Reversal of diabetes in non-immunosuppressed rhesus macaques by intraportal porcine islet xenografts precedes acute cellular rejection
: Background: The functional response and immunobiology of primarily non‐vascularized islet cell xenografts remain poorly defined in non‐human primates. Methods: We transplanted 20 000 adult porcine islet equivalents/kg (purified and cultured for 48‐h) intraportally into six streptozotocin‐diabet...
Saved in:
Published in | Xenotransplantation (Københaven) Vol. 11; no. 5; pp. 396 - 407 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Munksgaard International Publishers
01.09.2004
|
Subjects | |
Online Access | Get full text |
ISSN | 0908-665X 1399-3089 |
DOI | 10.1111/j.1399-3089.2004.00157.x |
Cover
Abstract | : Background: The functional response and immunobiology of primarily non‐vascularized islet cell xenografts remain poorly defined in non‐human primates.
Methods: We transplanted 20 000 adult porcine islet equivalents/kg (purified and cultured for 48‐h) intraportally into six streptozotocin‐diabetic and two non‐diabetic rhesus macaques. Two recipients were killed at various intervals post‐transplant for histologic examination of livers bearing xenografts.
Results: Plasma glucose levels in diabetic recipients averaged 94 mg/dl at 12 h, 92 mg/dl at 24 h, 147 mg/dl at 48 h, and 157 mg/dl at 72 h post‐transplant. Serum porcine C‐peptide was present in eight of eight recipients at 12 h, in five of six at 24 h, in four of four at 48 h, and in one of two at 72 h post‐transplant. C3a and SC5b‐9 plasma levels increased at 12 h post‐transplant and returned to pre‐transplant levels by 24 h. IgG, IgM anti‐pig and anti‐Gal IgG serum antibody levels did not increase post‐transplant. Rejection was initiated by IgM and complement deposition on islets. Neutrophils dominated the cellular infiltrate at 12 h; CD4+ and CD8+ T cells were the main infiltrating cells at 24, 48, and 72 h; and macrophages increasingly infiltrated xenografts starting at 24 h post‐transplant. Numerous xenoislets were present at all time points; their proportion without intraislet infiltrates decreased from 65% at 24 h to 17% at 72 h post‐transplant.
Conclusions: Pig‐to‐primate intraportal islet xenografts reverse diabetes and the majority of intraportally transplanted xenogeneic islets are not subject to hyperacute rejection. They undergo acute cellular rejection mediated by CD4+‐ and CD8+ T cells and macrophages. |
---|---|
AbstractList | The functional response and immunobiology of primarily non-vascularized islet cell xenografts remain poorly defined in non-human primates.BACKGROUNDThe functional response and immunobiology of primarily non-vascularized islet cell xenografts remain poorly defined in non-human primates.We transplanted 20,000 adult porcine islet equivalents/kg (purified and cultured for 48-h) intraportally into six streptozotocin-diabetic and two non-diabetic rhesus macaques. Two recipients were killed at various intervals post-transplant for histologic examination of livers bearing xenografts.METHODSWe transplanted 20,000 adult porcine islet equivalents/kg (purified and cultured for 48-h) intraportally into six streptozotocin-diabetic and two non-diabetic rhesus macaques. Two recipients were killed at various intervals post-transplant for histologic examination of livers bearing xenografts.Plasma glucose levels in diabetic recipients averaged 94 mg/dl at 12 h, 92 mg/dl at 24 h, 147 mg/dl at 48 h, and 157 mg/dl at 72 h post-transplant. Serum porcine C-peptide was present in eight of eight recipients at 12 h, in five of six at 24 h, in four of four at 48 h, and in one of two at 72 h post-transplant. C3a and SC5b-9 plasma levels increased at 12 h post-transplant and returned to pre-transplant levels by 24 h. IgG, IgM anti-pig and anti-Gal IgG serum antibody levels did not increase post-transplant. Rejection was initiated by IgM and complement deposition on islets. Neutrophils dominated the cellular infiltrate at 12 h; CD4+ and CD8+ T cells were the main infiltrating cells at 24, 48, and 72 h; and macrophages increasingly infiltrated xenografts starting at 24 h post-transplant. Numerous xenoislets were present at all time points; their proportion without intraislet infiltrates decreased from 65% at 24 h to 17% at 72 h post-transplant.RESULTSPlasma glucose levels in diabetic recipients averaged 94 mg/dl at 12 h, 92 mg/dl at 24 h, 147 mg/dl at 48 h, and 157 mg/dl at 72 h post-transplant. Serum porcine C-peptide was present in eight of eight recipients at 12 h, in five of six at 24 h, in four of four at 48 h, and in one of two at 72 h post-transplant. C3a and SC5b-9 plasma levels increased at 12 h post-transplant and returned to pre-transplant levels by 24 h. IgG, IgM anti-pig and anti-Gal IgG serum antibody levels did not increase post-transplant. Rejection was initiated by IgM and complement deposition on islets. Neutrophils dominated the cellular infiltrate at 12 h; CD4+ and CD8+ T cells were the main infiltrating cells at 24, 48, and 72 h; and macrophages increasingly infiltrated xenografts starting at 24 h post-transplant. Numerous xenoislets were present at all time points; their proportion without intraislet infiltrates decreased from 65% at 24 h to 17% at 72 h post-transplant.Pig-to-primate intraportal islet xenografts reverse diabetes and the majority of intraportally transplanted xenogeneic islets are not subject to hyperacute rejection. They undergo acute cellular rejection mediated by CD4+- and CD8+ T cells and macrophages.CONCLUSIONSPig-to-primate intraportal islet xenografts reverse diabetes and the majority of intraportally transplanted xenogeneic islets are not subject to hyperacute rejection. They undergo acute cellular rejection mediated by CD4+- and CD8+ T cells and macrophages. The functional response and immunobiology of primarily non-vascularized islet cell xenografts remain poorly defined in non-human primates. We transplanted 20,000 adult porcine islet equivalents/kg (purified and cultured for 48-h) intraportally into six streptozotocin-diabetic and two non-diabetic rhesus macaques. Two recipients were killed at various intervals post-transplant for histologic examination of livers bearing xenografts. Plasma glucose levels in diabetic recipients averaged 94 mg/dl at 12 h, 92 mg/dl at 24 h, 147 mg/dl at 48 h, and 157 mg/dl at 72 h post-transplant. Serum porcine C-peptide was present in eight of eight recipients at 12 h, in five of six at 24 h, in four of four at 48 h, and in one of two at 72 h post-transplant. C3a and SC5b-9 plasma levels increased at 12 h post-transplant and returned to pre-transplant levels by 24 h. IgG, IgM anti-pig and anti-Gal IgG serum antibody levels did not increase post-transplant. Rejection was initiated by IgM and complement deposition on islets. Neutrophils dominated the cellular infiltrate at 12 h; CD4+ and CD8+ T cells were the main infiltrating cells at 24, 48, and 72 h; and macrophages increasingly infiltrated xenografts starting at 24 h post-transplant. Numerous xenoislets were present at all time points; their proportion without intraislet infiltrates decreased from 65% at 24 h to 17% at 72 h post-transplant. Pig-to-primate intraportal islet xenografts reverse diabetes and the majority of intraportally transplanted xenogeneic islets are not subject to hyperacute rejection. They undergo acute cellular rejection mediated by CD4+- and CD8+ T cells and macrophages. Background: The functional response and immunobiology of primarily non‐vascularized islet cell xenografts remain poorly defined in non‐human primates. Methods: We transplanted 20 000 adult porcine islet equivalents/kg (purified and cultured for 48‐h) intraportally into six streptozotocin‐diabetic and two non‐diabetic rhesus macaques. Two recipients were killed at various intervals post‐transplant for histologic examination of livers bearing xenografts. Results: Plasma glucose levels in diabetic recipients averaged 94 mg/dl at 12 h, 92 mg/dl at 24 h, 147 mg/dl at 48 h, and 157 mg/dl at 72 h post‐transplant. Serum porcine C‐peptide was present in eight of eight recipients at 12 h, in five of six at 24 h, in four of four at 48 h, and in one of two at 72 h post‐transplant. C3a and SC5b‐9 plasma levels increased at 12 h post‐transplant and returned to pre‐transplant levels by 24 h. IgG, IgM anti‐pig and anti‐Gal IgG serum antibody levels did not increase post‐transplant. Rejection was initiated by IgM and complement deposition on islets. Neutrophils dominated the cellular infiltrate at 12 h; CD4 + and CD8 + T cells were the main infiltrating cells at 24, 48, and 72 h; and macrophages increasingly infiltrated xenografts starting at 24 h post‐transplant. Numerous xenoislets were present at all time points; their proportion without intraislet infiltrates decreased from 65% at 24 h to 17% at 72 h post‐transplant. Conclusions: Pig‐to‐primate intraportal islet xenografts reverse diabetes and the majority of intraportally transplanted xenogeneic islets are not subject to hyperacute rejection. They undergo acute cellular rejection mediated by CD4 + ‐ and CD8 + T cells and macrophages. : Background: The functional response and immunobiology of primarily non‐vascularized islet cell xenografts remain poorly defined in non‐human primates. Methods: We transplanted 20 000 adult porcine islet equivalents/kg (purified and cultured for 48‐h) intraportally into six streptozotocin‐diabetic and two non‐diabetic rhesus macaques. Two recipients were killed at various intervals post‐transplant for histologic examination of livers bearing xenografts. Results: Plasma glucose levels in diabetic recipients averaged 94 mg/dl at 12 h, 92 mg/dl at 24 h, 147 mg/dl at 48 h, and 157 mg/dl at 72 h post‐transplant. Serum porcine C‐peptide was present in eight of eight recipients at 12 h, in five of six at 24 h, in four of four at 48 h, and in one of two at 72 h post‐transplant. C3a and SC5b‐9 plasma levels increased at 12 h post‐transplant and returned to pre‐transplant levels by 24 h. IgG, IgM anti‐pig and anti‐Gal IgG serum antibody levels did not increase post‐transplant. Rejection was initiated by IgM and complement deposition on islets. Neutrophils dominated the cellular infiltrate at 12 h; CD4+ and CD8+ T cells were the main infiltrating cells at 24, 48, and 72 h; and macrophages increasingly infiltrated xenografts starting at 24 h post‐transplant. Numerous xenoislets were present at all time points; their proportion without intraislet infiltrates decreased from 65% at 24 h to 17% at 72 h post‐transplant. Conclusions: Pig‐to‐primate intraportal islet xenografts reverse diabetes and the majority of intraportally transplanted xenogeneic islets are not subject to hyperacute rejection. They undergo acute cellular rejection mediated by CD4+‐ and CD8+ T cells and macrophages. Background:The functional response and immunobiology of primarily non-vascularized islet cell xenografts remain poorly defined in non-human primates. Methods:We transplanted 20 000 adult porcine islet equivalents/kg (purified and cultured for 48-h) intraportally into six streptozotocin-diabetic and two non-diabetic rhesus macaques. Two recipients were killed at various intervals post-transplant for histologic examination of livers bearing xenografts. Results:Plasma glucose levels in diabetic recipients averaged 94 mg/dl at 12 h, 92 mg/dl at 24 h, 147 mg/dl at 48 h, and 157 mg/dl at 72 h post-transplant. Serum porcine C-peptide was present in eight of eight recipients at 12 h, in five of six at 24 h, in four of four at 48 h, and in one of two at 72 h post-transplant. C3a and SC5b-9 plasma levels increased at 12 h post-transplant and returned to pre-transplant levels by 24 h. IgG, IgM anti-pig and anti-Gal IgG serum antibody levels did not increase post-transplant. Rejection was initiated by IgM and complement deposition on islets. Neutrophils dominated the cellular infiltrate at 12 h; CD4 super(+) and CD8 super(+) T cells were the main infiltrating cells at 24, 48, and 72 h; and macrophages increasingly infiltrated xenografts starting at 24 h post-transplant. Numerous xenoislets were present at all time points; their proportion without intraislet infiltrates decreased from 65% at 24 h to 17% at 72 h post-transplant. Conclusions:Pig-to-primate intraportal islet xenografts reverse diabetes and the majority of intraportally transplanted xenogeneic islets are not subject to hyperacute rejection. They undergo acute cellular rejection mediated by CD4 super(+)- and CD8 super(+) T cells and macrophages. |
Author | Galili, Uri Heremans, Yves Hering, Bernhard J. Kulick, David M. Sutherland, David E.R. Dalmasso, Agustin P. Shibata, Satoshi Wijkstrom, Martin Salerno, Christopher T. Kirchhof, Nicole Clemmings, Sue M. |
Author_xml | – sequence: 1 givenname: Nicole surname: Kirchhof fullname: Kirchhof, Nicole organization: Diabetes Institute for Immunology and Transplantation – sequence: 2 givenname: Satoshi surname: Shibata fullname: Shibata, Satoshi organization: Diabetes Institute for Immunology and Transplantation – sequence: 3 givenname: Martin surname: Wijkstrom fullname: Wijkstrom, Martin organization: Diabetes Institute for Immunology and Transplantation – sequence: 4 givenname: David M. surname: Kulick fullname: Kulick, David M. organization: Surgery – sequence: 5 givenname: Christopher T. surname: Salerno fullname: Salerno, Christopher T. organization: Surgery – sequence: 6 givenname: Sue M. surname: Clemmings fullname: Clemmings, Sue M. organization: Diabetes Institute for Immunology and Transplantation – sequence: 7 givenname: Yves surname: Heremans fullname: Heremans, Yves organization: Medicine, University of Minnesota, Minneapolis, MN – sequence: 8 givenname: Uri surname: Galili fullname: Galili, Uri organization: Department of Cardiovascular Thoracic Surgery, Rush University, Chicago, IL – sequence: 9 givenname: David E.R. surname: Sutherland fullname: Sutherland, David E.R. organization: Diabetes Institute for Immunology and Transplantation – sequence: 10 givenname: Agustin P. surname: Dalmasso fullname: Dalmasso, Agustin P. organization: Surgery – sequence: 11 givenname: Bernhard J. surname: Hering fullname: Hering, Bernhard J. organization: Diabetes Institute for Immunology and Transplantation |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15303976$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctuFDEQRS0URCaBX0BeseuOPR6_JISEoiQgJUEgHhEby-2uBg_9iu0mMz_Ad-NmwizYBG_Kku-55ap7hA76oQeEMCUlzedkXVKmdcGI0uWSkFVJCOWy3DxCi_3DAVoQTVQhBL85REcxrgkhjCv-BB1SzgjTUizQrw_wE0K0LR4aXHtbQYKIfY9zx8J33dQPcRrHADFCjcN3iFPEnXX2dsq6apulKdhxCClb5OJ8D9jHFhLeQD98C7ZJEWfeQZ0B66YE2EHbTq0NOMAaXPJD_xQ9bmwb4dl9PUafzs8-nr4pLt9dvD19fVm4FWMyz9U0glmrqKqVIzWvmNROSC2srGtBGmArrXm1rGDlVk5ypyubL5ZJQpyq2DF6sfMdwzBPkEzn4_wd28MwRSOEVHmV_EEhlXTJpVJZ-PxeOFUd1GYMvrNha_6uOAte7QQuDDEGaIzzyc5D58X51lBi5kzN2szRmTk6M2dq_mRqNtlA_WOw7_Ew-nKH3vkWtv_NmZuz63zJeLHDfUyw2eM2_DBCMsnNl-sLo98TenX-9bO5Yr8B-m3LwA |
CitedBy_id | crossref_primary_10_1111_j_1399_3089_2005_00258_x crossref_primary_10_1016_j_trim_2009_05_001 crossref_primary_10_1111_xen_12127 crossref_primary_10_2144_000113754 crossref_primary_10_1097_MOT_0000000000000794 crossref_primary_10_1097_TP_0000000000001054 crossref_primary_10_1051_medsci_2005213302 crossref_primary_10_1097_TP_0000000000001055 crossref_primary_10_1111_xen_12080 crossref_primary_10_1016_j_biomaterials_2011_08_084 crossref_primary_10_1016_j_phrs_2014_06_016 crossref_primary_10_3389_fsurg_2014_00007 crossref_primary_10_1111_xen_12249 crossref_primary_10_1097_MOT_0000000000000020 crossref_primary_10_1007_s11095_005_9095_6 crossref_primary_10_1007_s11892_017_0846_7 crossref_primary_10_1177_09636897211011995 crossref_primary_10_1111_xen_12374 crossref_primary_10_4161_org_7_3_16522 crossref_primary_10_1038_s41578_019_0112_5 crossref_primary_10_1111_xen_12095 crossref_primary_10_1111_xen_12130 crossref_primary_10_3727_096368908786092784 crossref_primary_10_1016_j_bbrc_2007_03_101 crossref_primary_10_1155_2011_261352 crossref_primary_10_1111_j_1432_2277_2006_00398_x crossref_primary_10_1016_j_addr_2013_07_018 crossref_primary_10_1111_xen_12342 crossref_primary_10_3727_096368912X657684 crossref_primary_10_1097_MOT_0b013e3283292522 crossref_primary_10_1111_j_1399_3089_2004_00156_x crossref_primary_10_1016_j_trim_2008_10_006 crossref_primary_10_3760_cma_j_issn_0366_6999_20132030 crossref_primary_10_3343_alm_2015_35_6_611 crossref_primary_10_1111_j_1399_3089_2006_00275_x crossref_primary_10_1097_MPA_0000000000001259 crossref_primary_10_1097_01_tp_0000208610_75997_20 crossref_primary_10_1093_ilar_ilx031 crossref_primary_10_1097_MNH_0b013e328331a8e3 crossref_primary_10_1111_ajt_13098 crossref_primary_10_1111_j_1399_3089_2005_00228_x crossref_primary_10_3389_fbioe_2024_1401608 crossref_primary_10_1111_j_1399_3089_2007_00419_x crossref_primary_10_1111_ajt_12722 crossref_primary_10_1016_j_transproceed_2014_05_078 crossref_primary_10_1016_j_ijsu_2015_07_703 crossref_primary_10_1016_j_transproceed_2010_05_113 crossref_primary_10_2337_db06_0484 crossref_primary_10_1016_j_transproceed_2010_05_110 crossref_primary_10_1111_imm_13463 crossref_primary_10_1177_0963689720947102 crossref_primary_10_3389_fimmu_2023_1280668 crossref_primary_10_1111_j_1600_6143_2007_01933_x crossref_primary_10_3389_frtra_2025_1522409 crossref_primary_10_1038_nm1369 crossref_primary_10_1002_bit_22241 crossref_primary_10_1111_ajt_16876 crossref_primary_10_1111_xen_12320 crossref_primary_10_1111_xen_12680 crossref_primary_10_1111_j_1399_3089_2007_00386_3_x crossref_primary_10_1111_j_1399_3089_2004_00197_x crossref_primary_10_1530_eje_1_01982 crossref_primary_10_1016_j_biomaterials_2013_01_057 crossref_primary_10_1111_j_1399_3089_2008_00460_x crossref_primary_10_1155_2018_2424586 crossref_primary_10_1097_TP_0b013e3181840f55 crossref_primary_10_1007_s00423_015_1314_y crossref_primary_10_1016_j_it_2009_09_005 crossref_primary_10_1111_j_1399_3089_2006_00364_x crossref_primary_10_1586_eci_09_67 crossref_primary_10_1021_la101264h crossref_primary_10_1111_j_1399_3089_2009_00530_x crossref_primary_10_1111_j_1463_1326_2012_01649_x crossref_primary_10_1371_journal_pone_0241249 crossref_primary_10_1016_j_molimm_2014_06_009 crossref_primary_10_1002_jms_1638 crossref_primary_10_1111_tan_12669 crossref_primary_10_1111_xen_12450 crossref_primary_10_1177_09636897251322295 crossref_primary_10_3389_fimmu_2022_893985 crossref_primary_10_1016_j_biomaterials_2020_120182 crossref_primary_10_1089_ten_tec_2008_0343 crossref_primary_10_4161_org_7578 crossref_primary_10_1111_j_1525_1594_2007_00520_x crossref_primary_10_1126_sciadv_adi4919 crossref_primary_10_1007_s11892_011_0213_z crossref_primary_10_1111_xen_12219 crossref_primary_10_1097_TP_0000000000000069 crossref_primary_10_1111_xen_12384 crossref_primary_10_1111_xen_12143 crossref_primary_10_1097_MOT_0b013e32834c2393 crossref_primary_10_1038_s41598_024_62570_6 crossref_primary_10_1111_j_1600_6143_2011_03720_x crossref_primary_10_1002_bit_25895 crossref_primary_10_1097_01_mot_0000218932_27397_19 crossref_primary_10_1111_j_1399_3089_2008_00482_x crossref_primary_10_1016_j_transproceed_2008_02_020 crossref_primary_10_2217_imt_14_14 crossref_primary_10_1016_j_ahj_2012_05_011 crossref_primary_10_1093_bmb_ldh061 crossref_primary_10_3390_cells12050698 crossref_primary_10_1111_xen_12275 crossref_primary_10_1111_j_1600_6143_2011_03509_x crossref_primary_10_1016_j_addr_2010_11_003 crossref_primary_10_1371_journal_pone_0253029 crossref_primary_10_1111_xen_12152 crossref_primary_10_3727_000000006783982052 crossref_primary_10_1038_nm1375 crossref_primary_10_1111_j_1399_3089_2008_00490_x crossref_primary_10_3727_096368909X484257 crossref_primary_10_1016_j_cyto_2007_09_008 crossref_primary_10_1111_j_1600_6143_2012_04031_x crossref_primary_10_1089_photob_2022_0022 |
Cites_doi | 10.1007/s001090050326 10.4049/jimmunol.165.3.1294 10.1007/BF02581331 10.1111/j.1399-3089.2004.00121.x 10.1111/j.1399-3089.1995.tb00079.x 10.4049/jimmunol.166.3.2133 10.1089/107999099314234 10.1097/00007890-199908150-00003 10.1111/j.1399-3089.1995.tb00085.x 10.1034/j.1399-3089.2002.01070.x 10.1097/00007890-199908150-00006 10.1097/00007890-200202150-00019 10.1007/BF00400345 10.1172/JCI118929 10.1097/00007890-200212150-00017 10.1007/s001250051159 10.1007/s001250051398 10.1097/00007890-199707270-00028 10.1677/joe.0.1770127 10.1016/S0041-1345(00)02114-X 10.1034/j.1399-3089.2002.0o144.x 10.1097/00007890-200009270-00007 10.1097/00007890-199903270-00011 10.4049/jimmunol.170.9.4427 10.1097/00007890-200112270-00002 10.1097/00007890-199411270-00009 10.1097/00007890-199710270-00015 10.1097/00007890-199903270-00002 10.1038/nature00870 10.1146/annurev.immunol.16.1.433 10.1038/14058 10.1002/1521-4141(200107)31:7<1981::AID-IMMU1981>3.0.CO;2-X 10.1097/01.TP.0000085290.60182.6B 10.1034/j.1399-3089.2002.1o044.x 10.1097/00007890-199806270-00007 10.1097/00007890-199711150-00013 10.1097/00007890-200204150-00024 10.1016/S0041-1345(96)00261-8 10.1097/01.TP.0000048226.28357.0D 10.1097/00007890-200004270-00030 10.1210/endo-117-3-806 10.1097/00007890-200112270-00017 10.1016/S0041-1345(97)01308-0 10.1097/00007890-199108000-00006 10.1016/S0041-1345(97)01327-4 10.4049/jimmunol.146.2.730 10.1034/j.1399-3089.2002.1o042.x |
ContentType | Journal Article |
Copyright | Copyright 2004 Blackwell Munksgaard |
Copyright_xml | – notice: Copyright 2004 Blackwell Munksgaard |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 H94 7X8 |
DOI | 10.1111/j.1399-3089.2004.00157.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1399-3089 |
EndPage | 407 |
ExternalDocumentID | 15303976 10_1111_j_1399_3089_2004_00157_x XEN157 ark_67375_WNG_9Q01MFZV_M |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHBH AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FD6 FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HKTDT HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH YUY ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7T5 AAMMB AEFGJ AGXDD AIDQK AIDYY H94 7X8 |
ID | FETCH-LOGICAL-c4337-30ff63aa818d8c0d5b379c6796a7dd60fe34995b2be4c4c75c9bac4ca3700c8b3 |
IEDL.DBID | DR2 |
ISSN | 0908-665X |
IngestDate | Fri Jul 11 07:01:16 EDT 2025 Fri Jul 11 02:23:19 EDT 2025 Wed Feb 19 01:54:57 EST 2025 Thu Apr 24 23:01:59 EDT 2025 Tue Jul 01 03:58:22 EDT 2025 Wed Jan 22 16:20:19 EST 2025 Wed Oct 30 09:52:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright 2004 Blackwell Munksgaard |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4337-30ff63aa818d8c0d5b379c6796a7dd60fe34995b2be4c4c75c9bac4ca3700c8b3 |
Notes | ArticleID:XEN157 istex:47C0E6228B581F052FA0295F97A965D187CCA3FE ark:/67375/WNG-9Q01MFZV-M ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 15303976 |
PQID | 17125788 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_66780155 proquest_miscellaneous_17125788 pubmed_primary_15303976 crossref_citationtrail_10_1111_j_1399_3089_2004_00157_x crossref_primary_10_1111_j_1399_3089_2004_00157_x wiley_primary_10_1111_j_1399_3089_2004_00157_x_XEN157 istex_primary_ark_67375_WNG_9Q01MFZV_M |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-09 September 2004 2004-09-00 2004-Sep 20040901 |
PublicationDateYYYYMMDD | 2004-09-01 |
PublicationDate_xml | – month: 09 year: 2004 text: 2004-09 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Denmark |
PublicationTitle | Xenotransplantation (Københaven) |
PublicationTitleAlternate | Xenotransplantation |
PublicationYear | 2004 |
Publisher | Munksgaard International Publishers |
Publisher_xml | – name: Munksgaard International Publishers |
References | Medbury HJ, Hibbins M, Lehnert AM et al. The cytokine and histological response in islet xenograft rejection is dependent upon species combination. Transplantation 1997; 64: 1307. Tze WJ, Tai J. Xenotransplantation of rat pancreatic endocrine cells in spontaneous and streptozotocin-induced diabetic monkeys. Transplant Proc 1989; 21: 2736. Schuurman HJ, Pino-Chavez G, Phillips MJ et al. Incidence of hyperacute rejection in pig-to-primate transplantation using organs from hDAF-transgenic donors. Transplantation 2002; 73: 1146. Lalain S, Chaillous L, Gouin E, Sai P. Intensity and mechanisms of in vitro xenorecognition of adult pig pancreatic islet cells by CD and CD lymphocytes from Type 1 diabetic or healthy subjects. Diabetologia 1999; 42: 330. Sun Y, Ma X, Zhou D et al. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 1996; 98: 1417. Dickson BC, Yang H, Savelkoul HF et al. Islet transplantation in the discordant tilapia-to-mouse model: a novel application of alginate microencapsulation in the study of xenograft rejection. Transplantation 2003; 75: 599. Mandel TE, Koulmanda M, Kovarik J et al. Transplantation of organ cultured fetal pig pancreas in non-obese diabetic (NOD) mice and primates(Macaca fascicularis). Xenotransplantation 1995; 2: 128. Yi S, Feng X, Hawthorne WJ et al. CD4+ T cells initiate pancreatic islet xenograft rejection via an interferon-gamma-dependent recruitment of macrophages and natural killer cells. Transplantation 2002; 73: 437. Buhler L, Deng S, O'Neil J et al. Adult porcine islet transplantation in baboons treated with conventional immunosuppression or a non-myeloablative regimen and CD154 blockade. Xenotransplantation 2002; 9: 3. Cantarovich D, Blancho G, Potiron N et al. Rapid failure of pig islet transplantation in non human primates. Xenotransplantation 2002; 9: 25. Mandel T. Fetal islet xenotransplantation in rodents and primates. J Mol Med 1999; 77: 155. Newgard CB, Clark S, Beltrandelrio H et al. Engineered cell lines for insulin replacement in diabetes - current status and future prospects. Diabetologia 1997; 40: 42. Rayat GR, Rajotte RV, Hering BJ et al. In vitro and in vivo expression of Galalpha-(1,3)Gal on porcine islet cells is age dependent. J Endocrinol 2003; 177: 127. Mandel TE, Koulmanda M, Cozzi E et al. Transplantation of normal and DAF-transgenic fetal pig pancreas into cynomolgus monkeys. Transplant Proc 1997; 29: 940. Yi S, Feng X, Hawthorne W et al. CD8+ T cells are capable of rejecting pancreatic islet xenografts. Transplantation 2000; 70: 896. Platt JL, Fischel RJ, Matas AJ et al. Immunopathology of hyperacute xenograft rejection in a swine-to-primate model. Transplantation 1991; 52: 214. Solvik UO, Haraldsen G, Fiane AE et al. Human serum-induced expression of E-selectin on porcine aortic endothelial cells in vitro is totally complement mediated. Transplantation 2001; 72: 1967. Olack BJ, Manna P, Jaramillo A et al. Indirect recognition of porcine swine leucocyte Ag class I molecules expressed on islets by human CD4+T lymphocytes. J Immunol 2000; 165: 1294. Hamelmann W, Gray DW, Cairns TD et al. Immediate destruction of xenogeneic islets in a primate model. Transplantation 1994; 58: 1109. van der Burg MP, Basir I, Bouwman E. No porcine islet loss during density gradient purification in a novel iodixanol in University of Wisconsin solution. Transplant Proc 1998; 30: 362. Olack BJ, Jaramillo A, Benshoff ND et al. Rejection of porcine islet xenografts mediated by CD4+ T cells activated through the indirect antigen recognition pathway. Xenotransplantation 2002; 9: 393. Stone KR, Ayala G, Goldstein J et al. Porcine cartilage transplants in the cynomolgus monkey. III. Transplantation of alpha-galactosidase-treated porcine cartilage. Transplantation 1998; 65: 1577. Ricordi C, Gray DW, Hering BJ et al. Islet isolation assessment in man and large animals. Acta Diabetol Lat 1990; 27: 185. Thomas FT, Ricordi C, Contreras JL et al. Reversal of naturally occuring diabetes in primates by unmodified islet xenografts without chronic immunosuppression. Transplantation 1999; 67: 846. Soderlund J, Wennberg L, Castanos-Velez E et al. Fetal porcine islet-like cell clusters transplanted to cynomolgus monkeys: an immunohistochemical study. Transplantation 1999; 67: 784. Theriault BR, Thistlethwaite JR, Levisetti MG et al. Induction, maintenance, and reversal of streptozotocin-induced insulin-dependent diabetesmellitus in the juvenile cynomolgus monkey (Macaca fascicularis). Transplantation 1999; 68: 331. Shishido S, Naziruddin B, Howard T, Mohanakumar T. Recognition of porcine major histocompatibility complex class I antigens by human CD8+ cytolytic T cell clones. Transplantation 1997; 64: 340. Bennet W, Sundberg B, Lundgren T et al. Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomologus monkeys: protective effects of sCR1 and heparin. Transplantation 2000; 69: 711. (see comments) Rijkelijkhuizen JK, Haanstra KG, Wubben J et al. T-cell-specific immunosuppression results in more than 53 days survival of porcine islets of langerhans in the monkey. Transplantation 2003; 76: 1359. Jindal RM, Sidner RA, Mcdaniel HB et al. Intraportal vs. kidney subcapsular site for human pancreatic islet transplantation. Transplant Proc 1998; 30: 398. Gill RG. The role of direct and indirect antigen presentation in the response to islet xenografts. Transplant Proc 1992; 24: 642. Pipeleers DG, In't Veld PA, Van De WinkelM et al. A new in vitro model for the study of pancreatic A and B cells. Endocrinology 1985; 117: 806. Salerno CT, Kulick DM, Yeh CG et al. A soluble chimeric inhibitor of C3 and C5 convertases, complement activation blocker-2, prolongs graft survival in pig-to-rhesus monkey heart transplantation. Xenotransplantation 2002; 9: 125. Tanemura M, Chong AS, Disesa VJ, Galili U. Direct killing of xenograft cells by CD8+ T cells of discordant xenograft recipients. Transplantation 2002; 74: 1587. Bennet W, Bjorkland A, Sundberg B et al. A comparison of fetal and adult porcine islets with regard to Gal alpha (1,3)Gal expression and the role of human immunoglobulins and complement in islet cell cytotoxicity. Transplantation 2000; 69: 1711. Vercellotti GM, Platt JL, Bach FH, Dalmasso AP. Neutrophil adhesion to xenogeneic endothelium via iC3b. J Immunol 1991; 146: 730. Gray DW, Song Z, Glover L et al. Tissue culture prevents hyperacute rejection of islet xenografts. Xenotransplantation 1995; 2: 157. Scapini P, Laudanna C, Pinardi C et al. Neutrophils produce biologically active macrophage inflammatory protein-3alpha (MIP-3alpha)/CCL20 and MIP-3beta/CCL19. Eur J Immunol 2001; 31: 1981. Azimzadeh A, Wolf P, Thibaudeau K et al. Comparative study of target antigens for primate xenoreactive natural antibodies in pig and rat endothelial cells. Transplantation 1997; 64: 1166. Bonifacio E, Boitard C, Gleichmann H et al. Assessment of precision, concordance, specificity, and sensitivity of islet cell antibody measurement in 41 assays. Diabetologia 1990; 33: 731. Fox A, Mountford J, Braakhuis A, Harrison LC. Innate and adaptive immune responses to nonvascular xenografts: evidence that macrophages are direct effectors of xenograft rejection. J Immunol 2001; 166: 2133. Jiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41. Ricordi C, Socci C, Davalli AM et al. Isolation of the elusive pig islet. Surgery 1990; 107: 688. Schuler T, Blankenstein T. Cutting edge: CD8(+) effector T cells reject tumors by direct antigen recognition but indirect action on host cells. J Immunol 2003; 170: 4427. Auchincloss H Jr., Sachs DH. Xenogeneic transplantation. Annu Rev Immunol 1998; 16: 433. Rodriguez A, Regnault A, Kleijmeer M et al. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1999; 1: 362. Shibata S, Matsumoto S, Sageshima J et al. Temporary treatment with sirolimus and low-trough cyclosporine prevents acute islet allograft rejection, and combination with starch-conjugated deferoxamine promotes islet engraftment in the preclinical pig model. Transplant Proc 2001; 33: 509. Krishnaswamy G, Kelley J, Yerra L et al. Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease. J Interferon Cytokine Res 1999; 19: 91. Badet L, Titus TT, Mcshane P et al. Transplantation of mouse pancreatic islets into primates-in vivo and in vitro evaluation. Transplantation 2001; 72: 1867. Brandhorst H, Brandhorst D, Hering BJ, Bretzel RG. Significant progress in porcine islet mass isolation utilizing liberase HI for enzymatic low-temperature pancreas digestion. Transplantation 1999; 68: 355. Chabot JA, Stegall MD, Weber C et al. Pancreatic islet allo- and xenotransplantation in cynomolgus monkeys. Transplant Proc 1989; 21: 2739. 2001; 166 1990; 107 2001; 72 1997; 40 1990; 33 1989; 21 2000; 69 2002; 9 2002; 74 1997; 64 2002; 73 1991; 52 1999; 68 1997; 29 1999; 67 2000; 70 2003; 170 2002; 418 1999; 42 1999; 1 1995; 2 1998; 65 2003; 177 1996; 98 2003; 75 2003; 76 1998; 16 1991; 146 1990; 27 1999; 19 1999; 77 1994; 58 1992; 24 1985; 117 2000; 165 1998; 30 2001; 33 2001; 31 e_1_2_21_41_2 e_1_2_21_8_2 e_1_2_21_20_2 e_1_2_21_45_2 e_1_2_21_22_2 e_1_2_21_43_2 Ricordi C (e_1_2_21_6_2) 1990; 107 e_1_2_21_13_2 e_1_2_21_38_2 e_1_2_21_15_2 e_1_2_21_36_2 e_1_2_21_19_2 e_1_2_21_30_2 e_1_2_21_51_2 Chabot JA (e_1_2_21_16_2) 1989; 21 e_1_2_21_34_2 e_1_2_21_11_2 e_1_2_21_32_2 e_1_2_21_3_2 e_1_2_21_25_2 e_1_2_21_48_2 e_1_2_21_27_2 e_1_2_21_46_2 e_1_2_21_7_2 e_1_2_21_29_2 e_1_2_21_5_2 e_1_2_21_40_2 e_1_2_21_21_2 e_1_2_21_44_2 e_1_2_21_9_2 e_1_2_21_23_2 Vercellotti GM (e_1_2_21_35_2) 1991; 146 Gill RG. (e_1_2_21_42_2) 1992; 24 Tze WJ (e_1_2_21_17_2) 1989; 21 e_1_2_21_14_2 e_1_2_21_37_2 e_1_2_21_18_2 e_1_2_21_39_2 e_1_2_21_52_2 e_1_2_21_50_2 e_1_2_21_10_2 e_1_2_21_33_2 e_1_2_21_12_2 e_1_2_21_31_2 e_1_2_21_2_2 e_1_2_21_24_2 e_1_2_21_49_2 e_1_2_21_26_2 e_1_2_21_47_2 e_1_2_21_28_2 e_1_2_21_4_2 15303975 - Xenotransplantation. 2004 Sep;11(5):394-5 |
References_xml | – reference: Azimzadeh A, Wolf P, Thibaudeau K et al. Comparative study of target antigens for primate xenoreactive natural antibodies in pig and rat endothelial cells. Transplantation 1997; 64: 1166. – reference: Tze WJ, Tai J. Xenotransplantation of rat pancreatic endocrine cells in spontaneous and streptozotocin-induced diabetic monkeys. Transplant Proc 1989; 21: 2736. – reference: Auchincloss H Jr., Sachs DH. Xenogeneic transplantation. Annu Rev Immunol 1998; 16: 433. – reference: Schuler T, Blankenstein T. Cutting edge: CD8(+) effector T cells reject tumors by direct antigen recognition but indirect action on host cells. J Immunol 2003; 170: 4427. – reference: Gill RG. The role of direct and indirect antigen presentation in the response to islet xenografts. Transplant Proc 1992; 24: 642. – reference: Mandel TE, Koulmanda M, Kovarik J et al. Transplantation of organ cultured fetal pig pancreas in non-obese diabetic (NOD) mice and primates(Macaca fascicularis). Xenotransplantation 1995; 2: 128. – reference: Solvik UO, Haraldsen G, Fiane AE et al. Human serum-induced expression of E-selectin on porcine aortic endothelial cells in vitro is totally complement mediated. Transplantation 2001; 72: 1967. – reference: Schuurman HJ, Pino-Chavez G, Phillips MJ et al. Incidence of hyperacute rejection in pig-to-primate transplantation using organs from hDAF-transgenic donors. Transplantation 2002; 73: 1146. – reference: Pipeleers DG, In't Veld PA, Van De WinkelM et al. A new in vitro model for the study of pancreatic A and B cells. Endocrinology 1985; 117: 806. – reference: Yi S, Feng X, Hawthorne W et al. CD8+ T cells are capable of rejecting pancreatic islet xenografts. Transplantation 2000; 70: 896. – reference: Yi S, Feng X, Hawthorne WJ et al. CD4+ T cells initiate pancreatic islet xenograft rejection via an interferon-gamma-dependent recruitment of macrophages and natural killer cells. Transplantation 2002; 73: 437. – reference: Sun Y, Ma X, Zhou D et al. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 1996; 98: 1417. – reference: Stone KR, Ayala G, Goldstein J et al. Porcine cartilage transplants in the cynomolgus monkey. III. Transplantation of alpha-galactosidase-treated porcine cartilage. Transplantation 1998; 65: 1577. – reference: Shishido S, Naziruddin B, Howard T, Mohanakumar T. Recognition of porcine major histocompatibility complex class I antigens by human CD8+ cytolytic T cell clones. Transplantation 1997; 64: 340. – reference: Olack BJ, Manna P, Jaramillo A et al. Indirect recognition of porcine swine leucocyte Ag class I molecules expressed on islets by human CD4+T lymphocytes. J Immunol 2000; 165: 1294. – reference: Olack BJ, Jaramillo A, Benshoff ND et al. Rejection of porcine islet xenografts mediated by CD4+ T cells activated through the indirect antigen recognition pathway. Xenotransplantation 2002; 9: 393. – reference: Rijkelijkhuizen JK, Haanstra KG, Wubben J et al. T-cell-specific immunosuppression results in more than 53 days survival of porcine islets of langerhans in the monkey. Transplantation 2003; 76: 1359. – reference: Vercellotti GM, Platt JL, Bach FH, Dalmasso AP. Neutrophil adhesion to xenogeneic endothelium via iC3b. J Immunol 1991; 146: 730. – reference: Bennet W, Bjorkland A, Sundberg B et al. A comparison of fetal and adult porcine islets with regard to Gal alpha (1,3)Gal expression and the role of human immunoglobulins and complement in islet cell cytotoxicity. Transplantation 2000; 69: 1711. – reference: Mandel T. Fetal islet xenotransplantation in rodents and primates. J Mol Med 1999; 77: 155. – reference: Cantarovich D, Blancho G, Potiron N et al. Rapid failure of pig islet transplantation in non human primates. Xenotransplantation 2002; 9: 25. – reference: Ricordi C, Gray DW, Hering BJ et al. Islet isolation assessment in man and large animals. Acta Diabetol Lat 1990; 27: 185. – reference: Jiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41. – reference: Tanemura M, Chong AS, Disesa VJ, Galili U. Direct killing of xenograft cells by CD8+ T cells of discordant xenograft recipients. Transplantation 2002; 74: 1587. – reference: Shibata S, Matsumoto S, Sageshima J et al. Temporary treatment with sirolimus and low-trough cyclosporine prevents acute islet allograft rejection, and combination with starch-conjugated deferoxamine promotes islet engraftment in the preclinical pig model. Transplant Proc 2001; 33: 509. – reference: Brandhorst H, Brandhorst D, Hering BJ, Bretzel RG. Significant progress in porcine islet mass isolation utilizing liberase HI for enzymatic low-temperature pancreas digestion. Transplantation 1999; 68: 355. – reference: Bonifacio E, Boitard C, Gleichmann H et al. Assessment of precision, concordance, specificity, and sensitivity of islet cell antibody measurement in 41 assays. Diabetologia 1990; 33: 731. – reference: Scapini P, Laudanna C, Pinardi C et al. Neutrophils produce biologically active macrophage inflammatory protein-3alpha (MIP-3alpha)/CCL20 and MIP-3beta/CCL19. Eur J Immunol 2001; 31: 1981. – reference: Mandel TE, Koulmanda M, Cozzi E et al. Transplantation of normal and DAF-transgenic fetal pig pancreas into cynomolgus monkeys. Transplant Proc 1997; 29: 940. – reference: Newgard CB, Clark S, Beltrandelrio H et al. Engineered cell lines for insulin replacement in diabetes - current status and future prospects. Diabetologia 1997; 40: 42. – reference: Gray DW, Song Z, Glover L et al. Tissue culture prevents hyperacute rejection of islet xenografts. Xenotransplantation 1995; 2: 157. – reference: Hamelmann W, Gray DW, Cairns TD et al. Immediate destruction of xenogeneic islets in a primate model. Transplantation 1994; 58: 1109. – reference: Rayat GR, Rajotte RV, Hering BJ et al. In vitro and in vivo expression of Galalpha-(1,3)Gal on porcine islet cells is age dependent. J Endocrinol 2003; 177: 127. – reference: Thomas FT, Ricordi C, Contreras JL et al. Reversal of naturally occuring diabetes in primates by unmodified islet xenografts without chronic immunosuppression. Transplantation 1999; 67: 846. – reference: Medbury HJ, Hibbins M, Lehnert AM et al. The cytokine and histological response in islet xenograft rejection is dependent upon species combination. Transplantation 1997; 64: 1307. – reference: Bennet W, Sundberg B, Lundgren T et al. Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomologus monkeys: protective effects of sCR1 and heparin. Transplantation 2000; 69: 711. (see comments) – reference: Soderlund J, Wennberg L, Castanos-Velez E et al. Fetal porcine islet-like cell clusters transplanted to cynomolgus monkeys: an immunohistochemical study. Transplantation 1999; 67: 784. – reference: van der Burg MP, Basir I, Bouwman E. No porcine islet loss during density gradient purification in a novel iodixanol in University of Wisconsin solution. Transplant Proc 1998; 30: 362. – reference: Lalain S, Chaillous L, Gouin E, Sai P. Intensity and mechanisms of in vitro xenorecognition of adult pig pancreatic islet cells by CD and CD lymphocytes from Type 1 diabetic or healthy subjects. Diabetologia 1999; 42: 330. – reference: Ricordi C, Socci C, Davalli AM et al. Isolation of the elusive pig islet. Surgery 1990; 107: 688. – reference: Theriault BR, Thistlethwaite JR, Levisetti MG et al. Induction, maintenance, and reversal of streptozotocin-induced insulin-dependent diabetesmellitus in the juvenile cynomolgus monkey (Macaca fascicularis). Transplantation 1999; 68: 331. – reference: Salerno CT, Kulick DM, Yeh CG et al. A soluble chimeric inhibitor of C3 and C5 convertases, complement activation blocker-2, prolongs graft survival in pig-to-rhesus monkey heart transplantation. Xenotransplantation 2002; 9: 125. – reference: Dickson BC, Yang H, Savelkoul HF et al. Islet transplantation in the discordant tilapia-to-mouse model: a novel application of alginate microencapsulation in the study of xenograft rejection. Transplantation 2003; 75: 599. – reference: Fox A, Mountford J, Braakhuis A, Harrison LC. Innate and adaptive immune responses to nonvascular xenografts: evidence that macrophages are direct effectors of xenograft rejection. J Immunol 2001; 166: 2133. – reference: Krishnaswamy G, Kelley J, Yerra L et al. Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease. J Interferon Cytokine Res 1999; 19: 91. – reference: Jindal RM, Sidner RA, Mcdaniel HB et al. Intraportal vs. kidney subcapsular site for human pancreatic islet transplantation. Transplant Proc 1998; 30: 398. – reference: Chabot JA, Stegall MD, Weber C et al. Pancreatic islet allo- and xenotransplantation in cynomolgus monkeys. Transplant Proc 1989; 21: 2739. – reference: Badet L, Titus TT, Mcshane P et al. Transplantation of mouse pancreatic islets into primates-in vivo and in vitro evaluation. Transplantation 2001; 72: 1867. – reference: Platt JL, Fischel RJ, Matas AJ et al. Immunopathology of hyperacute xenograft rejection in a swine-to-primate model. Transplantation 1991; 52: 214. – reference: Rodriguez A, Regnault A, Kleijmeer M et al. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1999; 1: 362. – reference: Buhler L, Deng S, O'Neil J et al. Adult porcine islet transplantation in baboons treated with conventional immunosuppression or a non-myeloablative regimen and CD154 blockade. Xenotransplantation 2002; 9: 3. – volume: 29 start-page: 940 year: 1997 article-title: Transplantation of normal and DAF‐transgenic fetal pig pancreas into cynomolgus monkeys publication-title: Transplant Proc – volume: 67 start-page: 846 year: 1999 article-title: Reversal of naturally occuring diabetes in primates by unmodified islet xenografts without chronic immunosuppression publication-title: Transplantation – volume: 24 start-page: 642 year: 1992 article-title: The role of direct and indirect antigen presentation in the response to islet xenografts publication-title: Transplant Proc – volume: 58 start-page: 1109 year: 1994 article-title: Immediate destruction of xenogeneic islets in a primate model publication-title: Transplantation – volume: 74 start-page: 1587 year: 2002 article-title: Direct killing of xenograft cells by CD8+ T cells of discordant xenograft recipients publication-title: Transplantation – volume: 40 start-page: 42 year: 1997 article-title: Engineered cell lines for insulin replacement in diabetes ‐ current status and future prospects publication-title: Diabetologia – volume: 1 start-page: 362 year: 1999 article-title: Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells publication-title: Nat Cell Biol – volume: 418 start-page: 41 year: 2002 article-title: Pluripotency of mesenchymal stem cells derived from adult marrow publication-title: Nature – volume: 42 start-page: 330 year: 1999 article-title: Intensity and mechanisms of in vitro xenorecognition of adult pig pancreatic islet cells by CD and CD lymphocytes from Type 1 diabetic or healthy subjects publication-title: Diabetologia – volume: 9 start-page: 25 year: 2002 article-title: Rapid failure of pig islet transplantation in non human primates publication-title: Xenotransplantation – volume: 9 start-page: 125 year: 2002 article-title: A soluble chimeric inhibitor of C3 and C5 convertases, complement activation blocker‐2, prolongs graft survival in pig‐to‐rhesus monkey heart transplantation publication-title: Xenotransplantation – volume: 177 start-page: 127 year: 2003 article-title: In vitro and in vivo expression of Galalpha‐(1,3)Gal on porcine islet cells is age dependent publication-title: J Endocrinol – volume: 73 start-page: 1146 year: 2002 article-title: Incidence of hyperacute rejection in pig‐to‐primate transplantation using organs from hDAF‐transgenic donors publication-title: Transplantation – volume: 75 start-page: 599 year: 2003 article-title: Islet transplantation in the discordant tilapia‐to‐mouse model: a novel application of alginate microencapsulation in the study of xenograft rejection publication-title: Transplantation – volume: 98 start-page: 1417 year: 1996 article-title: Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression publication-title: J Clin Invest – volume: 64 start-page: 340 year: 1997 article-title: Recognition of porcine major histocompatibility complex class I antigens by human CD8+ cytolytic T cell clones publication-title: Transplantation – volume: 73 start-page: 437 year: 2002 article-title: CD4+ T cells initiate pancreatic islet xenograft rejection via an interferon‐gamma‐dependent recruitment of macrophages and natural killer cells publication-title: Transplantation – volume: 166 start-page: 2133 year: 2001 article-title: Innate and adaptive immune responses to nonvascular xenografts: evidence that macrophages are direct effectors of xenograft rejection publication-title: J Immunol – volume: 68 start-page: 355 year: 1999 article-title: Significant progress in porcine islet mass isolation utilizing liberase HI for enzymatic low‐temperature pancreas digestion publication-title: Transplantation – volume: 117 start-page: 806 year: 1985 article-title: A new in vitro model for the study of pancreatic A and B cells publication-title: Endocrinology – volume: 77 start-page: 155 year: 1999 article-title: Fetal islet xenotransplantation in rodents and primates publication-title: J Mol Med – volume: 30 start-page: 398 year: 1998 article-title: Intraportal vs. kidney subcapsular site for human pancreatic islet transplantation publication-title: Transplant Proc – volume: 33 start-page: 731 year: 1990 article-title: Assessment of precision, concordance, specificity, and sensitivity of islet cell antibody measurement in 41 assays publication-title: Diabetologia – volume: 21 start-page: 2739 year: 1989 article-title: Pancreatic islet allo‐ and xenotransplantation in cynomolgus monkeys publication-title: Transplant Proc – volume: 72 start-page: 1867 year: 2001 article-title: Transplantation of mouse pancreatic islets into primates–in vivo and in vitro evaluation publication-title: Transplantation – volume: 69 start-page: 711 year: 2000 article-title: Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomologus monkeys: protective effects of sCR1 and heparin publication-title: Transplantation – volume: 52 start-page: 214 year: 1991 article-title: Immunopathology of hyperacute xenograft rejection in a swine‐to‐primate model publication-title: Transplantation – volume: 76 start-page: 1359 year: 2003 article-title: T‐cell‐specific immunosuppression results in more than 53 days survival of porcine islets of langerhans in the monkey publication-title: Transplantation – volume: 27 start-page: 185 year: 1990 article-title: Islet isolation assessment in man and large animals publication-title: Acta Diabetol Lat – volume: 170 start-page: 4427 year: 2003 article-title: Cutting edge: CD8(+) effector T cells reject tumors by direct antigen recognition but indirect action on host cells publication-title: J Immunol – volume: 68 start-page: 331 year: 1999 article-title: Induction, maintenance, and reversal of streptozotocin‐induced insulin‐dependent diabetesmellitus in the juvenile cynomolgus monkey (Macaca fascicularis) publication-title: Transplantation – volume: 19 start-page: 91 year: 1999 article-title: Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease publication-title: J Interferon Cytokine Res – volume: 33 start-page: 509 year: 2001 article-title: Temporary treatment with sirolimus and low‐trough cyclosporine prevents acute islet allograft rejection, and combination with starch‐conjugated deferoxamine promotes islet engraftment in the preclinical pig model publication-title: Transplant Proc – volume: 9 start-page: 3 year: 2002 article-title: Adult porcine islet transplantation in baboons treated with conventional immunosuppression or a non‐myeloablative regimen and CD154 blockade publication-title: Xenotransplantation – volume: 64 start-page: 1166 year: 1997 article-title: Comparative study of target antigens for primate xenoreactive natural antibodies in pig and rat endothelial cells publication-title: Transplantation – volume: 146 start-page: 730 year: 1991 article-title: Neutrophil adhesion to xenogeneic endothelium via iC3b publication-title: J Immunol – volume: 107 start-page: 688 year: 1990 article-title: Isolation of the elusive pig islet publication-title: Surgery – volume: 165 start-page: 1294 year: 2000 article-title: Indirect recognition of porcine swine leucocyte Ag class I molecules expressed on islets by human CD4+T lymphocytes publication-title: J Immunol – volume: 64 start-page: 1307 year: 1997 article-title: The cytokine and histological response in islet xenograft rejection is dependent upon species combination publication-title: Transplantation – volume: 69 start-page: 1711 year: 2000 article-title: A comparison of fetal and adult porcine islets with regard to Gal alpha (1,3)Gal expression and the role of human immunoglobulins and complement in islet cell cytotoxicity publication-title: Transplantation – volume: 65 start-page: 1577 year: 1998 article-title: Porcine cartilage transplants in the cynomolgus monkey. III. Transplantation of alpha‐galactosidase‐treated porcine cartilage publication-title: Transplantation – volume: 70 start-page: 896 year: 2000 article-title: CD8+ T cells are capable of rejecting pancreatic islet xenografts publication-title: Transplantation – volume: 31 start-page: 1981 year: 2001 article-title: Neutrophils produce biologically active macrophage inflammatory protein‐3alpha (MIP‐3alpha)/CCL20 and MIP‐3beta/CCL19 publication-title: Eur J Immunol – volume: 67 start-page: 784 year: 1999 article-title: Fetal porcine islet‐like cell clusters transplanted to cynomolgus monkeys: an immunohistochemical study publication-title: Transplantation – volume: 2 start-page: 128 year: 1995 article-title: Transplantation of organ cultured fetal pig pancreas in non‐obese diabetic (NOD) mice and primates publication-title: Xenotransplantation – volume: 9 start-page: 393 year: 2002 article-title: Rejection of porcine islet xenografts mediated by CD4+ T cells activated through the indirect antigen recognition pathway publication-title: Xenotransplantation – volume: 72 start-page: 1967 year: 2001 article-title: Human serum‐induced expression of E‐selectin on porcine aortic endothelial cells in vitro is totally complement mediated publication-title: Transplantation – volume: 30 start-page: 362 year: 1998 article-title: No porcine islet loss during density gradient purification in a novel iodixanol in University of Wisconsin solution publication-title: Transplant Proc – volume: 16 start-page: 433 year: 1998 article-title: Xenogeneic transplantation publication-title: Annu Rev Immunol – volume: 2 start-page: 157 year: 1995 article-title: Tissue culture prevents hyperacute rejection of islet xenografts publication-title: Xenotransplantation – volume: 21 start-page: 2736 year: 1989 article-title: Xenotransplantation of rat pancreatic endocrine cells in spontaneous and streptozotocin‐induced diabetic monkeys publication-title: Transplant Proc – ident: e_1_2_21_15_2 doi: 10.1007/s001090050326 – ident: e_1_2_21_44_2 doi: 10.4049/jimmunol.165.3.1294 – ident: e_1_2_21_8_2 doi: 10.1007/BF02581331 – ident: e_1_2_21_24_2 doi: 10.1111/j.1399-3089.2004.00121.x – ident: e_1_2_21_32_2 doi: 10.1111/j.1399-3089.1995.tb00079.x – ident: e_1_2_21_47_2 doi: 10.4049/jimmunol.166.3.2133 – ident: e_1_2_21_36_2 doi: 10.1089/107999099314234 – ident: e_1_2_21_4_2 doi: 10.1097/00007890-199908150-00003 – ident: e_1_2_21_19_2 doi: 10.1111/j.1399-3089.1995.tb00085.x – ident: e_1_2_21_45_2 doi: 10.1034/j.1399-3089.2002.01070.x – ident: e_1_2_21_5_2 doi: 10.1097/00007890-199908150-00006 – ident: e_1_2_21_41_2 doi: 10.1097/00007890-200202150-00019 – ident: e_1_2_21_13_2 doi: 10.1007/BF00400345 – volume: 24 start-page: 642 year: 1992 ident: e_1_2_21_42_2 article-title: The role of direct and indirect antigen presentation in the response to islet xenografts publication-title: Transplant Proc – ident: e_1_2_21_20_2 doi: 10.1172/JCI118929 – ident: e_1_2_21_49_2 doi: 10.1097/00007890-200212150-00017 – ident: e_1_2_21_43_2 doi: 10.1007/s001250051159 – ident: e_1_2_21_3_2 doi: 10.1007/s001250051398 – ident: e_1_2_21_50_2 doi: 10.1097/00007890-199707270-00028 – ident: e_1_2_21_9_2 doi: 10.1677/joe.0.1770127 – ident: e_1_2_21_30_2 doi: 10.1016/S0041-1345(00)02114-X – volume: 21 start-page: 2739 year: 1989 ident: e_1_2_21_16_2 article-title: Pancreatic islet allo‐ and xenotransplantation in cynomolgus monkeys publication-title: Transplant Proc – ident: e_1_2_21_26_2 doi: 10.1034/j.1399-3089.2002.0o144.x – volume: 21 start-page: 2736 year: 1989 ident: e_1_2_21_17_2 article-title: Xenotransplantation of rat pancreatic endocrine cells in spontaneous and streptozotocin‐induced diabetic monkeys publication-title: Transplant Proc – ident: e_1_2_21_48_2 doi: 10.1097/00007890-200009270-00007 – ident: e_1_2_21_22_2 doi: 10.1097/00007890-199903270-00011 – volume: 107 start-page: 688 year: 1990 ident: e_1_2_21_6_2 article-title: Isolation of the elusive pig islet publication-title: Surgery – ident: e_1_2_21_52_2 doi: 10.4049/jimmunol.170.9.4427 – ident: e_1_2_21_25_2 doi: 10.1097/00007890-200112270-00002 – ident: e_1_2_21_18_2 doi: 10.1097/00007890-199411270-00009 – ident: e_1_2_21_12_2 doi: 10.1097/00007890-199710270-00015 – ident: e_1_2_21_23_2 doi: 10.1097/00007890-199903270-00002 – ident: e_1_2_21_2_2 doi: 10.1038/nature00870 – ident: e_1_2_21_39_2 doi: 10.1146/annurev.immunol.16.1.433 – ident: e_1_2_21_51_2 doi: 10.1038/14058 – ident: e_1_2_21_38_2 doi: 10.1002/1521-4141(200107)31:7<1981::AID-IMMU1981>3.0.CO;2-X – ident: e_1_2_21_27_2 doi: 10.1097/01.TP.0000085290.60182.6B – ident: e_1_2_21_29_2 doi: 10.1034/j.1399-3089.2002.1o044.x – ident: e_1_2_21_10_2 doi: 10.1097/00007890-199806270-00007 – ident: e_1_2_21_14_2 doi: 10.1097/00007890-199711150-00013 – ident: e_1_2_21_40_2 doi: 10.1097/00007890-200204150-00024 – ident: e_1_2_21_21_2 doi: 10.1016/S0041-1345(96)00261-8 – ident: e_1_2_21_46_2 doi: 10.1097/01.TP.0000048226.28357.0D – ident: e_1_2_21_34_2 doi: 10.1097/00007890-200004270-00030 – ident: e_1_2_21_11_2 doi: 10.1210/endo-117-3-806 – ident: e_1_2_21_37_2 doi: 10.1097/00007890-200112270-00017 – ident: e_1_2_21_7_2 doi: 10.1016/S0041-1345(97)01308-0 – ident: e_1_2_21_31_2 doi: 10.1097/00007890-199108000-00006 – ident: e_1_2_21_28_2 doi: 10.1016/S0041-1345(97)01327-4 – volume: 146 start-page: 730 year: 1991 ident: e_1_2_21_35_2 article-title: Neutrophil adhesion to xenogeneic endothelium via iC3b publication-title: J Immunol doi: 10.4049/jimmunol.146.2.730 – ident: e_1_2_21_33_2 doi: 10.1034/j.1399-3089.2002.1o042.x – reference: 15303975 - Xenotransplantation. 2004 Sep;11(5):394-5 |
SSID | ssj0003585 |
Score | 2.0648658 |
Snippet | : Background: The functional response and immunobiology of primarily non‐vascularized islet cell xenografts remain poorly defined in non‐human primates.... Background: The functional response and immunobiology of primarily non‐vascularized islet cell xenografts remain poorly defined in non‐human primates.... The functional response and immunobiology of primarily non-vascularized islet cell xenografts remain poorly defined in non-human primates. We transplanted... Background:The functional response and immunobiology of primarily non-vascularized islet cell xenografts remain poorly defined in non-human primates.... The functional response and immunobiology of primarily non-vascularized islet cell xenografts remain poorly defined in non-human primates.BACKGROUNDThe... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 396 |
SubjectTerms | Acute Disease Animals Blood Glucose Diabetes Mellitus, Experimental - surgery experimental transplantation Female graft infiltrating cells Graft Rejection - immunology histology and anatomy Immunoglobulin M - analysis islets Islets of Langerhans Transplantation - immunology Islets of Langerhans Transplantation - pathology Macaca mulatta morphology non-human primates pathology Swine Transplantation Conditioning transplantation immunology and immunobiology xenotransplantation |
Title | Reversal of diabetes in non-immunosuppressed rhesus macaques by intraportal porcine islet xenografts precedes acute cellular rejection |
URI | https://api.istex.fr/ark:/67375/WNG-9Q01MFZV-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1399-3089.2004.00157.x https://www.ncbi.nlm.nih.gov/pubmed/15303976 https://www.proquest.com/docview/17125788 https://www.proquest.com/docview/66780155 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hIiQuPFoepjz2gHpztM56vfaxgoYKKZGoKERcVvuyCKFOFdtS0hNHjvxGfgkz6yQlqEgV4mQfPJZ38s3uN5tvZwh5KTkAwaYiLnMIt7RvWFwYSFyz3AK55tzZoCYcjrLj0_TtWIxX-ic8C9PVh9hsuGFkhPkaA1ybejvIYXGNOcvDeRMsgp0I2UM-mfAMy-i_PrmsJMVF6M7JCpbHWSbG26KeK1-0tVLdRKcvrqKh26w2LEuDu2S6HlCnRpn22sb07MUftR7_z4jvkTsr9koPO7jdJzd8tUv2DivI3M-W9IAGPWnYqN8lt7o2l8s98v3Eo_gDDGclXW_20klFq1n189uPCR5RmdXtedDkekfnn33d1vRMW41OoGYJDzdz3aUKFC6oBqCTGjBHF75ChVnZ1BTsrXdgoG3beIr_SaDIls79lyA4qx6Q08HR-1fH8aoDRGxTzmH2Y2WZca2BVbjcMicMl4XFrS8tnctY6TlkbML0jU9taqWwhdFwo7lkzOaGPyQ7MBT_mFBZJKnLXd8bgKbtC20NK12RuVIYgGsREbn-tZVdlUfHLh1f1W9pErhfofuxeWeqgvvVIiLJxvK8KxFyDZuDAKiNgZ5PUWInhfo4eqOKdywZDj59UMOIvFgjTkHgo-d05WdtrRKZ4HSb__2JDIgIUuKIPOqgevl5ApgLENGIiAC4a3-3Gh-N4ObJP9rtk9ud8gk1ek_JTjNv_TMgdY15HsL1FzG5QDY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hVgguPFoo4dU9oN4crbNeP44VNARoIlG1EHFZ7csitHUqP6SEE0eO_EZ-CTPrJCWoSBXi5D14LO94Zveb8bczhLxIOBiCiUSQp-BuUU-zINMQuMapAXDNuTWeTTgcxYOT6O1YjBftgPAsTFsfYpVwQ8_w6zU6OCak170cdteAs9QfOMEq2KFIugAoNyPAHRiJvTq6rCXFhe_PyTKWBnEsxuu0niuftLZXbaLaZ1cB0XVc6zem_l1ytpxSy0c57Ta17pqvf1R7_E9zvkfuLAAs3W8t7j654Yotsr1fQPB-Pqd71FNKfa5-i9xsO13Ot8n3I4f8DxCc5nSZ76WTghbT4ue3HxM8pTKtmgtPy3WWlp9d1VT0XBmFWqB6DjfXpWqjBQoXJATQSQVmR2euQJJZXlcU5I2zIKBMUzuKvyWQZ0tL98VzzooH5KR_cPxyECyaQAQm4hwWQJbnMVcKgIVNDbNC8yQzmP1SibUxyx2HoE3onnaRiUwiTKYVDBRPGDOp5g_JBkzFPSI0ycLIprbnNFin6QllNMttFttcaLDYrEOS5eeWZlEhHRt1nMnfIiVQv0T1Y__OSHr1y1mHhCvJi7ZKyDVk9rxFrQRUeYosu0TIj6PXMnvPwmH_0wc57JDdpclJ8H3UnCrctKlkmIS44qZ_vyMGLIKouEN2Wlu9fD0B4AWwaIcIb3HXfm85PhjB4PE_yu2SW4Pj4aE8fDN694TcbolQSNl7SjbqsnHPAOPV-rn33V8rRkRV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hViAuPFoo5tU9oN4crbNeP44VNJRHIqgoRFxW-7IIoU4U21LCiSNHfiO_hJl1khJUpApxsg8eyzv5ZvebzbczhDxJOQDBxCIsMgi3uKtZmGtIXJPMALnm3BqvJuwPkuPT-OVQDJf6JzwL09aHWG-4YWT4-RoDfGqLzSCHxTXkLPPnTbAIdiTSDvDJ7TgBYoEE6eS8lBQXvj0ny1kWJokYbqp6LnzTxlK1jV6fX8RDN2mtX5d6N8l4NaJWjjLuNLXumK9_FHv8P0O-RW4s6Ss9bPF2m1xx5Q7ZPSwhdT9b0APqBaV-p36HXG37XC52yfcTh-oPMJwUdLXbS0clLSflz28_RnhGZVI1Uy_KdZbOPrmqqeiZMgqdQPUCHq5nqs0VKFxQDkBHFYCOzl2JErOirijYG2fBQJmmdhT_lECVLZ25z15xVt4hp72jd0-Pw2ULiNDEnMP0x4oi4UoBrbCZYVZonuYG975Uam3CCschZRO6q11sYpMKk2sFN4qnjJlM87tkC4bi7hGa5lFsM9t1GrBpukIZzQqbJ7YQGvCaByRd_drSLOujY5uOL_K3PAncL9H92L0zlt79ch6QaG05bWuEXMLmwANqbaBmY9TYpUJ-GDyX-VsW9Xsf38t-QPZXiJMQ-eg5VbpJU8kojXC-zf7-RAJMBDlxQPZaqJ5_ngDqAkw0IMID7tLfLYdHA7i5_492--Tam2c9-frF4NUDcr1VQaFe7yHZqmeNewQEr9aPfeT-Ah6EQwQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversal+of+diabetes+in+non-immunosuppressed+rhesus+macaques+by+intraportal+porcine+islet+xenografts+precedes+acute+cellular+rejection&rft.jtitle=Xenotransplantation+%28K%C3%B8benhaven%29&rft.au=Kirchhof%2C+Nicole&rft.au=Shibata%2C+Satoshi&rft.au=Wijkstrom%2C+Martin&rft.au=Kulick%2C+David+M&rft.date=2004-09-01&rft.issn=0908-665X&rft.volume=11&rft.issue=5&rft.spage=396&rft_id=info:doi/10.1111%2Fj.1399-3089.2004.00157.x&rft_id=info%3Apmid%2F15303976&rft.externalDocID=15303976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0908-665X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0908-665X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0908-665X&client=summon |