Mechanism and influencing factors analysis of polyethylene oxide electrohydrodynamic printing

Electrohydrodynamic (EHD) printing is a micro–nano printing technology based on the principles of electric field and fluid dynamics. It is characterized by high resolution, high precision, and high speed, applied to various materials, including metals, ceramics, and organic materials. Compared with...

Full description

Saved in:
Bibliographic Details
Published inPolymer engineering and science Vol. 63; no. 12; pp. 4072 - 4083
Main Authors Wang, Chunjing, Zhifu, Yin, Liu, Zixian, Cheng, Yongqiang, Wei, Wei, Sun, Lei, Sang, Shengbo
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2023
Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0032-3888
1548-2634
DOI10.1002/pen.26508

Cover

Abstract Electrohydrodynamic (EHD) printing is a micro–nano printing technology based on the principles of electric field and fluid dynamics. It is characterized by high resolution, high precision, and high speed, applied to various materials, including metals, ceramics, and organic materials. Compared with traditional printing technologies, EHD printing offers advantages such as low manufacturing cost, simple process, and direct fabrication, making it highly promising in the field of micro–nano manufacturing. Polyethylene oxide (PEO) is a highly water‐soluble polymer that has been widely used in various fields due to its low toxicity and ease of processing. In this study, a finite element simulation model was developed using simulation software to simulate and analyze the mechanisms of focused jetting and deposition of PEO solution under an electric field. Based on the principles of electrohydrodynamics, a self‐built EHD printing system was used to investigate the influence of different solution mass fractions and printing parameters on fiber formation, and the optimal process window of EHD printing PEO solution was obtained. Ultimately, ordered deposition of fiber lines ranging from 1.761 to 6.093 μm was achieved. The simulation results were consistent with the experimental results, validating the effectiveness of the established model in guiding jetting outcomes. Highlights Independently building a low‐cost electrohydrodynamic (EHD) printing system. Finite element simulation of EHD printing process. Mechanism analysis of PEO solution jetting and deposition. Optimal process window for PEO solution EHD printing. Influence of key process parameters on fiber forming width. Schematic diagram of the EHD printing system and its injection and simulation process.
AbstractList Electrohydrodynamic (EHD) printing is a micro–nano printing technology based on the principles of electric field and fluid dynamics. It is characterized by high resolution, high precision, and high speed, applied to various materials, including metals, ceramics, and organic materials. Compared with traditional printing technologies, EHD printing offers advantages such as low manufacturing cost, simple process, and direct fabrication, making it highly promising in the field of micro–nano manufacturing. Polyethylene oxide (PEO) is a highly water‐soluble polymer that has been widely used in various fields due to its low toxicity and ease of processing. In this study, a finite element simulation model was developed using simulation software to simulate and analyze the mechanisms of focused jetting and deposition of PEO solution under an electric field. Based on the principles of electrohydrodynamics, a self‐built EHD printing system was used to investigate the influence of different solution mass fractions and printing parameters on fiber formation, and the optimal process window of EHD printing PEO solution was obtained. Ultimately, ordered deposition of fiber lines ranging from 1.761 to 6.093 μm was achieved. The simulation results were consistent with the experimental results, validating the effectiveness of the established model in guiding jetting outcomes.HighlightsIndependently building a low‐cost electrohydrodynamic (EHD) printing system.Finite element simulation of EHD printing process.Mechanism analysis of PEO solution jetting and deposition.Optimal process window for PEO solution EHD printing.Influence of key process parameters on fiber forming width.
Electrohydrodynamic (EHD) printing is a micro-nano printing technology based on the principles of electric field and fluid dynamics. It is characterized by high resolution, high precision, and high speed, applied to various materials, including metals, ceramics, and organic materials. Compared with traditional printing technologies, EHD printing offers advantages such as low manufacturing cost, simple process, and direct fabrication, making it highly promising in the field of micro-nano manufacturing. Polyethylene oxide (PEO) is a highly water-soluble polymer that has been widely used in various fields due to its low toxicity and ease of processing. In this study, a finite element simulation model was developed using simulation software to simulate and analyze the mechanisms of focused jetting and deposition of PEO solution under an electric field. Based on the principles of electrohydrodynamics, a self-built EHD printing system was used to investigate the influence of different solution mass fractions and printing parameters on fiber formation, and the optimal process window of EHD printing PEO solution was obtained. Ultimately, ordered deposition of fiber lines ranging from 1.761 to 6.093 [micro]m was achieved. The simulation results were consistent with the experimental results, validating the effectiveness of the established model in guiding jetting outcomes.
Electrohydrodynamic (EHD) printing is a micro–nano printing technology based on the principles of electric field and fluid dynamics. It is characterized by high resolution, high precision, and high speed, applied to various materials, including metals, ceramics, and organic materials. Compared with traditional printing technologies, EHD printing offers advantages such as low manufacturing cost, simple process, and direct fabrication, making it highly promising in the field of micro–nano manufacturing. Polyethylene oxide (PEO) is a highly water‐soluble polymer that has been widely used in various fields due to its low toxicity and ease of processing. In this study, a finite element simulation model was developed using simulation software to simulate and analyze the mechanisms of focused jetting and deposition of PEO solution under an electric field. Based on the principles of electrohydrodynamics, a self‐built EHD printing system was used to investigate the influence of different solution mass fractions and printing parameters on fiber formation, and the optimal process window of EHD printing PEO solution was obtained. Ultimately, ordered deposition of fiber lines ranging from 1.761 to 6.093 μm was achieved. The simulation results were consistent with the experimental results, validating the effectiveness of the established model in guiding jetting outcomes. Highlights Independently building a low‐cost electrohydrodynamic (EHD) printing system. Finite element simulation of EHD printing process. Mechanism analysis of PEO solution jetting and deposition. Optimal process window for PEO solution EHD printing. Influence of key process parameters on fiber forming width. Schematic diagram of the EHD printing system and its injection and simulation process.
Electrohydrodynamic (EHD) printing is a micro-nano printing technology based on the principles of electric field and fluid dynamics. It is characterized by high resolution, high precision, and high speed, applied to various materials, including metals, ceramics, and organic materials. Compared with traditional printing technologies, EHD printing offers advantages such as low manufacturing cost, simple process, and direct fabrication, making it highly promising in the field of micro-nano manufacturing. Polyethylene oxide (PEO) is a highly water-soluble polymer that has been widely used in various fields due to its low toxicity and ease of processing. In this study, a finite element simulation model was developed using simulation software to simulate and analyze the mechanisms of focused jetting and deposition of PEO solution under an electric field. Based on the principles of electrohydrodynamics, a self-built EHD printing system was used to investigate the influence of different solution mass fractions and printing parameters on fiber formation, and the optimal process window of EHD printing PEO solution was obtained. Ultimately, ordered deposition of fiber lines ranging from 1.761 to 6.093 [micro]m was achieved. The simulation results were consistent with the experimental results, validating the effectiveness of the established model in guiding jetting outcomes. Highlights * Independently building a low-cost electrohydrodynamic (EHD) printing system. * Finite element simulation of EHD printing process. * Mechanism analysis of PEO solution jetting and deposition. * Optimal process window for PEO solution EHD printing. * Influence of key process parameters on fiber forming width. KEYWORDS cone-jet printing, electrohydrodynamic (EHD) printing, finite element simulation, polyethylene oxide (PEO) solution
Audience Academic
Author Liu, Zixian
Wang, Chunjing
Zhifu, Yin
Wei, Wei
Sun, Lei
Cheng, Yongqiang
Sang, Shengbo
Author_xml – sequence: 1
  givenname: Chunjing
  surname: Wang
  fullname: Wang, Chunjing
  organization: Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science
– sequence: 2
  givenname: Yin
  orcidid: 0000-0001-8142-2448
  surname: Zhifu
  fullname: Zhifu, Yin
  organization: Wuhan University of Science and Technology
– sequence: 3
  givenname: Zixian
  surname: Liu
  fullname: Liu, Zixian
  organization: Taiyuan University of Technology
– sequence: 4
  givenname: Yongqiang
  surname: Cheng
  fullname: Cheng, Yongqiang
  organization: Taiyuan University of Technology
– sequence: 5
  givenname: Wei
  surname: Wei
  fullname: Wei, Wei
  organization: Shanxi Vocational University of Engineering Science and Technology
– sequence: 6
  givenname: Lei
  orcidid: 0000-0001-8742-0742
  surname: Sun
  fullname: Sun, Lei
  email: sunlei@tyut.edu.cn
  organization: Taiyuan University of Technology
– sequence: 7
  givenname: Shengbo
  surname: Sang
  fullname: Sang, Shengbo
  email: sunboa-sang@tyut.edu.cn
  organization: Taiyuan University of Technology
BookMark eNp1kl1rFDEUhoNUcFu98B8MeCU423zMR_aylKqFqqXVSwnZ5GQ2ZTZZkwx2_r2nrqALK4EEDs_7cs7Je0pOQgxAyGtGl4xSfr6DsORdS-UzsmBtI2veieaELCgVvBZSyhfkNOcHiqxoVwvy_ROYjQ4-bysdbOWDGycIxoehctqUmDLW9Thnn6voql0cZyibeYQAVXz0FioYwZQUN7NN0c5Bb72pdsmHgh4vyXOnxwyv_rxn5Nv7q6-XH-ubLx-uLy9uatMIgT1y1veOG8fket24znDWUdNRaenaipZZZzvXMtHjYBo4NEgxZ5qV0B0DZ8UZebP33aX4Y4Jc1EOcEvadFZerTrBeyP4vNegRFI4aS9Jm67NRF30vKaertkOqPkINOHDSIy7beSwf8MsjPB4LuIqjgrcHAmQKPJZBTzmr6_u7Q_bdP-x6yj5Axiv7YVPyXnLM2qSYcwKn8Ce2Os2KUfWUD4X5UL_zgez5nv2J_c3_B9Xt1ee94hd9DLzO
Cites_doi 10.1021/acsabm.1c00944
10.1016/j.elstat.2006.02.006
10.1002/adma.201502092
10.1016/j.fpsl.2019.100346
10.1021/acs.jpcc.6b12783
10.1039/c5ta03471j
10.1039/c3nr04329k
10.1021/la403111m
10.1146/annurev.fluid.29.1.27
10.1002/pen.24492
10.1016/j.matpr.2022.03.695
10.1016/j.jiec.2020.02.009
10.1002/smll.201400936
10.1002/mas.20247
10.1115/1.4041934
10.4028/www.scientific.net/AMM.262.243
10.1016/j.orgel.2019.05.013
10.1016/j.eurpolymj.2008.07.011
10.1016/j.carbpol.2021.118444
10.1016/j.orgel.2019.03.025
10.1002/pen.26248
10.1016/j.nantod.2020.100942
10.1021/nl0602701
10.13250/j.cnki.wndz.2019.01.011
10.1208/ps060215
10.1016/j.matdes.2019.107609
10.1002/pc.24390
10.3390/pr7120948
10.1002/adma.201907142
10.1021/nl903495f
ContentType Journal Article
Copyright 2023 Society of Plastics Engineers.
COPYRIGHT 2023 Society of Plastics Engineers, Inc.
2023 Society of Plastics Engineers
Copyright_xml – notice: 2023 Society of Plastics Engineers.
– notice: COPYRIGHT 2023 Society of Plastics Engineers, Inc.
– notice: 2023 Society of Plastics Engineers
DBID AAYXX
CITATION
N95
ISR
7SR
8FD
JG9
DOI 10.1002/pen.26508
DatabaseName CrossRef
Gale Business: Insights
Gale In Context: Science
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database






DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1548-2634
EndPage 4083
ExternalDocumentID A778020956
10_1002_pen_26508
PEN26508
Genre researchArticle
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi
  funderid: 2021L044
– fundername: National Natural Science Foundation of China
  funderid: 51975400; 62031022
– fundername: Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering
  funderid: 2022SX‐TD026
– fundername: Shanxi Provincial Key Medical Scientific Research Project
  funderid: 2020XM06
– fundername: Basic Research Program of Shanxi for Youths
  funderid: 202103021223069
– fundername: State Key Laboratory of Refractories and Metallurgy
  funderid: G202202
– fundername: Shanxi Provincial Basic Research Project
  funderid: 202103021221006; 202103021223069; 20210302123040
– fundername: Guangxi Zhuang Autonomous Region Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology
  funderid: YQ22208
GroupedDBID -~X
.-4
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8FE
8FG
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AIXEN
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAAKF
BAFTC
BDRZF
BENPR
BES
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IAO
ICW
IEA
IOF
ISR
ITC
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M2Q
M6K
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N95
N9A
NDZJH
NEJ
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PQQKQ
PROAC
PTHSS
PV9
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWL
RWM
RX1
RXW
RYL
RZL
S0X
SAMSI
SUPJJ
TUS
U5U
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XI7
XV2
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c4338-22177f2cf18bb4f6c2160c608d0bd351dfd6f5137650ae2e4bb41fc493a61efd3
IEDL.DBID DR2
ISSN 0032-3888
IngestDate Fri Jul 25 19:24:01 EDT 2025
Tue Jun 17 22:25:23 EDT 2025
Fri Jun 13 00:14:56 EDT 2025
Tue Jun 10 21:18:27 EDT 2025
Fri Jun 27 05:53:38 EDT 2025
Fri May 23 01:52:48 EDT 2025
Tue Jul 01 02:33:58 EDT 2025
Wed Jan 22 16:16:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4338-22177f2cf18bb4f6c2160c608d0bd351dfd6f5137650ae2e4bb41fc493a61efd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8742-0742
0000-0001-8142-2448
PQID 2896317387
PQPubID 41843
PageCount 12
ParticipantIDs proquest_journals_2896317387
gale_infotracmisc_A778020956
gale_infotracgeneralonefile_A778020956
gale_infotracacademiconefile_A778020956
gale_incontextgauss_ISR_A778020956
gale_businessinsightsgauss_A778020956
crossref_primary_10_1002_pen_26508
wiley_primary_10_1002_pen_26508_PEN26508
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer engineering and science
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Society of Plastics Engineers, Inc
– name: Blackwell Publishing Ltd
References 2019; 7
2013; 29
2010; 10
2019; 71
2015; 3
2020; 85
2019; 56
1997; 29
2004; 6
2006; 6
2020; 35
2013; 262
2020; 32
2013; 5
2019; 166
2009; 28
2018; 6
2023; 63
2018; 39
2015; 27
2006; 64
2022; 5
2022; 62
2019; 21
2017; 57
2019; 69
2021; 272
2008; 44
2017; 121
2014; 10
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 39
  start-page: 3626
  issue: 10
  year: 2018
  end-page: 3635
  article-title: Structural and electrochemical properties of PEO/PAN nanofibrous blends: prediction of graphene localization
  publication-title: Polym Compos
– volume: 10
  start-page: 584
  issue: 2
  year: 2010
  end-page: 591
  article-title: Nanoscale, electrified liquid jets for high‐resolution printing of charge [J]
  publication-title: Nanoletters
– volume: 7
  start-page: 948
  issue: 12
  year: 2019
  article-title: Characterization of poly (ethylene oxide) nanofibers—mutual relations between mean diameter of electrospun nanofibers and solution characteristics
  publication-title: Processes
– volume: 56
  start-page: 65
  issue: 1
  year: 2019
  end-page: 70
  article-title: Effects of the electrohydrodynamic near‐field direct‐writing process parameters on micro patterns
  publication-title: Micronanoelectron Technol
– volume: 166
  year: 2019
  article-title: Tip‐assisted electrohydrodynamic jet printing for high‐resolution microdroplet deposition
  publication-title: Mater Des
– volume: 35
  issue: 1
  year: 2020
  article-title: Electro‐hydrodynamic direct‐writing technology toward patterned ultra‐thin fibers: advances, materials and applications
  publication-title: Nano Today
– volume: 27
  start-page: 4322
  issue: 29
  year: 2015
  end-page: 4328
  article-title: High‐resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks
  publication-title: Adv Mater
– volume: 5
  start-page: 394
  issue: 2
  year: 2022
  end-page: 412
  article-title: Near‐field electrospinning: crucial parameters, challenges, and applications
  publication-title: ACS Appl Biol Mater
– volume: 85
  start-page: 269
  year: 2020
  end-page: 275
  article-title: Direct‐patterned copper/poly(ethylene oxide) composite electrodes for organic thin‐film transistors through cone‐jet mode by electrohydrodynamic jet printing
  publication-title: J Ind Eng Chem
– volume: 63
  start-page: 830
  issue: 3
  year: 2023
  end-page: 840
  article-title: Electrospinning of ultrafine non‐hydrolyzed silk sericin/PEO fibers on PLA: a bilayer scaffold fabrication
  publication-title: Polym Eng Sci
– volume: 71
  start-page: 279
  year: 2019
  end-page: 283
  article-title: New lithography technique based on electrohydrodynamic printing platform
  publication-title: Organic Electron
– volume: 64
  start-page: 850
  issue: 12
  year: 2006
  end-page: 859
  article-title: Numerical simulation of electrohydrodynamic (EHD) atomization
  publication-title: J Electrostat
– volume: 28
  start-page: 898
  issue: 6
  year: 2009
  end-page: 917
  article-title: Electrospray: from ions in solution to ions in the gas phase, what we know now
  publication-title: Mass Spectrom Rev
– volume: 62
  start-page: 373
  year: 2022
  end-page: 379
  article-title: Numerical simulation to predict printed width in EHD inkjet 3D printing process
  publication-title: Mater Today
– volume: 44
  start-page: 3191
  issue: 10
  year: 2008
  end-page: 3199
  article-title: PEO coated magnetic nanoparticles for biomedical application
  publication-title: Eur Polym J
– volume: 272
  start-page: 272
  year: 2021
  article-title: Electrohydrodynamic‐direct‐printed cell‐laden microfibrous structure using alginate‐based bioink for effective myotube formation
  publication-title: Carbohydr Polym
– volume: 29
  start-page: 13630
  issue: 44
  year: 2013
  end-page: 13639
  article-title: Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing
  publication-title: Langmuir
– volume: 32
  issue: 17
  year: 2020
  article-title: Nanomaterial patterning in 3D printing
  publication-title: Adv Mater
– volume: 6
  issue: 4
  year: 2018
  article-title: Electrohydrodynamic printing for advanced micro/nanomanufacturing: current progresses, opportunities, and challenges
  publication-title: J Micro Nano‐Manuf
– volume: 121
  start-page: 8663
  issue: 16
  year: 2017
  end-page: 8678
  article-title: Near‐field electrospinning: Progress and applications
  publication-title: J Phys Chem C
– volume: 29
  start-page: 27
  issue: 1
  year: 1997
  end-page: 64
  article-title: Electrohydrodynamics: the Taylor‐Melcher leaky dielectric model
  publication-title: Annu Rev Fluid Mech
– volume: 262
  start-page: 243
  year: 2013
  end-page: 246
  article-title: The research on EHD micro‐jet printing technology under pulse voltage
  publication-title: Appl Mech Mater
– volume: 10
  start-page: 3918
  issue: 19
  year: 2014
  end-page: 3922
  article-title: Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing
  publication-title: Small
– volume: 21
  start-page: 21
  year: 2019
  article-title: Encapsulation of Phlorotannin in alginate/PEO blended nanofibers to preserve chicken meat from salmonella contaminations
  publication-title: Food Packag Shelf Life
– volume: 3
  start-page: 19218
  issue: 38
  year: 2015
  end-page: 19253
  article-title: Poly (ethylene oxide)‐based electrolytes for lithium‐ion batteries
  publication-title: J Mater Chem A
– volume: 6
  start-page: 839
  issue: 4
  year: 2006
  end-page: 842
  article-title: Near‐field electrospinning
  publication-title: Nano Lett
– volume: 6
  start-page: 17
  issue: 2
  year: 2004
  end-page: 26
  article-title: Evaluation of the potential use of poly (ethylene oxide) as tablet‐and extrudate‐forming material
  publication-title: AAPS PharmSci
– volume: 5
  start-page: 12007
  issue: 24
  year: 2013
  end-page: 12017
  article-title: Electrohydrodynamic direct‐writing
  publication-title: Nanoscale
– volume: 57
  start-page: 1157
  issue: 11
  year: 2017
  end-page: 1167
  article-title: Optimization of the electrospinning processing‐window to fabricate nanostructured PE‐b‐PEO and hybrid PE‐b‐PEO/EBBA fibers
  publication-title: Polym Eng Sci
– volume: 69
  start-page: 190
  year: 2019
  end-page: 199
  article-title: Cone‐jet printing of aligned silver nanowire/poly (ethylene oxide) composite electrodes for organic thin‐film transistors
  publication-title: Org Electron
– ident: e_1_2_7_3_1
  doi: 10.1021/acsabm.1c00944
– ident: e_1_2_7_26_1
  doi: 10.1016/j.elstat.2006.02.006
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201502092
– ident: e_1_2_7_22_1
  doi: 10.1016/j.fpsl.2019.100346
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.jpcc.6b12783
– ident: e_1_2_7_15_1
  doi: 10.1039/c5ta03471j
– ident: e_1_2_7_25_1
  doi: 10.1039/c3nr04329k
– ident: e_1_2_7_28_1
  doi: 10.1021/la403111m
– ident: e_1_2_7_27_1
  doi: 10.1146/annurev.fluid.29.1.27
– ident: e_1_2_7_21_1
  doi: 10.1002/pen.24492
– ident: e_1_2_7_11_1
  doi: 10.1016/j.matpr.2022.03.695
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jiec.2020.02.009
– ident: e_1_2_7_12_1
  doi: 10.1002/smll.201400936
– ident: e_1_2_7_31_1
  doi: 10.1002/mas.20247
– ident: e_1_2_7_29_1
  doi: 10.1115/1.4041934
– ident: e_1_2_7_7_1
  doi: 10.4028/www.scientific.net/AMM.262.243
– ident: e_1_2_7_30_1
  doi: 10.1016/j.orgel.2019.05.013
– ident: e_1_2_7_16_1
  doi: 10.1016/j.eurpolymj.2008.07.011
– ident: e_1_2_7_23_1
  doi: 10.1016/j.carbpol.2021.118444
– ident: e_1_2_7_17_1
  doi: 10.1016/j.orgel.2019.03.025
– ident: e_1_2_7_20_1
  doi: 10.1002/pen.26248
– ident: e_1_2_7_5_1
  doi: 10.1016/j.nantod.2020.100942
– ident: e_1_2_7_6_1
  doi: 10.1021/nl0602701
– ident: e_1_2_7_19_1
  doi: 10.13250/j.cnki.wndz.2019.01.011
– ident: e_1_2_7_14_1
  doi: 10.1208/ps060215
– ident: e_1_2_7_8_1
  doi: 10.1016/j.matdes.2019.107609
– ident: e_1_2_7_24_1
  doi: 10.1002/pc.24390
– ident: e_1_2_7_13_1
  doi: 10.3390/pr7120948
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201907142
– ident: e_1_2_7_9_1
  doi: 10.1021/nl903495f
SSID ssj0002359
Score 2.406546
Snippet Electrohydrodynamic (EHD) printing is a micro–nano printing technology based on the principles of electric field and fluid dynamics. It is characterized by...
Electrohydrodynamic (EHD) printing is a micro-nano printing technology based on the principles of electric field and fluid dynamics. It is characterized by...
SourceID proquest
gale
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 4072
SubjectTerms Ceramic materials
Ceramics
Comparative analysis
cone‐jet printing
Deposition
Electric fields
electrohydrodynamic (EHD) printing
Electrohydrodynamics
Finite element method
finite element simulation
Fluid dynamics
Manufacturing costs
Organic materials
Polyethylene
Polyethylene oxide
polyethylene oxide (PEO) solution
Principles
Printing
Process parameters
Production costs
Simulation
Simulation models
Synthetic training devices
Title Mechanism and influencing factors analysis of polyethylene oxide electrohydrodynamic printing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.26508
https://www.proquest.com/docview/2896317387
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9jL84HPzbFq5uE4dSX3jUfTXvxacyNKThkOtiDEvI5L7p2rPeC179-J026rcOB-FJK82tJmnNOzgknv4PQq9zZSQVKlBluSDiSI7JJVeSZhcXPE6OYc122xaE4OOYfT4qTJfSuPwsT-SGuNtyCZnT2Oii40u32NWkoRPtjGvwLsL-EicCb__7omjqKsiK6voxmDMK8nlUop9tXbw7WotsWeeitdsvN_kP0re9ozDL5OZ7P9Nj8ucXh-J8jeYQeJDcU70S5eYyWXL2K7u321d9W0f0bRIVr6PsnF04IT9szrGqLp6myCbThVLAHnkd2E9x4fN78WjiQAFjRHG5-T63DqdzOj4UFi72o1dnU4LCnGLKun6Dj_b2vuwdZKswAMwohbUYhjik9NZ5UWnMvDCUiNyKvbK4tK4j1VviCgO0qcuWo44Ai3vAJU4I4b9lTtFw3tXuGcOm4YLYqQZIs19VEGTDd3GklNGfU-hHa7KdInkf-DRmZlqmE_ya7_zZCW2HyZKrbCZc27Gy0p2retnKnLCtwiiEQhI91uMB7UYfEmgj48OVoAHqTQL6ZXSij0jkF6G-gyhogXw-Qp5Eo_G_A9QEQptIMm3uhk8mCtBICYQG-HavKEXrbSc_d45ef9w67m-f_Dn2BVigoSczMWUfLs4u52wD_aqZfdop0CTp3Ig8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigceBQQCwUsxOuSbWI7TlbiUpVWW2hXqLRSL5Xl-FFWbZOq2ZVYfj3jOGlJBRLikkTxlyixZ8Yz1vgbgDexNaMclSjSXCd-S46IRnkaRwYnP5doxaxtsi0mYnzIPx-lR0vwsdsLE_ghrhbcvGY09toruF-QXr9mDcVwf0i9g3ELbnM8-9Dr0_41eRRlaXB-GY0YBnodr1BM168e7c1GN21y319tJpzt-3DcfWrIMzkdzmfFUP-8weL4v__yAO61nijZCKLzEJZsuQorm10BuFW4-xtX4SM43rN-k_C0PieqNGTaFjfBNtLW7MH7geCEVI5cVGcLi0KAk5ol1Y-psaStuPN9YdBoL0p1PtXELyv6xOvHcLi9dbA5jtraDDioGNVGFEOZzFHtkrwouBOaJiLWIs5NXBiWJsYZ4dIEzVcaK0stR1TiNB8xJRLrDHsCy2VV2qdAMssFM3mGwmR4kY-URuvNbaFEwRk1bgCvuzGSF4GCQwayZSqx32TTbwN460dPtqU78VD7xY36RM3rWm5kWY5-McaC-LIG56kvSp9bEwA73_Z7oPctyFWzS6VVu1UBv9ezZfWQ73rIk8AV_ifgWg-IQ6n7zZ3UydaI1BJjYYHuHcuzAXxoxOfv_y-_bk2ai2f_Dn0FK-ODvV25uzP58hzuUNSYkKizBsuzy7l9ge7WrHjZaNUvSfImLg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VInE8cBRQFwpYiOsl28R2nKx4qkpXLceqKlTqA8hyfLQraLJqdiWWX884TlpSgYR4iaLkS-RkDs9Y428AnsfWjHI0okhznfgtOSIa5WkcGZz8XKIVs7aptpiI3UP-7ig9WoE33V6YwA9xvuDmLaPx197AZ8ZtXpCGYrY_pD6-uAJXucBIwkdEBxfcUZSlIfZlNGKY53W0QjHdPH-0Nxlddsn9cLWZb8a34Us30lBm8m24mBdD_fMSieN_fsoduNXGoWQrKM5dWLHlGlzf7tq_rcHN35gK78HXj9ZvEZ7Wp0SVhkzb1iZ4j7Qde_B6oDchlSOz6vvSogrglGZJ9WNqLGn77ZwsDbrsZalOp5r4RUVfdn0fDsc7n7d3o7YzA4oUc9qIYiKTOapdkhcFd0LTRMQahWDiwrA0Mc4IlybovNJYWWo5ohKn-YgpkVhn2ANYLavSrgPJLBfM5BmqkuFFPlIafTe3hRIFZ9S4ATzrRCRngYBDBqplKvG_yea_DeCFF55sG3fiofZLG_WxWtS13MqyHKNizATxZQ3OE1-UvrImAPY-HfRAr1qQq-ZnSqt2owKO13Nl9ZAve8jjwBT-J-BGD4ii1P3bndLJ1oXUEjNhgcEdy7MBvG605-_fL_d3Js3Jw3-HPoVr-2_H8sPe5P0juEHRXkKVzgaszs8W9jHGWvPiSWNTvwDAFyTd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+and+influencing+factors+analysis+of+polyethylene+oxide+electrohydrodynamic+printing&rft.jtitle=Polymer+engineering+and+science&rft.au=Wang%2C+Chunjing&rft.au=Yin+Zhifu&rft.au=Liu%2C+Zixian&rft.au=Cheng%2C+Yongqiang&rft.date=2023-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=63&rft.issue=12&rft.spage=4072&rft.epage=4083&rft_id=info:doi/10.1002%2Fpen.26508&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon