Hollow Co3O4-x nanoparticles decorated N-doped porous carbon prepared by one-step pyrolysis as an efficient ORR electrocatalyst for rechargeable Zn-air batteries

Composites of cobalt oxides and nitrogen-doped porous carbon, as electrocatalysts for oxygen reduction reaction (ORR), offer considerable potential in new-style energy conversion and storage devices. Herein, a straightforward method for production of N-doped porous carbon (Co3O4-‍x@N–C) decorated by...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 181; pp. 87 - 98
Main Authors Wang, Yali, Gan, Ruihui, Ai, Zhiquan, Liu, Hao, Wei, Chengbiao, Song, Yan, Dirican, Mahmut, Zhang, Xiangwu, Ma, Chang, Shi, Jingli
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 30.08.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Composites of cobalt oxides and nitrogen-doped porous carbon, as electrocatalysts for oxygen reduction reaction (ORR), offer considerable potential in new-style energy conversion and storage devices. Herein, a straightforward method for production of N-doped porous carbon (Co3O4-‍x@N–C) decorated by hollow Co3O4-x nanoparticles with oxygen vacancies has been studied by one-step pyrolysis of Co-doped quinone-amine polymer in gas mixture of NH3 and Ar. The nanosized CoO/Co3O4 heterostructure can boost the electron transport, while the hollow structure can ensure the structural and chemical stability of the catalyst, and the oxygen vacancy can change the surface electron structure and lower the activation energy barrier for oxygen reduction. Consequently, the as-prepared catalyst Co3O4-x@N–C exhibits excellent ORR catalytic performance (E1/2 = 0.845 V vs. RHE), exceeding that of Pt/C and most recently reported ORR catalysts. The Zn-air batteries assembled with Co3O4-x@N–C present a high open circuit potential (1.524 V), a large peak power density (105.2 mW cm−‍2) and great discharge-charge cycling performance, superior to the Zn-air batteries assembled with Pt/C. The excellent electrocatalytic performances of Co3O4-x@N–C make it an ideal alternative for precious metal catalyst (Pt/C) in rechargeable Zn-air batteries. [Display omitted] •The combination of hollow Co3O4-x nanoparticles with oxygen vacancies and N-doped porous carbon.•The catalyst possesses great ORR catalytic activity, long-cycle durability and methanol resistance.•The assembled Zn-air battery has a peak power density of 105.2 mW cm−2 and a specific capacity of 799.5 mAh g−1.
AbstractList Composites of cobalt oxides and nitrogen-doped porous carbon, as electrocatalysts for oxygen reduction reaction (ORR), offer considerable potential in new-style energy conversion and storage devices. Herein, a straightforward method for production of N-doped porous carbon (Co3O4-‍x@N–C) decorated by hollow Co3O4-x nanoparticles with oxygen vacancies has been studied by one-step pyrolysis of Co-doped quinone-amine polymer in gas mixture of NH3 and Ar. The nanosized CoO/Co3O4 heterostructure can boost the electron transport, while the hollow structure can ensure the structural and chemical stability of the catalyst, and the oxygen vacancy can change the surface electron structure and lower the activation energy barrier for oxygen reduction. Consequently, the as-prepared catalyst Co3O4-x@N–C exhibits excellent ORR catalytic performance (E1/2 = 0.845 V vs. RHE), exceeding that of Pt/C and most recently reported ORR catalysts. The Zn-air batteries assembled with Co3O4-x@N–C present a high open circuit potential (1.524 V), a large peak power density (105.2 mW cm−‍2) and great discharge-charge cycling performance, superior to the Zn-air batteries assembled with Pt/C. The excellent electrocatalytic performances of Co3O4-x@N–C make it an ideal alternative for precious metal catalyst (Pt/C) in rechargeable Zn-air batteries.
Composites of cobalt oxides and nitrogen-doped porous carbon, as electrocatalysts for oxygen reduction reaction (ORR), offer considerable potential in new-style energy conversion and storage devices. Herein, a straightforward method for production of N-doped porous carbon (Co₃O₄₋‍ₓ@N–C) decorated by hollow Co₃O₄₋ₓ nanoparticles with oxygen vacancies has been studied by one-step pyrolysis of Co-doped quinone-amine polymer in gas mixture of NH₃ and Ar. The nanosized CoO/Co₃O₄ heterostructure can boost the electron transport, while the hollow structure can ensure the structural and chemical stability of the catalyst, and the oxygen vacancy can change the surface electron structure and lower the activation energy barrier for oxygen reduction. Consequently, the as-prepared catalyst Co₃O₄₋ₓ@N–C exhibits excellent ORR catalytic performance (E₁/₂ = 0.845 V vs. RHE), exceeding that of Pt/C and most recently reported ORR catalysts. The Zn-air batteries assembled with Co₃O₄₋ₓ@N–C present a high open circuit potential (1.524 V), a large peak power density (105.2 mW cm⁻‍²) and great discharge-charge cycling performance, superior to the Zn-air batteries assembled with Pt/C. The excellent electrocatalytic performances of Co₃O₄₋ₓ@N–C make it an ideal alternative for precious metal catalyst (Pt/C) in rechargeable Zn-air batteries.
Composites of cobalt oxides and nitrogen-doped porous carbon, as electrocatalysts for oxygen reduction reaction (ORR), offer considerable potential in new-style energy conversion and storage devices. Herein, a straightforward method for production of N-doped porous carbon (Co3O4-‍x@N–C) decorated by hollow Co3O4-x nanoparticles with oxygen vacancies has been studied by one-step pyrolysis of Co-doped quinone-amine polymer in gas mixture of NH3 and Ar. The nanosized CoO/Co3O4 heterostructure can boost the electron transport, while the hollow structure can ensure the structural and chemical stability of the catalyst, and the oxygen vacancy can change the surface electron structure and lower the activation energy barrier for oxygen reduction. Consequently, the as-prepared catalyst Co3O4-x@N–C exhibits excellent ORR catalytic performance (E1/2 = 0.845 V vs. RHE), exceeding that of Pt/C and most recently reported ORR catalysts. The Zn-air batteries assembled with Co3O4-x@N–C present a high open circuit potential (1.524 V), a large peak power density (105.2 mW cm−‍2) and great discharge-charge cycling performance, superior to the Zn-air batteries assembled with Pt/C. The excellent electrocatalytic performances of Co3O4-x@N–C make it an ideal alternative for precious metal catalyst (Pt/C) in rechargeable Zn-air batteries. [Display omitted] •The combination of hollow Co3O4-x nanoparticles with oxygen vacancies and N-doped porous carbon.•The catalyst possesses great ORR catalytic activity, long-cycle durability and methanol resistance.•The assembled Zn-air battery has a peak power density of 105.2 mW cm−2 and a specific capacity of 799.5 mAh g−1.
Author Liu, Hao
Song, Yan
Wang, Yali
Shi, Jingli
Ma, Chang
Dirican, Mahmut
Gan, Ruihui
Wei, Chengbiao
Ai, Zhiquan
Zhang, Xiangwu
Author_xml – sequence: 1
  givenname: Yali
  surname: Wang
  fullname: Wang, Yali
  organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China
– sequence: 2
  givenname: Ruihui
  surname: Gan
  fullname: Gan, Ruihui
  organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China
– sequence: 3
  givenname: Zhiquan
  surname: Ai
  fullname: Ai, Zhiquan
  organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China
– sequence: 4
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
  organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China
– sequence: 5
  givenname: Chengbiao
  surname: Wei
  fullname: Wei, Chengbiao
  organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China
– sequence: 6
  givenname: Yan
  surname: Song
  fullname: Song, Yan
  organization: CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China
– sequence: 7
  givenname: Mahmut
  surname: Dirican
  fullname: Dirican, Mahmut
  organization: Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695-8301, United States
– sequence: 8
  givenname: Xiangwu
  surname: Zhang
  fullname: Zhang, Xiangwu
  organization: Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695-8301, United States
– sequence: 9
  givenname: Chang
  surname: Ma
  fullname: Ma, Chang
  email: fdoy_lt54@163.com
  organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China
– sequence: 10
  givenname: Jingli
  orcidid: 0000-0002-5274-8358
  surname: Shi
  fullname: Shi, Jingli
  email: shijingli1963@163.com
  organization: Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin, 300387, PR China
BookMark eNqFkcGKFDEQhoOs4OzqG3gIePHSbZLunnR7EGRYXWFxYNGLl1CdrtYM2aStZNR5HN_UDO1pDwqBIj_fX6n8dckuQgzI2HMpaink9tWhtkBjDLUSStaiq4v4iG1kr5uq6Qd5wTZCiL7aKtU8YZcpHcq17WW7Yb9vovfxJ9_FZt9Wv3iAEBeg7KzHxCe0kSDjxD9WU1xKXSLFY-Lre3whLHCRxxMvI1Up48KXE0V_Si5xKCdwnGdnHYbM93d3HD3aTNFChgJlPkfihPYb0FeE0SP_EipwxEfIGclhesoez-ATPvtbr9jnd9efdjfV7f79h93b28q2TZMrOSsttzh0qCbd214PttNqGhvsxn7SndpOjUbVzYOyw6ilEj0IsEKLqQdU0Fyxl2vfheL3I6Zs7l2y6D0ELF82quvkoAYxbAv64gF6iEcKZboz1bZCKD0U6vVKWYopEc7GugzZxZAJnDdSmPP2zMGsaZrz9ozoTBGLuX1gXsjdA53-Z3uz2rAk9cMhmXSO3uLkSsjZTNH9u8EfqY66dQ
CitedBy_id crossref_primary_10_3390_nano12152657
crossref_primary_10_1016_j_colsurfa_2022_130347
crossref_primary_10_1016_j_diamond_2023_110145
crossref_primary_10_1016_j_jtice_2023_104880
crossref_primary_10_1002_advs_202104183
crossref_primary_10_1039_D3CC05653H
crossref_primary_10_1016_j_est_2024_113964
crossref_primary_10_1016_j_jwpe_2024_105366
crossref_primary_10_1016_j_jcis_2022_12_152
crossref_primary_10_1021_acssuschemeng_3c08100
crossref_primary_10_1039_D2SE01354A
crossref_primary_10_1002_solr_202300210
crossref_primary_10_1021_acs_inorgchem_3c01716
crossref_primary_10_1016_j_apcatb_2022_122029
crossref_primary_10_1007_s40843_023_2464_8
crossref_primary_10_1016_j_fuel_2024_131691
crossref_primary_10_1039_D4CY01468E
crossref_primary_10_1016_j_jcou_2021_101617
crossref_primary_10_1016_j_ijhydene_2023_05_189
crossref_primary_10_1039_D3SE00011G
crossref_primary_10_1016_j_jece_2024_112722
crossref_primary_10_1021_acs_inorgchem_3c01690
crossref_primary_10_1016_j_jcis_2024_02_120
crossref_primary_10_1016_j_jssc_2023_124133
crossref_primary_10_1039_D3GC03576J
crossref_primary_10_1016_j_jechem_2021_08_054
crossref_primary_10_1039_D4DT01016G
crossref_primary_10_1016_j_ijhydene_2022_06_151
crossref_primary_10_1039_D4CC04069D
crossref_primary_10_1016_j_cej_2022_139831
crossref_primary_10_1016_j_jallcom_2023_171479
crossref_primary_10_1002_adfm_202201944
crossref_primary_10_1016_j_micromeso_2021_111639
crossref_primary_10_1016_j_apsusc_2022_154115
crossref_primary_10_1016_j_carbon_2022_05_019
crossref_primary_10_1021_acs_langmuir_1c01947
crossref_primary_10_1016_j_jpcs_2024_112051
crossref_primary_10_1002_slct_202300616
crossref_primary_10_1016_j_fuel_2025_135109
crossref_primary_10_1021_acsanm_3c01730
crossref_primary_10_1016_j_jmst_2023_08_073
crossref_primary_10_1016_j_jcis_2022_12_012
crossref_primary_10_1016_j_cclet_2022_107886
crossref_primary_10_1021_acsami_3c09114
crossref_primary_10_1016_j_jpowsour_2022_231884
crossref_primary_10_1016_j_catcom_2022_106428
crossref_primary_10_1016_j_electacta_2022_140918
crossref_primary_10_1021_acsbiomaterials_2c01248
crossref_primary_10_1039_D2NR04933C
crossref_primary_10_1016_j_cej_2022_137709
crossref_primary_10_1016_j_jcis_2023_11_021
crossref_primary_10_1016_j_apsusc_2024_159834
crossref_primary_10_2139_ssrn_4070247
crossref_primary_10_1002_adfm_202404535
crossref_primary_10_1088_1361_6528_ac3d66
crossref_primary_10_3390_su142013417
crossref_primary_10_1007_s40820_024_01366_9
crossref_primary_10_1021_acsami_4c10727
crossref_primary_10_1016_j_jcat_2024_115491
crossref_primary_10_1016_j_jcis_2022_08_088
crossref_primary_10_1016_j_cej_2022_137991
crossref_primary_10_1021_acs_energyfuels_1c02064
crossref_primary_10_2139_ssrn_3992603
crossref_primary_10_1002_cssc_202400570
crossref_primary_10_1016_j_electacta_2024_143858
crossref_primary_10_1039_D2CC04560E
crossref_primary_10_1021_acs_energyfuels_3c00452
crossref_primary_10_1039_D3EE03059H
Cites_doi 10.1002/adma.201203923
10.1021/acssuschemeng.9b05492
10.1016/j.carbon.2019.07.044
10.1016/j.jcis.2020.02.013
10.1016/j.carbon.2018.12.008
10.1021/nl3004286
10.1016/j.apcatb.2020.118775
10.1016/j.electacta.2018.11.142
10.1021/acs.nanolett.6b05004
10.1016/j.renene.2019.08.071
10.1016/j.carbon.2019.01.039
10.1016/j.carbon.2019.06.026
10.1002/anie.201908736
10.1021/jp402939e
10.1016/j.carbon.2018.08.023
10.1016/j.carbon.2019.08.036
10.1021/acsaem.9b01660
10.1021/acssuschemeng.6b00269
10.1016/j.jallcom.2020.154435
10.1016/j.nanoen.2021.105813
10.1016/j.electacta.2018.05.156
10.1039/D0TA00073F
10.1021/acscatal.8b02504
10.1016/j.apsusc.2018.12.204
10.1002/adfm.201903444
10.1007/s12274-019-2512-7
10.1016/j.carbon.2018.09.079
10.1016/j.jallcom.2020.155030
10.1016/j.jechem.2019.09.002
10.1021/acs.inorgchem.9b03516
10.1016/j.apcatb.2019.04.057
10.1002/adma.201801430
10.1016/j.jpowsour.2020.228570
10.1016/j.compositesb.2019.04.049
10.1016/j.carbon.2019.07.075
10.1016/j.apcatb.2019.04.027
10.1021/acssuschemeng.9b06715
10.1016/j.apsusc.2018.10.192
10.1021/acsanm.0c00614
10.1007/s40843-019-1178-5
10.1016/j.carbon.2019.01.010
10.1016/j.jpowsour.2019.03.051
10.1016/j.carbon.2019.10.023
10.1016/j.carbon.2018.09.080
10.1039/C8RA04256J
10.1016/j.jcis.2018.03.036
10.1016/j.carbon.2020.02.059
10.1016/j.jpowsour.2020.227841
10.1016/j.micromeso.2018.10.020
10.1016/j.cej.2020.125205
10.1016/j.jpowsour.2018.12.056
10.1039/C8TA10158B
10.1016/j.carbon.2019.05.012
10.1039/C8TA01859F
10.1021/acsami.0c12069
10.1016/j.apcatb.2020.119300
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Aug 30, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 30, 2021
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.carbon.2021.05.016
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
EndPage 98
ExternalDocumentID 10_1016_j_carbon_2021_05_016
S0008622321005108
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
XPP
ZMT
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
IHE
R2-
RIG
SEW
SMS
WUQ
7SR
8FD
JG9
SSH
7S9
L.6
ID FETCH-LOGICAL-c433t-1f2716e95e2d78c879c572db3e5b8d7526d37e25f92c9b71208a0ac070d8ae2a3
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Jul 11 10:42:49 EDT 2025
Fri Jul 25 03:27:48 EDT 2025
Thu Apr 24 23:07:51 EDT 2025
Tue Aug 05 03:08:30 EDT 2025
Fri Feb 23 02:40:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hollow Co3O4-x nanoparticles
N-doped porous carbon
Oxygen reduction reaction
Zn-air batteries
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-1f2716e95e2d78c879c572db3e5b8d7526d37e25f92c9b71208a0ac070d8ae2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5274-8358
PQID 2554400279
PQPubID 2045273
PageCount 12
ParticipantIDs proquest_miscellaneous_2551929096
proquest_journals_2554400279
crossref_citationtrail_10_1016_j_carbon_2021_05_016
crossref_primary_10_1016_j_carbon_2021_05_016
elsevier_sciencedirect_doi_10_1016_j_carbon_2021_05_016
PublicationCentury 2000
PublicationDate 2021-08-30
PublicationDateYYYYMMDD 2021-08-30
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-30
  day: 30
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wang, Zhang, Meng, Pu, Jin, He, Zhang, Mu (bib14) 2019; 413
Guo, Tian, Wang, Ke, Zhu (bib27) 2019; 473
Sun, Zhou, Li, Zhou, Liu, Zhang, Gao, Meng, Zhou, Ma (bib43) 2019; 467–468
Qian, Guo, Zhang, Yang, Qian, Xu, Qian, Lin, Fan (bib57) 2019; 277
Xie, Ni, Lin, Wu, Sun, Zhang, Wang, Du (bib36) 2020; 396
Yao, Yu, Yao, Wei, Han, Chen, Xie (bib25) 2016; 4
Koo, Xiong, Slater, Prakapenka, Balasubramanian, Podsiadlo, Johnson, Rajh, Shevchenko (bib32) 2012; 12
Galiote, Oliveira, Lima (bib10) 2019; 253
Yu, Lian, Li, Yu, Xi, Wu, Zhao, Mai, Zhou (bib58) 2020; 8
Ha, Moreau, Honrao, Hennig, Robinson (bib28) 2013; 117
Li, Gao, Liang, Zhang, Xiao, Xu, Liu (bib12) 2019; 150
Ding, Yang, Gao, Sun, Sun, Li (bib26) 2019; 3
Xu, Xu, Ban, Zhang, Lin, Qi, Sun, Jia (bib21) 2018; 521
Yan, Wu, Chen, Liu, Wang, Cao, Dai, Li, Jiang (bib49) 2020; 44
Chen, Wang, Liang, Chen, Zhan, Li (bib33) 2019; 63
Li, Wen, Yang, Zhou, Cheng (bib29) 2019; 142
Shu, Chen, Chen, Pan, Zhang (bib3) 2020; 157
Liu, Zhang, Jiang, Zhang, Arandiyan, Wang, Luo, Fang, Sun (bib23) 2020; 834
Qin, Liu, Wu, Yang (bib41) 2020; 278
Chen, Gao, Liu, Yang, Wang, Su, Zhu, Zhao, Wang (bib46) 2020; 828
Tan, Zhu, Zhang, Wu, Chen, Mu, Lv, Cheng (bib4) 2021; 83
Wang, Hung, Ko, Hosseini, Li (bib22) 2020; 452
Ding, Ji, Wang, Linkov, Wang (bib13) 2019; 423
Liu, Yu, Niu, Han, Tan, Huang, Zhao, Li, Guo, Qiu (bib19) 2018; 140
Li, Huang, Chen, Yu, Wang, Ma (bib7) 2019; 12
Li, Fu, Chen, Huang, Wang, Song (bib48) 2019; 171
Ji, Fan, Tao, Sun, Li, Yang, Tran, Ramakrishna, Guo (bib17) 2019; 58
Yi, He, Yin, Chen, Li, Yin (bib35) 2019; 295
Ding, Shen, Chen, Chen, Chen, Fan, Wu, Li (bib40) 2018; 8
Tan, Zhang, Lei, Wu, Zhu, Cheng, Mu (bib11) 2020; 473
Xia, Qu, Liang, Zhao, Dai, Qiu, Jiao, Zhang, Huang, Guo, Dang, Zou, Xia, Xu, Liu (bib34) 2017; 17
Li, Zhang, Feng, Cheng, Qiu, Dong, Liu, Du (bib55) 2019; 29
Meng, Liu, Liu, Pei, Yuan, Li, Zhang (bib16) 2020; 12
Wang, Ang, Zhang, Zhang, Ma, Yan, Liu, Che, Huang, Lu (bib9) 2019; 254
Guan, An, Ashraf, Zhang, Liu, Fan, Li (bib54) 2020; 269
Chen, Kone, Gong, Xie, Hu, Kong, Liu, Tang, Yang, Pang, Wan (bib15) 2019; 152
Xu, Wang, Deng, Tian, He, Lu, Qian, Yuan, Li (bib18) 2019; 8
Wan, Liu, Zhang, Zhang, Jiang, Wang, Luo, Arandiyan, Liu, Sun (bib52) 2018; 281
Li, Liang, Gao, Zhang, Xiao, Xu, Zhang, Liu (bib42) 2019; 154
Xu, Wu, Xu, Wang (bib56) 2020; 8
Li, Li, Zhang, Li, Liu, Zhang, Liu, Sun, Xu, Zhang, Tang (bib50) 2019; 153
Chen, Guo, Cui, Xie, Zhang, Wei, Zhou (bib1) 2018; 6
Han, Shi, Wang, Zhang, Yan, Jiang, Guo, Sun, Guo (bib6) 2019; 153
Song, Zhu, Li, Chen, Duan, Wang, Lv, Xiong, Liu, Gan (bib30) 2019; 7
Huang, Sun, Zhang, Wang, Zhang, Feng (bib31) 2019; 31
Singh, Das, Bothra, Sikdar, Das, Pati, Maji (bib24) 2020; 59
Zhang, Tan, Zeng, Yu, Chen, Cheng, Mu, Sun (bib5) 2020
Liu, Wan, Zhang, Chen, Fang, Jiang, Zhang, Zhou, Arandiyan, Wang, Liu, Wang, Luo, Chen, Sun (bib53) 2020; 3
Li, Jia, Chang, Chen, Liu, Wang, Hu, Xia, Yang, Yao (bib39) 2018; 4
Cheng, Wang, Chen, Zhou (bib38) 2019; 145
Tang, Liu, Liu, Zheng, Lu, Fu, Wu, Zhang, Rong (bib2) 2019; 141
Zhang, Sun, Zhu, Jiao, Mu, Liang, Li (bib45) 2020; 146
Hu, Ni, Yang, Ma, Zhang, Duan, Gao, Zhang (bib37) 2020; 162
Xu, Yan, Zhong, Kang, Yao (bib44) 2019; 145
Li, She, Shen, Liu, Chen, Li, Deng, Chen, Wang (bib20) 2018; 8
Deng, Tian, Shen, Gao, Lin, Ling, Cheng, Liao, Zhang (bib51) 2020; 567
Ai, Liu, Ruan, Lu, Lu (bib47) 2013; 25
Yang, Wang, Lv, Cao (bib8) 2019; 144
Wang (10.1016/j.carbon.2021.05.016_bib22) 2020; 452
Tan (10.1016/j.carbon.2021.05.016_bib4) 2021; 83
Deng (10.1016/j.carbon.2021.05.016_bib51) 2020; 567
Li (10.1016/j.carbon.2021.05.016_bib55) 2019; 29
Chen (10.1016/j.carbon.2021.05.016_bib15) 2019; 152
Ai (10.1016/j.carbon.2021.05.016_bib47) 2013; 25
Chen (10.1016/j.carbon.2021.05.016_bib1) 2018; 6
Huang (10.1016/j.carbon.2021.05.016_bib31) 2019; 31
Li (10.1016/j.carbon.2021.05.016_bib48) 2019; 171
Chen (10.1016/j.carbon.2021.05.016_bib33) 2019; 63
Tang (10.1016/j.carbon.2021.05.016_bib2) 2019; 141
Zhang (10.1016/j.carbon.2021.05.016_bib45) 2020; 146
Han (10.1016/j.carbon.2021.05.016_bib6) 2019; 153
Yan (10.1016/j.carbon.2021.05.016_bib49) 2020; 44
Li (10.1016/j.carbon.2021.05.016_bib42) 2019; 154
Li (10.1016/j.carbon.2021.05.016_bib12) 2019; 150
Li (10.1016/j.carbon.2021.05.016_bib7) 2019; 12
Yao (10.1016/j.carbon.2021.05.016_bib25) 2016; 4
Ding (10.1016/j.carbon.2021.05.016_bib13) 2019; 423
Singh (10.1016/j.carbon.2021.05.016_bib24) 2020; 59
Qian (10.1016/j.carbon.2021.05.016_bib57) 2019; 277
Hu (10.1016/j.carbon.2021.05.016_bib37) 2020; 162
Xia (10.1016/j.carbon.2021.05.016_bib34) 2017; 17
Liu (10.1016/j.carbon.2021.05.016_bib23) 2020; 834
Xu (10.1016/j.carbon.2021.05.016_bib44) 2019; 145
Yi (10.1016/j.carbon.2021.05.016_bib35) 2019; 295
Zhang (10.1016/j.carbon.2021.05.016_bib5) 2020
Xie (10.1016/j.carbon.2021.05.016_bib36) 2020; 396
Cheng (10.1016/j.carbon.2021.05.016_bib38) 2019; 145
Xu (10.1016/j.carbon.2021.05.016_bib21) 2018; 521
Ha (10.1016/j.carbon.2021.05.016_bib28) 2013; 117
Song (10.1016/j.carbon.2021.05.016_bib30) 2019; 7
Li (10.1016/j.carbon.2021.05.016_bib50) 2019; 153
Wang (10.1016/j.carbon.2021.05.016_bib14) 2019; 413
Xu (10.1016/j.carbon.2021.05.016_bib18) 2019; 8
Li (10.1016/j.carbon.2021.05.016_bib39) 2018; 4
Ding (10.1016/j.carbon.2021.05.016_bib40) 2018; 8
Yang (10.1016/j.carbon.2021.05.016_bib8) 2019; 144
Chen (10.1016/j.carbon.2021.05.016_bib46) 2020; 828
Li (10.1016/j.carbon.2021.05.016_bib29) 2019; 142
Ji (10.1016/j.carbon.2021.05.016_bib17) 2019; 58
Galiote (10.1016/j.carbon.2021.05.016_bib10) 2019; 253
Guo (10.1016/j.carbon.2021.05.016_bib27) 2019; 473
Shu (10.1016/j.carbon.2021.05.016_bib3) 2020; 157
Tan (10.1016/j.carbon.2021.05.016_bib11) 2020; 473
Koo (10.1016/j.carbon.2021.05.016_bib32) 2012; 12
Xu (10.1016/j.carbon.2021.05.016_bib56) 2020; 8
Li (10.1016/j.carbon.2021.05.016_bib20) 2018; 8
Ding (10.1016/j.carbon.2021.05.016_bib26) 2019; 3
Wang (10.1016/j.carbon.2021.05.016_bib9) 2019; 254
Meng (10.1016/j.carbon.2021.05.016_bib16) 2020; 12
Qin (10.1016/j.carbon.2021.05.016_bib41) 2020; 278
Wan (10.1016/j.carbon.2021.05.016_bib52) 2018; 281
Liu (10.1016/j.carbon.2021.05.016_bib53) 2020; 3
Liu (10.1016/j.carbon.2021.05.016_bib19) 2018; 140
Yu (10.1016/j.carbon.2021.05.016_bib58) 2020; 8
Guan (10.1016/j.carbon.2021.05.016_bib54) 2020; 269
Sun (10.1016/j.carbon.2021.05.016_bib43) 2019; 467–468
References_xml – volume: 413
  start-page: 367
  year: 2019
  end-page: 375
  ident: bib14
  article-title: Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries
  publication-title: J. Power Sources
– volume: 83
  start-page: 105813
  year: 2021
  ident: bib4
  article-title: Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn–air batteries
  publication-title: Nano Energy
– volume: 140
  start-page: 17
  year: 2018
  end-page: 23
  ident: bib19
  article-title: Graphite-graphene architecture stabilizing ultrafine Co
  publication-title: Carbon
– volume: 150
  start-page: 93
  year: 2019
  end-page: 100
  ident: bib12
  article-title: Low content of Fe
  publication-title: Carbon
– volume: 8
  start-page: 7879
  year: 2018
  end-page: 7888
  ident: bib40
  article-title: Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR
  publication-title: ACS Catal.
– volume: 12
  start-page: 2774
  year: 2019
  end-page: 2780
  ident: bib7
  article-title: 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe
  publication-title: Nano Res.
– volume: 521
  start-page: 141
  year: 2018
  end-page: 149
  ident: bib21
  article-title: Cobalt and cobalt oxides N-codoped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions
  publication-title: J. Colloid Interface Sci.
– volume: 58
  start-page: 13840
  year: 2019
  end-page: 13844
  ident: bib17
  article-title: The Kirkendall effect for engineering oxygen vacancy of hollow Co
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 154
  start-page: 466
  year: 2019
  end-page: 477
  ident: bib42
  article-title: Fe, N co-doped carbonaceous hollow spheres with self-grown carbon nanotubes as a high performance binary electrocatalyst
  publication-title: Carbon
– volume: 152
  start-page: 325
  year: 2019
  end-page: 334
  ident: bib15
  article-title: Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries
  publication-title: Carbon
– volume: 145
  start-page: 38
  year: 2019
  end-page: 46
  ident: bib38
  article-title: Defect-enriched, nitrogen-doped graphitic carbon microspheres within 3D interconnected super-macropores as efficient oxygen electrocatalysts for breathing Zn-Air battery
  publication-title: Carbon
– volume: 3
  start-page: 1328
  year: 2019
  end-page: 1337
  ident: bib26
  article-title: Strongly cooperative nano-CoO/Co active phase in hierarchically porous nitrogen-doped carbon microspheres for efficient bifunctional oxygen electrocatalysis
  publication-title: ACS Appl. Energy Mater.
– volume: 145
  start-page: 311
  year: 2019
  end-page: 320
  ident: bib44
  article-title: The construction of porous graphene tri-doped with B, N and Co for enhanced oxygen reduction reaction
  publication-title: Carbon
– volume: 567
  start-page: 410
  year: 2020
  end-page: 418
  ident: bib51
  article-title: Coupling hollow Fe
  publication-title: J. Colloid Interface Sci.
– volume: 6
  start-page: 9716
  year: 2018
  end-page: 9722
  ident: bib1
  article-title: Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid and solid-state Zn-air batteries
  publication-title: J. Mater. Chem. A.
– volume: 7
  start-page: 1177
  year: 2019
  end-page: 1186
  ident: bib30
  article-title: Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor
  publication-title: J. Mater. Chem. A.
– volume: 467–468
  start-page: 382
  year: 2019
  end-page: 390
  ident: bib43
  article-title: Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 41580
  year: 2020
  end-page: 41589
  ident: bib16
  article-title: ZIF67@MFC-Derived Co/N-C@CNFs interconnected frameworks with graphitic carbon-encapsulated Co nanoparticles as highly stable and efficient electrocatalysts for oxygen reduction reactions
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 28625
  year: 2018
  end-page: 28631
  ident: bib20
  article-title: Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction
  publication-title: RSC Adv.
– volume: 278
  start-page: 119300
  year: 2020
  ident: bib41
  article-title: Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co-N-C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries
  publication-title: Appl. Catal., B
– volume: 253
  start-page: 300
  year: 2019
  end-page: 308
  ident: bib10
  article-title: FeCo-N-C oxygen reduction electrocatalysts: activity of the different compounds produced during the synthesis via pyrolysis
  publication-title: Appl. Catal., B
– volume: 473
  start-page: 228570
  year: 2020
  ident: bib11
  article-title: Thiourea-Zeolitic imidazolate Framework-67 assembly derived Co–CoO nanoparticles encapsulated in N, S Codoped open carbon shell as bifunctional oxygen electrocatalyst for rechargeable flexible solid Zn–Air batteries
  publication-title: J. Power Sources
– volume: 12
  start-page: 2429
  year: 2012
  end-page: 2435
  ident: bib32
  article-title: Hollow iron oxide nanoparticles for application in lithium ion batteries
  publication-title: Nano Lett.
– volume: 142
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib29
  article-title: Boosting oxygen reduction catalysis with N, F, and S tri-doped porous graphene: tertiary N-precursors regulates the constitution of catalytic active sites
  publication-title: Carbon
– volume: 4
  start-page: 3235
  year: 2016
  end-page: 3244
  ident: bib25
  article-title: Bulk production of nonprecious metal catalysts from cheap starch as precursor and their excellent electrochemical activity
  publication-title: ACS Sustain. Chem. Eng.
– volume: 153
  start-page: 364
  year: 2019
  end-page: 371
  ident: bib50
  article-title: Immobilization of Fe
  publication-title: Carbon
– volume: 153
  start-page: 575
  year: 2019
  end-page: 584
  ident: bib6
  article-title: Efficient bifunctional Co/N dual-doped carbon electrocatalysts for oxygen reduction and evolution reaction
  publication-title: Carbon
– year: 2020
  ident: bib5
  article-title: Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries
  publication-title: Nano Res.
– volume: 269
  start-page: 118775
  year: 2020
  ident: bib54
  article-title: Oxygen vacancy excites Co
  publication-title: Appl. Catal., B
– volume: 281
  start-page: 31
  year: 2018
  end-page: 38
  ident: bib52
  article-title: Improved lithium storage properties of Co
  publication-title: Electrochim. Acta
– volume: 63
  start-page: 267
  year: 2019
  end-page: 275
  ident: bib33
  article-title: Structure-induced hollow Co
  publication-title: Sci China Mater
– volume: 834
  start-page: 155030
  year: 2020
  ident: bib23
  article-title: Porous Co
  publication-title: J. Alloys Compd.
– volume: 29
  start-page: 1903444
  year: 2019
  ident: bib55
  article-title: Co
  publication-title: Adv. Funct. Mater.
– volume: 295
  start-page: 966
  year: 2019
  end-page: 977
  ident: bib35
  article-title: Co-CoO-Co
  publication-title: Electrochim. Acta
– volume: 473
  start-page: 555
  year: 2019
  end-page: 563
  ident: bib27
  article-title: Co2N nanoparticles embedded N-doped mesoporous carbon as efficient electrocatalysts for oxygen reduction reaction
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 2345
  year: 2018
  end-page: 2356
  ident: bib39
  article-title: A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte
  publication-title: Inside Chem.
– volume: 44
  start-page: 121
  year: 2020
  end-page: 130
  ident: bib49
  article-title: Facile preparation of N-doped corncob-derived carbon nanofiber efficiently encapsulating Fe
  publication-title: J. Energy Chem.
– volume: 423
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib13
  article-title: Mesoporous cobalt selenide/nitrogen-doped carbon hybrid as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions
  publication-title: J. Power Sources
– volume: 396
  start-page: 125205
  year: 2020
  ident: bib36
  article-title: Phase and morphology evolution of high dielectric CoO/Co
  publication-title: Chem. Eng. J.
– volume: 452
  start-page: 227841
  year: 2020
  ident: bib22
  article-title: Carbon-nanotube-grafted and nano-Co
  publication-title: J. Power Sources
– volume: 277
  start-page: 45
  year: 2019
  end-page: 51
  ident: bib57
  article-title: Co
  publication-title: Microporous Mesoporous Mater.
– volume: 828
  start-page: 154435
  year: 2020
  ident: bib46
  article-title: 1D bamboo-like N-doped carbon nanotubes with encapsulated iron-based nanoparticles as an advanced Zn-air battery cathode electrocatalyst
  publication-title: J. Alloys Compd.
– volume: 17
  start-page: 2788
  year: 2017
  end-page: 2795
  ident: bib34
  article-title: High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite
  publication-title: Nano Lett.
– volume: 3
  start-page: 3892
  year: 2020
  end-page: 3903
  ident: bib53
  article-title: Engineering surface structure and defect chemistry of nanoscale cubic Co
  publication-title: ACS Appl. Nano Mater.
– volume: 59
  start-page: 3160
  year: 2020
  end-page: 3170
  ident: bib24
  article-title: MOF derived Co
  publication-title: Inorg. Chem.
– volume: 157
  start-page: 234
  year: 2020
  end-page: 243
  ident: bib3
  article-title: Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-Air batteries and overall water splitting
  publication-title: Carbon
– volume: 146
  start-page: 2270
  year: 2020
  end-page: 2280
  ident: bib45
  article-title: N-doped hard carbon nanotubes derived from conjugated microporous polymer for electrocatalytic oxygen reduction reaction
  publication-title: Renew. Energy
– volume: 8
  start-page: 6076
  year: 2020
  end-page: 6082
  ident: bib58
  article-title: FeN
  publication-title: J. Mater. Chem. A.
– volume: 254
  start-page: 26
  year: 2019
  end-page: 36
  ident: bib9
  article-title: FeCo/FeCoNi/N-doped carbon nanotubes grafted polyhedron-derived hybrid fibers as bifunctional oxygen electrocatalysts for durable rechargeable zinc–air battery
  publication-title: Appl. Catal., B
– volume: 141
  start-page: 704
  year: 2019
  end-page: 711
  ident: bib2
  article-title: Cobalt and nitrogen codoped ultrathin porous carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution
  publication-title: Carbon
– volume: 8
  start-page: 343
  year: 2019
  end-page: 350
  ident: bib18
  article-title: Cobalt oxide nanoparticles/nitrogen-doped graphene as the highly efficient oxygen reduction electrocatalyst for rechargeable zinc-air batteries
  publication-title: ACS Sustain. Chem. Eng.
– volume: 117
  start-page: 14303
  year: 2013
  end-page: 14312
  ident: bib28
  article-title: The oxidation of cobalt nanoparticles into Kirkendall-Hollowed CoO and Co
  publication-title: J. Phys. Chem. C
– volume: 144
  start-page: 8
  year: 2019
  end-page: 14
  ident: bib8
  article-title: Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn–Air batteries
  publication-title: Carbon
– volume: 162
  start-page: 245
  year: 2020
  end-page: 255
  ident: bib37
  article-title: Fe
  publication-title: Carbon
– volume: 31
  start-page: 1801430
  year: 2019
  ident: bib31
  article-title: Hollow-structured metal oxides as oxygen-related catalysts
  publication-title: Adv. Mater.
– volume: 8
  start-page: 4384
  year: 2020
  end-page: 4391
  ident: bib56
  article-title: Hybrid Zn battery with coordination-polymer-derived, oxygen-vacancy-rich Co
  publication-title: ACS Sustain. Chem. Eng.
– volume: 171
  start-page: 130
  year: 2019
  end-page: 137
  ident: bib48
  article-title: Porous Fe
  publication-title: Composites Part B
– volume: 25
  start-page: 998
  year: 2013
  end-page: 1003
  ident: bib47
  article-title: Sp
  publication-title: Adv. Mater.
– volume: 25
  start-page: 998
  year: 2013
  ident: 10.1016/j.carbon.2021.05.016_bib47
  article-title: Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen-reduction catalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203923
– volume: 8
  start-page: 343
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib18
  article-title: Cobalt oxide nanoparticles/nitrogen-doped graphene as the highly efficient oxygen reduction electrocatalyst for rechargeable zinc-air batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05492
– volume: 153
  start-page: 364
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib50
  article-title: Immobilization of Fe3N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.07.044
– volume: 567
  start-page: 410
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib51
  article-title: Coupling hollow Fe3O4 nanoparticles with oxygen vacancy on mesoporous carbon as a high-efficiency ORR electrocatalyst for Zn-air battery
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.02.013
– volume: 144
  start-page: 8
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib8
  article-title: Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn–Air batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.12.008
– volume: 12
  start-page: 2429
  year: 2012
  ident: 10.1016/j.carbon.2021.05.016_bib32
  article-title: Hollow iron oxide nanoparticles for application in lithium ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl3004286
– volume: 269
  start-page: 118775
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib54
  article-title: Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118775
– volume: 295
  start-page: 966
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib35
  article-title: Co-CoO-Co3O4/N-doped carbon derived from metal-organic framework: the addition of carbon black for boosting oxygen electrocatalysis and Zn-Air battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.142
– volume: 17
  start-page: 2788
  year: 2017
  ident: 10.1016/j.carbon.2021.05.016_bib34
  article-title: High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05004
– volume: 146
  start-page: 2270
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib45
  article-title: N-doped hard carbon nanotubes derived from conjugated microporous polymer for electrocatalytic oxygen reduction reaction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.08.071
– volume: 4
  start-page: 2345
  year: 2018
  ident: 10.1016/j.carbon.2021.05.016_bib39
  article-title: A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte
  publication-title: Inside Chem.
– volume: 145
  start-page: 311
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib44
  article-title: The construction of porous graphene tri-doped with B, N and Co for enhanced oxygen reduction reaction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.039
– volume: 152
  start-page: 325
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib15
  article-title: Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.06.026
– volume: 58
  start-page: 13840
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib17
  article-title: The Kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201908736
– volume: 117
  start-page: 14303
  year: 2013
  ident: 10.1016/j.carbon.2021.05.016_bib28
  article-title: The oxidation of cobalt nanoparticles into Kirkendall-Hollowed CoO and Co3O4: the diffusion mechanisms and atomic structural transformations
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp402939e
– volume: 140
  start-page: 17
  year: 2018
  ident: 10.1016/j.carbon.2021.05.016_bib19
  article-title: Graphite-graphene architecture stabilizing ultrafine Co3O4 nanoparticles for superior oxygen evolution
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.08.023
– volume: 154
  start-page: 466
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib42
  article-title: Fe, N co-doped carbonaceous hollow spheres with self-grown carbon nanotubes as a high performance binary electrocatalyst
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.08.036
– volume: 3
  start-page: 1328
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib26
  article-title: Strongly cooperative nano-CoO/Co active phase in hierarchically porous nitrogen-doped carbon microspheres for efficient bifunctional oxygen electrocatalysis
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01660
– volume: 4
  start-page: 3235
  year: 2016
  ident: 10.1016/j.carbon.2021.05.016_bib25
  article-title: Bulk production of nonprecious metal catalysts from cheap starch as precursor and their excellent electrochemical activity
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00269
– year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib5
  article-title: Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries
  publication-title: Nano Res.
– volume: 828
  start-page: 154435
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib46
  article-title: 1D bamboo-like N-doped carbon nanotubes with encapsulated iron-based nanoparticles as an advanced Zn-air battery cathode electrocatalyst
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154435
– volume: 83
  start-page: 105813
  year: 2021
  ident: 10.1016/j.carbon.2021.05.016_bib4
  article-title: Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn–air batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105813
– volume: 281
  start-page: 31
  year: 2018
  ident: 10.1016/j.carbon.2021.05.016_bib52
  article-title: Improved lithium storage properties of Co3O4 nanoparticles via laser irradiation treatment
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.05.156
– volume: 8
  start-page: 6076
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib58
  article-title: FeNx and γ-Fe2O3 co-functionalized hollow graphitic carbon nanofibers for efficient oxygen reduction in an alkaline medium
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA00073F
– volume: 8
  start-page: 7879
  year: 2018
  ident: 10.1016/j.carbon.2021.05.016_bib40
  article-title: Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02504
– volume: 473
  start-page: 555
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib27
  article-title: Co2N nanoparticles embedded N-doped mesoporous carbon as efficient electrocatalysts for oxygen reduction reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.12.204
– volume: 29
  start-page: 1903444
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib55
  article-title: Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903444
– volume: 12
  start-page: 2774
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib7
  article-title: 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2512-7
– volume: 142
  start-page: 1
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib29
  article-title: Boosting oxygen reduction catalysis with N, F, and S tri-doped porous graphene: tertiary N-precursors regulates the constitution of catalytic active sites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.079
– volume: 834
  start-page: 155030
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib23
  article-title: Porous Co3O4@CoO composite nanosheets as improved anodes for lithium-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.155030
– volume: 44
  start-page: 121
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib49
  article-title: Facile preparation of N-doped corncob-derived carbon nanofiber efficiently encapsulating Fe2O3 nanocrystals towards high ORR electrocatalytic activity
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.09.002
– volume: 59
  start-page: 3160
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib24
  article-title: MOF derived Co3O4@Co/NCNT nanocomposite for electrochemical hydrogen evolution, flexible zinc-air batteries, and overall water splitting
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b03516
– volume: 253
  start-page: 300
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib10
  article-title: FeCo-N-C oxygen reduction electrocatalysts: activity of the different compounds produced during the synthesis via pyrolysis
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.04.057
– volume: 31
  start-page: 1801430
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib31
  article-title: Hollow-structured metal oxides as oxygen-related catalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801430
– volume: 473
  start-page: 228570
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib11
  article-title: Thiourea-Zeolitic imidazolate Framework-67 assembly derived Co–CoO nanoparticles encapsulated in N, S Codoped open carbon shell as bifunctional oxygen electrocatalyst for rechargeable flexible solid Zn–Air batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228570
– volume: 171
  start-page: 130
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib48
  article-title: Porous Fe2O3/Fe3O4@Carbon octahedron arrayed on three-dimensional graphene foam for lithium-ion battery
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2019.04.049
– volume: 153
  start-page: 575
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib6
  article-title: Efficient bifunctional Co/N dual-doped carbon electrocatalysts for oxygen reduction and evolution reaction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.07.075
– volume: 254
  start-page: 26
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib9
  article-title: FeCo/FeCoNi/N-doped carbon nanotubes grafted polyhedron-derived hybrid fibers as bifunctional oxygen electrocatalysts for durable rechargeable zinc–air battery
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.04.027
– volume: 8
  start-page: 4384
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib56
  article-title: Hybrid Zn battery with coordination-polymer-derived, oxygen-vacancy-rich Co3O4 as a cathode material
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b06715
– volume: 467–468
  start-page: 382
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib43
  article-title: Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.10.192
– volume: 3
  start-page: 3892
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib53
  article-title: Engineering surface structure and defect chemistry of nanoscale cubic Co3O4 crystallites for enhanced lithium and sodium storage
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00614
– volume: 63
  start-page: 267
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib33
  article-title: Structure-induced hollow Co3O4 nanoparticles with rich oxygen vacancies for efficient CO oxidation
  publication-title: Sci China Mater
  doi: 10.1007/s40843-019-1178-5
– volume: 145
  start-page: 38
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib38
  article-title: Defect-enriched, nitrogen-doped graphitic carbon microspheres within 3D interconnected super-macropores as efficient oxygen electrocatalysts for breathing Zn-Air battery
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.010
– volume: 423
  start-page: 1
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib13
  article-title: Mesoporous cobalt selenide/nitrogen-doped carbon hybrid as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.03.051
– volume: 157
  start-page: 234
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib3
  article-title: Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-Air batteries and overall water splitting
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.10.023
– volume: 141
  start-page: 704
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib2
  article-title: Cobalt and nitrogen codoped ultrathin porous carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.080
– volume: 8
  start-page: 28625
  year: 2018
  ident: 10.1016/j.carbon.2021.05.016_bib20
  article-title: Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction
  publication-title: RSC Adv.
  doi: 10.1039/C8RA04256J
– volume: 521
  start-page: 141
  year: 2018
  ident: 10.1016/j.carbon.2021.05.016_bib21
  article-title: Cobalt and cobalt oxides N-codoped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.03.036
– volume: 162
  start-page: 245
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib37
  article-title: Fe3O4 nanoparticles encapsulated in single-atom Fe–N–C towards efficient oxygen reduction reaction: effect of the micro and macro pores
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.02.059
– volume: 452
  start-page: 227841
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib22
  article-title: Carbon-nanotube-grafted and nano-Co3O4-doped porous carbon derived from metal-organic framework as an excellent bifunctional catalyst for zinc–air battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227841
– volume: 277
  start-page: 45
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib57
  article-title: Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2018.10.020
– volume: 396
  start-page: 125205
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib36
  article-title: Phase and morphology evolution of high dielectric CoO/Co3O4 particles with Co3O4 nanoneedles on surface for excellent microwave absorption application
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125205
– volume: 413
  start-page: 367
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib14
  article-title: Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.12.056
– volume: 7
  start-page: 1177
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib30
  article-title: Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA10158B
– volume: 150
  start-page: 93
  year: 2019
  ident: 10.1016/j.carbon.2021.05.016_bib12
  article-title: Low content of Fe3C anchored on Fe,N,S-codoped graphene-like carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.05.012
– volume: 6
  start-page: 9716
  year: 2018
  ident: 10.1016/j.carbon.2021.05.016_bib1
  article-title: Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid and solid-state Zn-air batteries
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA01859F
– volume: 12
  start-page: 41580
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib16
  article-title: ZIF67@MFC-Derived Co/N-C@CNFs interconnected frameworks with graphitic carbon-encapsulated Co nanoparticles as highly stable and efficient electrocatalysts for oxygen reduction reactions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c12069
– volume: 278
  start-page: 119300
  year: 2020
  ident: 10.1016/j.carbon.2021.05.016_bib41
  article-title: Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co-N-C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119300
SSID ssj0004814
Score 2.58977
Snippet Composites of cobalt oxides and nitrogen-doped porous carbon, as electrocatalysts for oxygen reduction reaction (ORR), offer considerable potential in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 87
SubjectTerms activation energy
Ammonia
Carbon
Catalysts
catalytic activity
cobalt
Cobalt oxides
Electrocatalysts
electrochemistry
electron transfer
Electron transport
Electronic structure
Energy conversion
Energy storage
Gas mixtures
Heterostructures
Hollow Co3O4-x nanoparticles
Metal air batteries
N-doped porous carbon
Nanoparticles
Nitrogen
Open circuit voltage
oxygen
Oxygen reduction reaction
Oxygen reduction reactions
Platinum
polymers
Porous materials
Pyrolysis
Quinones
Rechargeable batteries
Structural stability
Studies
Vacancies
Zinc-oxygen batteries
Zn-air batteries
Title Hollow Co3O4-x nanoparticles decorated N-doped porous carbon prepared by one-step pyrolysis as an efficient ORR electrocatalyst for rechargeable Zn-air batteries
URI https://dx.doi.org/10.1016/j.carbon.2021.05.016
https://www.proquest.com/docview/2554400279
https://www.proquest.com/docview/2551929096
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_H-aAv4ieunscIvsZr06RpH4_FY1XYg8ODw5eQr4UVaUtvRffF_8X_1Jk0PVGQA6FQmiY0ZKaT-SUzvzD2OhZ6I3x0vI7acalc5NZVNVex9K4NiiheKNpiXa8u5fsrdXXAlnMuDIVVZts_2fRkrXPJSR7Nk2G7pRxfcscFJaGQZlHCr5SatPzNj99hHrKZ-L1pm59qz-lzKcbL29H1xIIqyom_s_7X9PSXoU6zz9kDdj-7jXA69ewhO4jdI3Z3OZ_W9pj9XKFA-2-w7Ktzyb9DZzuEwznqDQKBTPQqA6x56Ae8o9uNmB-mrsEwxhSJDm4PfRc5in6AYT_2ibAELF4dxMQ2gZMUnF9cQD4_Jy3_7K93gM4v4EgS8VKkdCz41HG7HcElAk_E40_Y5dnbj8sVz8cvcC-rasfLjUAwFVsVRdCNb3TrlRbBVVG5Jmgl6lDpKNSmFb51uhRFYwvr0YaExkZhq6fssMM-P2MgEBaVZEmLoCRqhtPopejCKe2la2u1YNU86sZnbnI6IuOLmYPQPptpQAzJyhTKYOGC8ZtWw8TNcUt9PQvU_KFjBqePW1oezfI3-R-_NgjGpCRY3y7Yq5vXKHbacrFdRClSHXShW8SJz__74y_YPXpKC9nFETvcjV_jS_SEdu44qfoxu3P67sNq_QsCkQtF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5pBeSp9027SdQq8itmxZ9jEsDU6TbiAkEHoRei1sCbZxtjT7c_JPO2PLKS2UQMFg0AOLGXk0nzTzibFPIVEr4YLlRVCW59IGbmxWcBlSZysvieKFoi2WRX2Zf7mSVztsMeXCUFhltP2jTR-sdSw5iNI86NZryvEld1xQEgrNrPIR2yV2Kjlju4fHJ_Xyd3pkOVJ800k_dZgy6IYwL2d62xIRqkhHCs_iXyvUX7Z6WICOnrIn0XOEw3Fwz9hOaJ6zvcV0YdsLdlejTtufsGizs5zfQmMaRMQx8A084Ux0LD0suW87fKPnjbAfxqFB14chGB3sFtomcNR-B922bwfOEjD4NBAGwglcp-Ds_BziFTrDDtD2ZgPo_wIKk7iXAmVkwbeGm3UPduDwREj-kl0efb5Y1DzewMBdnmUbnq4E4qlQySC8Kl2pKieV8DYL0pZeSVH4TAUhV5VwlVWpSEqTGIdmxJcmCJO9YrMGx_yagUBklJIxTbzMcXJYhY6KSqxULrdVIecsm6SuXaQnp1syrvUUh_ZdjwLRpCudSI2Fc8bve3UjPccD7dWkUP3HNNO4gjzQc3_Sv46_-Y1GPJbnhOyrOft4X41qp1MX0wTUIrVBL7pCqPjmvz_-ge3VF19P9enx8uQte0w1w752ss9mm_5HeIeO0ca-jxP_FxqHDfY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hollow+Co3O4-x+nanoparticles+decorated+N-doped+porous+carbon+prepared+by+one-step+pyrolysis+as+an+efficient+ORR+electrocatalyst+for+rechargeable+Zn-air+batteries&rft.jtitle=Carbon+%28New+York%29&rft.au=Wang%2C+Yali&rft.au=Gan%2C+Ruihui&rft.au=Ai%2C+Zhiquan&rft.au=Liu%2C+Hao&rft.date=2021-08-30&rft.pub=Elsevier+BV&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=181&rft.spage=87&rft_id=info:doi/10.1016%2Fj.carbon.2021.05.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon