Extraction of Building Roof Contours from Airborne LiDAR Point Clouds Based on Multidirectional Bands

Because of the complex structure and different shapes of building contours, the uneven density distribution of airborne LiDAR point clouds, and occlusion, existing building contour extraction algorithms are subject to such problems as poor robustness, difficulty with setting parameters, and low extr...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 1; p. 190
Main Authors Wang, Jingxue, Zang, Dongdong, Yu, Jinzheng, Xie, Xiao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Because of the complex structure and different shapes of building contours, the uneven density distribution of airborne LiDAR point clouds, and occlusion, existing building contour extraction algorithms are subject to such problems as poor robustness, difficulty with setting parameters, and low extraction efficiency. To solve these problems, a building contour extraction algorithm based on multidirectional bands was proposed in this study. Firstly, the point clouds were divided into bands with the same width in one direction, the points within each band were vertically projected on the central axis in the band, the two projection points with the farthest distance were determined, and their corresponding original points were regarded as the roof contour points; given that the contour points obtained based on single-direction bands were sparse and discontinuous, different banding directions were selected to repeat the above contour point marking process, and the contour points extracted from the different banding directions were integrated as the initial contour points. Then, the initial contour points were sorted and connected according to the principle of joining the nearest points in the forward direction, and the edges with lengths greater than a given threshold were recognized as long edges, which remained to be further densified. Finally, each long edge was densified by selecting the noninitial contour point closest to the midpoint of the long edge, and the densification process was repeated for the updated long edge. In the end, a building roof contour line with complete details and topological relationships was obtained. In this study, three point cloud datasets of representative building roofs were chosen for experiments. The results show that the proposed algorithm can extract high-quality outer contours from point clouds with various boundary structures, accompanied by strong robustness for point clouds differing in density and density change. Moreover, the proposed algorithm is characterized by easily setting parameters and high efficiency for extracting outer contours. Specific to the experimental data selected for this study, the PoLiS values in the outer contour extraction results were always smaller than 0.2 m, and the RAE values were smaller than 7%. Hence, the proposed algorithm can provide high-precision outer contour information on buildings for applications such as 3D building model reconstruction.
AbstractList Because of the complex structure and different shapes of building contours, the uneven density distribution of airborne LiDAR point clouds, and occlusion, existing building contour extraction algorithms are subject to such problems as poor robustness, difficulty with setting parameters, and low extraction efficiency. To solve these problems, a building contour extraction algorithm based on multidirectional bands was proposed in this study. Firstly, the point clouds were divided into bands with the same width in one direction, the points within each band were vertically projected on the central axis in the band, the two projection points with the farthest distance were determined, and their corresponding original points were regarded as the roof contour points; given that the contour points obtained based on single-direction bands were sparse and discontinuous, different banding directions were selected to repeat the above contour point marking process, and the contour points extracted from the different banding directions were integrated as the initial contour points. Then, the initial contour points were sorted and connected according to the principle of joining the nearest points in the forward direction, and the edges with lengths greater than a given threshold were recognized as long edges, which remained to be further densified. Finally, each long edge was densified by selecting the noninitial contour point closest to the midpoint of the long edge, and the densification process was repeated for the updated long edge. In the end, a building roof contour line with complete details and topological relationships was obtained. In this study, three point cloud datasets of representative building roofs were chosen for experiments. The results show that the proposed algorithm can extract high-quality outer contours from point clouds with various boundary structures, accompanied by strong robustness for point clouds differing in density and density change. Moreover, the proposed algorithm is characterized by easily setting parameters and high efficiency for extracting outer contours. Specific to the experimental data selected for this study, the PoLiS values in the outer contour extraction results were always smaller than 0.2 m, and the RAE values were smaller than 7%. Hence, the proposed algorithm can provide high-precision outer contour information on buildings for applications such as 3D building model reconstruction.
Audience Academic
Author Wang, Jingxue
Zang, Dongdong
Yu, Jinzheng
Xie, Xiao
Author_xml – sequence: 1
  givenname: Jingxue
  surname: Wang
  fullname: Wang, Jingxue
– sequence: 2
  givenname: Dongdong
  surname: Zang
  fullname: Zang, Dongdong
– sequence: 3
  givenname: Jinzheng
  surname: Yu
  fullname: Yu, Jinzheng
– sequence: 4
  givenname: Xiao
  orcidid: 0000-0002-2598-0047
  surname: Xie
  fullname: Xie, Xiao
BookMark eNptUV1rFDEUDVLBuvbFXxDwRYStNx8zmTxu16qFilL0OdzJx5JlNqnJDOi_N9tVlGLykJt7zzkh5zwnZyknT8hLBpdCaHhbKuuBAdPwhJxzUHwtueZn_9TPyEWte2hLiAaT58Rf_5gL2jnmRHOgV0ucXEw7epfbbZvTnJdSaSj5QDexjLkkT2_ju80d_ZJjmul2your9Aqrd7RpfFqmObpY_IMkTm2SXH1Bngacqr_4fa7It_fXX7cf17efP9xsN7drK4WY12zUskcctAXrtcfQiy50XgF2_SBtP6Lo_AgQwqgUOj5aFqzgyIdBHOdiRW5Oui7j3tyXeMDy02SM5qGRy85gmaOdvNGSyZF51wSDBNWjc1aPFsPIOMOBNa3XJ637kr8vvs7mEKv104TJ56UaARKk7Lpm5Yq8egTdN9va76vhmvEBgKmhoS5PqB2292MK-eh8284fom1Rhtj6G6W0kAqEagQ4EWzJtRYfjI0zHn1txDgZBuaYu_mbe6O8eUT5Y8J_wL8AUW6uwg
CitedBy_id crossref_primary_10_1016_j_jobe_2025_111914
crossref_primary_10_3390_rs16101733
crossref_primary_10_3390_s24237503
crossref_primary_10_1109_JSTARS_2024_3422973
Cites_doi 10.1016/j.measurement.2022.112094
10.1016/j.isprsjprs.2022.08.027
10.1109/JSTARS.2013.2251457
10.1145/3481804
10.1016/j.patcog.2020.107447
10.1016/j.rse.2022.113392
10.1109/LGRS.2019.2894098
10.20944/preprints201703.0178.v1
10.1016/j.ijleo.2015.06.080
10.11834/jig.200073
10.1109/JSTARS.2017.2781132
10.1016/j.isprsjprs.2013.10.003
10.1016/j.isprsjprs.2018.11.001
10.1016/j.patrec.2023.10.009
10.1155/2021/2706462
10.1016/j.isprsjprs.2009.04.001
10.1080/01431161.2014.975420
10.1109/JSTARS.2014.2318694
10.1016/j.cag.2022.06.010
10.1016/j.isprsjprs.2023.09.008
10.1016/j.compag.2022.107174
10.1016/j.patcog.2006.08.003
10.1016/j.autcon.2022.104642
10.1080/01431161.2015.1131868
10.3390/s90705241
10.1080/01431161.2019.1641245
10.1109/LGRS.2014.2330695
10.1016/j.rse.2022.113280
10.1016/j.autcon.2022.104321
10.1016/j.ijleo.2013.03.045
10.1080/19479832.2018.1487885
10.1016/j.isprsjprs.2023.06.011
10.37188/OPE.20212902.0374
10.1016/j.isprsjprs.2020.09.001
10.1016/j.cad.2021.103090
10.1016/j.quaint.2020.07.039
10.1016/j.jobe.2023.107387
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs16010190
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_9414b1ed5ebf4076addc9bcafb121a81
A779347037
10_3390_rs16010190
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-1b946aa89c0ce9eaf635f5e70a5684c6ba35eb00ffb77ad2bc1fc32a288384c63
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:30:51 EDT 2025
Thu Jul 10 21:27:10 EDT 2025
Fri Jul 25 09:35:45 EDT 2025
Tue Jun 10 20:56:54 EDT 2025
Thu Apr 24 22:57:56 EDT 2025
Tue Jul 01 03:11:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-1b946aa89c0ce9eaf635f5e70a5684c6ba35eb00ffb77ad2bc1fc32a288384c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2598-0047
OpenAccessLink https://www.proquest.com/docview/2912800178?pq-origsite=%requestingapplication%
PQID 2912800178
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_9414b1ed5ebf4076addc9bcafb121a81
proquest_miscellaneous_3040445503
proquest_journals_2912800178
gale_infotracacademiconefile_A779347037
crossref_citationtrail_10_3390_rs16010190
crossref_primary_10_3390_rs16010190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Aijazi (ref_29) 2014; 35
Ma (ref_2) 2023; 285
Sharma (ref_37) 2021; 575–576
Miao (ref_11) 2022; 199
Wang (ref_28) 2017; 11
Sharma (ref_4) 2023; 76
Liu (ref_20) 2018; 146
Zhao (ref_1) 2023; 204
Bao (ref_34) 2015; 126
Pu (ref_14) 2009; 64
Wu (ref_17) 2021; 26
Yan (ref_38) 2020; 169
Vanian (ref_26) 2022; 106
Zhu (ref_30) 2021; 2021
Li (ref_35) 2013; 123
Zhang (ref_6) 2023; 176
Li (ref_23) 2022; 193
Marcato (ref_36) 2018; 9
Feng (ref_7) 2020; 41
Liu (ref_5) 2022; 282
Kwak (ref_8) 2014; 93
Zhang (ref_12) 2022; 204
Himeur (ref_32) 2021; 41
Galo (ref_18) 2019; 16
Widyaningrum (ref_19) 2020; 106
Guillaume (ref_25) 2021; 140
Chaudhuri (ref_9) 2007; 40
Mahphood (ref_10) 2022; 139
Awrangjeb (ref_31) 2014; 7
Jochem (ref_3) 2009; 9
ref_21
Sun (ref_27) 2013; 6
ref_40
Kim (ref_15) 2023; 145
Zhao (ref_24) 2021; 29
Hui (ref_16) 2022; 59
Avbelj (ref_41) 2015; 12
Awrangjeb (ref_39) 2016; 37
Zhang (ref_33) 2020; 164
Liu (ref_13) 2023; 202
Estornell (ref_22) 2021; 96
References_xml – volume: 204
  start-page: 112094
  year: 2022
  ident: ref_12
  article-title: Multi-phenotypic Parameters Extraction and Biomass Estimation for Lettuce Based on Point Clouds
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112094
– volume: 193
  start-page: 17
  year: 2022
  ident: ref_23
  article-title: Point2Roof: End-to-end 3D Building Roof Modeling from Airborne LiDAR Point Clouds
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.08.027
– volume: 6
  start-page: 1440
  year: 2013
  ident: ref_27
  article-title: Aerial 3D Building Detection and Modeling From Airborne LiDAR Point Clouds
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2013.2251457
– volume: 41
  start-page: 1
  year: 2021
  ident: ref_32
  article-title: PCEDNet: A Lightweight Neural Network for Fast and Interactive Edge Detection in 3D Point Clouds
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3481804
– volume: 106
  start-page: 107447
  year: 2020
  ident: ref_19
  article-title: Building Outline Extraction from ALS Point Clouds Using Medial Axis Transform Descriptors
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107447
– volume: 285
  start-page: 113392
  year: 2023
  ident: ref_2
  article-title: Mapping Fine-scale Building Heights in Urban Agglomeration with Spaceborne Lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113392
– volume: 16
  start-page: 1289
  year: 2019
  ident: ref_18
  article-title: Extraction of Building Roof Boundaries From LiDAR Data Using an Adaptive Alpha-Shape Algorithm
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2894098
– ident: ref_21
  doi: 10.20944/preprints201703.0178.v1
– volume: 126
  start-page: 2706
  year: 2015
  ident: ref_34
  article-title: Step Edge Detection Method for 3D Point Clouds Based on 2D Range Images
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.06.080
– volume: 26
  start-page: 910
  year: 2021
  ident: ref_17
  article-title: Extraction of building contours from airborne LiDAR point cloud using variable radius Alpha Shapes method
  publication-title: J. Image Graph.
  doi: 10.11834/jig.200073
– ident: ref_40
– volume: 11
  start-page: 606
  year: 2017
  ident: ref_28
  article-title: LiDAR Point Clouds to 3D Urban Models A Review
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2017.2781132
– volume: 93
  start-page: 171
  year: 2014
  ident: ref_8
  article-title: Automatic Representation and Reconstruction of DBM from LiDAR Data Using Recursive Minimum Bounding Rectangle
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.10.003
– volume: 146
  start-page: 465
  year: 2018
  ident: ref_20
  article-title: Estimating Forest Structural Attributes Using UAV-LiDAR Data in Ginkgo Plantations
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.001
– volume: 96
  start-page: 102273
  year: 2021
  ident: ref_22
  article-title: Tree Extraction and Estimation of Walnut Structure Parameters Using Airborne LiDAR Data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 176
  start-page: 49
  year: 2023
  ident: ref_6
  article-title: Self-supervised Latent Feature Learning for Partial Point Clouds Recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2023.10.009
– volume: 2021
  start-page: 2706462
  year: 2021
  ident: ref_30
  article-title: Intelligent Point Cloud Edge Detection Method Based on Projection Transformation
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2021/2706462
– volume: 64
  start-page: 575
  year: 2009
  ident: ref_14
  article-title: Knowledge based reconstruction of building models from terrestrial laser scanning data
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.04.001
– volume: 35
  start-page: 7726
  year: 2014
  ident: ref_29
  article-title: Automatic Detection and Feature Estimation of Windows in 3D Urban Point Clouds Exploiting Faade Symmetry and Temporal Correspondences
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.975420
– volume: 7
  start-page: 4184
  year: 2014
  ident: ref_31
  article-title: An Automatic and Threshold-Free Performance Evaluation System for Building Extraction Techniques From Airborne LIDAR Data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2318694
– volume: 106
  start-page: 277
  year: 2022
  ident: ref_26
  article-title: Improving Performance of Deep Learning Models for 3D Point Cloud Semantic Segmentation via Attention Mechanisms
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2022.06.010
– volume: 204
  start-page: 163
  year: 2023
  ident: ref_1
  article-title: Completing Point Clouds Using Structural Constraints for Large-scale Points Absence in 3D Building Reconstruction
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.09.008
– volume: 199
  start-page: 107174
  year: 2022
  ident: ref_11
  article-title: Measurement Method of Maize Morphological Parameters based on Point Cloud Image Conversion
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107174
– volume: 40
  start-page: 1981
  year: 2007
  ident: ref_9
  article-title: A Simple Method for Fitting of Bounding Rectangle to Closed Regions
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.08.003
– volume: 145
  start-page: 104642
  year: 2023
  ident: ref_15
  article-title: Automated extraction of geometric primitives with solid lines from unstructured point clouds for creating digital buildings models
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104642
– volume: 37
  start-page: 551
  year: 2016
  ident: ref_39
  article-title: Using point cloud data to identify, trace and regularize the outlines of buildings
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1131868
– volume: 9
  start-page: 5241
  year: 2009
  ident: ref_3
  article-title: Automatic Roof Plane Detection and Analysis in Airborne Lidar Point Clouds for Solar Potential Assessment
  publication-title: Sensors
  doi: 10.3390/s90705241
– volume: 59
  start-page: 447
  year: 2022
  ident: ref_16
  article-title: Improved Alpha-shapes Building Profile Extraction Algorithm
  publication-title: Laser Optoelectron. Prog.
– volume: 164
  start-page: 97
  year: 2020
  ident: ref_33
  article-title: Large-Scale Point Cloud Contour Extraction via 3-D-Guided Multiconditional Residual Generative Adversarial Network
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 41
  start-page: 300
  year: 2020
  ident: ref_7
  article-title: An Improved Minimum Bounding Rectangle Algorithm for Regularized Building Boundary Extraction from Aerial LiDAR Point Clouds with Partial Occlusions
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1641245
– volume: 12
  start-page: 170
  year: 2015
  ident: ref_41
  article-title: A Metric for Polygon Comparison and Building Extraction Evaluation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2330695
– volume: 282
  start-page: 113280
  year: 2022
  ident: ref_5
  article-title: A Novel Entropy-based Method to Quantify Forest Canopy Structural Complexity from Multiplatform Lidar Point Clouds
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113280
– volume: 139
  start-page: 104321
  year: 2022
  ident: ref_10
  article-title: Grid-based Building Outline Extraction from Ready-made Building Points
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104321
– volume: 123
  start-page: 5357
  year: 2013
  ident: ref_35
  article-title: An Improved Building Boundary Extraction Algorithm Based on Fusion of Optical Imagery and LIDAR Data
  publication-title: Optik
  doi: 10.1016/j.ijleo.2013.03.045
– volume: 9
  start-page: 263
  year: 2018
  ident: ref_36
  article-title: Extraction of Building Roof Contours from the Integration of High-resolution Aerial Imagery and Laser Data Using Markov Random Fields
  publication-title: Int. J. Image Data Fusion.
  doi: 10.1080/19479832.2018.1487885
– volume: 202
  start-page: 356
  year: 2023
  ident: ref_13
  article-title: A depth map fusion algorithm with improved efficiency considering pixel region prediction
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.06.011
– volume: 29
  start-page: 374
  year: 2021
  ident: ref_24
  article-title: Building Outer Boundary Extraction from ALS Point Clouds Using Neighbor Point Direction Distribution
  publication-title: Opt. Precis. Eng.
  doi: 10.37188/OPE.20212902.0374
– volume: 169
  start-page: 152
  year: 2020
  ident: ref_38
  article-title: Effects of Radiometric Correction on Cover Type and Spatial Resolution for Modeling Plot Level Forest Attributes Using Multispectral Airborne LiDAR Data
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.09.001
– volume: 140
  start-page: 103090
  year: 2021
  ident: ref_25
  article-title: Parametric Surface Fitting on Airborne Lidar Point Clouds for Building Reconstruction
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2021.103090
– volume: 575–576
  start-page: 317
  year: 2021
  ident: ref_37
  article-title: Potential of Airborne LiDAR Data for Terrain Parameters Extraction
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2020.07.039
– volume: 76
  start-page: 107387
  year: 2023
  ident: ref_4
  article-title: Building footprint extraction from aerial photogrammetric point cloud data using its geometric features
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2023.107387
SSID ssj0000331904
Score 2.377769
Snippet Because of the complex structure and different shapes of building contours, the uneven density distribution of airborne LiDAR point clouds, and occlusion,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 190
SubjectTerms airborne LiDAR point clouds
Algorithms
average point spacing
Banded structure
Banding
building outer contour
building roof contour extraction
Buildings
Comparative analysis
Contours
data collection
Densification
Density distribution
Design and construction
Edge joints
Efficiency
Identification and classification
Lidar
Machine learning
multidirectional bands
Occlusion
Optical properties
Optical radar
Optimization
Parameters
Robustness
Roofs
Three dimensional models
topology
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll_QS8mip001QaCH0YLKyZNk67iYbQklKWRLITehJFoId1l5o_n1mbGezh5ReerQlhD0z-mZG9nxDyHcmLHciyNRDOJ6KyAEHTSlSXkrBFICyLLDe-eaXvLoTP-_z-41WX_hPWE8P3AvuTAlYjgWfBxsh-ZCwH52yzkTLMma6ousMfN5GMtVhMAfTGouej5RDXn-2bBjmHgzBd8MDdUT9f4Pjzsdc7pKdITikk_6h9siHUO2T7aFP-cPzAQmzP-2yL0WgdaTToac1nddwhURTsEJDsWSEThZLUG8V6PXiYjKnv-tF1dLzx3rlGzoF1-UprNGV3_ZerTsShJHKN5_I3eXs9vwqHRolpE5w3qbMKiGNKZUbu6CCiRBFxDwUY5PLUjhpDc-xR1CMtiiMz6xj0fHMYKdhHOefyVZVV-ELoSqL49z4AkMJEb1UxnGFFDIc5G8yn5Afr8LTbmARx2YWjxqyCRS0fhN0Qr6t5z713BnvzpqiDtYzkO-6uwFWoAcr0P-ygoScogY17krUgxmKC-ClkN9KTwrAIQHoViRk9KpkPWzXRmcK3DQ67DIhJ-th2Gj49cRUoV41mgPcCawB54f_44m_ko8ZxEf9ac6IbLXLVTiC-Ka1x50pvwBW2_nU
  priority: 102
  providerName: Directory of Open Access Journals
Title Extraction of Building Roof Contours from Airborne LiDAR Point Clouds Based on Multidirectional Bands
URI https://www.proquest.com/docview/2912800178
https://www.proquest.com/docview/3040445503
https://doaj.org/article/9414b1ed5ebf4076addc9bcafb121a81
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo9wAXxFOElpURSIhD1HXsPHxC2XaXCrVVtVCpN8vxA1aqkjbJSvDvmUm8Ww7AMbFlKZ6ZzzPjzHyEvGei4ka4LLbgjsfCc8BBXYiYF5lgEkA5y7He-fwiO70SX67T65Bw68JvlVtMHIDaNgZz5EeJBCQdyOQ_3d7FyBqFt6uBQmOPTACCCwi-JvPFxeVql2WZcVCxmRj7knKI74_ajmEMwhCE_ziJhob9_4Ll4axZPiGPg5NIy1GqT8kDVz8jDwNf-Y9fz4lb_OzbsSSBNp7OA7c1XTXwhA2nYIWOYukILdctiLl29Gx9Uq7oZbOue3p802xsR-dwhFkKawxluOPpNqQGYaS23QtytVx8Oz6NA2FCbATnfcwqKTKtC2lmxkmnPXgTPnX5TKdZIUxWaZ4iV5D3VZ5rm1SGecMTjYzDOM5fkv26qd0rQmXiZ6m2OboUwttMasMltpLhrvI6sRH5uN08ZUI3cSS1uFEQVeBGq_uNjsi73dzbsYfGX2fNUQa7Gdj3enjRtN9VMCMlBSgXcxY-w0MomgE6G1kZ7SuWMF2wiHxACSq0TpSDDkUG8FHY50qVOeCRAJTLI3K4FbIKZtupeyWLyNvdMBgc3qLo2jWbTnGAPYG14Pz1_5c4II8S8IDGfM0h2e_bjXsDHkxfTclesfw8JZPy5Pzs6zQo7XTIB_wGbQL0qA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ilCCxgBQhyixrHz8AGh3bbLlm4rVLVSb67jB6xUJW2SFfRP8RuZSbJbDsCtx8TWSPHMfDO2M_MR8paJghvh0tBCOh4KzwEHdS5CnqeCSQDlNMN658OjdHoqvpwlZ2vk17IWBn-rXGJiB9S2MnhGvh1LQNKOTP7T5VWIrFF4u7qk0OjN4sBd_4AtW_Nxfxf0-y6OJ3snO9NwYBUIjeC8DVkhRap1Lk1knHTaQ8j1icsinaS5MGmheYKEOt4XWaZtXBjmDY810vLiOAe5d8hdkCXRo_LJ59WZTsTBoCPRd0GF8Wi7bhjueBhC_h9xr6MH-FcQ6CLb5AG5P6SkdNTb0EOy5spHZGNgR_9-_Zi4vZ9t3RdA0MrT8cCkTY8reML2ViChoVioQkfzGoyqdHQ23x0d06_VvGzpzkW1sA0dQ8C0FGR0Rb99LO0OImGktM0TcnorC_mUrJdV6Z4RKmMfJdpmmMAIb1OpDZfYuIa7wuvYBuTDcvGUGXqXI4XGhYI9DC60ulnogLxZzb3sO3b8ddYYdbCagV22uxdV_U0NTqukAFNmzsJneNj4phALjCyM9gWLmc5ZQN6jBhViAepBDyUN8FHYVUuNMkA_AZiaBWRrqWQ1gESjbkw6IK9Xw-DeeGejS1ctGsUBZAVWnvPn_xfximxMTw5narZ_dLBJ7sWQe_UnRVtkva0X7gXkTm3xsjNYSs5v20N-AxSYLgY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEJ-iY4ARIMRD1CR2k_gBoXZttbFRVRWT9mYcx2aVpmQ0qWD_Gn8dd_noeADe9pjYsmTf3e_OH3c_gDeBSLkRNvIyDMc94TjioE6Ex5NIBBJBOYop3_nzPDo8FZ_Ohmc78KvLhaFnlR0m1kCdFYbOyAehRCStyeQHrn0WsZjMPl5-94hBim5aOzqNRkWO7dUP3L6VH44mKOu3YTibfjk49FqGAc8IzisvSKWItE6k8Y2VVjt0v25oY18Po0SYKNV8SOQ6zqVxrLMwNYEzPNRE0UvtHMe9Bbsx7or8HuyOp_PFcnvC43NUb180NVE5l_5gXQa0_wnIAfzhBWuygH-5hNrPze7DvTZAZaNGox7Ajs0fwp2WK_386hHY6c9q3aRDsMKxccurzZYFflGxKxyhZJS2wkarNapYbtnJajJaskWxyit2cFFsspKN0X1mDMeoU4Abz1ofS2JLnpWP4fRGlvIJ9PIit0-BydD5Q53FFM4Il0VSGy6pjA23qdNh1of33eIp01YyJ0KNC4U7Glpodb3QfXi97XvZ1O_4a68xyWDbg2pu1z-K9TfVmrCSAhU7sBlOw6HAI_QMRqZGuzQIA50EfXhHElSEDCQH3SY44KSoxpYaxYiFAhE27sN-J2TVQkaprhW8D6-2zWjsdIOjc1tsSsURcgXlofO9_w_xEm6jdaiTo_nxM7gbYiDWHBvtQ69ab-xzDKSq9EWrsQy-3rSR_Ab0rjOY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+of+Building+Roof+Contours+from+Airborne+LiDAR+Point+Clouds+Based+on+Multidirectional+Bands&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Jingxue&rft.au=Zang%2C+Dongdong&rft.au=Yu%2C+Jinzheng&rft.au=Xie%2C+Xiao&rft.date=2024-01-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=1&rft_id=info:doi/10.3390%2Frs16010190&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon