-title: The construction of porous graphene tri-doped with B, N and Co for enhanced oxygen reduction reaction publication-title: Carbon – volume: 567 start-page: 410 year: 2020 end-page: 418 ident: bib51 article-title: Coupling hollow Fe publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 9716 year: 2018 end-page: 9722 ident: bib1 article-title: Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid and solid-state Zn-air batteries publication-title: J. Mater. Chem. A. – volume: 7 start-page: 1177 year: 2019 end-page: 1186 ident: bib30 article-title: Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor publication-title: J. Mater. Chem. A. – volume: 467–468 start-page: 382 year: 2019 end-page: 390 ident: bib43 article-title: Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors publication-title: Appl. Surf. Sci. – volume: 12 start-page: 41580 year: 2020 end-page: 41589 ident: bib16 article-title: ZIF67@MFC-Derived Co/N-C@CNFs interconnected frameworks with graphitic carbon-encapsulated Co nanoparticles as highly stable and efficient electrocatalysts for oxygen reduction reactions publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 28625 year: 2018 end-page: 28631 ident: bib20 article-title: Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction publication-title: RSC Adv. – volume: 278 start-page: 119300 year: 2020 ident: bib41 article-title: Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co-N-C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries publication-title: Appl. Catal., B – volume: 253 start-page: 300 year: 2019 end-page: 308 ident: bib10 article-title: FeCo-N-C oxygen reduction electrocatalysts: activity of the different compounds produced during the synthesis via pyrolysis publication-title: Appl. Catal., B – volume: 473 start-page: 228570 year: 2020 ident: bib11 article-title: Thiourea-Zeolitic imidazolate Framework-67 assembly derived Co–CoO nanoparticles encapsulated in N, S Codoped open carbon shell as bifunctional oxygen electrocatalyst for rechargeable flexible solid Zn–Air batteries publication-title: J. Power Sources – volume: 12 start-page: 2429 year: 2012 end-page: 2435 ident: bib32 article-title: Hollow iron oxide nanoparticles for application in lithium ion batteries publication-title: Nano Lett. – volume: 142 start-page: 1 year: 2019 end-page: 12 ident: bib29 article-title: Boosting oxygen reduction catalysis with N, F, and S tri-doped porous graphene: tertiary N-precursors regulates the constitution of catalytic active sites publication-title: Carbon – volume: 4 start-page: 3235 year: 2016 end-page: 3244 ident: bib25 article-title: Bulk production of nonprecious metal catalysts from cheap starch as precursor and their excellent electrochemical activity publication-title: ACS Sustain. Chem. Eng. – volume: 153 start-page: 364 year: 2019 end-page: 371 ident: bib50 article-title: Immobilization of Fe publication-title: Carbon – volume: 153 start-page: 575 year: 2019 end-page: 584 ident: bib6 article-title: Efficient bifunctional Co/N dual-doped carbon electrocatalysts for oxygen reduction and evolution reaction publication-title: Carbon – year: 2020 ident: bib5 article-title: Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries publication-title: Nano Res. – volume: 269 start-page: 118775 year: 2020 ident: bib54 article-title: Oxygen vacancy excites Co publication-title: Appl. Catal., B – volume: 281 start-page: 31 year: 2018 end-page: 38 ident: bib52 article-title: Improved lithium storage properties of Co publication-title: Electrochim. Acta – volume: 63 start-page: 267 year: 2019 end-page: 275 ident: bib33 article-title: Structure-induced hollow Co publication-title: Sci China Mater – volume: 834 start-page: 155030 year: 2020 ident: bib23 article-title: Porous Co publication-title: J. Alloys Compd. – volume: 29 start-page: 1903444 year: 2019 ident: bib55 article-title: Co publication-title: Adv. Funct. Mater. – volume: 295 start-page: 966 year: 2019 end-page: 977 ident: bib35 article-title: Co-CoO-Co publication-title: Electrochim. Acta – volume: 473 start-page: 555 year: 2019 end-page: 563 ident: bib27 article-title: Co2N nanoparticles embedded N-doped mesoporous carbon as efficient electrocatalysts for oxygen reduction reaction publication-title: Appl. Surf. Sci. – volume: 4 start-page: 2345 year: 2018 end-page: 2356 ident: bib39 article-title: A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte publication-title: Inside Chem. – volume: 44 start-page: 121 year: 2020 end-page: 130 ident: bib49 article-title: Facile preparation of N-doped corncob-derived carbon nanofiber efficiently encapsulating Fe publication-title: J. Energy Chem. – volume: 423 start-page: 1 year: 2019 end-page: 8 ident: bib13 article-title: Mesoporous cobalt selenide/nitrogen-doped carbon hybrid as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions publication-title: J. Power Sources – volume: 396 start-page: 125205 year: 2020 ident: bib36 article-title: Phase and morphology evolution of high dielectric CoO/Co publication-title: Chem. Eng. J. – volume: 452 start-page: 227841 year: 2020 ident: bib22 article-title: Carbon-nanotube-grafted and nano-Co publication-title: J. Power Sources – volume: 277 start-page: 45 year: 2019 end-page: 51 ident: bib57 article-title: Co publication-title: Microporous Mesoporous Mater. – volume: 828 start-page: 154435 year: 2020 ident: bib46 article-title: 1D bamboo-like N-doped carbon nanotubes with encapsulated iron-based nanoparticles as an advanced Zn-air battery cathode electrocatalyst publication-title: J. Alloys Compd. – volume: 17 start-page: 2788 year: 2017 end-page: 2795 ident: bib34 article-title: High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite publication-title: Nano Lett. – volume: 3 start-page: 3892 year: 2020 end-page: 3903 ident: bib53 article-title: Engineering surface structure and defect chemistry of nanoscale cubic Co publication-title: ACS Appl. Nano Mater. – volume: 59 start-page: 3160 year: 2020 end-page: 3170 ident: bib24 article-title: MOF derived Co publication-title: Inorg. Chem. – volume: 157 start-page: 234 year: 2020 end-page: 243 ident: bib3 article-title: Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-Air batteries and overall water splitting publication-title: Carbon – volume: 146 start-page: 2270 year: 2020 end-page: 2280 ident: bib45 article-title: N-doped hard carbon nanotubes derived from conjugated microporous polymer for electrocatalytic oxygen reduction reaction publication-title: Renew. Energy – volume: 8 start-page: 6076 year: 2020 end-page: 6082 ident: bib58 article-title: FeN publication-title: J. Mater. Chem. A. – volume: 254 start-page: 26 year: 2019 end-page: 36 ident: bib9 article-title: FeCo/FeCoNi/N-doped carbon nanotubes grafted polyhedron-derived hybrid fibers as bifunctional oxygen electrocatalysts for durable rechargeable zinc–air battery publication-title: Appl. Catal., B – volume: 141 start-page: 704 year: 2019 end-page: 711 ident: bib2 article-title: Cobalt and nitrogen codoped ultrathin porous carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution publication-title: Carbon – volume: 8 start-page: 343 year: 2019 end-page: 350 ident: bib18 article-title: Cobalt oxide nanoparticles/nitrogen-doped graphene as the highly efficient oxygen reduction electrocatalyst for rechargeable zinc-air batteries publication-title: ACS Sustain. Chem. Eng. – volume: 117 start-page: 14303 year: 2013 end-page: 14312 ident: bib28 article-title: The oxidation of cobalt nanoparticles into Kirkendall-Hollowed CoO and Co publication-title: J. Phys. Chem. C – volume: 144 start-page: 8 year: 2019 end-page: 14 ident: bib8 article-title: Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn–Air batteries publication-title: Carbon – volume: 162 start-page: 245 year: 2020 end-page: 255 ident: bib37 article-title: Fe publication-title: Carbon – volume: 31 start-page: 1801430 year: 2019 ident: bib31 article-title: Hollow-structured metal oxides as oxygen-related catalysts publication-title: Adv. Mater. – volume: 8 start-page: 4384 year: 2020 end-page: 4391 ident: bib56 article-title: Hybrid Zn battery with coordination-polymer-derived, oxygen-vacancy-rich Co publication-title: ACS Sustain. Chem. Eng. – volume: 171 start-page: 130 year: 2019 end-page: 137 ident: bib48 article-title: Porous Fe publication-title: Composites Part B – volume: 25 start-page: 998 year: 2013 end-page: 1003 ident: bib47 article-title: Sp publication-title: Adv. Mater. – volume: 25 start-page: 998 year: 2013 ident: 10.1016/j.carbon.2021.05.016_bib47 article-title: Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen-reduction catalysts publication-title: Adv. Mater. doi: 10.1002/adma.201203923 – volume: 8 start-page: 343 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib18 article-title: Cobalt oxide nanoparticles/nitrogen-doped graphene as the highly efficient oxygen reduction electrocatalyst for rechargeable zinc-air batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05492 – volume: 153 start-page: 364 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib50 article-title: Immobilization of Fe3N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries publication-title: Carbon doi: 10.1016/j.carbon.2019.07.044 – volume: 567 start-page: 410 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib51 article-title: Coupling hollow Fe3O4 nanoparticles with oxygen vacancy on mesoporous carbon as a high-efficiency ORR electrocatalyst for Zn-air battery publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.02.013 – volume: 144 start-page: 8 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib8 article-title: Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn–Air batteries publication-title: Carbon doi: 10.1016/j.carbon.2018.12.008 – volume: 12 start-page: 2429 year: 2012 ident: 10.1016/j.carbon.2021.05.016_bib32 article-title: Hollow iron oxide nanoparticles for application in lithium ion batteries publication-title: Nano Lett. doi: 10.1021/nl3004286 – volume: 269 start-page: 118775 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib54 article-title: Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118775 – volume: 295 start-page: 966 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib35 article-title: Co-CoO-Co3O4/N-doped carbon derived from metal-organic framework: the addition of carbon black for boosting oxygen electrocatalysis and Zn-Air battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.142 – volume: 17 start-page: 2788 year: 2017 ident: 10.1016/j.carbon.2021.05.016_bib34 article-title: High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05004 – volume: 146 start-page: 2270 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib45 article-title: N-doped hard carbon nanotubes derived from conjugated microporous polymer for electrocatalytic oxygen reduction reaction publication-title: Renew. Energy doi: 10.1016/j.renene.2019.08.071 – volume: 4 start-page: 2345 year: 2018 ident: 10.1016/j.carbon.2021.05.016_bib39 article-title: A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte publication-title: Inside Chem. – volume: 145 start-page: 311 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib44 article-title: The construction of porous graphene tri-doped with B, N and Co for enhanced oxygen reduction reaction publication-title: Carbon doi: 10.1016/j.carbon.2019.01.039 – volume: 152 start-page: 325 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib15 article-title: Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries publication-title: Carbon doi: 10.1016/j.carbon.2019.06.026 – volume: 58 start-page: 13840 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib17 article-title: The Kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201908736 – volume: 117 start-page: 14303 year: 2013 ident: 10.1016/j.carbon.2021.05.016_bib28 article-title: The oxidation of cobalt nanoparticles into Kirkendall-Hollowed CoO and Co3O4: the diffusion mechanisms and atomic structural transformations publication-title: J. Phys. Chem. C doi: 10.1021/jp402939e – volume: 140 start-page: 17 year: 2018 ident: 10.1016/j.carbon.2021.05.016_bib19 article-title: Graphite-graphene architecture stabilizing ultrafine Co3O4 nanoparticles for superior oxygen evolution publication-title: Carbon doi: 10.1016/j.carbon.2018.08.023 – volume: 154 start-page: 466 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib42 article-title: Fe, N co-doped carbonaceous hollow spheres with self-grown carbon nanotubes as a high performance binary electrocatalyst publication-title: Carbon doi: 10.1016/j.carbon.2019.08.036 – volume: 3 start-page: 1328 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib26 article-title: Strongly cooperative nano-CoO/Co active phase in hierarchically porous nitrogen-doped carbon microspheres for efficient bifunctional oxygen electrocatalysis publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01660 – volume: 4 start-page: 3235 year: 2016 ident: 10.1016/j.carbon.2021.05.016_bib25 article-title: Bulk production of nonprecious metal catalysts from cheap starch as precursor and their excellent electrochemical activity publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b00269 – year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib5 article-title: Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries publication-title: Nano Res. – volume: 828 start-page: 154435 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib46 article-title: 1D bamboo-like N-doped carbon nanotubes with encapsulated iron-based nanoparticles as an advanced Zn-air battery cathode electrocatalyst publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154435 – volume: 83 start-page: 105813 year: 2021 ident: 10.1016/j.carbon.2021.05.016_bib4 article-title: Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn–air batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105813 – volume: 281 start-page: 31 year: 2018 ident: 10.1016/j.carbon.2021.05.016_bib52 article-title: Improved lithium storage properties of Co3O4 nanoparticles via laser irradiation treatment publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.05.156 – volume: 8 start-page: 6076 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib58 article-title: FeNx and γ-Fe2O3 co-functionalized hollow graphitic carbon nanofibers for efficient oxygen reduction in an alkaline medium publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA00073F – volume: 8 start-page: 7879 year: 2018 ident: 10.1016/j.carbon.2021.05.016_bib40 article-title: Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR publication-title: ACS Catal. doi: 10.1021/acscatal.8b02504 – volume: 473 start-page: 555 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib27 article-title: Co2N nanoparticles embedded N-doped mesoporous carbon as efficient electrocatalysts for oxygen reduction reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.12.204 – volume: 29 start-page: 1903444 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib55 article-title: Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903444 – volume: 12 start-page: 2774 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib7 article-title: 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries publication-title: Nano Res. doi: 10.1007/s12274-019-2512-7 – volume: 142 start-page: 1 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib29 article-title: Boosting oxygen reduction catalysis with N, F, and S tri-doped porous graphene: tertiary N-precursors regulates the constitution of catalytic active sites publication-title: Carbon doi: 10.1016/j.carbon.2018.09.079 – volume: 834 start-page: 155030 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib23 article-title: Porous Co3O4@CoO composite nanosheets as improved anodes for lithium-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155030 – volume: 44 start-page: 121 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib49 article-title: Facile preparation of N-doped corncob-derived carbon nanofiber efficiently encapsulating Fe2O3 nanocrystals towards high ORR electrocatalytic activity publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.09.002 – volume: 59 start-page: 3160 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib24 article-title: MOF derived Co3O4@Co/NCNT nanocomposite for electrochemical hydrogen evolution, flexible zinc-air batteries, and overall water splitting publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b03516 – volume: 253 start-page: 300 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib10 article-title: FeCo-N-C oxygen reduction electrocatalysts: activity of the different compounds produced during the synthesis via pyrolysis publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.04.057 – volume: 31 start-page: 1801430 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib31 article-title: Hollow-structured metal oxides as oxygen-related catalysts publication-title: Adv. Mater. doi: 10.1002/adma.201801430 – volume: 473 start-page: 228570 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib11 article-title: Thiourea-Zeolitic imidazolate Framework-67 assembly derived Co–CoO nanoparticles encapsulated in N, S Codoped open carbon shell as bifunctional oxygen electrocatalyst for rechargeable flexible solid Zn–Air batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228570 – volume: 171 start-page: 130 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib48 article-title: Porous Fe2O3/Fe3O4@Carbon octahedron arrayed on three-dimensional graphene foam for lithium-ion battery publication-title: Composites Part B doi: 10.1016/j.compositesb.2019.04.049 – volume: 153 start-page: 575 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib6 article-title: Efficient bifunctional Co/N dual-doped carbon electrocatalysts for oxygen reduction and evolution reaction publication-title: Carbon doi: 10.1016/j.carbon.2019.07.075 – volume: 254 start-page: 26 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib9 article-title: FeCo/FeCoNi/N-doped carbon nanotubes grafted polyhedron-derived hybrid fibers as bifunctional oxygen electrocatalysts for durable rechargeable zinc–air battery publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.04.027 – volume: 8 start-page: 4384 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib56 article-title: Hybrid Zn battery with coordination-polymer-derived, oxygen-vacancy-rich Co3O4 as a cathode material publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b06715 – volume: 467–468 start-page: 382 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib43 article-title: Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.10.192 – volume: 3 start-page: 3892 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib53 article-title: Engineering surface structure and defect chemistry of nanoscale cubic Co3O4 crystallites for enhanced lithium and sodium storage publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00614 – volume: 63 start-page: 267 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib33 article-title: Structure-induced hollow Co3O4 nanoparticles with rich oxygen vacancies for efficient CO oxidation publication-title: Sci China Mater doi: 10.1007/s40843-019-1178-5 – volume: 145 start-page: 38 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib38 article-title: Defect-enriched, nitrogen-doped graphitic carbon microspheres within 3D interconnected super-macropores as efficient oxygen electrocatalysts for breathing Zn-Air battery publication-title: Carbon doi: 10.1016/j.carbon.2019.01.010 – volume: 423 start-page: 1 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib13 article-title: Mesoporous cobalt selenide/nitrogen-doped carbon hybrid as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.03.051 – volume: 157 start-page: 234 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib3 article-title: Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-Air batteries and overall water splitting publication-title: Carbon doi: 10.1016/j.carbon.2019.10.023 – volume: 141 start-page: 704 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib2 article-title: Cobalt and nitrogen codoped ultrathin porous carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution publication-title: Carbon doi: 10.1016/j.carbon.2018.09.080 – volume: 8 start-page: 28625 year: 2018 ident: 10.1016/j.carbon.2021.05.016_bib20 article-title: Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction publication-title: RSC Adv. doi: 10.1039/C8RA04256J – volume: 521 start-page: 141 year: 2018 ident: 10.1016/j.carbon.2021.05.016_bib21 article-title: Cobalt and cobalt oxides N-codoped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.03.036 – volume: 162 start-page: 245 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib37 article-title: Fe3O4 nanoparticles encapsulated in single-atom Fe–N–C towards efficient oxygen reduction reaction: effect of the micro and macro pores publication-title: Carbon doi: 10.1016/j.carbon.2020.02.059 – volume: 452 start-page: 227841 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib22 article-title: Carbon-nanotube-grafted and nano-Co3O4-doped porous carbon derived from metal-organic framework as an excellent bifunctional catalyst for zinc–air battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.227841 – volume: 277 start-page: 45 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib57 article-title: Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2018.10.020 – volume: 396 start-page: 125205 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib36 article-title: Phase and morphology evolution of high dielectric CoO/Co3O4 particles with Co3O4 nanoneedles on surface for excellent microwave absorption application publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125205 – volume: 413 start-page: 367 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib14 article-title: Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.12.056 – volume: 7 start-page: 1177 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib30 article-title: Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA10158B – volume: 150 start-page: 93 year: 2019 ident: 10.1016/j.carbon.2021.05.016_bib12 article-title: Low content of Fe3C anchored on Fe,N,S-codoped graphene-like carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions publication-title: Carbon doi: 10.1016/j.carbon.2019.05.012 – volume: 6 start-page: 9716 year: 2018 ident: 10.1016/j.carbon.2021.05.016_bib1 article-title: Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid and solid-state Zn-air batteries publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA01859F – volume: 12 start-page: 41580 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib16 article-title: ZIF67@MFC-Derived Co/N-C@CNFs interconnected frameworks with graphitic carbon-encapsulated Co nanoparticles as highly stable and efficient electrocatalysts for oxygen reduction reactions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c12069 – volume: 278 start-page: 119300 year: 2020 ident: 10.1016/j.carbon.2021.05.016_bib41 article-title: Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co-N-C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119300 |
SSID | ssj0004814 |
Score | 2.58977 |
Snippet | Composites of cobalt oxides and nitrogen-doped porous carbon, as electrocatalysts for oxygen reduction reaction (ORR), offer considerable potential in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 87 |
SubjectTerms | activation energy Ammonia Carbon Catalysts catalytic activity cobalt Cobalt oxides Electrocatalysts electrochemistry electron transfer Electron transport Electronic structure Energy conversion Energy storage Gas mixtures Heterostructures Hollow Co3O4-x nanoparticles Metal air batteries N-doped porous carbon Nanoparticles Nitrogen Open circuit voltage oxygen Oxygen reduction reaction Oxygen reduction reactions Platinum polymers Porous materials Pyrolysis Quinones Rechargeable batteries Structural stability Studies Vacancies Zinc-oxygen batteries Zn-air batteries |
Title | Hollow Co3O4-x nanoparticles decorated N-doped porous carbon prepared by one-step pyrolysis as an efficient ORR electrocatalyst for rechargeable Zn-air batteries |
URI | https://dx.doi.org/10.1016/j.carbon.2021.05.016 https://www.proquest.com/docview/2554400279 https://www.proquest.com/docview/2551929096 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_H-aAv4ieunscIvsZr06RpH4_FY1XYg8ODw5eQr4UVaUtvRffF_8X_1Jk0PVGQA6FQmiY0ZKaT-SUzvzD2OhZ6I3x0vI7acalc5NZVNVex9K4NiiheKNpiXa8u5fsrdXXAlnMuDIVVZts_2fRkrXPJSR7Nk2G7pRxfcscFJaGQZlHCr5SatPzNj99hHrKZ-L1pm59qz-lzKcbL29H1xIIqyom_s_7X9PSXoU6zz9kDdj-7jXA69ewhO4jdI3Z3OZ_W9pj9XKFA-2-w7Ktzyb9DZzuEwznqDQKBTPQqA6x56Ae8o9uNmB-mrsEwxhSJDm4PfRc5in6AYT_2ibAELF4dxMQ2gZMUnF9cQD4_Jy3_7K93gM4v4EgS8VKkdCz41HG7HcElAk_E40_Y5dnbj8sVz8cvcC-rasfLjUAwFVsVRdCNb3TrlRbBVVG5Jmgl6lDpKNSmFb51uhRFYwvr0YaExkZhq6fssMM-P2MgEBaVZEmLoCRqhtPopejCKe2la2u1YNU86sZnbnI6IuOLmYPQPptpQAzJyhTKYOGC8ZtWw8TNcUt9PQvU_KFjBqePW1oezfI3-R-_NgjGpCRY3y7Yq5vXKHbacrFdRClSHXShW8SJz__74y_YPXpKC9nFETvcjV_jS_SEdu44qfoxu3P67sNq_QsCkQtF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5pBeSp9027SdQq8itmxZ9jEsDU6TbiAkEHoRei1sCbZxtjT7c_JPO2PLKS2UQMFg0AOLGXk0nzTzibFPIVEr4YLlRVCW59IGbmxWcBlSZysvieKFoi2WRX2Zf7mSVztsMeXCUFhltP2jTR-sdSw5iNI86NZryvEld1xQEgrNrPIR2yV2Kjlju4fHJ_Xyd3pkOVJ800k_dZgy6IYwL2d62xIRqkhHCs_iXyvUX7Z6WICOnrIn0XOEw3Fwz9hOaJ6zvcV0YdsLdlejTtufsGizs5zfQmMaRMQx8A084Ux0LD0suW87fKPnjbAfxqFB14chGB3sFtomcNR-B922bwfOEjD4NBAGwglcp-Ds_BziFTrDDtD2ZgPo_wIKk7iXAmVkwbeGm3UPduDwREj-kl0efb5Y1DzewMBdnmUbnq4E4qlQySC8Kl2pKieV8DYL0pZeSVH4TAUhV5VwlVWpSEqTGIdmxJcmCJO9YrMGx_yagUBklJIxTbzMcXJYhY6KSqxULrdVIecsm6SuXaQnp1syrvUUh_ZdjwLRpCudSI2Fc8bve3UjPccD7dWkUP3HNNO4gjzQc3_Sv46_-Y1GPJbnhOyrOft4X41qp1MX0wTUIrVBL7pCqPjmvz_-ge3VF19P9enx8uQte0w1w752ss9mm_5HeIeO0ca-jxP_FxqHDfY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hollow+Co3O4-x+nanoparticles+decorated+N-doped+porous+carbon+prepared+by+one-step+pyrolysis+as+an+efficient+ORR+electrocatalyst+for+rechargeable+Zn-air+batteries&rft.jtitle=Carbon+%28New+York%29&rft.au=Wang%2C+Yali&rft.au=Gan%2C+Ruihui&rft.au=Ai%2C+Zhiquan&rft.au=Liu%2C+Hao&rft.date=2021-08-30&rft.pub=Elsevier+BV&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=181&rft.spage=87&rft_id=info:doi/10.1016%2Fj.carbon.2021.05.016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |