Expression of synaptic membrane proteins in gerbil pinealocytes in primary culture

Pinealocytes of various mammalian species contain abundant synaptic‐like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal synaptic vesicles. Although the pinealocyte may thus be a suitable cellular model for experimental in vitro studies of SLMVs, nothing is known abou...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience research Vol. 47; no. 5; pp. 509 - 520
Main Authors Redecker, P., Pabst, H., Gebert, A., Steinlechner, S.
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.03.1997
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pinealocytes of various mammalian species contain abundant synaptic‐like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal synaptic vesicles. Although the pinealocyte may thus be a suitable cellular model for experimental in vitro studies of SLMVs, nothing is known about the presence of SLMVs in isolated pinealocytes maintained under tissue culture conditions. In the present investigation, we prepared dissociated primary cultures of gerbil pinealocytes to study the expression and distribution of protein components of synaptic vesicles/SLMVs and the presynaptic plasmalemma in pinealocytes kept in vitro. Using immunofluorescence microscopy, we found that cultured pinealocytes readily expressed all synaptic membrane proteins investigated, i.e., synaptophysin, synaptotagmin I, synaptobrevin II, syntaxin I and SNAP‐25. Punctate immunoreactivity for the vesicle‐associated proteins could be detected throughout the cell bodies of pinealocytes and was also distributed into all of their processes which began to develop within the first days in culture. Outgrowing processes exhibited growth cone‐like structures which were enriched in synaptic vesicle‐associated proteins. After 1 week in vitro, pinealocytes had frequently formed an elaborate network of long interwoven processes. Accumulations of synaptic vesicle‐associated proteins were observed in varicosities and terminal swellings of the processes. The vesicle‐rich process swellings often established synaptic‐like contacts with somata and processes of other pinealocytes. Some of the pinealocyte processes possessed additional axon‐like properties as demonstrated by their lack of immunoreactivity for the somato‐dendritic marker MAP2 and the transferrin receptor. The comparison of the staining patterns for synaptophysin and the endocytotic marker transferrin receptor by confocal laser scanning microscopy revealed a largely differential intracellular distribution of the two proteins. This may indicate that a substantial fraction of pinealocyte SLMVs by‐passes the early endosomal‐related recycling pathway of SLMVs. Herewith, we have shown that isolated gerbil pinealocytes maintained in primary culture can acquire morphological and neurochemical traits which closely mimick those observed in vivo. In particular, these cultures permit experimental studies of the compartment of pinealocyte SLMVs which seem to make up a major secretory pathway for paracrine intrapineal communication. © 1997 Wiley‐Liss Inc.
AbstractList Pinealocytes of various mammalian species contain abundant synaptic-like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal synaptic vesicles. Although the pinealocytes may thus be a suitable cellular model for experimental in vitro studies of SLMVs, nothing is known about the presence of SLMVs in isolated pinealocytes maintained under tissue culture conditions. In the present investigation, we prepared dissociated primary cultures of gerbil pinealocytes to study the expression and distribution of protein components of synaptic vesicles/SLMVs and the presynaptic plasmalemma in pinealocytes kept in vitro. Using immunofluorescence microscopy, we found that cultured pinealocytes readily expressed all synaptic membrane proteins investigated, i.e., synaptophysin, synaptotagmin I, synaptobrevin II, syntaxin I and SNAP-25. Punctuate immunoreactivity for the vesicle-associated proteins could be detected throughout the cell bodies of pinealocytes and was also distributed into all of their processes which began to develop within the first days in culture. Outgrowing processes exhibited growth cone-like structures which were enriched in synaptic vesicle-associated proteins. After 1 week in vitro, pinealocytes had frequently formed an elaborate network of long interwoven processes. Accumulations of synaptic vesicle-associated proteins were observed in varicosities and terminal swellings of the processes. The vesicle-rich process swellings often established synaptic-like process swellings often established synaptic-like contacts with somata and processes of other pinealocytes. Some of the pinealocyte processes possessed additional axon-like properties as demonstrated by their lack of immunoreactivity for the somato-dendritic marker MAP2 and the transferrin receptor. The comparison of the staining patterns for synaptophysin and the endocytotic marker transferrin receptor by confocal laser scanning microscopy revealed a largely differential intracellular distribution of the two proteins. This may indicate that a substantial fraction of pinealocyte SLMVs by-passes the early endosomal-related recycling pathway of SLMVs. Herewith, we have shown that isolated gerbil pinealocytes maintained in primary culture can acquire morphological and neurochemical traits which closely mimick those observed in vivo. In particular, these cultures permit experimental studies of the compartment of pinealocyte SLMVs which seem to make up a major secretory pathway for paracrine intrapineal communication.
Pinealocytes of various mammalian species contain abundant synaptic‐like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal synaptic vesicles. Although the pinealocyte may thus be a suitable cellular model for experimental in vitro studies of SLMVs, nothing is known about the presence of SLMVs in isolated pinealocytes maintained under tissue culture conditions. In the present investigation, we prepared dissociated primary cultures of gerbil pinealocytes to study the expression and distribution of protein components of synaptic vesicles/SLMVs and the presynaptic plasmalemma in pinealocytes kept in vitro. Using immunofluorescence microscopy, we found that cultured pinealocytes readily expressed all synaptic membrane proteins investigated, i.e., synaptophysin, synaptotagmin I, synaptobrevin II, syntaxin I and SNAP‐25. Punctate immunoreactivity for the vesicle‐associated proteins could be detected throughout the cell bodies of pinealocytes and was also distributed into all of their processes which began to develop within the first days in culture. Outgrowing processes exhibited growth cone‐like structures which were enriched in synaptic vesicle‐associated proteins. After 1 week in vitro, pinealocytes had frequently formed an elaborate network of long interwoven processes. Accumulations of synaptic vesicle‐associated proteins were observed in varicosities and terminal swellings of the processes. The vesicle‐rich process swellings often established synaptic‐like contacts with somata and processes of other pinealocytes. Some of the pinealocyte processes possessed additional axon‐like properties as demonstrated by their lack of immunoreactivity for the somato‐dendritic marker MAP2 and the transferrin receptor. The comparison of the staining patterns for synaptophysin and the endocytotic marker transferrin receptor by confocal laser scanning microscopy revealed a largely differential intracellular distribution of the two proteins. This may indicate that a substantial fraction of pinealocyte SLMVs by‐passes the early endosomal‐related recycling pathway of SLMVs. Herewith, we have shown that isolated gerbil pinealocytes maintained in primary culture can acquire morphological and neurochemical traits which closely mimick those observed in vivo. In particular, these cultures permit experimental studies of the compartment of pinealocyte SLMVs which seem to make up a major secretory pathway for paracrine intrapineal communication. © 1997 Wiley‐Liss Inc.
Pinealocytes of various mammalian species contain abundant synaptic-like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal synaptic vesicles. Although the pinealocyte may thus be a suitable cellular model for experimental in vitro studies of SLMVs, nothing is known about the presence of SLMVs in isolated pinealocytes maintained under tissue culture conditions. In the present investigation, we prepared dissociated primary cultures of gerbil pinealocytes to study the expression and distribution of protein components of synaptic vesicles/SLMVs and the presynaptic plasmalemma in pinealocytes kept in vitro. Using immunofluorescence microscopy, we found that cultured pinealocytes readily expressed all synaptic membrane proteins investigated, i.e., synaptophysin, synaptotagmin I, synaptobrevin II, syntaxin I and SNAP-25. Punctate immunoreactivity for the vesicle-associated proteins could be detected throughout the cell bodies of pinealocytes and was also distributed into all of their processes which began to develop within the first days in culture. Outgrowing processes exhibited growth conelike structures which were enriched in synaptic vesicleassociated proteins. After 1 week in vitro, pinealocytes had frequently formed an elaborate network of long interwoven processes. Accumulations of synaptic vesicle-associated proteins were observed in varicosities and terminal swellings of the processes. The vesicle-rich process swellings often established synaptic-like contacts with somata and processes of other pinealocytes. Some of the pinealocyte processes possessed additional axon-like properties as demonstrated by their lack of immunoreactivity for the somato-dendritic marker MAP2 and the transferrin receptor. The comparison of the staining patterns for synaptophysin and the endocytotic marker transferrin receptor by confocal laser scanning microscopy revealed a largely differential intracellular distribution of the two proteins. This may indicate that a substantial fraction of pinealocyte SLMVs by-passes the early endosomal-related recycling pathway of SLMVs. Herewith, we have shown that isolated gerbil pinealocytes maintained in primary culture can acquire morphological and neurochemical traits which closely mimic those observed in vivo. In particular, these cultures permit experimental studies of the compartment of pinealocyte SLMVs which seem to make up a major secretory pathway for paracrine intrapineal communication.
Author Steinlechner, S.
Gebert, A.
Redecker, P.
Pabst, H.
Author_xml – sequence: 1
  givenname: P.
  surname: Redecker
  fullname: Redecker, P.
  organization: Department of Anatomy 1, Hannover Medical School, Hannover, Germany
– sequence: 2
  givenname: H.
  surname: Pabst
  fullname: Pabst, H.
  organization: Institute of Zoology, Hannover Veterinary School, Hannover, Germany
– sequence: 3
  givenname: A.
  surname: Gebert
  fullname: Gebert, A.
  organization: Department of Anatomy 2, Hannover Medical School, Hannover, Germany
– sequence: 4
  givenname: S.
  surname: Steinlechner
  fullname: Steinlechner, S.
  organization: Institute of Zoology, Hannover Veterinary School, Hannover, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9067860$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1UVKaFn4CUFWoXGa7j2I6HqlKVlnbQqIPKo8srJ7lBgbyIE9H59ySdYViA1JUfOj7n-H5H7KBuamLsnMOcAwRvTz4t4-UpB6P9UIb6hBujQQA_DfVCnkkwi8XF8tL_cHunzsUc5vH6XeCvnrHZ_skBm4FQ4IfAgxfsyLnvAGCMFIfs0IDSkYIZu7t6aDtyrmhqr8k9t6lt2xepV1GVdLYmr-2anoraeUXtfaMuKUqvLWqyZZNuenq8bruist3GS4eyHzp6yZ7ntnT0arcesy_vrz7HN_5qfb2ML1Z-GgqhfCO1DiiBQGYkgWdplKdCGmMDQTwiYUQIobYySXhCSgcysSbLlRVKJ1xnVhyzN1vfseLPgVyPVeFSKsuxdjM41FEUhUIGTwq5NFyMaaPw61aYdo1zHeW4-xpywIkK4kQFpxHjNGL8QwXHvcSRCuJIBScqKBAwXmOAq9H49a7BkFSU7W13GP4G_ypK2vyT-mTofzIfz6OxvzUuXE8Pe2Pb_UClhZZ4f3uNKvh4f8PjS4zFbxZEuT4
Cites_doi 10.1083/jcb.115.1.151
10.1210/endo-129-5-2655
10.1111/j.1460-9568.1992.tb00143.x
10.1007/s004410050555
10.1016/B978-0-12-008302-2.50017-1
10.1523/JNEUROSCI.11-06-01617.1991
10.1111/j.1600-079X.1996.tb00267.x
10.1083/jcb.127.6.1589
10.1523/JNEUROSCI.14-11-06402.1994
10.1111/j.1600-079X.1995.tb00169.x
10.1242/jcs.1993.Supplement_17.14
10.1007/BF01189044
10.1016/0006-8993(93)91223-F
10.1016/0197-0186(95)00029-8
10.1007/BF00319371
10.1016/0922-3371(88)90008-1
10.1007/BF00331377
10.1016/0955-0674(94)90077-9
10.1002/j.1460-2075.1991.tb04925.x
10.1016/0014-5793(95)00559-R
10.1007/BF02433790
10.1002/ar.1092310410
10.1002/jnr.490340109
10.1159/000126994
10.1002/j.1460-2075.1989.tb08434.x
10.1083/jcb.122.6.1207
10.1083/jcb.110.5.1693
10.1002/j.1460-2075.1991.tb08069.x
10.1111/j.1600-079X.1994.tb00090.x
10.1007/BF01186542
10.1523/JNEUROSCI.14-11-06695.1994
10.1096/fasebj.8.2.7907072
10.1113/jphysiol.1988.sp017339
10.1016/0304-3940(94)11184-K
10.1016/0168-0102(94)90022-1
ContentType Journal Article
Copyright Copyright © 1997 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 1997 Wiley‐Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
DOI 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1097-4547
EndPage 520
ExternalDocumentID 10_1002__SICI_1097_4547_19970301_47_5_509__AID_JNR6_3_0_CO_2_L
9067860
JNR6
ark_67375_WNG_62PWH1CD_C
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
ZGI
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
ID FETCH-LOGICAL-c4336-95772eb025de501dc8fc3599a23e18e3934047a5bb1be6725ba9df6a367b17da3
IEDL.DBID DR2
ISSN 0360-4012
IngestDate Fri Aug 16 23:28:17 EDT 2024
Fri Aug 16 00:47:53 EDT 2024
Fri Aug 23 00:43:33 EDT 2024
Sat Sep 28 07:36:43 EDT 2024
Sat Aug 24 00:54:56 EDT 2024
Wed Oct 30 09:52:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4336-95772eb025de501dc8fc3599a23e18e3934047a5bb1be6725ba9df6a367b17da3
Notes ark:/67375/WNG-62PWH1CD-C
istex:EEF166E0105C013D6E40E8BD66B0F8182F18CE14
ArticleID:JNR6
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 9067860
PQID 15913340
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_78884352
proquest_miscellaneous_15913340
crossref_primary_10_1002__SICI_1097_4547_19970301_47_5_509__AID_JNR6_3_0_CO_2_L
pubmed_primary_9067860
wiley_primary_10_1002_SICI_1097_4547_19970301_47_5_509_AID_JNR6_3_0_CO_2_L_JNR6
istex_primary_ark_67375_WNG_62PWH1CD_C
PublicationCentury 1900
PublicationDate 1997-03-01
1 March 1997
1997-Mar-01
19970301
PublicationDateYYYYMMDD 1997-03-01
PublicationDate_xml – month: 03
  year: 1997
  text: 1997-03-01
  day: 01
PublicationDecade 1990
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of neuroscience research
PublicationTitleAlternate J. Neurosci. Res
PublicationYear 1997
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References McNulty JA, Tsai S-Y, Fox LM, Madsen TM, Silberman S, Tonder N (1995): Neurotrophic effects of the pineal gland: role of non-neuronal cells in co-cultures of the pineal gland and superior cervical ganglia. J Pineal Res 19: 40-50.
Redecker P, Bargsten G (1993): Synaptophysin-a common constituent of presumptive secretory microvesicles in the mammalian pinealocyte: A study of rat and gerbil pineal glands. J Neurosci Res 34: 79-96.
Mundigl O, Matteoli M, Daniell L, Thomas-Reetz A, Metcalf A, Jahn R, DeCamilli P (1993): Synaptic vesicle proteins and early endosomes in cultured hippocampal neurons: Differential effects of brefeldin A in axon and dendrites. J Cell Biol 122: 1207-1221.
Redecker P (1995): The ras-like rab3A protein is present in pinealocytes of the gerbil pineal gland. Neurosci Lett 184: 117-120.
Araki M, Watanabe K, Tokunaga F, Nonaka T (1988): Phenotypic expression of photoreceptor and endocrine cell properties by cultured pineal cells of the newborn rat. Cell Differ Dev 25: 155-164.
Thomas-Reetz AC, DeCamilli P (1994): A role for synaptic vesicles in non-neuronal cells: Clues from pancreatic β cells and from chromaffin cells. FASEB J 8: 209-216.
Welsh MG (1994): Current methodologies for the study of pineal morphophysiology. J Pineal Res 16: 113-120.
Rüppel R, Olcese J (1991): Bovine pinealocytes in monolayer culture: Studies on the adrenergic regulation of melatonin secretion. Endocrinology 129: 2655-2662.
Moriyama Y, Yamamoto A (1995): Microvesicles isolated from bovine pineal gland specifically accumulate L-glutamate. FEBS Lett 367: 233-236.
DeCamilli P (1994): Co-secretion of multiple signal molecules from endocrine cells via distinct exocytotic pathways. TIPS 12: 446-448.
Redecker P (1993): Dense accumulations of synaptic-like microvesicles in 'dark' pinealocytes of the gerbil pineal gland. J Neurocytol 22: 572-581.
Reetz A, Solimena M, Matteoli M, Folli F, Takei K, DeCamilli P (1991): GABA and pancreatic β-cells: Colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J 10: 1275-1284.
Redecker P, Cetin Y, Grube D (1995): Differential distribution of synaptotagmin I and rab3 in the anterior pituitary of four mammalian species. Neuroendocrinology 62: 101-110.
Jefferies WA, Brandon MR, Williams AF, Hunt SV (1985): Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor. Immunology 54: 333-341.
Phelan P, Gordon-Weeks PR (1992): Widespread distribution of synaptophysin, a synaptic vesicle glycoprotein, in growing neurites and growth cones. Eur J Neurosci 4: 1180-1190.
Régnier-Vigouroux A, Tooze SA, Huttner WB (1991): Newly synthesized synaptophysin is transported to synaptic-like micro-vesicles via constitutive secretory vesicles and the plasma membrane. EMBO J 10: 3589-3601.
Fletcher TL, Cameron P, DeCamilli P, Banker G (1991): The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture. J Neurosci 11: 1617-1626.
Redecker P (1996): Synaptotagmin I, synaptobrevin II, and syntaxin I are coexpressed in rat and gerbil pinealocytes. Cell Tissue Res 283: 443-454.
Schomerus C, Laedtke E, Korf H-W (1995): Calcium responses of isolated, immunocytochemically identified rat pinealocytes to noradrenergic, cholinergic and vasopressinergic stimulations. Neurochem Int 27: 163-175.
Cameron PL, Südhof TC, Jahn R, DeCamilli P (1991): Colocalization of synaptophysin with transferrin receptors: Implications for synaptic vesicle biogenesis. J Cell Biol 115: 151-164.
Huang S-K, Klein DC, Korf H-W (1992): Immunocytochemical demonstration of rod-opsin, S-antigen, and neuron-specific proteins in the human pineal gland. Cell Tissue Res 267: 493-498.
Basarsky TA, Parpura V, Haydon PG (1994): Hippocampal synaptogenesis in cell culture: Developmental time course of synapse formation, calcium influx, and synaptic protein distribution. J Neurosci 14: 6402-6411.
Mundigl O, DeCamilli P (1994) Formation of synaptic vesicles. Curr Opin Cell Biol 6: 561-567.
Redecker P, Weyer C, Grube D (1996): Rat and gerbil pinealocytes contain the synaptosomal-associated protein 25 (SNAP-25). J Pineal Res 21: 29-34.
Leube RE, Leimer U, Grund C, Franke WW, Harth N, Wiedenmann B (1994): Sorting of synaptophysin into special vesicles in nonneuroendocrine epithelial cells. J Cell Biol 127: 1589-1601.
Cameron P, Mundigl O, DeCamilli P (1993): Traffic of synaptic vesicle proteins in polarized and nonpolarized cells. J Cell Sci (Suppl 17):93-100.
McNulty JA, Fox LM, Silberman S (1993): Immunocytochemical demonstration of nerve growth factor (NGF) receptor in the pineal gland: Effect of NGF on pinealocyte neurite formation. Brain Res 610: 108-114.
Fletcher TL, DeCamilli P, Banker G (1994): Synaptogenesis in hippocampal cultures: Evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J Neurosci 14: 6695-6706.
Redecker P, Veh RW (1994): Glutamate immunoreactivity is enriched over pinealocytes of the gerbil pineal gland. Cell Tissue Res 278: 579-588.
Welsh MG, Ding JM, Buggy J, Terracio L (1991): Application of confocal laser scanning microscopy to the deep pineal gland and other neural tissues. Anat Rec 231: 473-481.
Johnston PA, Cameron PL, Stukenbrok H, Jahn R, DeCamilli P, Südhof TC (1989): Synaptophysin is targeted to similar microvesicles in CHO and PC12 cells. EMBO J 8: 2863-2872.
Rowe V, Steinberg V, Parr J (1981): Pineal cells in monolayer culture. Adv Cell Neurobiol 2: 491-510.
Araki M, Nonaka T, Akagawa K, Kimura H, Mashiko T (1994): Developing rat pineal cells manifest potential of neuronal differentiation in vitro. Neuroscience Res 20: 57-69.
Lowenstein PR, Shering AF, Morrison E, Tomasec P, Bain D, Jacob TJC, Wu J, Prescott A, Castro MG (1995): Synaptogenesis and distribution of presynaptic axonal varicosities in low density primary cultures of neocortex: An immunocytochemical study utilizing synaptic vesicle-specific antibodies, and an electrophysiological examination utilizing whole cell recording. J Neurocytol 24: 301-317.
Clift-O'Grady L, Linstedt AD, Lowe AW, Grote E, Kelly RB (1990): Biogenesis of synaptic vesicle-like structures in a pheochromocytoma cell line PC-12. J Cell Biol 110: 1693-1703.
Redecker P, Grube D, Jahn R (1990): Immunohistochemical localization of synaptophysin (p38) in the pineal gland of the Mongolian gerbil (Meriones unguiculatus). Anat Embryol 181: 433-440.
Aguayo LG, Weight FF (1988): Characterization of membrane currents in dissociated adult rat pineal cells. J Physiol 405: 397-419.
1991; 231
1994; 278
1991; 10
1991; 11
1993; 22
1992; 267
1981; 2
1989; 8
1996; 283
1990; 181
1995; 19
1988; 405
1991; 115
1994; 20
1993; 122
1994; 8
1995; 62
1987; 44
1993; 34
1994; 127
1993; 17
1995; 27
1988; 25
1995; 24
1994; 12
1994; 14
1995; 367
1994; 16
1991; 129
1990; 110
1995; 184
1985; 54
1993; 610
1996; 21
1992; 4
1994; 6
Leube (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB14) 1994; 127
Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB26) 1994; 278
Phelan (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB21) 1992; 4
Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB23) 1995; 184
Vollrath (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB36) 1987; 44
Mundigl (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB20) 1993; 122
Schomerus (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB34) 1995; 27
Reetz (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB30) 1991; 10
Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB24) 1996; 283
Fletcher (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB10) 1994; 14
Régnier-Vigouroux (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB31) 1991; 10
Moriyama (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB18) 1995; 367
Johnston (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB13) 1989; 8
Welsh (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB38) 1991; 231
McNulty (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB16) 1993; 610
Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB25) 1993; 34
Thomas-Reetz (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB35) 1994; 8
Huang (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB11) 1992; 267
Cameron (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB5) 1991; 115
Lowenstein (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB15) 1995; 24
Basarsky (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB4) 1994; 14
Rowe (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB32) 1981; 2
Rüppel (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB33) 1991; 129
Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB28) 1995; 62
Cameron (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB6) 1993; 17
Jefferies (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB12) 1985; 54
Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB22) 1993; 22
Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB27) 1990; 181
DeCamilli (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB8) 1994; 12
Aguayo (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB1) 1988; 405
Clift-O'Grady (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB7) 1990; 110
Fletcher (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB9) 1991; 11
Araki (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB2) 1988; 25
Welsh (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB37) 1994; 16
Araki (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB3) 1994; 20
McNulty (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB17) 1995; 19
Redecker (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB29) 1996; 21
Mundigl (10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB19) 1994; 6
References_xml – volume: 20
  start-page: 57
  year: 1994
  end-page: 69
  article-title: Developing rat pineal cells manifest potential of neuronal differentiation in vitro
  publication-title: Neuroscience Res
– volume: 10
  start-page: 1275
  year: 1991
  end-page: 1284
  article-title: GABA and pancreatic β‐cells: Colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic‐like microvesicles suggests their role in GABA storage and secretion
  publication-title: EMBO J
– volume: 14
  start-page: 6402
  year: 1994
  end-page: 6411
  article-title: Hippocampal synaptogenesis in cell culture: Developmental time course of synapse formation, calcium influx, and synaptic protein distribution
  publication-title: J Neurosci
– volume: 278
  start-page: 579
  year: 1994
  end-page: 588
  article-title: Glutamate immunoreactivity is enriched over pinealocytes of the gerbil pineal gland
  publication-title: Cell Tissue Res
– volume: 24
  start-page: 301
  year: 1995
  end-page: 317
  article-title: Synaptogenesis and distribution of presynaptic axonal varicosities in low density primary cultures of neocortex: An immunocytochemical study utilizing synaptic vesicle‐specific antibodies, and an electrophysiological examination utilizing whole cell recording
  publication-title: J Neurocytol
– volume: 367
  start-page: 233
  year: 1995
  end-page: 236
  article-title: Microvesicles isolated from bovine pineal gland specifically accumulate L‐glutamate
  publication-title: FEBS Lett
– volume: 19
  start-page: 40
  year: 1995
  end-page: 50
  article-title: Neurotrophic effects of the pineal gland: role of non‐neuronal cells in co‐cultures of the pineal gland and superior cervical ganglia
  publication-title: J Pineal Res
– volume: 127
  start-page: 1589
  year: 1994
  end-page: 1601
  article-title: Sorting of synaptophysin into special vesicles in nonneuroendocrine epithelial cells
  publication-title: J Cell Biol
– volume: 181
  start-page: 433
  year: 1990
  end-page: 440
  article-title: Immunohistochemical localization of synaptophysin (p38) in the pineal gland of the Mongolian gerbil ( )
  publication-title: Anat Embryol
– volume: 6
  start-page: 561
  year: 1994
  end-page: 567
  article-title: Formation of synaptic vesicles
  publication-title: Curr Opin Cell Biol
– volume: 25
  start-page: 155
  year: 1988
  end-page: 164
  article-title: Phenotypic expression of photoreceptor and endocrine cell properties by cultured pineal cells of the newborn rat
  publication-title: Cell Differ Dev
– volume: 12
  start-page: 446
  year: 1994
  end-page: 448
  article-title: Co‐secretion of multiple signal molecules from endocrine cells via distinct exocytotic pathways
  publication-title: TIPS
– volume: 11
  start-page: 1617
  year: 1991
  end-page: 1626
  article-title: The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture
  publication-title: J Neurosci
– volume: 54
  start-page: 333
  year: 1985
  end-page: 341
  article-title: Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor
  publication-title: Immunology
– volume: 122
  start-page: 1207
  year: 1993
  end-page: 1221
  article-title: Synaptic vesicle proteins and early endosomes in cultured hippocampal neurons: Differential effects of brefeldin A in axon and dendrites
  publication-title: J Cell Biol
– volume: 8
  start-page: 209
  year: 1994
  end-page: 216
  article-title: A role for synaptic vesicles in non‐neuronal cells: Clues from pancreatic β cells and from chromaffin cells
  publication-title: FASEB J
– volume: 115
  start-page: 151
  year: 1991
  end-page: 164
  article-title: Colocalization of synaptophysin with transferrin receptors: Implications for synaptic vesicle biogenesis
  publication-title: J Cell Biol
– volume: 8
  start-page: 2863
  year: 1989
  end-page: 2872
  article-title: Synaptophysin is targeted to similar microvesicles in CHO and PC12 cells
  publication-title: EMBO J
– volume: 4
  start-page: 1180
  year: 1992
  end-page: 1190
  article-title: Widespread distribution of synaptophysin, a synaptic vesicle glycoprotein, in growing neurites and growth cones
  publication-title: Eur J Neurosci
– volume: 283
  start-page: 443
  year: 1996
  end-page: 454
  article-title: Synaptotagmin I, synaptobrevin II, and syntaxin I are coexpressed in rat and gerbil pinealocytes
  publication-title: Cell Tissue Res
– volume: 16
  start-page: 113
  year: 1994
  end-page: 120
  article-title: Current methodologies for the study of pineal morphophysiology
  publication-title: J Pineal Res
– volume: 2
  start-page: 491
  year: 1981
  end-page: 510
  article-title: Pineal cells in monolayer culture
  publication-title: Adv Cell Neurobiol
– volume: 14
  start-page: 6695
  year: 1994
  end-page: 6706
  article-title: Synaptogenesis in hippocampal cultures: Evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development
  publication-title: J Neurosci
– volume: 267
  start-page: 493
  year: 1992
  end-page: 498
  article-title: Immunocytochemical demonstration of rod‐opsin, S‐antigen, and neuron‐specific proteins in the human pineal gland
  publication-title: Cell Tissue Res
– volume: 184
  start-page: 117
  year: 1995
  end-page: 120
  article-title: The ras‐like rab3A protein is present in pinealocytes of the gerbil pineal gland
  publication-title: Neurosci Lett
– volume: 62
  start-page: 101
  year: 1995
  end-page: 110
  article-title: Differential distribution of synaptotagmin I and rab3 in the anterior pituitary of four mammalian species
  publication-title: Neuroendocrinology
– volume: 405
  start-page: 397
  year: 1988
  end-page: 419
  article-title: Characterization of membrane currents in dissociated adult rat pineal cells
  publication-title: J Physiol
– volume: 22
  start-page: 572
  year: 1993
  end-page: 581
  article-title: Dense accumulations of synaptic‐like microvesicles in ‘dark’ pinealocytes of the gerbil pineal gland
  publication-title: J Neurocytol
– volume: 44
  start-page: 13
  year: 1987
  end-page: 23
– volume: 34
  start-page: 79
  year: 1993
  end-page: 96
  article-title: Synaptophysin—a common constituent of presumptive secretory microvesicles in the mammalian pinealocyte: A study of rat and gerbil pineal glands
  publication-title: J Neurosci Res
– volume: 21
  start-page: 29
  year: 1996
  end-page: 34
  article-title: Rat and gerbil pinealocytes contain the synaptosomal‐associated protein 25 (SNAP‐25)
  publication-title: J Pineal Res
– volume: 17
  start-page: 93
  year: 1993
  end-page: 100
  article-title: Traffic of synaptic vesicle proteins in polarized and nonpolarized cells
  publication-title: J Cell Sci (Suppl
– volume: 231
  start-page: 473
  year: 1991
  end-page: 481
  article-title: Application of confocal laser scanning microscopy to the deep pineal gland and other neural tissues
  publication-title: Anat Rec
– volume: 10
  start-page: 3589
  year: 1991
  end-page: 3601
  article-title: Newly synthesized synaptophysin is transported to synaptic‐like micro‐vesicles via constitutive secretory vesicles and the plasma membrane
  publication-title: EMBO J
– volume: 129
  start-page: 2655
  year: 1991
  end-page: 2662
  article-title: Bovine pinealocytes in monolayer culture: Studies on the adrenergic regulation of melatonin secretion
  publication-title: Endocrinology
– volume: 610
  start-page: 108
  year: 1993
  end-page: 114
  article-title: Immunocytochemical demonstration of nerve growth factor (NGF) receptor in the pineal gland: Effect of NGF on pinealocyte neurite formation
  publication-title: Brain Res
– volume: 27
  start-page: 163
  year: 1995
  end-page: 175
  article-title: Calcium responses of isolated, immunocytochemically identified rat pinealocytes to noradrenergic, cholinergic and vasopressinergic stimulations
  publication-title: Neurochem Int
– volume: 110
  start-page: 1693
  year: 1990
  end-page: 1703
  article-title: Biogenesis of synaptic vesicle‐like structures in a pheochromocytoma cell line PC‐12
  publication-title: J Cell Biol
– volume: 115
  start-page: 151
  year: 1991
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB5
  publication-title: J Cell Biol
  doi: 10.1083/jcb.115.1.151
  contributor:
    fullname: Cameron
– volume: 129
  start-page: 2655
  year: 1991
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB33
  publication-title: Endocrinology
  doi: 10.1210/endo-129-5-2655
  contributor:
    fullname: Rüppel
– volume: 12
  start-page: 446
  year: 1994
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB8
  publication-title: TIPS
  contributor:
    fullname: DeCamilli
– volume: 4
  start-page: 1180
  year: 1992
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB21
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.1992.tb00143.x
  contributor:
    fullname: Phelan
– volume: 283
  start-page: 443
  year: 1996
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB24
  publication-title: Cell Tissue Res
  doi: 10.1007/s004410050555
  contributor:
    fullname: Redecker
– volume: 2
  start-page: 491
  year: 1981
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB32
  publication-title: Adv Cell Neurobiol
  doi: 10.1016/B978-0-12-008302-2.50017-1
  contributor:
    fullname: Rowe
– volume: 11
  start-page: 1617
  year: 1991
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB9
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.11-06-01617.1991
  contributor:
    fullname: Fletcher
– volume: 21
  start-page: 29
  year: 1996
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB29
  publication-title: J Pineal Res
  doi: 10.1111/j.1600-079X.1996.tb00267.x
  contributor:
    fullname: Redecker
– volume: 127
  start-page: 1589
  year: 1994
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB14
  publication-title: J Cell Biol
  doi: 10.1083/jcb.127.6.1589
  contributor:
    fullname: Leube
– volume: 14
  start-page: 6402
  year: 1994
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB4
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.14-11-06402.1994
  contributor:
    fullname: Basarsky
– volume: 19
  start-page: 40
  year: 1995
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB17
  publication-title: J Pineal Res
  doi: 10.1111/j.1600-079X.1995.tb00169.x
  contributor:
    fullname: McNulty
– volume: 17
  start-page: 93
  year: 1993
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB6
  publication-title: J Cell Sci (Suppl
  doi: 10.1242/jcs.1993.Supplement_17.14
  contributor:
    fullname: Cameron
– volume: 22
  start-page: 572
  year: 1993
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB22
  publication-title: J Neurocytol
  doi: 10.1007/BF01189044
  contributor:
    fullname: Redecker
– volume: 610
  start-page: 108
  year: 1993
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB16
  publication-title: Brain Res
  doi: 10.1016/0006-8993(93)91223-F
  contributor:
    fullname: McNulty
– volume: 27
  start-page: 163
  year: 1995
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB34
  publication-title: Neurochem Int
  doi: 10.1016/0197-0186(95)00029-8
  contributor:
    fullname: Schomerus
– volume: 44
  start-page: 13
  volume-title: Fundamentals and Clinics in Pineal research
  year: 1987
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB36
  contributor:
    fullname: Vollrath
– volume: 267
  start-page: 493
  year: 1992
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB11
  publication-title: Cell Tissue Res
  doi: 10.1007/BF00319371
  contributor:
    fullname: Huang
– volume: 25
  start-page: 155
  year: 1988
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB2
  publication-title: Cell Differ Dev
  doi: 10.1016/0922-3371(88)90008-1
  contributor:
    fullname: Araki
– volume: 278
  start-page: 579
  year: 1994
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB26
  publication-title: Cell Tissue Res
  doi: 10.1007/BF00331377
  contributor:
    fullname: Redecker
– volume: 6
  start-page: 561
  year: 1994
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB19
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/0955-0674(94)90077-9
  contributor:
    fullname: Mundigl
– volume: 10
  start-page: 3589
  year: 1991
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB31
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1991.tb04925.x
  contributor:
    fullname: Régnier-Vigouroux
– volume: 367
  start-page: 233
  year: 1995
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB18
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(95)00559-R
  contributor:
    fullname: Moriyama
– volume: 181
  start-page: 433
  year: 1990
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB27
  publication-title: Anat Embryol
  doi: 10.1007/BF02433790
  contributor:
    fullname: Redecker
– volume: 231
  start-page: 473
  year: 1991
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB38
  publication-title: Anat Rec
  doi: 10.1002/ar.1092310410
  contributor:
    fullname: Welsh
– volume: 34
  start-page: 79
  year: 1993
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB25
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.490340109
  contributor:
    fullname: Redecker
– volume: 62
  start-page: 101
  year: 1995
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB28
  publication-title: Neuroendocrinology
  doi: 10.1159/000126994
  contributor:
    fullname: Redecker
– volume: 8
  start-page: 2863
  year: 1989
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB13
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1989.tb08434.x
  contributor:
    fullname: Johnston
– volume: 122
  start-page: 1207
  year: 1993
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB20
  publication-title: J Cell Biol
  doi: 10.1083/jcb.122.6.1207
  contributor:
    fullname: Mundigl
– volume: 110
  start-page: 1693
  year: 1990
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB7
  publication-title: J Cell Biol
  doi: 10.1083/jcb.110.5.1693
  contributor:
    fullname: Clift-O'Grady
– volume: 10
  start-page: 1275
  year: 1991
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB30
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1991.tb08069.x
  contributor:
    fullname: Reetz
– volume: 54
  start-page: 333
  year: 1985
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB12
  publication-title: Immunology
  contributor:
    fullname: Jefferies
– volume: 16
  start-page: 113
  year: 1994
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB37
  publication-title: J Pineal Res
  doi: 10.1111/j.1600-079X.1994.tb00090.x
  contributor:
    fullname: Welsh
– volume: 24
  start-page: 301
  year: 1995
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB15
  publication-title: J Neurocytol
  doi: 10.1007/BF01186542
  contributor:
    fullname: Lowenstein
– volume: 14
  start-page: 6695
  year: 1994
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB10
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.14-11-06695.1994
  contributor:
    fullname: Fletcher
– volume: 8
  start-page: 209
  year: 1994
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB35
  publication-title: FASEB J
  doi: 10.1096/fasebj.8.2.7907072
  contributor:
    fullname: Thomas-Reetz
– volume: 405
  start-page: 397
  year: 1988
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB1
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1988.sp017339
  contributor:
    fullname: Aguayo
– volume: 184
  start-page: 117
  year: 1995
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB23
  publication-title: Neurosci Lett
  doi: 10.1016/0304-3940(94)11184-K
  contributor:
    fullname: Redecker
– volume: 20
  start-page: 57
  year: 1994
  ident: 10.1002/(SICI)1097-4547(19970301)47:5<509::AID-JNR6>3.0.CO;2-L-BIB3
  publication-title: Neuroscience Res
  doi: 10.1016/0168-0102(94)90022-1
  contributor:
    fullname: Araki
SSID ssj0009953
Score 1.6262583
Snippet Pinealocytes of various mammalian species contain abundant synaptic‐like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal...
Pinealocytes of various mammalian species contain abundant synaptic-like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 509
SubjectTerms Animals
Cells, Cultured
Gerbillinae
Immunohistochemistry
Membrane Proteins - metabolism
Membrane Proteins - ultrastructure
Meriones unguiculatus
Microscopy, Confocal
Pineal Gland - metabolism
Pineal Gland - ultrastructure
Synaptic Membranes - metabolism
Synaptic Membranes - ultrastructure
synaptic-like microvesicles
synaptobrevin
synaptophysin
synaptotagmin
transferrin receptor
Title Expression of synaptic membrane proteins in gerbil pinealocytes in primary culture
URI https://api.istex.fr/ark:/67375/WNG-62PWH1CD-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F%28SICI%291097-4547%2819970301%2947%3A5%3C509%3A%3AAID-JNR6%3E3.0.CO%3B2-L
https://www.ncbi.nlm.nih.gov/pubmed/9067860
https://search.proquest.com/docview/15913340
https://search.proquest.com/docview/78884352
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3da9swEBelg7GXfXVlafehh6W0D05jyZajbBQyJ11SumRkK-2bkGx5hDZOaRJoxv6V_a-7s-KUbh17GQz8YBvb5zufTj_pTj8T8obxUAaJbz0DIdILsizwNEsk-LLNGjzDTBIucP7YF92T4OgsPFsj38u1MI4fYjXhhi2jiNfYwLWZ7t-QhgIA-9yLezBgxiQqcndHSG0kJfowRAEJx7wVVnkMfSLswdbqtb2j_lBUeYfX6rV4UOXvmXcMAdznEdaDtYc33FNSOgpLLuowyPLZfXKwFL6_i4L3VmJ3S6F7QdQM34G4ZrMUdeAEvQUxt3q-e_gRr--CtbdRctHNHT4iP0oDueqW89p8ZmrJt1-4I_-XBR-Th0v8TFvO4Z-QNZs_JRutXM8m4wXdoUVFa5Eq2CDDzvWyzDenk4xOF7mGAJnQsR3Da-eWFiQVo3xKRzn9Cv41uqCXoJWGDn4BEBxPXzo2DuoYSuwzcnLY-RJ3veU_JLwk4Fx4MoThgzWA7FIb1v00aWQJuKfUjFu_YbnkQT2IdGiMb6yIWGi0TDOhuYiMH6Wab5L1fJLb57i6XfLEmgbn1gLsMTA2ibQvEmPTLGKJqJBB-X3V8uWUI4VmSqGhXbYfzaxKIyvYDxWYVykwrULTKq7qKh4opo4rZKdwk9Xj9NU5FuJFoTrtf1CCfTrt-nFbxRXyuvQjBeEBcz5gxcl8qgCt-hx0_PMVOAcCmJlVyKZzwJU0iUhGwK2Dwot-U-qvOt2hUnG89c-fuE0eOF5hLA58QdZnV3P7EtDizLwqWvVP6LZIyA
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3db9MwELfGJgEvfI2J8jU_0Gl7SNfYiVMXNKmkHe3oWlQ2bW-WnTqoGk2ntZNWJP4V_lbu4qbTYIgXJKQ8JFGSy13O5599518IecN4KIPEt56BEOkFaRp4miUSfNmmNZ5iJgkXOB_2RPs4ODgNT1fI92ItjOOHWE64YcvI4zU2cJyQ3r1mDQUE9rkTd2DEjFlUJO-OkNtISnRiCAMSjnkjLPMYOkXYg63RaXoHvYEo8xavVCtxv8zfM697h6xBvOD454fm4Jp9SkpHYslFFYZZPrtL9hbSd7dR8s5S7nYhdSeI6uE7kFevF7L2nKS3IOdG37eGn_HqNmB7EyfnHd3-Q_KjMJGrbzmrXM5MJfn2C3vkf7PhI_JgAaFpw_n8Y7JisydkvZHp2WQ8p1s0L2rNswXrZNC6WlT6ZnSS0uk80xAjEzq2Y3jvzNKcp2KUTekoo1_AxUZf6TmopaGPnwMKx9PnjpCDOpIS-5Qc77eO4ra3-I2ElwScC0-GMIKwBsDd0IZVf5jU0gQ8VGrGrV-zXPKgGkQ6NMY3VkQsNFoOU6G5iIwfDTXfIKvZJLPPcIG75Ik1Nc6tBeRjYHgSaV8kxg7TiCWiRPrFB1aLl1OOF5ophYZ2CX80syqMrGA_VGBepcC0Ck2ruKqquK-Y6pbIVu4ny8fpizOsxYtCddL7oAT7dNL246aKS2SzcCQFEQLTPmDFyeVUAWD1Oej45ytwGgRgMyuRDeeBS2kSwYyAW_u5G_2m1F91ukWl_Pj5P3_iJrnXPjrsqm6n9_EFue9ohrFW8CVZnV1c2lcAHmfmdd7EfwKFHEzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3dT9swELcYSGgv-2Jo3Rd-WBE8pCR24tTdhNSl7VrWtagMwZtlJw6qoGlFW4lO-1f2v-4cN0VsTHuZNCkPSZTkcpfz-Wff-ReE3hEacD_2tKMgRDp-mvqOJDEHX9ZplaYmk2QWOH_psfapf3QenK-h78VaGMsPsZpwMy0jj9emgU-S9OCWNBQA2Ekn6sCA2SRRDXd3aKiNODc-DFGAwzGtB2UaQZ8Ie7DVOw3nqDdgZdqkFbcS9cv0I3G6D9CGzwA6G0g1uCWf4txyWFLmwijLI5vocCn9YM9I3l_J3Suk7vthLfgA8mq1QtahlfQe5Nzp-jbMV7y5D9fehcl5P9d6jH4UFrLlLZeV-UxV4m-_kEf-LxM-QY-WABrXrcc_RWs6e4a26pmcjUcLvIvzktY8V7CFBs2bZZ1vhscpni4yCREyxiM9gtfONM5ZKobZFA8zfAEONrzCE9BKQg-_AAxuTk8sHQe2FCX6OTptNb9GbWf5Ewkn9illDg9g_KAVQLtEB66XxNU0Bv_kklDtVTXl1Hf9UAZKeUqzkARK8iRlkrJQeWEi6TZaz8aZfmGWt3Maa1WlVGvAPQoGJ6H0WKx0koYkZiXUL76vWL6csKzQRAhjaJvuN2YWhZEF7AcCzCsEmFYY0woqXBH1BRHdEtrN3WT1OHl9aSrxwkCc9T4JRo7P2l7UEFEJ7RR-JCA-mKQPWHE8nwqAqx4FHf98hZkEAdBMSmjbOuBKGjdQhsGt_dyLflPqrzrdo1J-_PKfP3EHbR43WqLb6X1-hR5ajmFTKPgarc-u5_oNIMeZeps38J8tiEuP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expression+of+synaptic+membrane+proteins+in+gerbil+pinealocytes+in+primary+culture&rft.jtitle=Journal+of+neuroscience+research&rft.au=Redecker%2C+P.&rft.au=Pabst%2C+H.&rft.au=Gebert%2C+A.&rft.au=Steinlechner%2C+S.&rft.date=1997-03-01&rft.issn=0360-4012&rft.eissn=1097-4547&rft.volume=47&rft.issue=5&rft.spage=509&rft.epage=520&rft_id=info:doi/10.1002%2F%28SICI%291097-4547%2819970301%2947%3A5%3C509%3A%3AAID-JNR6%3E3.0.CO%3B2-L&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002__SICI_1097_4547_19970301_47_5_509__AID_JNR6_3_0_CO_2_L
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-4012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-4012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-4012&client=summon