Expression of synaptic membrane proteins in gerbil pinealocytes in primary culture
Pinealocytes of various mammalian species contain abundant synaptic‐like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal synaptic vesicles. Although the pinealocyte may thus be a suitable cellular model for experimental in vitro studies of SLMVs, nothing is known abou...
Saved in:
Published in | Journal of neuroscience research Vol. 47; no. 5; pp. 509 - 520 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley & Sons, Inc
01.03.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pinealocytes of various mammalian species contain abundant synaptic‐like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal synaptic vesicles. Although the pinealocyte may thus be a suitable cellular model for experimental in vitro studies of SLMVs, nothing is known about the presence of SLMVs in isolated pinealocytes maintained under tissue culture conditions. In the present investigation, we prepared dissociated primary cultures of gerbil pinealocytes to study the expression and distribution of protein components of synaptic vesicles/SLMVs and the presynaptic plasmalemma in pinealocytes kept in vitro. Using immunofluorescence microscopy, we found that cultured pinealocytes readily expressed all synaptic membrane proteins investigated, i.e., synaptophysin, synaptotagmin I, synaptobrevin II, syntaxin I and SNAP‐25. Punctate immunoreactivity for the vesicle‐associated proteins could be detected throughout the cell bodies of pinealocytes and was also distributed into all of their processes which began to develop within the first days in culture. Outgrowing processes exhibited growth cone‐like structures which were enriched in synaptic vesicle‐associated proteins. After 1 week in vitro, pinealocytes had frequently formed an elaborate network of long interwoven processes. Accumulations of synaptic vesicle‐associated proteins were observed in varicosities and terminal swellings of the processes. The vesicle‐rich process swellings often established synaptic‐like contacts with somata and processes of other pinealocytes. Some of the pinealocyte processes possessed additional axon‐like properties as demonstrated by their lack of immunoreactivity for the somato‐dendritic marker MAP2 and the transferrin receptor. The comparison of the staining patterns for synaptophysin and the endocytotic marker transferrin receptor by confocal laser scanning microscopy revealed a largely differential intracellular distribution of the two proteins. This may indicate that a substantial fraction of pinealocyte SLMVs by‐passes the early endosomal‐related recycling pathway of SLMVs. Herewith, we have shown that isolated gerbil pinealocytes maintained in primary culture can acquire morphological and neurochemical traits which closely mimick those observed in vivo. In particular, these cultures permit experimental studies of the compartment of pinealocyte SLMVs which seem to make up a major secretory pathway for paracrine intrapineal communication. © 1997 Wiley‐Liss Inc. |
---|---|
AbstractList | Pinealocytes of various mammalian species contain abundant synaptic-like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal synaptic vesicles. Although the pinealocytes may thus be a suitable cellular model for experimental in vitro studies of SLMVs, nothing is known about the presence of SLMVs in isolated pinealocytes maintained under tissue culture conditions. In the present investigation, we prepared dissociated primary cultures of gerbil pinealocytes to study the expression and distribution of protein components of synaptic vesicles/SLMVs and the presynaptic plasmalemma in pinealocytes kept in vitro. Using immunofluorescence microscopy, we found that cultured pinealocytes readily expressed all synaptic membrane proteins investigated, i.e., synaptophysin, synaptotagmin I, synaptobrevin II, syntaxin I and SNAP-25. Punctuate immunoreactivity for the vesicle-associated proteins could be detected throughout the cell bodies of pinealocytes and was also distributed into all of their processes which began to develop within the first days in culture. Outgrowing processes exhibited growth cone-like structures which were enriched in synaptic vesicle-associated proteins. After 1 week in vitro, pinealocytes had frequently formed an elaborate network of long interwoven processes. Accumulations of synaptic vesicle-associated proteins were observed in varicosities and terminal swellings of the processes. The vesicle-rich process swellings often established synaptic-like process swellings often established synaptic-like contacts with somata and processes of other pinealocytes. Some of the pinealocyte processes possessed additional axon-like properties as demonstrated by their lack of immunoreactivity for the somato-dendritic marker MAP2 and the transferrin receptor. The comparison of the staining patterns for synaptophysin and the endocytotic marker transferrin receptor by confocal laser scanning microscopy revealed a largely differential intracellular distribution of the two proteins. This may indicate that a substantial fraction of pinealocyte SLMVs by-passes the early endosomal-related recycling pathway of SLMVs. Herewith, we have shown that isolated gerbil pinealocytes maintained in primary culture can acquire morphological and neurochemical traits which closely mimick those observed in vivo. In particular, these cultures permit experimental studies of the compartment of pinealocyte SLMVs which seem to make up a major secretory pathway for paracrine intrapineal communication. Pinealocytes of various mammalian species contain abundant synaptic‐like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal synaptic vesicles. Although the pinealocyte may thus be a suitable cellular model for experimental in vitro studies of SLMVs, nothing is known about the presence of SLMVs in isolated pinealocytes maintained under tissue culture conditions. In the present investigation, we prepared dissociated primary cultures of gerbil pinealocytes to study the expression and distribution of protein components of synaptic vesicles/SLMVs and the presynaptic plasmalemma in pinealocytes kept in vitro. Using immunofluorescence microscopy, we found that cultured pinealocytes readily expressed all synaptic membrane proteins investigated, i.e., synaptophysin, synaptotagmin I, synaptobrevin II, syntaxin I and SNAP‐25. Punctate immunoreactivity for the vesicle‐associated proteins could be detected throughout the cell bodies of pinealocytes and was also distributed into all of their processes which began to develop within the first days in culture. Outgrowing processes exhibited growth cone‐like structures which were enriched in synaptic vesicle‐associated proteins. After 1 week in vitro, pinealocytes had frequently formed an elaborate network of long interwoven processes. Accumulations of synaptic vesicle‐associated proteins were observed in varicosities and terminal swellings of the processes. The vesicle‐rich process swellings often established synaptic‐like contacts with somata and processes of other pinealocytes. Some of the pinealocyte processes possessed additional axon‐like properties as demonstrated by their lack of immunoreactivity for the somato‐dendritic marker MAP2 and the transferrin receptor. The comparison of the staining patterns for synaptophysin and the endocytotic marker transferrin receptor by confocal laser scanning microscopy revealed a largely differential intracellular distribution of the two proteins. This may indicate that a substantial fraction of pinealocyte SLMVs by‐passes the early endosomal‐related recycling pathway of SLMVs. Herewith, we have shown that isolated gerbil pinealocytes maintained in primary culture can acquire morphological and neurochemical traits which closely mimick those observed in vivo. In particular, these cultures permit experimental studies of the compartment of pinealocyte SLMVs which seem to make up a major secretory pathway for paracrine intrapineal communication. © 1997 Wiley‐Liss Inc. Pinealocytes of various mammalian species contain abundant synaptic-like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal synaptic vesicles. Although the pinealocyte may thus be a suitable cellular model for experimental in vitro studies of SLMVs, nothing is known about the presence of SLMVs in isolated pinealocytes maintained under tissue culture conditions. In the present investigation, we prepared dissociated primary cultures of gerbil pinealocytes to study the expression and distribution of protein components of synaptic vesicles/SLMVs and the presynaptic plasmalemma in pinealocytes kept in vitro. Using immunofluorescence microscopy, we found that cultured pinealocytes readily expressed all synaptic membrane proteins investigated, i.e., synaptophysin, synaptotagmin I, synaptobrevin II, syntaxin I and SNAP-25. Punctate immunoreactivity for the vesicle-associated proteins could be detected throughout the cell bodies of pinealocytes and was also distributed into all of their processes which began to develop within the first days in culture. Outgrowing processes exhibited growth conelike structures which were enriched in synaptic vesicleassociated proteins. After 1 week in vitro, pinealocytes had frequently formed an elaborate network of long interwoven processes. Accumulations of synaptic vesicle-associated proteins were observed in varicosities and terminal swellings of the processes. The vesicle-rich process swellings often established synaptic-like contacts with somata and processes of other pinealocytes. Some of the pinealocyte processes possessed additional axon-like properties as demonstrated by their lack of immunoreactivity for the somato-dendritic marker MAP2 and the transferrin receptor. The comparison of the staining patterns for synaptophysin and the endocytotic marker transferrin receptor by confocal laser scanning microscopy revealed a largely differential intracellular distribution of the two proteins. This may indicate that a substantial fraction of pinealocyte SLMVs by-passes the early endosomal-related recycling pathway of SLMVs. Herewith, we have shown that isolated gerbil pinealocytes maintained in primary culture can acquire morphological and neurochemical traits which closely mimic those observed in vivo. In particular, these cultures permit experimental studies of the compartment of pinealocyte SLMVs which seem to make up a major secretory pathway for paracrine intrapineal communication. |
Author | Steinlechner, S. Gebert, A. Redecker, P. Pabst, H. |
Author_xml | – sequence: 1 givenname: P. surname: Redecker fullname: Redecker, P. organization: Department of Anatomy 1, Hannover Medical School, Hannover, Germany – sequence: 2 givenname: H. surname: Pabst fullname: Pabst, H. organization: Institute of Zoology, Hannover Veterinary School, Hannover, Germany – sequence: 3 givenname: A. surname: Gebert fullname: Gebert, A. organization: Department of Anatomy 2, Hannover Medical School, Hannover, Germany – sequence: 4 givenname: S. surname: Steinlechner fullname: Steinlechner, S. organization: Institute of Zoology, Hannover Veterinary School, Hannover, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9067860$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1UVKaFn4CUFWoXGa7j2I6HqlKVlnbQqIPKo8srJ7lBgbyIE9H59ySdYViA1JUfOj7n-H5H7KBuamLsnMOcAwRvTz4t4-UpB6P9UIb6hBujQQA_DfVCnkkwi8XF8tL_cHunzsUc5vH6XeCvnrHZ_skBm4FQ4IfAgxfsyLnvAGCMFIfs0IDSkYIZu7t6aDtyrmhqr8k9t6lt2xepV1GVdLYmr-2anoraeUXtfaMuKUqvLWqyZZNuenq8bruist3GS4eyHzp6yZ7ntnT0arcesy_vrz7HN_5qfb2ML1Z-GgqhfCO1DiiBQGYkgWdplKdCGmMDQTwiYUQIobYySXhCSgcysSbLlRVKJ1xnVhyzN1vfseLPgVyPVeFSKsuxdjM41FEUhUIGTwq5NFyMaaPw61aYdo1zHeW4-xpywIkK4kQFpxHjNGL8QwXHvcSRCuJIBScqKBAwXmOAq9H49a7BkFSU7W13GP4G_ypK2vyT-mTofzIfz6OxvzUuXE8Pe2Pb_UClhZZ4f3uNKvh4f8PjS4zFbxZEuT4 |
Cites_doi | 10.1083/jcb.115.1.151 10.1210/endo-129-5-2655 10.1111/j.1460-9568.1992.tb00143.x 10.1007/s004410050555 10.1016/B978-0-12-008302-2.50017-1 10.1523/JNEUROSCI.11-06-01617.1991 10.1111/j.1600-079X.1996.tb00267.x 10.1083/jcb.127.6.1589 10.1523/JNEUROSCI.14-11-06402.1994 10.1111/j.1600-079X.1995.tb00169.x 10.1242/jcs.1993.Supplement_17.14 10.1007/BF01189044 10.1016/0006-8993(93)91223-F 10.1016/0197-0186(95)00029-8 10.1007/BF00319371 10.1016/0922-3371(88)90008-1 10.1007/BF00331377 10.1016/0955-0674(94)90077-9 10.1002/j.1460-2075.1991.tb04925.x 10.1016/0014-5793(95)00559-R 10.1007/BF02433790 10.1002/ar.1092310410 10.1002/jnr.490340109 10.1159/000126994 10.1002/j.1460-2075.1989.tb08434.x 10.1083/jcb.122.6.1207 10.1083/jcb.110.5.1693 10.1002/j.1460-2075.1991.tb08069.x 10.1111/j.1600-079X.1994.tb00090.x 10.1007/BF01186542 10.1523/JNEUROSCI.14-11-06695.1994 10.1096/fasebj.8.2.7907072 10.1113/jphysiol.1988.sp017339 10.1016/0304-3940(94)11184-K 10.1016/0168-0102(94)90022-1 |
ContentType | Journal Article |
Copyright | Copyright © 1997 Wiley‐Liss, Inc. |
Copyright_xml | – notice: Copyright © 1997 Wiley‐Liss, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 |
DOI | 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1097-4547 |
EndPage | 520 |
ExternalDocumentID | 10_1002__SICI_1097_4547_19970301_47_5_509__AID_JNR6_3_0_CO_2_L 9067860 JNR6 ark_67375_WNG_62PWH1CD_C |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWD RWI RX1 SUPJJ UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ X7M XG1 XV2 ZGI ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 |
ID | FETCH-LOGICAL-c4336-95772eb025de501dc8fc3599a23e18e3934047a5bb1be6725ba9df6a367b17da3 |
IEDL.DBID | DR2 |
ISSN | 0360-4012 |
IngestDate | Fri Aug 16 23:28:17 EDT 2024 Fri Aug 16 00:47:53 EDT 2024 Fri Aug 23 00:43:33 EDT 2024 Sat Sep 28 07:36:43 EDT 2024 Sat Aug 24 00:54:56 EDT 2024 Wed Oct 30 09:52:22 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4336-95772eb025de501dc8fc3599a23e18e3934047a5bb1be6725ba9df6a367b17da3 |
Notes | ark:/67375/WNG-62PWH1CD-C istex:EEF166E0105C013D6E40E8BD66B0F8182F18CE14 ArticleID:JNR6 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 9067860 |
PQID | 15913340 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_78884352 proquest_miscellaneous_15913340 crossref_primary_10_1002__SICI_1097_4547_19970301_47_5_509__AID_JNR6_3_0_CO_2_L pubmed_primary_9067860 wiley_primary_10_1002_SICI_1097_4547_19970301_47_5_509_AID_JNR6_3_0_CO_2_L_JNR6 istex_primary_ark_67375_WNG_62PWH1CD_C |
PublicationCentury | 1900 |
PublicationDate | 1997-03-01 1 March 1997 1997-Mar-01 19970301 |
PublicationDateYYYYMMDD | 1997-03-01 |
PublicationDate_xml | – month: 03 year: 1997 text: 1997-03-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Journal of neuroscience research |
PublicationTitleAlternate | J. Neurosci. Res |
PublicationYear | 1997 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | McNulty JA, Tsai S-Y, Fox LM, Madsen TM, Silberman S, Tonder N (1995): Neurotrophic effects of the pineal gland: role of non-neuronal cells in co-cultures of the pineal gland and superior cervical ganglia. J Pineal Res 19: 40-50. Redecker P, Bargsten G (1993): Synaptophysin-a common constituent of presumptive secretory microvesicles in the mammalian pinealocyte: A study of rat and gerbil pineal glands. J Neurosci Res 34: 79-96. Mundigl O, Matteoli M, Daniell L, Thomas-Reetz A, Metcalf A, Jahn R, DeCamilli P (1993): Synaptic vesicle proteins and early endosomes in cultured hippocampal neurons: Differential effects of brefeldin A in axon and dendrites. J Cell Biol 122: 1207-1221. Redecker P (1995): The ras-like rab3A protein is present in pinealocytes of the gerbil pineal gland. Neurosci Lett 184: 117-120. Araki M, Watanabe K, Tokunaga F, Nonaka T (1988): Phenotypic expression of photoreceptor and endocrine cell properties by cultured pineal cells of the newborn rat. Cell Differ Dev 25: 155-164. Thomas-Reetz AC, DeCamilli P (1994): A role for synaptic vesicles in non-neuronal cells: Clues from pancreatic β cells and from chromaffin cells. FASEB J 8: 209-216. Welsh MG (1994): Current methodologies for the study of pineal morphophysiology. J Pineal Res 16: 113-120. Rüppel R, Olcese J (1991): Bovine pinealocytes in monolayer culture: Studies on the adrenergic regulation of melatonin secretion. Endocrinology 129: 2655-2662. Moriyama Y, Yamamoto A (1995): Microvesicles isolated from bovine pineal gland specifically accumulate L-glutamate. FEBS Lett 367: 233-236. DeCamilli P (1994): Co-secretion of multiple signal molecules from endocrine cells via distinct exocytotic pathways. TIPS 12: 446-448. Redecker P (1993): Dense accumulations of synaptic-like microvesicles in 'dark' pinealocytes of the gerbil pineal gland. J Neurocytol 22: 572-581. Reetz A, Solimena M, Matteoli M, Folli F, Takei K, DeCamilli P (1991): GABA and pancreatic β-cells: Colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J 10: 1275-1284. Redecker P, Cetin Y, Grube D (1995): Differential distribution of synaptotagmin I and rab3 in the anterior pituitary of four mammalian species. Neuroendocrinology 62: 101-110. Jefferies WA, Brandon MR, Williams AF, Hunt SV (1985): Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor. Immunology 54: 333-341. Phelan P, Gordon-Weeks PR (1992): Widespread distribution of synaptophysin, a synaptic vesicle glycoprotein, in growing neurites and growth cones. Eur J Neurosci 4: 1180-1190. Régnier-Vigouroux A, Tooze SA, Huttner WB (1991): Newly synthesized synaptophysin is transported to synaptic-like micro-vesicles via constitutive secretory vesicles and the plasma membrane. EMBO J 10: 3589-3601. Fletcher TL, Cameron P, DeCamilli P, Banker G (1991): The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture. J Neurosci 11: 1617-1626. Redecker P (1996): Synaptotagmin I, synaptobrevin II, and syntaxin I are coexpressed in rat and gerbil pinealocytes. Cell Tissue Res 283: 443-454. Schomerus C, Laedtke E, Korf H-W (1995): Calcium responses of isolated, immunocytochemically identified rat pinealocytes to noradrenergic, cholinergic and vasopressinergic stimulations. Neurochem Int 27: 163-175. Cameron PL, Südhof TC, Jahn R, DeCamilli P (1991): Colocalization of synaptophysin with transferrin receptors: Implications for synaptic vesicle biogenesis. J Cell Biol 115: 151-164. Huang S-K, Klein DC, Korf H-W (1992): Immunocytochemical demonstration of rod-opsin, S-antigen, and neuron-specific proteins in the human pineal gland. Cell Tissue Res 267: 493-498. Basarsky TA, Parpura V, Haydon PG (1994): Hippocampal synaptogenesis in cell culture: Developmental time course of synapse formation, calcium influx, and synaptic protein distribution. J Neurosci 14: 6402-6411. Mundigl O, DeCamilli P (1994) Formation of synaptic vesicles. Curr Opin Cell Biol 6: 561-567. Redecker P, Weyer C, Grube D (1996): Rat and gerbil pinealocytes contain the synaptosomal-associated protein 25 (SNAP-25). J Pineal Res 21: 29-34. Leube RE, Leimer U, Grund C, Franke WW, Harth N, Wiedenmann B (1994): Sorting of synaptophysin into special vesicles in nonneuroendocrine epithelial cells. J Cell Biol 127: 1589-1601. Cameron P, Mundigl O, DeCamilli P (1993): Traffic of synaptic vesicle proteins in polarized and nonpolarized cells. J Cell Sci (Suppl 17):93-100. McNulty JA, Fox LM, Silberman S (1993): Immunocytochemical demonstration of nerve growth factor (NGF) receptor in the pineal gland: Effect of NGF on pinealocyte neurite formation. Brain Res 610: 108-114. Fletcher TL, DeCamilli P, Banker G (1994): Synaptogenesis in hippocampal cultures: Evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J Neurosci 14: 6695-6706. Redecker P, Veh RW (1994): Glutamate immunoreactivity is enriched over pinealocytes of the gerbil pineal gland. Cell Tissue Res 278: 579-588. Welsh MG, Ding JM, Buggy J, Terracio L (1991): Application of confocal laser scanning microscopy to the deep pineal gland and other neural tissues. Anat Rec 231: 473-481. Johnston PA, Cameron PL, Stukenbrok H, Jahn R, DeCamilli P, Südhof TC (1989): Synaptophysin is targeted to similar microvesicles in CHO and PC12 cells. EMBO J 8: 2863-2872. Rowe V, Steinberg V, Parr J (1981): Pineal cells in monolayer culture. Adv Cell Neurobiol 2: 491-510. Araki M, Nonaka T, Akagawa K, Kimura H, Mashiko T (1994): Developing rat pineal cells manifest potential of neuronal differentiation in vitro. Neuroscience Res 20: 57-69. Lowenstein PR, Shering AF, Morrison E, Tomasec P, Bain D, Jacob TJC, Wu J, Prescott A, Castro MG (1995): Synaptogenesis and distribution of presynaptic axonal varicosities in low density primary cultures of neocortex: An immunocytochemical study utilizing synaptic vesicle-specific antibodies, and an electrophysiological examination utilizing whole cell recording. J Neurocytol 24: 301-317. Clift-O'Grady L, Linstedt AD, Lowe AW, Grote E, Kelly RB (1990): Biogenesis of synaptic vesicle-like structures in a pheochromocytoma cell line PC-12. J Cell Biol 110: 1693-1703. Redecker P, Grube D, Jahn R (1990): Immunohistochemical localization of synaptophysin (p38) in the pineal gland of the Mongolian gerbil (Meriones unguiculatus). Anat Embryol 181: 433-440. Aguayo LG, Weight FF (1988): Characterization of membrane currents in dissociated adult rat pineal cells. J Physiol 405: 397-419. 1991; 231 1994; 278 1991; 10 1991; 11 1993; 22 1992; 267 1981; 2 1989; 8 1996; 283 1990; 181 1995; 19 1988; 405 1991; 115 1994; 20 1993; 122 1994; 8 1995; 62 1987; 44 1993; 34 1994; 127 1993; 17 1995; 27 1988; 25 1995; 24 1994; 12 1994; 14 1995; 367 1994; 16 1991; 129 1990; 110 1995; 184 1985; 54 1993; 610 1996; 21 1992; 4 1994; 6 Leube (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB14) 1994; 127 Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB26) 1994; 278 Phelan (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB21) 1992; 4 Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB23) 1995; 184 Vollrath (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB36) 1987; 44 Mundigl (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB20) 1993; 122 Schomerus (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB34) 1995; 27 Reetz (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB30) 1991; 10 Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB24) 1996; 283 Fletcher (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB10) 1994; 14 Régnier-Vigouroux (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB31) 1991; 10 Moriyama (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB18) 1995; 367 Johnston (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB13) 1989; 8 Welsh (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB38) 1991; 231 McNulty (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB16) 1993; 610 Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB25) 1993; 34 Thomas-Reetz (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB35) 1994; 8 Huang (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB11) 1992; 267 Cameron (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB5) 1991; 115 Lowenstein (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB15) 1995; 24 Basarsky (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB4) 1994; 14 Rowe (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB32) 1981; 2 Rüppel (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB33) 1991; 129 Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB28) 1995; 62 Cameron (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB6) 1993; 17 Jefferies (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB12) 1985; 54 Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB22) 1993; 22 Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB27) 1990; 181 DeCamilli (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB8) 1994; 12 Aguayo (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB1) 1988; 405 Clift-O'Grady (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB7) 1990; 110 Fletcher (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB9) 1991; 11 Araki (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB2) 1988; 25 Welsh (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB37) 1994; 16 Araki (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB3) 1994; 20 McNulty (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB17) 1995; 19 Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB29) 1996; 21 Mundigl (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB19) 1994; 6 |
References_xml | – volume: 20 start-page: 57 year: 1994 end-page: 69 article-title: Developing rat pineal cells manifest potential of neuronal differentiation in vitro publication-title: Neuroscience Res – volume: 10 start-page: 1275 year: 1991 end-page: 1284 article-title: GABA and pancreatic β‐cells: Colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic‐like microvesicles suggests their role in GABA storage and secretion publication-title: EMBO J – volume: 14 start-page: 6402 year: 1994 end-page: 6411 article-title: Hippocampal synaptogenesis in cell culture: Developmental time course of synapse formation, calcium influx, and synaptic protein distribution publication-title: J Neurosci – volume: 278 start-page: 579 year: 1994 end-page: 588 article-title: Glutamate immunoreactivity is enriched over pinealocytes of the gerbil pineal gland publication-title: Cell Tissue Res – volume: 24 start-page: 301 year: 1995 end-page: 317 article-title: Synaptogenesis and distribution of presynaptic axonal varicosities in low density primary cultures of neocortex: An immunocytochemical study utilizing synaptic vesicle‐specific antibodies, and an electrophysiological examination utilizing whole cell recording publication-title: J Neurocytol – volume: 367 start-page: 233 year: 1995 end-page: 236 article-title: Microvesicles isolated from bovine pineal gland specifically accumulate L‐glutamate publication-title: FEBS Lett – volume: 19 start-page: 40 year: 1995 end-page: 50 article-title: Neurotrophic effects of the pineal gland: role of non‐neuronal cells in co‐cultures of the pineal gland and superior cervical ganglia publication-title: J Pineal Res – volume: 127 start-page: 1589 year: 1994 end-page: 1601 article-title: Sorting of synaptophysin into special vesicles in nonneuroendocrine epithelial cells publication-title: J Cell Biol – volume: 181 start-page: 433 year: 1990 end-page: 440 article-title: Immunohistochemical localization of synaptophysin (p38) in the pineal gland of the Mongolian gerbil ( ) publication-title: Anat Embryol – volume: 6 start-page: 561 year: 1994 end-page: 567 article-title: Formation of synaptic vesicles publication-title: Curr Opin Cell Biol – volume: 25 start-page: 155 year: 1988 end-page: 164 article-title: Phenotypic expression of photoreceptor and endocrine cell properties by cultured pineal cells of the newborn rat publication-title: Cell Differ Dev – volume: 12 start-page: 446 year: 1994 end-page: 448 article-title: Co‐secretion of multiple signal molecules from endocrine cells via distinct exocytotic pathways publication-title: TIPS – volume: 11 start-page: 1617 year: 1991 end-page: 1626 article-title: The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture publication-title: J Neurosci – volume: 54 start-page: 333 year: 1985 end-page: 341 article-title: Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor publication-title: Immunology – volume: 122 start-page: 1207 year: 1993 end-page: 1221 article-title: Synaptic vesicle proteins and early endosomes in cultured hippocampal neurons: Differential effects of brefeldin A in axon and dendrites publication-title: J Cell Biol – volume: 8 start-page: 209 year: 1994 end-page: 216 article-title: A role for synaptic vesicles in non‐neuronal cells: Clues from pancreatic β cells and from chromaffin cells publication-title: FASEB J – volume: 115 start-page: 151 year: 1991 end-page: 164 article-title: Colocalization of synaptophysin with transferrin receptors: Implications for synaptic vesicle biogenesis publication-title: J Cell Biol – volume: 8 start-page: 2863 year: 1989 end-page: 2872 article-title: Synaptophysin is targeted to similar microvesicles in CHO and PC12 cells publication-title: EMBO J – volume: 4 start-page: 1180 year: 1992 end-page: 1190 article-title: Widespread distribution of synaptophysin, a synaptic vesicle glycoprotein, in growing neurites and growth cones publication-title: Eur J Neurosci – volume: 283 start-page: 443 year: 1996 end-page: 454 article-title: Synaptotagmin I, synaptobrevin II, and syntaxin I are coexpressed in rat and gerbil pinealocytes publication-title: Cell Tissue Res – volume: 16 start-page: 113 year: 1994 end-page: 120 article-title: Current methodologies for the study of pineal morphophysiology publication-title: J Pineal Res – volume: 2 start-page: 491 year: 1981 end-page: 510 article-title: Pineal cells in monolayer culture publication-title: Adv Cell Neurobiol – volume: 14 start-page: 6695 year: 1994 end-page: 6706 article-title: Synaptogenesis in hippocampal cultures: Evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development publication-title: J Neurosci – volume: 267 start-page: 493 year: 1992 end-page: 498 article-title: Immunocytochemical demonstration of rod‐opsin, S‐antigen, and neuron‐specific proteins in the human pineal gland publication-title: Cell Tissue Res – volume: 184 start-page: 117 year: 1995 end-page: 120 article-title: The ras‐like rab3A protein is present in pinealocytes of the gerbil pineal gland publication-title: Neurosci Lett – volume: 62 start-page: 101 year: 1995 end-page: 110 article-title: Differential distribution of synaptotagmin I and rab3 in the anterior pituitary of four mammalian species publication-title: Neuroendocrinology – volume: 405 start-page: 397 year: 1988 end-page: 419 article-title: Characterization of membrane currents in dissociated adult rat pineal cells publication-title: J Physiol – volume: 22 start-page: 572 year: 1993 end-page: 581 article-title: Dense accumulations of synaptic‐like microvesicles in ‘dark’ pinealocytes of the gerbil pineal gland publication-title: J Neurocytol – volume: 44 start-page: 13 year: 1987 end-page: 23 – volume: 34 start-page: 79 year: 1993 end-page: 96 article-title: Synaptophysin—a common constituent of presumptive secretory microvesicles in the mammalian pinealocyte: A study of rat and gerbil pineal glands publication-title: J Neurosci Res – volume: 21 start-page: 29 year: 1996 end-page: 34 article-title: Rat and gerbil pinealocytes contain the synaptosomal‐associated protein 25 (SNAP‐25) publication-title: J Pineal Res – volume: 17 start-page: 93 year: 1993 end-page: 100 article-title: Traffic of synaptic vesicle proteins in polarized and nonpolarized cells publication-title: J Cell Sci (Suppl – volume: 231 start-page: 473 year: 1991 end-page: 481 article-title: Application of confocal laser scanning microscopy to the deep pineal gland and other neural tissues publication-title: Anat Rec – volume: 10 start-page: 3589 year: 1991 end-page: 3601 article-title: Newly synthesized synaptophysin is transported to synaptic‐like micro‐vesicles via constitutive secretory vesicles and the plasma membrane publication-title: EMBO J – volume: 129 start-page: 2655 year: 1991 end-page: 2662 article-title: Bovine pinealocytes in monolayer culture: Studies on the adrenergic regulation of melatonin secretion publication-title: Endocrinology – volume: 610 start-page: 108 year: 1993 end-page: 114 article-title: Immunocytochemical demonstration of nerve growth factor (NGF) receptor in the pineal gland: Effect of NGF on pinealocyte neurite formation publication-title: Brain Res – volume: 27 start-page: 163 year: 1995 end-page: 175 article-title: Calcium responses of isolated, immunocytochemically identified rat pinealocytes to noradrenergic, cholinergic and vasopressinergic stimulations publication-title: Neurochem Int – volume: 110 start-page: 1693 year: 1990 end-page: 1703 article-title: Biogenesis of synaptic vesicle‐like structures in a pheochromocytoma cell line PC‐12 publication-title: J Cell Biol – volume: 115 start-page: 151 year: 1991 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB5 publication-title: J Cell Biol doi: 10.1083/jcb.115.1.151 contributor: fullname: Cameron – volume: 129 start-page: 2655 year: 1991 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB33 publication-title: Endocrinology doi: 10.1210/endo-129-5-2655 contributor: fullname: Rüppel – volume: 12 start-page: 446 year: 1994 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB8 publication-title: TIPS contributor: fullname: DeCamilli – volume: 4 start-page: 1180 year: 1992 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB21 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.1992.tb00143.x contributor: fullname: Phelan – volume: 283 start-page: 443 year: 1996 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB24 publication-title: Cell Tissue Res doi: 10.1007/s004410050555 contributor: fullname: Redecker – volume: 2 start-page: 491 year: 1981 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB32 publication-title: Adv Cell Neurobiol doi: 10.1016/B978-0-12-008302-2.50017-1 contributor: fullname: Rowe – volume: 11 start-page: 1617 year: 1991 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB9 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.11-06-01617.1991 contributor: fullname: Fletcher – volume: 21 start-page: 29 year: 1996 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB29 publication-title: J Pineal Res doi: 10.1111/j.1600-079X.1996.tb00267.x contributor: fullname: Redecker – volume: 127 start-page: 1589 year: 1994 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB14 publication-title: J Cell Biol doi: 10.1083/jcb.127.6.1589 contributor: fullname: Leube – volume: 14 start-page: 6402 year: 1994 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB4 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.14-11-06402.1994 contributor: fullname: Basarsky – volume: 19 start-page: 40 year: 1995 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB17 publication-title: J Pineal Res doi: 10.1111/j.1600-079X.1995.tb00169.x contributor: fullname: McNulty – volume: 17 start-page: 93 year: 1993 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB6 publication-title: J Cell Sci (Suppl doi: 10.1242/jcs.1993.Supplement_17.14 contributor: fullname: Cameron – volume: 22 start-page: 572 year: 1993 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB22 publication-title: J Neurocytol doi: 10.1007/BF01189044 contributor: fullname: Redecker – volume: 610 start-page: 108 year: 1993 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB16 publication-title: Brain Res doi: 10.1016/0006-8993(93)91223-F contributor: fullname: McNulty – volume: 27 start-page: 163 year: 1995 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB34 publication-title: Neurochem Int doi: 10.1016/0197-0186(95)00029-8 contributor: fullname: Schomerus – volume: 44 start-page: 13 volume-title: Fundamentals and Clinics in Pineal research year: 1987 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB36 contributor: fullname: Vollrath – volume: 267 start-page: 493 year: 1992 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB11 publication-title: Cell Tissue Res doi: 10.1007/BF00319371 contributor: fullname: Huang – volume: 25 start-page: 155 year: 1988 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB2 publication-title: Cell Differ Dev doi: 10.1016/0922-3371(88)90008-1 contributor: fullname: Araki – volume: 278 start-page: 579 year: 1994 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB26 publication-title: Cell Tissue Res doi: 10.1007/BF00331377 contributor: fullname: Redecker – volume: 6 start-page: 561 year: 1994 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB19 publication-title: Curr Opin Cell Biol doi: 10.1016/0955-0674(94)90077-9 contributor: fullname: Mundigl – volume: 10 start-page: 3589 year: 1991 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB31 publication-title: EMBO J doi: 10.1002/j.1460-2075.1991.tb04925.x contributor: fullname: Régnier-Vigouroux – volume: 367 start-page: 233 year: 1995 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB18 publication-title: FEBS Lett doi: 10.1016/0014-5793(95)00559-R contributor: fullname: Moriyama – volume: 181 start-page: 433 year: 1990 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB27 publication-title: Anat Embryol doi: 10.1007/BF02433790 contributor: fullname: Redecker – volume: 231 start-page: 473 year: 1991 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB38 publication-title: Anat Rec doi: 10.1002/ar.1092310410 contributor: fullname: Welsh – volume: 34 start-page: 79 year: 1993 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB25 publication-title: J Neurosci Res doi: 10.1002/jnr.490340109 contributor: fullname: Redecker – volume: 62 start-page: 101 year: 1995 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB28 publication-title: Neuroendocrinology doi: 10.1159/000126994 contributor: fullname: Redecker – volume: 8 start-page: 2863 year: 1989 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB13 publication-title: EMBO J doi: 10.1002/j.1460-2075.1989.tb08434.x contributor: fullname: Johnston – volume: 122 start-page: 1207 year: 1993 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB20 publication-title: J Cell Biol doi: 10.1083/jcb.122.6.1207 contributor: fullname: Mundigl – volume: 110 start-page: 1693 year: 1990 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB7 publication-title: J Cell Biol doi: 10.1083/jcb.110.5.1693 contributor: fullname: Clift-O'Grady – volume: 10 start-page: 1275 year: 1991 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB30 publication-title: EMBO J doi: 10.1002/j.1460-2075.1991.tb08069.x contributor: fullname: Reetz – volume: 54 start-page: 333 year: 1985 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB12 publication-title: Immunology contributor: fullname: Jefferies – volume: 16 start-page: 113 year: 1994 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB37 publication-title: J Pineal Res doi: 10.1111/j.1600-079X.1994.tb00090.x contributor: fullname: Welsh – volume: 24 start-page: 301 year: 1995 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB15 publication-title: J Neurocytol doi: 10.1007/BF01186542 contributor: fullname: Lowenstein – volume: 14 start-page: 6695 year: 1994 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB10 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.14-11-06695.1994 contributor: fullname: Fletcher – volume: 8 start-page: 209 year: 1994 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB35 publication-title: FASEB J doi: 10.1096/fasebj.8.2.7907072 contributor: fullname: Thomas-Reetz – volume: 405 start-page: 397 year: 1988 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB1 publication-title: J Physiol doi: 10.1113/jphysiol.1988.sp017339 contributor: fullname: Aguayo – volume: 184 start-page: 117 year: 1995 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB23 publication-title: Neurosci Lett doi: 10.1016/0304-3940(94)11184-K contributor: fullname: Redecker – volume: 20 start-page: 57 year: 1994 ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB3 publication-title: Neuroscience Res doi: 10.1016/0168-0102(94)90022-1 contributor: fullname: Araki |
SSID | ssj0009953 |
Score | 1.6262583 |
Snippet | Pinealocytes of various mammalian species contain abundant synaptic‐like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal... Pinealocytes of various mammalian species contain abundant synaptic-like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 509 |
SubjectTerms | Animals Cells, Cultured Gerbillinae Immunohistochemistry Membrane Proteins - metabolism Membrane Proteins - ultrastructure Meriones unguiculatus Microscopy, Confocal Pineal Gland - metabolism Pineal Gland - ultrastructure Synaptic Membranes - metabolism Synaptic Membranes - ultrastructure synaptic-like microvesicles synaptobrevin synaptophysin synaptotagmin transferrin receptor |
Title | Expression of synaptic membrane proteins in gerbil pinealocytes in primary culture |
URI | https://api.istex.fr/ark:/67375/WNG-62PWH1CD-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F%28SICI%291097-4547%2819970301%2947%3A5%3C509%3A%3AAID-JNR6%3E3.0.CO%3B2-L https://www.ncbi.nlm.nih.gov/pubmed/9067860 https://search.proquest.com/docview/15913340 https://search.proquest.com/docview/78884352 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3da9swEBelg7GXfXVlafehh6W0D05jyZajbBQyJ11SumRkK-2bkGx5hDZOaRJoxv6V_a-7s-KUbh17GQz8YBvb5zufTj_pTj8T8obxUAaJbz0DIdILsizwNEsk-LLNGjzDTBIucP7YF92T4OgsPFsj38u1MI4fYjXhhi2jiNfYwLWZ7t-QhgIA-9yLezBgxiQqcndHSG0kJfowRAEJx7wVVnkMfSLswdbqtb2j_lBUeYfX6rV4UOXvmXcMAdznEdaDtYc33FNSOgpLLuowyPLZfXKwFL6_i4L3VmJ3S6F7QdQM34G4ZrMUdeAEvQUxt3q-e_gRr--CtbdRctHNHT4iP0oDueqW89p8ZmrJt1-4I_-XBR-Th0v8TFvO4Z-QNZs_JRutXM8m4wXdoUVFa5Eq2CDDzvWyzDenk4xOF7mGAJnQsR3Da-eWFiQVo3xKRzn9Cv41uqCXoJWGDn4BEBxPXzo2DuoYSuwzcnLY-RJ3veU_JLwk4Fx4MoThgzWA7FIb1v00aWQJuKfUjFu_YbnkQT2IdGiMb6yIWGi0TDOhuYiMH6Wab5L1fJLb57i6XfLEmgbn1gLsMTA2ibQvEmPTLGKJqJBB-X3V8uWUI4VmSqGhXbYfzaxKIyvYDxWYVykwrULTKq7qKh4opo4rZKdwk9Xj9NU5FuJFoTrtf1CCfTrt-nFbxRXyuvQjBeEBcz5gxcl8qgCt-hx0_PMVOAcCmJlVyKZzwJU0iUhGwK2Dwot-U-qvOt2hUnG89c-fuE0eOF5hLA58QdZnV3P7EtDizLwqWvVP6LZIyA |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3db9MwELfGJgEvfI2J8jU_0Gl7SNfYiVMXNKmkHe3oWlQ2bW-WnTqoGk2ntZNWJP4V_lbu4qbTYIgXJKQ8JFGSy13O5599518IecN4KIPEt56BEOkFaRp4miUSfNmmNZ5iJgkXOB_2RPs4ODgNT1fI92ItjOOHWE64YcvI4zU2cJyQ3r1mDQUE9rkTd2DEjFlUJO-OkNtISnRiCAMSjnkjLPMYOkXYg63RaXoHvYEo8xavVCtxv8zfM697h6xBvOD454fm4Jp9SkpHYslFFYZZPrtL9hbSd7dR8s5S7nYhdSeI6uE7kFevF7L2nKS3IOdG37eGn_HqNmB7EyfnHd3-Q_KjMJGrbzmrXM5MJfn2C3vkf7PhI_JgAaFpw_n8Y7JisydkvZHp2WQ8p1s0L2rNswXrZNC6WlT6ZnSS0uk80xAjEzq2Y3jvzNKcp2KUTekoo1_AxUZf6TmopaGPnwMKx9PnjpCDOpIS-5Qc77eO4ra3-I2ElwScC0-GMIKwBsDd0IZVf5jU0gQ8VGrGrV-zXPKgGkQ6NMY3VkQsNFoOU6G5iIwfDTXfIKvZJLPPcIG75Ik1Nc6tBeRjYHgSaV8kxg7TiCWiRPrFB1aLl1OOF5ophYZ2CX80syqMrGA_VGBepcC0Ck2ruKqquK-Y6pbIVu4ny8fpizOsxYtCddL7oAT7dNL246aKS2SzcCQFEQLTPmDFyeVUAWD1Oej45ytwGgRgMyuRDeeBS2kSwYyAW_u5G_2m1F91ukWl_Pj5P3_iJrnXPjrsqm6n9_EFue9ohrFW8CVZnV1c2lcAHmfmdd7EfwKFHEzg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3dT9swELcYSGgv-2Jo3Rd-WBE8pCR24tTdhNSl7VrWtagMwZtlJw6qoGlFW4lO-1f2v-4cN0VsTHuZNCkPSZTkcpfz-Wff-ReE3hEacD_2tKMgRDp-mvqOJDEHX9ZplaYmk2QWOH_psfapf3QenK-h78VaGMsPsZpwMy0jj9emgU-S9OCWNBQA2Ekn6sCA2SRRDXd3aKiNODc-DFGAwzGtB2UaQZ8Ie7DVOw3nqDdgZdqkFbcS9cv0I3G6D9CGzwA6G0g1uCWf4txyWFLmwijLI5vocCn9YM9I3l_J3Suk7vthLfgA8mq1QtahlfQe5Nzp-jbMV7y5D9fehcl5P9d6jH4UFrLlLZeV-UxV4m-_kEf-LxM-QY-WABrXrcc_RWs6e4a26pmcjUcLvIvzktY8V7CFBs2bZZ1vhscpni4yCREyxiM9gtfONM5ZKobZFA8zfAEONrzCE9BKQg-_AAxuTk8sHQe2FCX6OTptNb9GbWf5Ewkn9illDg9g_KAVQLtEB66XxNU0Bv_kklDtVTXl1Hf9UAZKeUqzkARK8iRlkrJQeWEi6TZaz8aZfmGWt3Maa1WlVGvAPQoGJ6H0WKx0koYkZiXUL76vWL6csKzQRAhjaJvuN2YWhZEF7AcCzCsEmFYY0woqXBH1BRHdEtrN3WT1OHl9aSrxwkCc9T4JRo7P2l7UEFEJ7RR-JCA-mKQPWHE8nwqAqx4FHf98hZkEAdBMSmjbOuBKGjdQhsGt_dyLflPqrzrdo1J-_PKfP3EHbR43WqLb6X1-hR5ajmFTKPgarc-u5_oNIMeZeps38J8tiEuP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expression+of+synaptic+membrane+proteins+in+gerbil+pinealocytes+in+primary+culture&rft.jtitle=Journal+of+neuroscience+research&rft.au=Redecker%2C+P.&rft.au=Pabst%2C+H.&rft.au=Gebert%2C+A.&rft.au=Steinlechner%2C+S.&rft.date=1997-03-01&rft.issn=0360-4012&rft.eissn=1097-4547&rft.volume=47&rft.issue=5&rft.spage=509&rft.epage=520&rft_id=info:doi/10.1002%2F%28SICI%291097-4547%2819970301%2947%3A5%3C509%3A%3AAID-JNR6%3E3.0.CO%3B2-L&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002__SICI_1097_4547_19970301_47_5_509__AID_JNR6_3_0_CO_2_L |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-4012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-4012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-4012&client=summon |