Extraction of Building Roof Contours from Airborne LiDAR Point Clouds Based on Multidirectional Bands
Because of the complex structure and different shapes of building contours, the uneven density distribution of airborne LiDAR point clouds, and occlusion, existing building contour extraction algorithms are subject to such problems as poor robustness, difficulty with setting parameters, and low extr...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 1; p. 190 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Because of the complex structure and different shapes of building contours, the uneven density distribution of airborne LiDAR point clouds, and occlusion, existing building contour extraction algorithms are subject to such problems as poor robustness, difficulty with setting parameters, and low extraction efficiency. To solve these problems, a building contour extraction algorithm based on multidirectional bands was proposed in this study. Firstly, the point clouds were divided into bands with the same width in one direction, the points within each band were vertically projected on the central axis in the band, the two projection points with the farthest distance were determined, and their corresponding original points were regarded as the roof contour points; given that the contour points obtained based on single-direction bands were sparse and discontinuous, different banding directions were selected to repeat the above contour point marking process, and the contour points extracted from the different banding directions were integrated as the initial contour points. Then, the initial contour points were sorted and connected according to the principle of joining the nearest points in the forward direction, and the edges with lengths greater than a given threshold were recognized as long edges, which remained to be further densified. Finally, each long edge was densified by selecting the noninitial contour point closest to the midpoint of the long edge, and the densification process was repeated for the updated long edge. In the end, a building roof contour line with complete details and topological relationships was obtained. In this study, three point cloud datasets of representative building roofs were chosen for experiments. The results show that the proposed algorithm can extract high-quality outer contours from point clouds with various boundary structures, accompanied by strong robustness for point clouds differing in density and density change. Moreover, the proposed algorithm is characterized by easily setting parameters and high efficiency for extracting outer contours. Specific to the experimental data selected for this study, the PoLiS values in the outer contour extraction results were always smaller than 0.2 m, and the RAE values were smaller than 7%. Hence, the proposed algorithm can provide high-precision outer contour information on buildings for applications such as 3D building model reconstruction. |
---|---|
AbstractList | Because of the complex structure and different shapes of building contours, the uneven density distribution of airborne LiDAR point clouds, and occlusion, existing building contour extraction algorithms are subject to such problems as poor robustness, difficulty with setting parameters, and low extraction efficiency. To solve these problems, a building contour extraction algorithm based on multidirectional bands was proposed in this study. Firstly, the point clouds were divided into bands with the same width in one direction, the points within each band were vertically projected on the central axis in the band, the two projection points with the farthest distance were determined, and their corresponding original points were regarded as the roof contour points; given that the contour points obtained based on single-direction bands were sparse and discontinuous, different banding directions were selected to repeat the above contour point marking process, and the contour points extracted from the different banding directions were integrated as the initial contour points. Then, the initial contour points were sorted and connected according to the principle of joining the nearest points in the forward direction, and the edges with lengths greater than a given threshold were recognized as long edges, which remained to be further densified. Finally, each long edge was densified by selecting the noninitial contour point closest to the midpoint of the long edge, and the densification process was repeated for the updated long edge. In the end, a building roof contour line with complete details and topological relationships was obtained. In this study, three point cloud datasets of representative building roofs were chosen for experiments. The results show that the proposed algorithm can extract high-quality outer contours from point clouds with various boundary structures, accompanied by strong robustness for point clouds differing in density and density change. Moreover, the proposed algorithm is characterized by easily setting parameters and high efficiency for extracting outer contours. Specific to the experimental data selected for this study, the PoLiS values in the outer contour extraction results were always smaller than 0.2 m, and the RAE values were smaller than 7%. Hence, the proposed algorithm can provide high-precision outer contour information on buildings for applications such as 3D building model reconstruction. |
Audience | Academic |
Author | Wang, Jingxue Zang, Dongdong Yu, Jinzheng Xie, Xiao |
Author_xml | – sequence: 1 givenname: Jingxue surname: Wang fullname: Wang, Jingxue – sequence: 2 givenname: Dongdong surname: Zang fullname: Zang, Dongdong – sequence: 3 givenname: Jinzheng surname: Yu fullname: Yu, Jinzheng – sequence: 4 givenname: Xiao orcidid: 0000-0002-2598-0047 surname: Xie fullname: Xie, Xiao |
BookMark | eNptUV1rFDEUDVLBuvbFXxDwRYStNx8zmTxu16qFilL0OdzJx5JlNqnJDOi_N9tVlGLykJt7zzkh5zwnZyknT8hLBpdCaHhbKuuBAdPwhJxzUHwtueZn_9TPyEWte2hLiAaT58Rf_5gL2jnmRHOgV0ucXEw7epfbbZvTnJdSaSj5QDexjLkkT2_ju80d_ZJjmul2your9Aqrd7RpfFqmObpY_IMkTm2SXH1Bngacqr_4fa7It_fXX7cf17efP9xsN7drK4WY12zUskcctAXrtcfQiy50XgF2_SBtP6Lo_AgQwqgUOj5aFqzgyIdBHOdiRW5Oui7j3tyXeMDy02SM5qGRy85gmaOdvNGSyZF51wSDBNWjc1aPFsPIOMOBNa3XJ637kr8vvs7mEKv104TJ56UaARKk7Lpm5Yq8egTdN9va76vhmvEBgKmhoS5PqB2292MK-eh8284fom1Rhtj6G6W0kAqEagQ4EWzJtRYfjI0zHn1txDgZBuaYu_mbe6O8eUT5Y8J_wL8AUW6uwg |
CitedBy_id | crossref_primary_10_1016_j_jobe_2025_111914 crossref_primary_10_3390_rs16101733 crossref_primary_10_3390_s24237503 crossref_primary_10_1109_JSTARS_2024_3422973 |
Cites_doi | 10.1016/j.measurement.2022.112094 10.1016/j.isprsjprs.2022.08.027 10.1109/JSTARS.2013.2251457 10.1145/3481804 10.1016/j.patcog.2020.107447 10.1016/j.rse.2022.113392 10.1109/LGRS.2019.2894098 10.20944/preprints201703.0178.v1 10.1016/j.ijleo.2015.06.080 10.11834/jig.200073 10.1109/JSTARS.2017.2781132 10.1016/j.isprsjprs.2013.10.003 10.1016/j.isprsjprs.2018.11.001 10.1016/j.patrec.2023.10.009 10.1155/2021/2706462 10.1016/j.isprsjprs.2009.04.001 10.1080/01431161.2014.975420 10.1109/JSTARS.2014.2318694 10.1016/j.cag.2022.06.010 10.1016/j.isprsjprs.2023.09.008 10.1016/j.compag.2022.107174 10.1016/j.patcog.2006.08.003 10.1016/j.autcon.2022.104642 10.1080/01431161.2015.1131868 10.3390/s90705241 10.1080/01431161.2019.1641245 10.1109/LGRS.2014.2330695 10.1016/j.rse.2022.113280 10.1016/j.autcon.2022.104321 10.1016/j.ijleo.2013.03.045 10.1080/19479832.2018.1487885 10.1016/j.isprsjprs.2023.06.011 10.37188/OPE.20212902.0374 10.1016/j.isprsjprs.2020.09.001 10.1016/j.cad.2021.103090 10.1016/j.quaint.2020.07.039 10.1016/j.jobe.2023.107387 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs16010190 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_9414b1ed5ebf4076addc9bcafb121a81 A779347037 10_3390_rs16010190 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-1b946aa89c0ce9eaf635f5e70a5684c6ba35eb00ffb77ad2bc1fc32a288384c63 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:30:51 EDT 2025 Thu Jul 10 21:27:10 EDT 2025 Fri Jul 25 09:35:45 EDT 2025 Tue Jun 10 20:56:54 EDT 2025 Thu Apr 24 22:57:56 EDT 2025 Tue Jul 01 03:11:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-1b946aa89c0ce9eaf635f5e70a5684c6ba35eb00ffb77ad2bc1fc32a288384c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2598-0047 |
OpenAccessLink | https://www.proquest.com/docview/2912800178?pq-origsite=%requestingapplication% |
PQID | 2912800178 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9414b1ed5ebf4076addc9bcafb121a81 proquest_miscellaneous_3040445503 proquest_journals_2912800178 gale_infotracacademiconefile_A779347037 crossref_citationtrail_10_3390_rs16010190 crossref_primary_10_3390_rs16010190 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Aijazi (ref_29) 2014; 35 Ma (ref_2) 2023; 285 Sharma (ref_37) 2021; 575–576 Miao (ref_11) 2022; 199 Wang (ref_28) 2017; 11 Sharma (ref_4) 2023; 76 Liu (ref_20) 2018; 146 Zhao (ref_1) 2023; 204 Bao (ref_34) 2015; 126 Pu (ref_14) 2009; 64 Wu (ref_17) 2021; 26 Yan (ref_38) 2020; 169 Vanian (ref_26) 2022; 106 Zhu (ref_30) 2021; 2021 Li (ref_35) 2013; 123 Zhang (ref_6) 2023; 176 Li (ref_23) 2022; 193 Marcato (ref_36) 2018; 9 Feng (ref_7) 2020; 41 Liu (ref_5) 2022; 282 Kwak (ref_8) 2014; 93 Zhang (ref_12) 2022; 204 Himeur (ref_32) 2021; 41 Galo (ref_18) 2019; 16 Widyaningrum (ref_19) 2020; 106 Guillaume (ref_25) 2021; 140 Chaudhuri (ref_9) 2007; 40 Mahphood (ref_10) 2022; 139 Awrangjeb (ref_31) 2014; 7 Jochem (ref_3) 2009; 9 ref_21 Sun (ref_27) 2013; 6 ref_40 Kim (ref_15) 2023; 145 Zhao (ref_24) 2021; 29 Hui (ref_16) 2022; 59 Avbelj (ref_41) 2015; 12 Awrangjeb (ref_39) 2016; 37 Zhang (ref_33) 2020; 164 Liu (ref_13) 2023; 202 Estornell (ref_22) 2021; 96 |
References_xml | – volume: 204 start-page: 112094 year: 2022 ident: ref_12 article-title: Multi-phenotypic Parameters Extraction and Biomass Estimation for Lettuce Based on Point Clouds publication-title: Measurement doi: 10.1016/j.measurement.2022.112094 – volume: 193 start-page: 17 year: 2022 ident: ref_23 article-title: Point2Roof: End-to-end 3D Building Roof Modeling from Airborne LiDAR Point Clouds publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.08.027 – volume: 6 start-page: 1440 year: 2013 ident: ref_27 article-title: Aerial 3D Building Detection and Modeling From Airborne LiDAR Point Clouds publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2013.2251457 – volume: 41 start-page: 1 year: 2021 ident: ref_32 article-title: PCEDNet: A Lightweight Neural Network for Fast and Interactive Edge Detection in 3D Point Clouds publication-title: ACM Trans. Graph. doi: 10.1145/3481804 – volume: 106 start-page: 107447 year: 2020 ident: ref_19 article-title: Building Outline Extraction from ALS Point Clouds Using Medial Axis Transform Descriptors publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107447 – volume: 285 start-page: 113392 year: 2023 ident: ref_2 article-title: Mapping Fine-scale Building Heights in Urban Agglomeration with Spaceborne Lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113392 – volume: 16 start-page: 1289 year: 2019 ident: ref_18 article-title: Extraction of Building Roof Boundaries From LiDAR Data Using an Adaptive Alpha-Shape Algorithm publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2894098 – ident: ref_21 doi: 10.20944/preprints201703.0178.v1 – volume: 126 start-page: 2706 year: 2015 ident: ref_34 article-title: Step Edge Detection Method for 3D Point Clouds Based on 2D Range Images publication-title: Optik doi: 10.1016/j.ijleo.2015.06.080 – volume: 26 start-page: 910 year: 2021 ident: ref_17 article-title: Extraction of building contours from airborne LiDAR point cloud using variable radius Alpha Shapes method publication-title: J. Image Graph. doi: 10.11834/jig.200073 – ident: ref_40 – volume: 11 start-page: 606 year: 2017 ident: ref_28 article-title: LiDAR Point Clouds to 3D Urban Models A Review publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2017.2781132 – volume: 93 start-page: 171 year: 2014 ident: ref_8 article-title: Automatic Representation and Reconstruction of DBM from LiDAR Data Using Recursive Minimum Bounding Rectangle publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.10.003 – volume: 146 start-page: 465 year: 2018 ident: ref_20 article-title: Estimating Forest Structural Attributes Using UAV-LiDAR Data in Ginkgo Plantations publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.001 – volume: 96 start-page: 102273 year: 2021 ident: ref_22 article-title: Tree Extraction and Estimation of Walnut Structure Parameters Using Airborne LiDAR Data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 176 start-page: 49 year: 2023 ident: ref_6 article-title: Self-supervised Latent Feature Learning for Partial Point Clouds Recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2023.10.009 – volume: 2021 start-page: 2706462 year: 2021 ident: ref_30 article-title: Intelligent Point Cloud Edge Detection Method Based on Projection Transformation publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2021/2706462 – volume: 64 start-page: 575 year: 2009 ident: ref_14 article-title: Knowledge based reconstruction of building models from terrestrial laser scanning data publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.04.001 – volume: 35 start-page: 7726 year: 2014 ident: ref_29 article-title: Automatic Detection and Feature Estimation of Windows in 3D Urban Point Clouds Exploiting Faade Symmetry and Temporal Correspondences publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.975420 – volume: 7 start-page: 4184 year: 2014 ident: ref_31 article-title: An Automatic and Threshold-Free Performance Evaluation System for Building Extraction Techniques From Airborne LIDAR Data publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2014.2318694 – volume: 106 start-page: 277 year: 2022 ident: ref_26 article-title: Improving Performance of Deep Learning Models for 3D Point Cloud Semantic Segmentation via Attention Mechanisms publication-title: Comput. Graph. doi: 10.1016/j.cag.2022.06.010 – volume: 204 start-page: 163 year: 2023 ident: ref_1 article-title: Completing Point Clouds Using Structural Constraints for Large-scale Points Absence in 3D Building Reconstruction publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2023.09.008 – volume: 199 start-page: 107174 year: 2022 ident: ref_11 article-title: Measurement Method of Maize Morphological Parameters based on Point Cloud Image Conversion publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107174 – volume: 40 start-page: 1981 year: 2007 ident: ref_9 article-title: A Simple Method for Fitting of Bounding Rectangle to Closed Regions publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.08.003 – volume: 145 start-page: 104642 year: 2023 ident: ref_15 article-title: Automated extraction of geometric primitives with solid lines from unstructured point clouds for creating digital buildings models publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104642 – volume: 37 start-page: 551 year: 2016 ident: ref_39 article-title: Using point cloud data to identify, trace and regularize the outlines of buildings publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1131868 – volume: 9 start-page: 5241 year: 2009 ident: ref_3 article-title: Automatic Roof Plane Detection and Analysis in Airborne Lidar Point Clouds for Solar Potential Assessment publication-title: Sensors doi: 10.3390/s90705241 – volume: 59 start-page: 447 year: 2022 ident: ref_16 article-title: Improved Alpha-shapes Building Profile Extraction Algorithm publication-title: Laser Optoelectron. Prog. – volume: 164 start-page: 97 year: 2020 ident: ref_33 article-title: Large-Scale Point Cloud Contour Extraction via 3-D-Guided Multiconditional Residual Generative Adversarial Network publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 41 start-page: 300 year: 2020 ident: ref_7 article-title: An Improved Minimum Bounding Rectangle Algorithm for Regularized Building Boundary Extraction from Aerial LiDAR Point Clouds with Partial Occlusions publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1641245 – volume: 12 start-page: 170 year: 2015 ident: ref_41 article-title: A Metric for Polygon Comparison and Building Extraction Evaluation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2330695 – volume: 282 start-page: 113280 year: 2022 ident: ref_5 article-title: A Novel Entropy-based Method to Quantify Forest Canopy Structural Complexity from Multiplatform Lidar Point Clouds publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113280 – volume: 139 start-page: 104321 year: 2022 ident: ref_10 article-title: Grid-based Building Outline Extraction from Ready-made Building Points publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104321 – volume: 123 start-page: 5357 year: 2013 ident: ref_35 article-title: An Improved Building Boundary Extraction Algorithm Based on Fusion of Optical Imagery and LIDAR Data publication-title: Optik doi: 10.1016/j.ijleo.2013.03.045 – volume: 9 start-page: 263 year: 2018 ident: ref_36 article-title: Extraction of Building Roof Contours from the Integration of High-resolution Aerial Imagery and Laser Data Using Markov Random Fields publication-title: Int. J. Image Data Fusion. doi: 10.1080/19479832.2018.1487885 – volume: 202 start-page: 356 year: 2023 ident: ref_13 article-title: A depth map fusion algorithm with improved efficiency considering pixel region prediction publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2023.06.011 – volume: 29 start-page: 374 year: 2021 ident: ref_24 article-title: Building Outer Boundary Extraction from ALS Point Clouds Using Neighbor Point Direction Distribution publication-title: Opt. Precis. Eng. doi: 10.37188/OPE.20212902.0374 – volume: 169 start-page: 152 year: 2020 ident: ref_38 article-title: Effects of Radiometric Correction on Cover Type and Spatial Resolution for Modeling Plot Level Forest Attributes Using Multispectral Airborne LiDAR Data publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.09.001 – volume: 140 start-page: 103090 year: 2021 ident: ref_25 article-title: Parametric Surface Fitting on Airborne Lidar Point Clouds for Building Reconstruction publication-title: Comput.-Aided Des. doi: 10.1016/j.cad.2021.103090 – volume: 575–576 start-page: 317 year: 2021 ident: ref_37 article-title: Potential of Airborne LiDAR Data for Terrain Parameters Extraction publication-title: Quat. Int. doi: 10.1016/j.quaint.2020.07.039 – volume: 76 start-page: 107387 year: 2023 ident: ref_4 article-title: Building footprint extraction from aerial photogrammetric point cloud data using its geometric features publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2023.107387 |
SSID | ssj0000331904 |
Score | 2.377769 |
Snippet | Because of the complex structure and different shapes of building contours, the uneven density distribution of airborne LiDAR point clouds, and occlusion,... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 190 |
SubjectTerms | airborne LiDAR point clouds Algorithms average point spacing Banded structure Banding building outer contour building roof contour extraction Buildings Comparative analysis Contours data collection Densification Density distribution Design and construction Edge joints Efficiency Identification and classification Lidar Machine learning multidirectional bands Occlusion Optical properties Optical radar Optimization Parameters Robustness Roofs Three dimensional models topology |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll_QS8mip001QaCH0YLKyZNk67iYbQklKWRLITehJFoId1l5o_n1mbGezh5ReerQlhD0z-mZG9nxDyHcmLHciyNRDOJ6KyAEHTSlSXkrBFICyLLDe-eaXvLoTP-_z-41WX_hPWE8P3AvuTAlYjgWfBxsh-ZCwH52yzkTLMma6ousMfN5GMtVhMAfTGouej5RDXn-2bBjmHgzBd8MDdUT9f4Pjzsdc7pKdITikk_6h9siHUO2T7aFP-cPzAQmzP-2yL0WgdaTToac1nddwhURTsEJDsWSEThZLUG8V6PXiYjKnv-tF1dLzx3rlGzoF1-UprNGV3_ZerTsShJHKN5_I3eXs9vwqHRolpE5w3qbMKiGNKZUbu6CCiRBFxDwUY5PLUjhpDc-xR1CMtiiMz6xj0fHMYKdhHOefyVZVV-ELoSqL49z4AkMJEb1UxnGFFDIc5G8yn5Afr8LTbmARx2YWjxqyCRS0fhN0Qr6t5z713BnvzpqiDtYzkO-6uwFWoAcr0P-ygoScogY17krUgxmKC-ClkN9KTwrAIQHoViRk9KpkPWzXRmcK3DQ67DIhJ-th2Gj49cRUoV41mgPcCawB54f_44m_ko8ZxEf9ac6IbLXLVTiC-Ka1x50pvwBW2_nU priority: 102 providerName: Directory of Open Access Journals |
Title | Extraction of Building Roof Contours from Airborne LiDAR Point Clouds Based on Multidirectional Bands |
URI | https://www.proquest.com/docview/2912800178 https://www.proquest.com/docview/3040445503 https://doaj.org/article/9414b1ed5ebf4076addc9bcafb121a81 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo9wAXxFOElpURSIhD1HXsPHxC2XaXCrVVtVCpN8vxA1aqkjbJSvDvmUm8Ww7AMbFlKZ6ZzzPjzHyEvGei4ka4LLbgjsfCc8BBXYiYF5lgEkA5y7He-fwiO70SX67T65Bw68JvlVtMHIDaNgZz5EeJBCQdyOQ_3d7FyBqFt6uBQmOPTACCCwi-JvPFxeVql2WZcVCxmRj7knKI74_ajmEMwhCE_ziJhob9_4Ll4axZPiGPg5NIy1GqT8kDVz8jDwNf-Y9fz4lb_OzbsSSBNp7OA7c1XTXwhA2nYIWOYukILdctiLl29Gx9Uq7oZbOue3p802xsR-dwhFkKawxluOPpNqQGYaS23QtytVx8Oz6NA2FCbATnfcwqKTKtC2lmxkmnPXgTPnX5TKdZIUxWaZ4iV5D3VZ5rm1SGecMTjYzDOM5fkv26qd0rQmXiZ6m2OboUwttMasMltpLhrvI6sRH5uN08ZUI3cSS1uFEQVeBGq_uNjsi73dzbsYfGX2fNUQa7Gdj3enjRtN9VMCMlBSgXcxY-w0MomgE6G1kZ7SuWMF2wiHxACSq0TpSDDkUG8FHY50qVOeCRAJTLI3K4FbIKZtupeyWLyNvdMBgc3qLo2jWbTnGAPYG14Pz1_5c4II8S8IDGfM0h2e_bjXsDHkxfTclesfw8JZPy5Pzs6zQo7XTIB_wGbQL0qA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ilCCxgBQhyixrHz8AGh3bbLlm4rVLVSb67jB6xUJW2SFfRP8RuZSbJbDsCtx8TWSPHMfDO2M_MR8paJghvh0tBCOh4KzwEHdS5CnqeCSQDlNMN658OjdHoqvpwlZ2vk17IWBn-rXGJiB9S2MnhGvh1LQNKOTP7T5VWIrFF4u7qk0OjN4sBd_4AtW_Nxfxf0-y6OJ3snO9NwYBUIjeC8DVkhRap1Lk1knHTaQ8j1icsinaS5MGmheYKEOt4XWaZtXBjmDY810vLiOAe5d8hdkCXRo_LJ59WZTsTBoCPRd0GF8Wi7bhjueBhC_h9xr6MH-FcQ6CLb5AG5P6SkdNTb0EOy5spHZGNgR_9-_Zi4vZ9t3RdA0MrT8cCkTY8reML2ViChoVioQkfzGoyqdHQ23x0d06_VvGzpzkW1sA0dQ8C0FGR0Rb99LO0OImGktM0TcnorC_mUrJdV6Z4RKmMfJdpmmMAIb1OpDZfYuIa7wuvYBuTDcvGUGXqXI4XGhYI9DC60ulnogLxZzb3sO3b8ddYYdbCagV22uxdV_U0NTqukAFNmzsJneNj4phALjCyM9gWLmc5ZQN6jBhViAepBDyUN8FHYVUuNMkA_AZiaBWRrqWQ1gESjbkw6IK9Xw-DeeGejS1ctGsUBZAVWnvPn_xfximxMTw5narZ_dLBJ7sWQe_UnRVtkva0X7gXkTm3xsjNYSs5v20N-AxSYLgY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEJ-iY4ARIMRD1CR2k_gBoXZttbFRVRWT9mYcx2aVpmQ0qWD_Gn8dd_noeADe9pjYsmTf3e_OH3c_gDeBSLkRNvIyDMc94TjioE6Ex5NIBBJBOYop3_nzPDo8FZ_Ohmc78KvLhaFnlR0m1kCdFYbOyAehRCStyeQHrn0WsZjMPl5-94hBim5aOzqNRkWO7dUP3L6VH44mKOu3YTibfjk49FqGAc8IzisvSKWItE6k8Y2VVjt0v25oY18Po0SYKNV8SOQ6zqVxrLMwNYEzPNRE0UvtHMe9Bbsx7or8HuyOp_PFcnvC43NUb180NVE5l_5gXQa0_wnIAfzhBWuygH-5hNrPze7DvTZAZaNGox7Ajs0fwp2WK_386hHY6c9q3aRDsMKxccurzZYFflGxKxyhZJS2wkarNapYbtnJajJaskWxyit2cFFsspKN0X1mDMeoU4Abz1ofS2JLnpWP4fRGlvIJ9PIit0-BydD5Q53FFM4Il0VSGy6pjA23qdNh1of33eIp01YyJ0KNC4U7Glpodb3QfXi97XvZ1O_4a68xyWDbg2pu1z-K9TfVmrCSAhU7sBlOw6HAI_QMRqZGuzQIA50EfXhHElSEDCQH3SY44KSoxpYaxYiFAhE27sN-J2TVQkaprhW8D6-2zWjsdIOjc1tsSsURcgXlofO9_w_xEm6jdaiTo_nxM7gbYiDWHBvtQ69ab-xzDKSq9EWrsQy-3rSR_Ab0rjOY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+of+Building+Roof+Contours+from+Airborne+LiDAR+Point+Clouds+Based+on+Multidirectional+Bands&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Jingxue&rft.au=Zang%2C+Dongdong&rft.au=Yu%2C+Jinzheng&rft.au=Xie%2C+Xiao&rft.date=2024-01-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=1&rft_id=info:doi/10.3390%2Frs16010190&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |