Rapid Emergency Response Assessment of Earthquake-Induced Landslides Driven by Fusion of InSAR Deformation Data and Newmark Physical Models
Strong earthquakes induce a large number of secondary disasters, such as landslides, which bring serious challenges to post-disaster emergency rescue, and the rapid and accurate assessment of earthquake-induced landslide disasters is crucial for post-earthquake emergency rescue. This research aims t...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 18; p. 4605 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Strong earthquakes induce a large number of secondary disasters, such as landslides, which bring serious challenges to post-disaster emergency rescue, and the rapid and accurate assessment of earthquake-induced landslide disasters is crucial for post-earthquake emergency rescue. This research aims to propose an emergency assessment model that is suitable for post-earthquake landslides, specifically targeting the first 72 h after an earthquake for emergency rescue guidance. The model combines remote sensing technology and the Newmark physical mechanics assessment model to form the InSAR Data–Newmark Physical Fusion Driver Model (IDNPM), which comprehensively considers the dynamic deformation of the ground surface and geological features. To validate the predictive performance of the IDNPM, the model is applied to the 5 September 2022 Luding earthquake event and the 8 August 2017 Jiuzhaigou earthquake event. The landslide qualitative evaluation, confusion matrix and Receiver Operating Characteristic (ROC) curve are utilized for quantitative assessment. The results show that the IDNPM can effectively reduce the false negative and false positive errors in landslide prediction by utilizing the SAR deformation information, and to a certain extent, it accounts for the dependence of the Newmark model on the accuracy of empirical formulas and geotechnical parameters. For the Luding earthquake event, the IDNPM shows an accuracy improvement of 10.296% compared to the traditional Newmark model. For the Jiuzhaigou earthquake event, there is also an improvement of 3.152%, with a promising generalization performance. The simplicity and ease of operation in constructing the model are accompanied by high reliability and accuracy. The research findings provide essential references for the development of post-earthquake landslide emergency prediction models and offer robust data support for emergency rescue and recovery efforts in earthquake-stricken areas in the future. |
---|---|
AbstractList | Strong earthquakes induce a large number of secondary disasters, such as landslides, which bring serious challenges to post-disaster emergency rescue, and the rapid and accurate assessment of earthquake-induced landslide disasters is crucial for post-earthquake emergency rescue. This research aims to propose an emergency assessment model that is suitable for post-earthquake landslides, specifically targeting the first 72 h after an earthquake for emergency rescue guidance. The model combines remote sensing technology and the Newmark physical mechanics assessment model to form the InSAR Data–Newmark Physical Fusion Driver Model (IDNPM), which comprehensively considers the dynamic deformation of the ground surface and geological features. To validate the predictive performance of the IDNPM, the model is applied to the 5 September 2022 Luding earthquake event and the 8 August 2017 Jiuzhaigou earthquake event. The landslide qualitative evaluation, confusion matrix and Receiver Operating Characteristic (ROC) curve are utilized for quantitative assessment. The results show that the IDNPM can effectively reduce the false negative and false positive errors in landslide prediction by utilizing the SAR deformation information, and to a certain extent, it accounts for the dependence of the Newmark model on the accuracy of empirical formulas and geotechnical parameters. For the Luding earthquake event, the IDNPM shows an accuracy improvement of 10.296% compared to the traditional Newmark model. For the Jiuzhaigou earthquake event, there is also an improvement of 3.152%, with a promising generalization performance. The simplicity and ease of operation in constructing the model are accompanied by high reliability and accuracy. The research findings provide essential references for the development of post-earthquake landslide emergency prediction models and offer robust data support for emergency rescue and recovery efforts in earthquake-stricken areas in the future. |
Audience | Academic |
Author | Liu, Jing Wang, Qingdong Zhu, Hui Zhang, Yingbin Zeng, Ying |
Author_xml | – sequence: 1 givenname: Ying surname: Zeng fullname: Zeng, Ying – sequence: 2 givenname: Yingbin orcidid: 0000-0001-7937-3210 surname: Zhang fullname: Zhang, Yingbin – sequence: 3 givenname: Jing orcidid: 0000-0002-6087-5891 surname: Liu fullname: Liu, Jing – sequence: 4 givenname: Qingdong orcidid: 0000-0003-1985-2732 surname: Wang fullname: Wang, Qingdong – sequence: 5 givenname: Hui surname: Zhu fullname: Zhu, Hui |
BookMark | eNptUttuEzEQXaEiUUpf-AJLvCCkFN_W632MmhQihYsCPK9m7dnU6a6d2rugfAM_jdMgQBX2g62jc87M0czz4swHj0XxktErIWr6NiZWMi0VLZ8U55xWfCZ5zc_--T8rLlPa0XyEYDWV58XPDeydJcsB4xa9OZANpn3wCck8JUxpQD-S0JElxPH2foI7nK28nQxasgZvU-8sJrKI7jt60h7IzZRc8EfFyn-Zb8gCuxAHGI_gAkYgWUQ-4o8B4h35fHtIzkBPPgSLfXpRPO2gT3j5-70ovt0sv16_n60_vVtdz9czI4UYZ6yU0igQUjCrhWwVVkBt1dVMqtKospW1VJ1seacUqzoEbYTkqgYKkle6FBfF6uRrA-yafXS5mUMTwDUPQIjbJqd1psem1aAt5woUbaWotAYsWV1r4JXRWkD2en3y2sdwP2Eam8Elg30PHsOUGkEllUJzxjP11SPqLkzR56QN16rOvWpxZF2dWFvI9Z3vwhjB5GtxcCYPvHMZn1cV04wJXmfBm5PAxJBSxO5PIkab4140f_cik-kjsnHjw3RyFdf_T_ILGIe6RA |
CitedBy_id | crossref_primary_10_3389_feart_2024_1302553 crossref_primary_10_1109_TGRS_2025_3531905 crossref_primary_10_1007_s12145_024_01408_1 crossref_primary_10_1080_19475705_2024_2366362 crossref_primary_10_3390_app14177500 |
Cites_doi | 10.1007/s11629-022-7527-y 10.1038/s43017-022-00373-x 10.2307/2529310 10.1016/j.enggeo.2010.01.003 10.3103/S0145875221040074 10.1016/j.cageo.2012.08.023 10.1016/j.rse.2016.07.018 10.1016/j.isprsjprs.2022.03.011 10.1007/s10064-021-02464-3 10.1016/j.tecto.2022.229266 10.3390/rs15051317 10.1029/2020GL090509 10.1016/S0013-7952(01)00081-3 10.3390/rs15030596 10.12989/sem.2010.34.6.755 10.1111/1755-6724.13124 10.1109/TGRS.2002.803792 10.1007/978-3-642-27222-6 10.1002/nag.3202 10.1007/s11069-020-04433-7 10.1007/s12665-014-3151-7 10.3390/rs15133350 10.3390/rs15153728 10.3390/rs15143665 10.1016/j.earscirev.2012.02.001 10.1016/j.jclepro.2022.133146 10.1016/j.rse.2014.05.013 10.3390/rs12233992 10.1007/s10346-018-0960-x 10.1016/S0013-7952(00)00039-9 10.3390/rs13071330 10.1080/15481603.2022.2100054 10.1016/j.enggeo.2007.01.013 10.1007/s10064-022-02709-9 10.1016/j.enggeo.2013.05.015 10.1016/j.geomorph.2006.12.036 10.1007/s10346-018-1063-4 10.1016/j.rse.2012.09.020 10.3390/rs12081305 10.1007/s10346-021-01796-1 10.3390/ijgi8010004 10.1016/j.soildyn.2022.107556 10.1016/S0013-7952(00)00038-7 10.3390/rs15051322 10.1007/s10064-018-1313-7 10.1080/19475705.2021.1887939 10.1016/j.catena.2021.105317 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15184605 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library ProQuest SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_b8a8d226a60b43788ae51998a27c883a A771811329 10_3390_rs15184605 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-1544c6a3431d834b6e7a0d7f91465c65b4946f4b2f6617fea8c34269a0a427853 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:01:03 EDT 2025 Fri Jul 11 10:23:00 EDT 2025 Fri Jul 25 12:01:29 EDT 2025 Tue Jun 03 03:45:56 EDT 2025 Thu Apr 24 22:53:57 EDT 2025 Tue Jul 01 03:11:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-1544c6a3431d834b6e7a0d7f91465c65b4946f4b2f6617fea8c34269a0a427853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7937-3210 0000-0002-6087-5891 0000-0003-1985-2732 |
OpenAccessLink | https://doaj.org/article/b8a8d226a60b43788ae51998a27c883a |
PQID | 2869617832 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b8a8d226a60b43788ae51998a27c883a proquest_miscellaneous_3040438212 proquest_journals_2869617832 gale_infotracacademiconefile_A771811329 crossref_primary_10_3390_rs15184605 crossref_citationtrail_10_3390_rs15184605 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Jibson (ref_2) 2007; 91 Ciampalini (ref_24) 2016; 184 ref_14 ref_13 ref_12 ref_11 ref_10 ref_54 ref_53 Gallen (ref_5) 2016; 714–715 Moustafa (ref_42) 2010; 34 Herrera (ref_32) 2013; 128 Liu (ref_9) 2023; 50 Fan (ref_7) 2018; 15 ref_15 Dai (ref_55) 2022; 59 Zhao (ref_44) 2022; 47 Chen (ref_18) 2018; 78 Dreyfus (ref_38) 2013; 163 ref_25 Kouhartsiouk (ref_36) 2021; 105 Devara (ref_23) 2021; 12 Zhuo (ref_17) 2022; 826 Guzzetti (ref_6) 2012; 112 Wang (ref_29) 2022; 187 Jabaloy (ref_45) 2014; 72 Chen (ref_16) 2022; 44 Liu (ref_41) 2023; 20 Chung (ref_50) 2008; 94 Koronovskii (ref_3) 2021; 76 ref_33 Pradhan (ref_51) 2013; 51 ref_31 Novellino (ref_34) 2021; 203 Zhou (ref_35) 2022; 19 Parise (ref_21) 2000; 58 Julian (ref_1) 2002; 63 Casagli (ref_37) 2023; 4 Fan (ref_8) 2022; 30 Berardino (ref_20) 2002; 40 Ji (ref_19) 2021; 45 Liu (ref_46) 2021; 80 Fan (ref_26) 2021; 48 Sun (ref_28) 2023; 30 Jibson (ref_39) 2000; 58 Cantarino (ref_47) 2019; 16 Wang (ref_27) 2023; 48 Landis (ref_49) 1977; 33 Cascini (ref_30) 2010; 112 ref_48 Zhang (ref_40) 2022; 163 Jebur (ref_52) 2014; 152 Cao (ref_22) 2022; 368 Du (ref_43) 2017; 91 Xi (ref_4) 2022; 81 |
References_xml | – volume: 47 start-page: 4401 year: 2022 ident: ref_44 article-title: Optimization of parameters and application of probabilistic seismiclandslide hazard analysis model based on Newmark displacement model: A case study in Ludian earthquake area publication-title: Earth Sci. – volume: 20 start-page: 31 year: 2023 ident: ref_41 article-title: Effects of the Probability of Pulse-like Ground Motions on Landslide Susceptibility Assessment in near-Fault Areas publication-title: J. Mt. Sci. doi: 10.1007/s11629-022-7527-y – volume: 4 start-page: 51 year: 2023 ident: ref_37 article-title: Landslide Detection, Monitoring and Prediction with Remote-Sensing Techniques publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-022-00373-x – volume: 33 start-page: 159 year: 1977 ident: ref_49 article-title: The Measurement of Observer Agreement for Categorical Data publication-title: Biometrics doi: 10.2307/2529310 – volume: 112 start-page: 29 year: 2010 ident: ref_30 article-title: Advanced Low- and Full-Resolution DInSAR Map Generation for Slow-Moving Landslide Analysis at Different Scales publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2010.01.003 – volume: 76 start-page: 366 year: 2021 ident: ref_3 article-title: The Unpredictability of Strong Earthquakes: New Understanding and Solution of the Problem publication-title: Mosc. Univ. Geol. Bull. doi: 10.3103/S0145875221040074 – volume: 51 start-page: 350 year: 2013 ident: ref_51 article-title: A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.08.023 – volume: 184 start-page: 302 year: 2016 ident: ref_24 article-title: Landslide Susceptibility Map Refinement Using PSInSAR Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.07.018 – volume: 187 start-page: 225 year: 2022 ident: ref_29 article-title: Change Detection-Based Co-Seismic Landslide Mapping through Extended Morphological Profiles and Ensemble Strategy publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.03.011 – volume: 80 start-page: 8503 year: 2021 ident: ref_46 article-title: Hazard Assessment of Earthquake-Induced Landslides by Using Permanent Displacement Model Considering near-Fault Pulse-like Ground Motions publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-021-02464-3 – volume: 826 start-page: 229266 year: 2022 ident: ref_17 article-title: Cross-Effects of Loading Rate and Cumulative Fault Slip on Pre-Seismic Rupture and Unstable Slip Rate of Laboratory Earthquakes publication-title: Tectonophysics doi: 10.1016/j.tecto.2022.229266 – ident: ref_13 doi: 10.3390/rs15051317 – volume: 48 start-page: 509 year: 2021 ident: ref_26 article-title: Rapidly Evolving Controls of Landslides After a Strong Earthquake and Implications for Hazard Assessments publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL090509 – volume: 30 start-page: 476 year: 2023 ident: ref_28 article-title: Characteristics and Prevention of Coseismic Geohazard Induced by Luding Ms 6.8 Earthquake, Sichuan, China publication-title: Earth Sci. Front. – volume: 63 start-page: 189 year: 2002 ident: ref_1 article-title: Earthquake-Induced Landslides in Central America publication-title: Eng. Geol. doi: 10.1016/S0013-7952(01)00081-3 – ident: ref_31 doi: 10.3390/rs15030596 – volume: 34 start-page: 755 year: 2010 ident: ref_42 article-title: Characterization and Modeling of Near-Fault Pulse-like Strong Ground Motion via Damage-Based Critical Excitation Method publication-title: Struct. Eng. Mech. doi: 10.12989/sem.2010.34.6.755 – volume: 91 start-page: 658 year: 2017 ident: ref_43 article-title: Estimation of Seismic Landslide Hazard in the Eastern Himalayan Syntaxis Region of Tibetan Plateau publication-title: Acta Geol. Sin.-Engl. Ed. doi: 10.1111/1755-6724.13124 – volume: 40 start-page: 2375 year: 2002 ident: ref_20 article-title: A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.803792 – ident: ref_53 doi: 10.1007/978-3-642-27222-6 – volume: 50 start-page: 84 year: 2023 ident: ref_9 article-title: Emergency rapid assessment of landslides induced by the Luding Ms6.8 earthquake in Sichuan of China publication-title: Hydrogeol. Eng. Geol. – volume: 45 start-page: 1303 year: 2021 ident: ref_19 article-title: A Simplified Nonlinear Coupled Newmark Displacement Model with Degrading Yield Acceleration for Seismic Slope Stability Analysis publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.3202 – volume: 105 start-page: 2957 year: 2021 ident: ref_36 article-title: The Application of DInSAR and Bayesian Statistics for the Assessment of Landslide Susceptibility publication-title: Nat. Hazards doi: 10.1007/s11069-020-04433-7 – volume: 44 start-page: 971 year: 2022 ident: ref_16 article-title: Spatial Distribution and influencing Factors of Geohazards induced by the 2022 M6.6 Luding (Sichuan, China) Earthouake publication-title: J. Earth Sci. Environ. – volume: 72 start-page: 2423 year: 2014 ident: ref_45 article-title: GIS Application for Regional Assessment of Seismically Induced Slope Failures in the Sierra Nevada Range, South Spain, along the Padul Fault publication-title: Environ. Earth Sci. doi: 10.1007/s12665-014-3151-7 – ident: ref_25 doi: 10.3390/rs15133350 – ident: ref_10 doi: 10.3390/rs15153728 – ident: ref_11 doi: 10.3390/rs15143665 – volume: 112 start-page: 42 year: 2012 ident: ref_6 article-title: Landslide Inventory Maps: New Tools for an Old Problem publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2012.02.001 – volume: 368 start-page: 133146 year: 2022 ident: ref_22 article-title: Refined Landslide Susceptibility Analysis Based on InSAR Technology and UAV Multi-Source Data publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133146 – volume: 152 start-page: 150 year: 2014 ident: ref_52 article-title: Optimization of Landslide Conditioning Factors Using Very High-Resolution Airborne Laser Scanning (LiDAR) Data at Catchment Scale publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.05.013 – ident: ref_15 doi: 10.3390/rs12233992 – volume: 15 start-page: 967 year: 2018 ident: ref_7 article-title: Coseismic Landslides Triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou Earthquake (Sichuan, China): Factors Controlling Their Spatial Distribution and Implications for the Seismogenic Blind Fault Identification publication-title: Landslides doi: 10.1007/s10346-018-0960-x – volume: 58 start-page: 271 year: 2000 ident: ref_39 article-title: A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps publication-title: Eng. Geol. doi: 10.1016/S0013-7952(00)00039-9 – ident: ref_14 doi: 10.3390/rs13071330 – volume: 59 start-page: 1226 year: 2022 ident: ref_55 article-title: Interpretation and Sensitivity Analysis of the InSAR Line of Sight Displacements in Landslide Measurements publication-title: GISci. Remote Sens. doi: 10.1080/15481603.2022.2100054 – volume: 91 start-page: 209 year: 2007 ident: ref_2 article-title: Regression Models for Estimating Coseismic Landslide Displacement publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2007.01.013 – volume: 81 start-page: 208 year: 2022 ident: ref_4 article-title: Effectiveness of Newmark-Based Sampling Strategy for Coseismic Landslide Susceptibility Mapping Using Deep Learning, Support Vector Machine, and Logistic Regression publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-022-02709-9 – volume: 163 start-page: 41 year: 2013 ident: ref_38 article-title: The Influence of Different Simplified Sliding-Block Models and Input Parameters on Regional Predictions of Seismic Landslides Triggered by the Northridge Earthquake publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2013.05.015 – volume: 94 start-page: 438 year: 2008 ident: ref_50 article-title: Predicting Landslides for Risk Analysis—Spatial Models Tested by a Cross-Validation Technique publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.12.036 – volume: 16 start-page: 265 year: 2019 ident: ref_47 article-title: A ROC Analysis-Based Classification Method for Landslide Susceptibility Maps publication-title: Landslides doi: 10.1007/s10346-018-1063-4 – ident: ref_54 – volume: 128 start-page: 31 year: 2013 ident: ref_32 article-title: Multi-Sensor Advanced DInSAR Monitoring of Very Slow Landslides: The Tena Valley Case Study (Central Spanish Pyrenees) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.09.020 – volume: 714–715 start-page: 173 year: 2016 ident: ref_5 article-title: Application and Evaluation of a Rapid Response Earthquake-Triggered Landslide Model to the 25 April 2015 Mw 7.8 Gorkha Earthquake, Nepal publication-title: Tectonophysics – ident: ref_33 doi: 10.3390/rs12081305 – volume: 19 start-page: 1585 year: 2022 ident: ref_35 article-title: Enhanced Dynamic Landslide Hazard Mapping Using MT-InSAR Method in the Three Gorges Reservoir Area publication-title: Landslides doi: 10.1007/s10346-021-01796-1 – volume: 48 start-page: 25 year: 2023 ident: ref_27 article-title: Research on Emergency Evaluation of L.andslides Induced bythe L.uding Ms 6.8 Earthquake publication-title: Geomat. Inf. Sci. Wuhan Univ. – ident: ref_48 doi: 10.3390/ijgi8010004 – volume: 163 start-page: 107556 year: 2022 ident: ref_40 article-title: A New Permanent Displacement Model Considering Pulse-like Ground Motions and Its Application in Landslide Hazard Assessment publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2022.107556 – volume: 30 start-page: 1504 year: 2022 ident: ref_8 article-title: Characteristics and spatial distribution pattern of Ms 6.8 Luding earthquake occurred on September 5, 2022 publication-title: J. Eng. Geol. – volume: 58 start-page: 251 year: 2000 ident: ref_21 article-title: A Seismic Landslide Susceptibility Rating of Geologic Units Based on Analysis of Characteristics of Landslides Triggered by the 17 January, 1994 Northridge, California Earthquake publication-title: Eng. Geol. doi: 10.1016/S0013-7952(00)00038-7 – ident: ref_12 doi: 10.3390/rs15051322 – volume: 78 start-page: 2449 year: 2018 ident: ref_18 article-title: A Method for Quick Assessment of Earthquake-Triggered Landslide Hazards: A Case Study of the Mw6.1 2014 Ludian, China Earthquake publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1313-7 – volume: 12 start-page: 675 year: 2021 ident: ref_23 article-title: Landslide Susceptibility Mapping Using MT-InSAR and AHP Enabled GIS-Based Multi-Criteria Decision Analysis publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2021.1887939 – volume: 203 start-page: 105317 year: 2021 ident: ref_34 article-title: Slow-Moving Landslide Risk Assessment Combining Machine Learning and InSAR Techniques publication-title: CATENA doi: 10.1016/j.catena.2021.105317 |
SSID | ssj0000331904 |
Score | 2.3842394 |
Snippet | Strong earthquakes induce a large number of secondary disasters, such as landslides, which bring serious challenges to post-disaster emergency rescue, and the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4605 |
SubjectTerms | Aerial photography Artificial satellites in remote sensing China Deformation Disaster relief Disasters Earthquake damage Earthquake prediction earthquake-induced landslides Earthquakes Emergency preparedness Emergency response Environmental aspects Equilibrium Identification Information systems Landslides Landslides & mudslides Methods Model accuracy Newmark Performance prediction prediction Prediction models Remote sensing Rescue operations Safety and security measures SBAS-InSAR Search and rescue Search and rescue operations Seismic activity Seismic response the rapid emergency assessment of landslides Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFtTxEoFRGICEOUbOx4zgntGV3VRBU1UKl3iy_0lZdkm2ye-hv6J9mJvGmqkS5Js7zs2c8Hs_3EfIRvBYSjZlYJA7TjFkam7TIY2GdBMSZLAXWDv88Fken_PtZdhYW3NqwrXJjEztD7WqLa-QHqRQFlrOx9MvyOkbVKMyuBgmNx2QbTLCE4Gv7cHp8Mh9WWRIGD0x4z0vKIL4_aFrwcRKzgfc8UUfY_5BZ7nzNbIc8C5NEOu5R3SWPfPWcPAl65Rc3L8jtXC8vHZ1uaifpvN_q6ul4YNqkdUmn0DEurtf6yseo0WG9oz-wtndx6XxLJw2aOmpu6GyNi2Z4xbfq13hOJ34oaqQTvdIULqJgD__o5oqeBGgp6qgt2pfkdDb9_fUoDrIKseWMrWLk37FCM5g6AB7cCJ_rxOVlAUYzsyIzvOCi5CYtwXfnpdfSMix41YlGXY6MvSJbVV3514SOShSpdlZ4l_FR4qTghluAAsyvS20akc-bX6xs4BxH6YuFgtgD4VB3cETkw9B22TNt_LPVISI1tEB27O5A3ZyrMNiUkVo6mFdqkRiOhPnaZ1hLqNPcSsl0RD4hzgrHMLyO1aEUAT4K2bDUOAePPYI4vYjI3qYrqDC4W3XXFSPyfjgNwxJzLbry9bpVLOFdjnWUvvn_Ld6Sp6hg329b2yNbq2bt38E8Z2X2Q2f-C2kJ-8U priority: 102 providerName: ProQuest |
Title | Rapid Emergency Response Assessment of Earthquake-Induced Landslides Driven by Fusion of InSAR Deformation Data and Newmark Physical Models |
URI | https://www.proquest.com/docview/2869617832 https://www.proquest.com/docview/3040438212 https://doaj.org/article/b8a8d226a60b43788ae51998a27c883a |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-C7QAXxAaIwqiMQEIcoqWx4zjHjLYMtE1Tx6TdLH9Fm1bS0bSH_Q3807yXpNmQQFw4RUocxfb7dOz3-wG8x6hFQGM2krGnbcY0iWySZ5F0XqHEuSol1Q4fn8jDc_H1Ir24R_VFZ8JaeOB24vatMspjjmBkbAWBn5uQUl2YSTKnFG9SI4x59xZTjQ_m-KFYtHikHNf1-8saY5uiXcDfIlAD1P83d9zEmOlTeNIlh6xoO7UDD0K1C486nvLL22fwc2ZurjybbGom2aw94hpY0SNsskXJJjiuyx9rcx0i4uZwwbMjqumdX_lQs_GSXByzt2y6pp9l9MaX6qyYsXHoixnZ2KwMw5cY-sHvZnnNTjuRMuJPm9fP4Xw6-fbpMOroFCInOF9FhLvjpOGYMqAchJUhM7HPyhydZepkakUuZClsUmLMzspglONU6GpiQ3wcKX8BW9WiCi-BjUoip_ZOBp-KUeyVFFY4jILodn3ikgF83Eyxdh3WOFFezDWuOUgc-k4cA3jXt71pETb-2OqAJNW3IFTs5gbqiu50Rf9LVwbwgeSsyXaxO850JQg4KELB0kWGkXqE6_N8AHsbVdCdUdc6UTKnikqO43vbP0ZzpD0WU4XFutY8Fs3e6ih59T96_BoeE799e6htD7ZWy3V4g1nQyg7hoZp-HsJ2MT4-OsPrweTkdDZszOAXCtwGYQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqcigXVL5EoIARIMQhauI4jnNAaGF32aXbCi2t1JtxbIdW3W62m12h_Q38F34jM_mqkIBbr4kTJZnxm4nHbx4hryBqYaOxzBeBxTJjzPyMpYkvjJVg8UjmArnDh0didMI_n8anW-RXy4XBbZUtJlZAbQuDa-T7TIoU6WwRe7-48lE1CqurrYRG7RYHbvMDftnKd-M-2Pc1Y8PB8ceR36gK-IZH0crH9jNG6AgiJzwOz4RLdGCTPAXMiI2IM55ykfOM5RC6ktxpaSLke-pAoywFqkQA5N-Ce6U4o-TwU7emE0TwegGvu6DC-WB_WUJElVh7_CPuVfIA_woCVWQb7pI7TUpKe7UP3SVbbn6P7DTq6Geb--TnVC_OLR20TE06rTfWOtrr-nrSIqcDcMOzq7W-cD4qghhn6QSZxLNz60raXyKw0mxDh2tcosMrxvOvvSntu45CSft6pSlcRAF9L_Xygn5pHImiatusfEBObuRzPyTb82LuHhEa5iiJbY1wNuZhYKXgGTcQewHsLTPMI2_bT6xM0-EchTZmCv500Bzq2hweedmNXdR9Pf466gNaqhuBvbirA8Xyu2qmtsqklhayWC2CjGN7fu1iZC5qlhgpI-2RN2hnhYgBj2N0Q3yAl8LeW6qXQH4QhhFLPbLXuoJqoKRU147vkRfdaQABrOzouSvWpYoCXlV0Q_b4_7d4TnZGx4cTNRkfHTwhtxlkbPWGuT2yvVqu3VPIsFbZs8qtKfl20_PoNx6sNUo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWmTgJeEJ8ibIARIMRD1NR2nOQBoY62WtmoqsKkvRnHdti0ru2SVqi_gX_Er-PefE1IwNteWydKcq_Pvfb1uYeQ1xC1sNFY6svAYpkxZH7KksiXxsZgcR5nErnDnyfy8ER8Og1Pd8ivhguDxyobTCyB2i4N7pF3WSwTpLNx1s3qYxHTwejD6spHBSmstDZyGpWLHLntD1i-Fe_HA7D1G8ZGw68fD_1aYcA3gvO1j61ojNQcoig8mkili3RgoywB_AiNDFORCJmJlGUQxqLM6dhw5H7qQKNEBSpGAPzvRrAqCjpk92A4mc7aHZ6Aw8sGouqJynkSdPMC4muMlcg_omApFvCvkFDGudE9crdOUGm_8qj7ZMctHpDbtVb62fYh-TnTq3NLhw1vk86qY7aO9tsun3SZ0SE45dnVRl84H_VBjLP0GHnF83PrCjrIEWZpuqWjDW7Y4RXjxZf-jA5cS6ikA73WFC6igMWXOr-g09qtKGq4zYtH5ORGPvhj0lksF-4Job0MBbKtkc6GohfYWIpUGIjEAP2WGeaRd80nVqbud46yG3MF6x40h7o2h0detWNXVZePv446QEu1I7Azd_nDMv-u6omu0ljHFnJaLYNUYLN-7ULkMWoWmTjm2iNv0c4K8QMex-iaBgEvhZ24VD-CbKHX4yzxyH7jCqoGlkJdTwOPvGz_BkjAOo9euOWmUDwQZX23x57-_xYvyC2YQ-p4PDnaI3cYpG_V6bl90lnnG_cM0q11-rz2a0q-3fRU-g3DJjrc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Emergency+Response+Assessment+of+Earthquake-Induced+Landslides+Driven+by+Fusion+of+InSAR+Deformation+Data+and+Newmark+Physical+Models&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ying+Zeng&rft.au=Yingbin+Zhang&rft.au=Jing+Liu&rft.au=Qingdong+Wang&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=18&rft.spage=4605&rft_id=info:doi/10.3390%2Frs15184605&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b8a8d226a60b43788ae51998a27c883a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |