Microwave-induced conductance replicas in hybrid Josephson junctions without Floquet—Andreev states

Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current–phas...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 6798 - 8
Main Authors Haxell, Daniel Z., Coraiola, Marco, Sabonis, Deividas, Hinderling, Manuel, ten Kate, Sofieke C., Cheah, Erik, Krizek, Filip, Schott, Rüdiger, Wegscheider, Werner, Belzig, Wolfgang, Cuevas, Juan Carlos, Nichele, Fabrizio
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.10.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current–phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current–phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet–Andreev states, our study rules out this scenario. The distortion of the current–phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light–matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet–Andreev states in mesoscopic devices. The authors study conductance replicas emerging under microwave irradiation in the tunnelling spectrum of Josephson junctions in InAs/Al heterostructures, focusing on distinguishing the signatures of Floquet-Andreev states (FASs) from those of photon-assisted tunneling (PAT). They establish that PAT largely dominates the response to microwave radiation in their device.
AbstractList Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current–phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current–phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet–Andreev states, our study rules out this scenario. The distortion of the current–phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light–matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet–Andreev states in mesoscopic devices. The authors study conductance replicas emerging under microwave irradiation in the tunnelling spectrum of Josephson junctions in InAs/Al heterostructures, focusing on distinguishing the signatures of Floquet-Andreev states (FASs) from those of photon-assisted tunneling (PAT). They establish that PAT largely dominates the response to microwave radiation in their device.
Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current–phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current–phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet–Andreev states, our study rules out this scenario. The distortion of the current–phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light–matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet–Andreev states in mesoscopic devices.The authors study conductance replicas emerging under microwave irradiation in the tunnelling spectrum of Josephson junctions in InAs/Al heterostructures, focusing on distinguishing the signatures of Floquet-Andreev states (FASs) from those of photon-assisted tunneling (PAT). They establish that PAT largely dominates the response to microwave radiation in their device.
Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current–phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current–phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet–Andreev states, our study rules out this scenario. The distortion of the current–phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light–matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet–Andreev states in mesoscopic devices.
Abstract Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current–phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current–phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet–Andreev states, our study rules out this scenario. The distortion of the current–phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light–matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet–Andreev states in mesoscopic devices.
Light-matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting-semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current-phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current-phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet-Andreev states, our study rules out this scenario. The distortion of the current-phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light-matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet-Andreev states in mesoscopic devices.Light-matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting-semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current-phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current-phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet-Andreev states, our study rules out this scenario. The distortion of the current-phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light-matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet-Andreev states in mesoscopic devices.
ArticleNumber 6798
Author Hinderling, Manuel
Nichele, Fabrizio
Belzig, Wolfgang
Cheah, Erik
Sabonis, Deividas
Schott, Rüdiger
ten Kate, Sofieke C.
Krizek, Filip
Wegscheider, Werner
Cuevas, Juan Carlos
Haxell, Daniel Z.
Coraiola, Marco
Author_xml – sequence: 1
  givenname: Daniel Z.
  surname: Haxell
  fullname: Haxell, Daniel Z.
  organization: IBM Research Europe—Zurich
– sequence: 2
  givenname: Marco
  surname: Coraiola
  fullname: Coraiola, Marco
  organization: IBM Research Europe—Zurich
– sequence: 3
  givenname: Deividas
  surname: Sabonis
  fullname: Sabonis, Deividas
  organization: IBM Research Europe—Zurich
– sequence: 4
  givenname: Manuel
  surname: Hinderling
  fullname: Hinderling, Manuel
  organization: IBM Research Europe—Zurich
– sequence: 5
  givenname: Sofieke C.
  surname: ten Kate
  fullname: ten Kate, Sofieke C.
  organization: IBM Research Europe—Zurich
– sequence: 6
  givenname: Erik
  orcidid: 0000-0003-4240-8680
  surname: Cheah
  fullname: Cheah, Erik
  organization: Laboratory for Solid State Physics, ETH Zürich
– sequence: 7
  givenname: Filip
  surname: Krizek
  fullname: Krizek, Filip
  organization: IBM Research Europe—Zurich, Laboratory for Solid State Physics, ETH Zürich
– sequence: 8
  givenname: Rüdiger
  orcidid: 0000-0002-9320-0313
  surname: Schott
  fullname: Schott, Rüdiger
  organization: Laboratory for Solid State Physics, ETH Zürich
– sequence: 9
  givenname: Werner
  orcidid: 0000-0002-2138-5558
  surname: Wegscheider
  fullname: Wegscheider, Werner
  organization: Laboratory for Solid State Physics, ETH Zürich
– sequence: 10
  givenname: Wolfgang
  orcidid: 0000-0002-5109-2203
  surname: Belzig
  fullname: Belzig, Wolfgang
  organization: Fachbereich Physik, Universität Konstanz
– sequence: 11
  givenname: Juan Carlos
  orcidid: 0000-0001-7421-0682
  surname: Cuevas
  fullname: Cuevas, Juan Carlos
  organization: Fachbereich Physik, Universität Konstanz, Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid
– sequence: 12
  givenname: Fabrizio
  orcidid: 0000-0002-6320-5754
  surname: Nichele
  fullname: Nichele, Fabrizio
  email: fni@zurich.ibm.com
  organization: IBM Research Europe—Zurich
BookMark eNp9Ustu1DAUtVARLUN_gFUkNmwCfiV2VqiqWigqYgNry3ZuZjzK2IPtTNUdH8EX8iU4TRG0i3rjK_uccx_nvkRHPnhA6DXB7whm8n3ihLeixpTVnLJG1M0zdEIxJzURlB39Fx-j05S2uBzWEcn5C3TMhCxBh08QfHE2hht9gNr5frLQVzbMQdbeQhVhPzqrU-V8tbk10fXV55Bgv0nBV9vJ2-yCT9WNy5sw5epyDD8myL9__jrzfQQ4VCnrDOkVej7oMcHp_b1C3y8vvp1_qq-_frw6P7uuLWesqQdbWgJBwOKuASk72oPQvNWUa02okOUXbMdaiwkYzHvTNY3hA24NxUQatkJXi24f9Fbto9vpeKuCduruIcS10jE7O4IipsEDGYaeUspLemOZMLYzvDNCyL4tWh8Wrf1kdtBb8Dnq8YHowx_vNmodDorgFjPSdkXh7b1CnMeSstq5ZGEctYcwJUWlLMYJVjxcoTePoNswRV9mNaMooZzTpqDkgiqWpRRhUNaV-RYLSgFuLJnVvBtq2Q1VdNXdbqiZSh9R_zbyJIktpFTAfg3xX1VPsP4A_abO5w
CitedBy_id crossref_primary_10_1103_PhysRevB_110_024517
crossref_primary_10_1103_PhysRevLett_133_246606
crossref_primary_10_1038_s41467_025_57335_2
Cites_doi 10.1103/PhysRevLett.112.156801
10.1038/s41567-020-0858-0
10.1103/PhysRevB.84.054504
10.1103/PhysRevApplied.4.034011
10.1103/PhysRevLett.106.220402
10.1103/PhysRevB.84.235108
10.1021/acs.nanolett.2c01840
10.1038/s42254-020-0170-z
10.1038/nphys4150
10.1103/PhysRevApplied.14.064038
10.1103/PhysRevLett.128.197702
10.1103/PhysRevLett.31.524
10.1103/PhysRevB.100.041102
10.1103/PhysRevLett.104.247003
10.1063/1.93685
10.1038/nphys4224
10.1103/PhysRevResearch.3.L032009
10.1126/science.1239834
10.1103/PhysRevLett.66.3056
10.1103/PhysRevB.93.155402
10.1103/PhysRevLett.115.127002
10.1038/nature16522
10.1126/science.aab2179
10.1103/PhysRevLett.121.127705
10.1038/s41586-019-1068-8
10.1103/PhysRevB.101.134507
10.1038/s41565-018-0329-2
10.1103/RevModPhys.89.011004
10.1038/nphys1926
10.1038/s41567-020-0972-z
10.1103/PhysRevLett.88.157001
10.1103/PhysRevApplied.7.034029
10.1103/PhysRevLett.102.127001
10.1103/PhysRevLett.115.127001
10.1103/PhysRevLett.124.226801
10.1126/science.1197294
10.1038/nphys1811
10.1126/science.abf0345
10.1103/PhysRevResearch.3.023108
10.1103/PhysRevLett.90.087003
10.1103/PhysRev.129.647
10.1103/PhysRevLett.97.067006
10.1103/PhysRevB.79.081406
10.1103/PhysRevB.97.195423
10.1146/annurev-conmatphys-031218-013423
10.1103/PhysRevB.99.094303
10.1038/nphys4110
10.1016/j.physrep.2004.01.004
10.1080/00018732.2015.1055918
10.1038/s41586-021-04364-8
10.1038/s41567-019-0698-y
10.1103/PhysRevLett.129.080402
10.1038/s41565-018-0207-y
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. The Author(s).
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-42357-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_1b50f1ffd2224c43bc37bc9b49b778d6
PMC10603169
10_1038_s41467_023_42357_5
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
  grantid: 200021_201082
  funderid: https://doi.org/10.13039/501100001711
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 804273
  funderid: https://doi.org/10.13039/100010663
– fundername: ;
  grantid: 200021_201082
– fundername: ;
  grantid: 804273
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c4335-fc467e71ec095e8892de7a46a24aa127867eec936c01eb04db955b4f06b2018b3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:27 EDT 2025
Thu Aug 21 18:36:21 EDT 2025
Fri Jul 11 04:03:27 EDT 2025
Wed Aug 13 01:46:24 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 02:10:41 EDT 2025
Fri Feb 21 02:39:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4335-fc467e71ec095e8892de7a46a24aa127867eec936c01eb04db955b4f06b2018b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6320-5754
0000-0002-5109-2203
0000-0001-7421-0682
0000-0003-4240-8680
0000-0002-2138-5558
0000-0002-9320-0313
OpenAccessLink https://www.proquest.com/docview/2882124425?pq-origsite=%requestingapplication%
PMID 37884490
PQID 2882124425
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_1b50f1ffd2224c43bc37bc9b49b778d6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10603169
proquest_miscellaneous_2883577302
proquest_journals_2882124425
crossref_citationtrail_10_1038_s41467_023_42357_5
crossref_primary_10_1038_s41467_023_42357_5
springer_journals_10_1038_s41467_023_42357_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231026
PublicationDateYYYYMMDD 2023-10-26
PublicationDate_xml – month: 10
  year: 2023
  text: 20231026
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Liu, Shabani, Mitra (CR37) 2019; 99
Spanton (CR51) 2017; 13
Matute-Cañadas (CR32) 2022; 128
Cuevas, Heurich, Martín-Rodero, Levy Yeyati, Schön (CR14) 2002; 88
Rudner, Lindner (CR9) 2020; 2
Janvier (CR25) 2015; 349
Oka, Aoki (CR1) 2009; 79
Beenakker, van Houten (CR19) 1991; 66
Platero, Aguado (CR45) 2004; 395
McIver (CR8) 2020; 16
Kitagawa, Oka, Brataas, Fu, Demler (CR3) 2011; 84
Danchi, Habbal, Tinkham (CR11) 1982; 41
Fornieri (CR48) 2019; 569
Ji (CR39) 2022; 129
Eckardt (CR7) 2017; 89
Venitucci, Feinberg, Mélin, Douçot (CR43) 2018; 97
Jiang (CR35) 2011; 106
Peters (CR18) 2020; 16
Peng, Haim, Karzig, Peng, Refael (CR38) 2021; 3
Oka, Kitamura (CR46) 2019; 10
Pita-Vidal (CR30) 2020; 14
Wang, Steinberg, Jarillo-Herrero, Gedik (CR4) 2013; 342
Tosi (CR24) 2019; 9
Bauer (CR36) 2019; 100
Shabani (CR47) 2016; 93
Nichele (CR42) 2020; 124
Gregers-Hansen, Hendricks, Levinsen, Pickett (CR13) 1973; 31
Hays (CR31) 2021; 373
Wang (CR29) 2019; 14
Fuechsle (CR55) 2009; 102
Grushin, Gómez-León, Neupert (CR5) 2014; 112
CR12
Su (CR50) 2018; 121
de Lange (CR27) 2015; 115
Bukov, D’Alessio, Polkovnikov (CR6) 2015; 64
Roychowdhury, Dreyer, Anderson, Lobb, Wellstood (CR16) 2015; 4
Tien, Gordon (CR10) 1963; 129
van Woerkom (CR23) 2017; 13
Casparis (CR28) 2018; 13
Park (CR44) 2022; 603
Kot (CR17) 2020; 101
Carrad (CR34) 2022; 22
Fausti (CR21) 2011; 331
Bretheau (CR41) 2017; 13
Lindner, Refael, Galitski (CR2) 2011; 7
Mitrano (CR22) 2016; 530
Chauvin (CR15) 2006; 97
Kjaergaard (CR49) 2017; 7
van Zanten (CR33) 2020; 16
Zazunov, Shumeiko, Bratus, Lantz, Wendin (CR20) 2003; 90
Bergeret, Virtanen, Ozaeta, Heikkilä, Cuevas (CR52) 2011; 84
Virtanen, Heikkilä, Bergeret, Cuevas (CR54) 2010; 104
Larsen (CR26) 2015; 115
Dou (CR53) 2021; 3
Pillet (CR40) 2010; 6
Z Dou (42357_CR53) 2021; 3
Z Su (42357_CR50) 2018; 121
L Bretheau (42357_CR41) 2017; 13
JW McIver (42357_CR8) 2020; 16
F Nichele (42357_CR42) 2020; 124
DMT van Zanten (42357_CR33) 2020; 16
C Janvier (42357_CR25) 2015; 349
O Peters (42357_CR18) 2020; 16
FJ Matute-Cañadas (42357_CR32) 2022; 128
JC Cuevas (42357_CR14) 2002; 88
YH Wang (42357_CR4) 2013; 342
L Jiang (42357_CR35) 2011; 106
L Tosi (42357_CR24) 2019; 9
M Mitrano (42357_CR22) 2016; 530
M Hays (42357_CR31) 2021; 373
S-C Ji (42357_CR39) 2022; 129
J-D Pillet (42357_CR40) 2010; 6
T Oka (42357_CR1) 2009; 79
FS Bergeret (42357_CR52) 2011; 84
M Chauvin (42357_CR15) 2006; 97
G Platero (42357_CR45) 2004; 395
M Kjaergaard (42357_CR49) 2017; 7
MS Rudner (42357_CR9) 2020; 2
TW Larsen (42357_CR26) 2015; 115
AG Grushin (42357_CR5) 2014; 112
PK Tien (42357_CR10) 1963; 129
J Shabani (42357_CR47) 2016; 93
42357_CR12
CWJ Beenakker (42357_CR19) 1991; 66
M Fuechsle (42357_CR55) 2009; 102
A Fornieri (42357_CR48) 2019; 569
T Kitagawa (42357_CR3) 2011; 84
DT Liu (42357_CR37) 2019; 99
B Bauer (42357_CR36) 2019; 100
D Fausti (42357_CR21) 2011; 331
PE Gregers-Hansen (42357_CR13) 1973; 31
JI-J Wang (42357_CR29) 2019; 14
P Kot (42357_CR17) 2020; 101
A Eckardt (42357_CR7) 2017; 89
NH Lindner (42357_CR2) 2011; 7
T Oka (42357_CR46) 2019; 10
C Peng (42357_CR38) 2021; 3
M Pita-Vidal (42357_CR30) 2020; 14
B Venitucci (42357_CR43) 2018; 97
WC Danchi (42357_CR11) 1982; 41
A Zazunov (42357_CR20) 2003; 90
L Casparis (42357_CR28) 2018; 13
S Park (42357_CR44) 2022; 603
DJ van Woerkom (42357_CR23) 2017; 13
EM Spanton (42357_CR51) 2017; 13
M Bukov (42357_CR6) 2015; 64
G de Lange (42357_CR27) 2015; 115
A Roychowdhury (42357_CR16) 2015; 4
DJ Carrad (42357_CR34) 2022; 22
P Virtanen (42357_CR54) 2010; 104
References_xml – volume: 112
  start-page: 156801
  year: 2014
  ident: CR5
  article-title: Floquet fractional Chern insulators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.156801
– volume: 16
  start-page: 663
  year: 2020
  end-page: 668
  ident: CR33
  article-title: Photon-assisted tunnelling of zero modes in a Majorana wire
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0858-0
– volume: 84
  start-page: 054504
  year: 2011
  ident: CR52
  article-title: Supercurrent and Andreev bound state dynamics in superconducting quantum point contacts under microwave irradiation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.054504
– ident: CR12
– volume: 4
  start-page: 034011
  year: 2015
  ident: CR16
  article-title: Microwave photon-assisted incoherent cooper-pair tunneling in a Josephson STM
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.4.034011
– volume: 106
  start-page: 220402
  year: 2011
  ident: CR35
  article-title: Majorana fermions in equilibrium and in driven cold-atom quantum wires
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.220402
– volume: 84
  start-page: 235108
  year: 2011
  ident: CR3
  article-title: Transport properties of nonequilibrium systems under the application of light: photoinduced quantum hall insulators without landau levels
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.235108
– volume: 22
  start-page: 6262
  year: 2022
  end-page: 6267
  ident: CR34
  article-title: Photon-assisted tunneling of high-order multiple Andreev reflections in epitaxial nanowire Josephson junctions
  publication-title: Nano. Lett.
  doi: 10.1021/acs.nanolett.2c01840
– volume: 2
  start-page: 229
  year: 2020
  end-page: 244
  ident: CR9
  article-title: Band structure engineering and non-equilibrium dynamics in Floquet topological insulators
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-020-0170-z
– volume: 13
  start-page: 876
  year: 2017
  end-page: 881
  ident: CR23
  article-title: Microwave spectroscopy of spinful Andreev bound states in ballistic semiconductor Josephson junctions
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4150
– volume: 14
  start-page: 064038
  year: 2020
  ident: CR30
  article-title: Gate-tunable field-compatible fluxonium
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.064038
– volume: 128
  start-page: 197702
  year: 2022
  ident: CR32
  article-title: Signatures of interactions in the Andreev spectrum of nanowire Josephson junctions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.197702
– volume: 31
  start-page: 524
  year: 1973
  end-page: 527
  ident: CR13
  article-title: Subharmonic energy-gap structure and a Josephson-radiation-enhanced gap in dayem bridges
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.31.524
– volume: 100
  start-page: 041102
  year: 2019
  ident: CR36
  article-title: Topologically protected braiding in a single wire using Floquet Majorana modes
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.041102
– volume: 104
  start-page: 247003
  year: 2010
  ident: CR54
  article-title: Theory of microwave-assisted supercurrent in diffusive SNS junctions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.247003
– volume: 41
  start-page: 883
  year: 1982
  end-page: 885
  ident: CR11
  article-title: ac Josephson effect in small-area superconducting tunnel junctions at 604 GHz
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.93685
– volume: 13
  start-page: 1177
  year: 2017
  end-page: 1181
  ident: CR51
  article-title: Current-phase relations of few-mode in as nanowire Josephson junctions
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4224
– volume: 3
  start-page: 032009
  year: 2021
  ident: CR53
  article-title: Microwave photoassisted dissipation and supercurrent of a phase-biased graphene-superconductor ring
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.L032009
– volume: 342
  start-page: 453
  year: 2013
  end-page: 457
  ident: CR4
  article-title: Observation of Floquet-Bloch states on the surface of a topological insulator
  publication-title: Science
  doi: 10.1126/science.1239834
– volume: 66
  start-page: 3056
  year: 1991
  end-page: 3059
  ident: CR19
  article-title: Josephson current through a superconducting quantum point contact shorter than the coherence length
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.3056
– volume: 93
  start-page: 155402
  year: 2016
  ident: CR47
  article-title: Two-dimensional epitaxial superconductor-semiconductor heterostructures: a platform for topological superconducting networks
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.155402
– volume: 115
  start-page: 127002
  year: 2015
  ident: CR27
  article-title: Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.127002
– volume: 530
  start-page: 461
  year: 2016
  end-page: 464
  ident: CR22
  article-title: Possible light-induced superconductivity in K3C60 at high temperature
  publication-title: Nature
  doi: 10.1038/nature16522
– volume: 349
  start-page: 1199
  year: 2015
  end-page: 1202
  ident: CR25
  article-title: Coherent manipulation of Andreev states in superconducting atomic contacts
  publication-title: Science
  doi: 10.1126/science.aab2179
– volume: 121
  start-page: 127705
  year: 2018
  ident: CR50
  article-title: Mirage Andreev spectra generated by mesoscopic leads in nanowire quantum dots
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.127705
– volume: 569
  start-page: 89
  year: 2019
  end-page: 92
  ident: CR48
  article-title: Evidence of topological superconductivity in planar Josephson junctions
  publication-title: Nature
  doi: 10.1038/s41586-019-1068-8
– volume: 101
  start-page: 134507
  year: 2020
  ident: CR17
  article-title: Microwave-assisted tunneling and interference effects in superconducting junctions under fast driving signals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.134507
– volume: 14
  start-page: 120
  year: 2019
  end-page: 125
  ident: CR29
  article-title: Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0329-2
– volume: 89
  start-page: 011004
  year: 2017
  ident: CR7
  article-title: Colloquium: atomic quantum gases in periodically driven optical lattices
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.011004
– volume: 7
  start-page: 490
  year: 2011
  end-page: 495
  ident: CR2
  article-title: Floquet topological insulator in semiconductor quantum wells
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1926
– volume: 16
  start-page: 1222
  year: 2020
  end-page: 1226
  ident: CR18
  article-title: Resonant Andreev reflections probed by photon-assisted tunnelling at the atomic scale
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0972-z
– volume: 88
  start-page: 157001
  year: 2002
  ident: CR14
  article-title: Subharmonic shapiro steps and assisted tunneling in superconducting point contacts
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.157001
– volume: 7
  start-page: 034029
  year: 2017
  ident: CR49
  article-title: Transparent semiconductor-superconductor interface and induced gap in an epitaxial heterostructure Josephson junction
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.7.034029
– volume: 102
  start-page: 127001
  year: 2009
  ident: CR55
  article-title: Effect of microwaves on the current-phase relation of superconductor–normal-metal–superconductor Josephson junctions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.127001
– volume: 115
  start-page: 127001
  year: 2015
  ident: CR26
  article-title: Semiconductor-nanowire-based superconducting qubit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.127001
– volume: 124
  start-page: 226801
  year: 2020
  ident: CR42
  article-title: Relating Andreev bound states and supercurrents in hybrid Josephson junctions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.226801
– volume: 331
  start-page: 189
  year: 2011
  end-page: 191
  ident: CR21
  article-title: Light-induced superconductivity in a stripe-ordered cuprate
  publication-title: Science
  doi: 10.1126/science.1197294
– volume: 6
  start-page: 965
  year: 2010
  end-page: 969
  ident: CR40
  article-title: Andreev bound states in supercurrent-carrying carbon nanotubes revealed
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1811
– volume: 373
  start-page: 430
  year: 2021
  end-page: 433
  ident: CR31
  article-title: Coherent manipulation of an Andreev spin qubit
  publication-title: Science
  doi: 10.1126/science.abf0345
– volume: 3
  start-page: 023108
  year: 2021
  ident: CR38
  article-title: Floquet Majorana bound states in voltage-biased planar Josephson junctions
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.023108
– volume: 90
  start-page: 087003
  year: 2003
  ident: CR20
  article-title: Andreev level qubit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.087003
– volume: 129
  start-page: 647
  year: 1963
  end-page: 651
  ident: CR10
  article-title: Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.129.647
– volume: 97
  start-page: 067006
  year: 2006
  ident: CR15
  article-title: Superconducting atomic contacts under microwave irradiation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.067006
– volume: 79
  start-page: 081406
  year: 2009
  ident: CR1
  article-title: Photovoltaic hall effect in graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.081406
– volume: 97
  start-page: 195423
  year: 2018
  ident: CR43
  article-title: Nonadiabatic Josephson current pumping by chiral microwave irradiation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.195423
– volume: 10
  start-page: 387
  year: 2019
  end-page: 408
  ident: CR46
  article-title: Floquet engineering of quantum materials
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031218-013423
– volume: 99
  start-page: 094303
  year: 2019
  ident: CR37
  article-title: Floquet Majorana zero and modes in planar Josephson junctions
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.094303
– volume: 13
  start-page: 756
  year: 2017
  end-page: 760
  ident: CR41
  article-title: Tunnelling spectroscopy of Andreev states in graphene
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4110
– volume: 395
  start-page: 1
  year: 2004
  end-page: 157
  ident: CR45
  article-title: Photon-assisted transport in semiconductor nanostructures
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2004.01.004
– volume: 9
  start-page: 011010
  year: 2019
  ident: CR24
  article-title: Spin-orbit splitting of Andreev states revealed by microwave spectroscopy
  publication-title: Phys. Rev. X
– volume: 64
  start-page: 139
  year: 2015
  end-page: 226
  ident: CR6
  article-title: Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering
  publication-title: Adv. Phys.
  doi: 10.1080/00018732.2015.1055918
– volume: 603
  start-page: 421
  year: 2022
  end-page: 426
  ident: CR44
  article-title: Steady floquet-Andreev states in graphene Josephson junctions
  publication-title: Nature
  doi: 10.1038/s41586-021-04364-8
– volume: 16
  start-page: 38
  year: 2020
  end-page: 41
  ident: CR8
  article-title: Light-induced anomalous hall effect in graphene
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0698-y
– volume: 129
  start-page: 080402
  year: 2022
  ident: CR39
  article-title: Floquet engineering a bosonic Josephson junction
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.080402
– volume: 13
  start-page: 915
  year: 2018
  end-page: 919
  ident: CR28
  article-title: Superconducting gatemon qubit based on a proximitized two-dimensional electron gas
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0207-y
– volume: 89
  start-page: 011004
  year: 2017
  ident: 42357_CR7
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.011004
– volume: 331
  start-page: 189
  year: 2011
  ident: 42357_CR21
  publication-title: Science
  doi: 10.1126/science.1197294
– volume: 100
  start-page: 041102
  year: 2019
  ident: 42357_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.041102
– volume: 342
  start-page: 453
  year: 2013
  ident: 42357_CR4
  publication-title: Science
  doi: 10.1126/science.1239834
– volume: 14
  start-page: 120
  year: 2019
  ident: 42357_CR29
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0329-2
– volume: 22
  start-page: 6262
  year: 2022
  ident: 42357_CR34
  publication-title: Nano. Lett.
  doi: 10.1021/acs.nanolett.2c01840
– volume: 13
  start-page: 876
  year: 2017
  ident: 42357_CR23
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4150
– volume: 13
  start-page: 1177
  year: 2017
  ident: 42357_CR51
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4224
– volume: 129
  start-page: 647
  year: 1963
  ident: 42357_CR10
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.129.647
– volume: 129
  start-page: 080402
  year: 2022
  ident: 42357_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.080402
– ident: 42357_CR12
– volume: 106
  start-page: 220402
  year: 2011
  ident: 42357_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.220402
– volume: 121
  start-page: 127705
  year: 2018
  ident: 42357_CR50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.127705
– volume: 99
  start-page: 094303
  year: 2019
  ident: 42357_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.094303
– volume: 101
  start-page: 134507
  year: 2020
  ident: 42357_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.134507
– volume: 530
  start-page: 461
  year: 2016
  ident: 42357_CR22
  publication-title: Nature
  doi: 10.1038/nature16522
– volume: 84
  start-page: 235108
  year: 2011
  ident: 42357_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.235108
– volume: 9
  start-page: 011010
  year: 2019
  ident: 42357_CR24
  publication-title: Phys. Rev. X
– volume: 10
  start-page: 387
  year: 2019
  ident: 42357_CR46
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031218-013423
– volume: 3
  start-page: 032009
  year: 2021
  ident: 42357_CR53
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.L032009
– volume: 16
  start-page: 1222
  year: 2020
  ident: 42357_CR18
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0972-z
– volume: 124
  start-page: 226801
  year: 2020
  ident: 42357_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.226801
– volume: 31
  start-page: 524
  year: 1973
  ident: 42357_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.31.524
– volume: 104
  start-page: 247003
  year: 2010
  ident: 42357_CR54
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.247003
– volume: 79
  start-page: 081406
  year: 2009
  ident: 42357_CR1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.081406
– volume: 90
  start-page: 087003
  year: 2003
  ident: 42357_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.087003
– volume: 102
  start-page: 127001
  year: 2009
  ident: 42357_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.127001
– volume: 13
  start-page: 915
  year: 2018
  ident: 42357_CR28
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0207-y
– volume: 14
  start-page: 064038
  year: 2020
  ident: 42357_CR30
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.064038
– volume: 2
  start-page: 229
  year: 2020
  ident: 42357_CR9
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-020-0170-z
– volume: 16
  start-page: 663
  year: 2020
  ident: 42357_CR33
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0858-0
– volume: 88
  start-page: 157001
  year: 2002
  ident: 42357_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.157001
– volume: 64
  start-page: 139
  year: 2015
  ident: 42357_CR6
  publication-title: Adv. Phys.
  doi: 10.1080/00018732.2015.1055918
– volume: 569
  start-page: 89
  year: 2019
  ident: 42357_CR48
  publication-title: Nature
  doi: 10.1038/s41586-019-1068-8
– volume: 13
  start-page: 756
  year: 2017
  ident: 42357_CR41
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4110
– volume: 395
  start-page: 1
  year: 2004
  ident: 42357_CR45
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2004.01.004
– volume: 349
  start-page: 1199
  year: 2015
  ident: 42357_CR25
  publication-title: Science
  doi: 10.1126/science.aab2179
– volume: 373
  start-page: 430
  year: 2021
  ident: 42357_CR31
  publication-title: Science
  doi: 10.1126/science.abf0345
– volume: 128
  start-page: 197702
  year: 2022
  ident: 42357_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.197702
– volume: 93
  start-page: 155402
  year: 2016
  ident: 42357_CR47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.155402
– volume: 66
  start-page: 3056
  year: 1991
  ident: 42357_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.3056
– volume: 7
  start-page: 490
  year: 2011
  ident: 42357_CR2
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1926
– volume: 7
  start-page: 034029
  year: 2017
  ident: 42357_CR49
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.7.034029
– volume: 115
  start-page: 127001
  year: 2015
  ident: 42357_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.127001
– volume: 16
  start-page: 38
  year: 2020
  ident: 42357_CR8
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0698-y
– volume: 41
  start-page: 883
  year: 1982
  ident: 42357_CR11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.93685
– volume: 112
  start-page: 156801
  year: 2014
  ident: 42357_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.156801
– volume: 97
  start-page: 195423
  year: 2018
  ident: 42357_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.195423
– volume: 4
  start-page: 034011
  year: 2015
  ident: 42357_CR16
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.4.034011
– volume: 6
  start-page: 965
  year: 2010
  ident: 42357_CR40
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1811
– volume: 84
  start-page: 054504
  year: 2011
  ident: 42357_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.054504
– volume: 97
  start-page: 067006
  year: 2006
  ident: 42357_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.067006
– volume: 603
  start-page: 421
  year: 2022
  ident: 42357_CR44
  publication-title: Nature
  doi: 10.1038/s41586-021-04364-8
– volume: 3
  start-page: 023108
  year: 2021
  ident: 42357_CR38
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.023108
– volume: 115
  start-page: 127002
  year: 2015
  ident: 42357_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.127002
SSID ssj0000391844
Score 2.4588733
Snippet Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction...
Light-matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting-semiconducting Josephson junction...
Abstract Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6798
SubjectTerms 639/766/119/1000/1018
639/766/119/1003
639/766/119/995
Conductance
Coupling
Elementary excitations
Heterostructures
Humanities and Social Sciences
Irradiation
Josephson junctions
Microwave radiation
Microwaves
multidisciplinary
Photons
Science
Science (multidisciplinary)
Signatures
Spectroscopy
Spectrum analysis
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA6lIHQjPlocrRLBXRs6k8cks1TxUgp1ZaG7kMcJrZS50ntvpTt_hL_QX-JJZu61U6hu3E4y5HFOziPn5DuEvDPJRTDKMEi-ZlI1gTnUi0zzGHQIUTUFeP70c3t8Jk_O1fmdUl85J2yABx427qjxqk5NShEVmQxS-CC0D52XndfaxAK2jTrvjjNVZLDo0HWR4yuZWpijhSwyAVUUkxnihamJJiqA_RMr836O5L1AadE_syfk8Wg40vfDhJ-SLeifkUdDKcnb5wROc2bdd3cDDL1spFek6OlmMNdMVnoNJU69oJc9vbjNr7TocPeP5jb9irqtsB_Nt7Lz1ZLOrvL8lr9-_CwJj3BDy8OjxS45m3368vGYjSUUGG6VUCwFXDToBgKaUmBMxyNoJ1vHpXMN1wZbIXSiDXUDvpbRd0p5merWo2VgvNgj2_28hxeE6qCFkSJKYaLMWOgJhWWAJGvjXBehIs16O20Y8cVzmYsrW-LcwtiBBBZJYAsJrKrIweafbwO6xl97f8hU2vTMyNjlA_KLHfnF_otfKrK_prEdj-vCcvQzsqHDcYy3m2Y8aDl64nqYr0ofnAUKRF4RM-GNyYSmLf3lRYHsRscbpWfbVeRwzUZ_Rn94xS__x4pfkR2e2R4VLm_3yfbyegWv0ZJa-jfl0PwG_BYdAg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG1hNYjt2TggQqwqpnKi0N8tPWlQlZbNb1Bs_gl_IL2HGyW6VSvQaO4rjeXpm_A0hb3SyIWqpWUyuZEJWnlmwi0zVwSvvg6wy8PzR1-bwWHxZyuUUcBumssqtTsyKOvQeY-QHNbiCaItq-f78J8OuUZhdnVpo3CZ3ELoMS7rUUu1iLIh-roWY7sqUXB8MImsGMFRMINALkzN7lGH7Z77m9UrJa-nSbIUWD8j9yX2kH0Z6PyS3YveI3B0bSl4-JvEI6-t-2YvI4KwNVAsUzrsI6YrEpauYs9UDPe3oySXe1aJjBgCcbvoDLFxmQoqx2X6zposzXN_67-8_uewxXtB8_Wh4Qo4Xn799OmRTIwXmBeeSJQ8_HVUVPThUUeu2DlFZ0dhaWFvVSsNo9C1vfFlFV4rgWimdSGXjwD_Qjj8le13fxWeEKq-4FjwIroNARPQEKtPHJEptbRtiQartdho_oYxjs4szk7PdXJuRBAZIYDIJjCzI29075yPGxo2zPyKVdjMRHzs_6FffzSRupnKyTFVKAdwfAZvgPFfOt060TikdmoLsb2lsJqEdzBWLFeT1bhjEDXMotov9Js-BVYBarAuiZ7wxW9B8pDs9ycDdcPwGHdq0BXm3ZaOrr___j5_fvNgX5F6NDA0GtW72yd56tYkvwVNau1dZHP4BHgAUBw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qRfBF6g1XW4ngmwZ3c9lkH-2hhyLUJwt9C7mtrZQ9ci6VvvVH9Bf6S5xkd49sUcHXTUKymUnmS2bmC8Bb3doQtdQ0tq6kQlaeWrSLVLHglfdBVpl4_uRzfXwqPp3Jsx1gYy5MDtrPlJZ5mx6jwz6sRF7SaGGoSAwtVN6D-4m6PWn1rJ5t71US47kWYsiPKbn-Q9OJDcpU_RN8eTc68o6LNFue-R48GiAj-dgP8jHsxO4JPOgfkbx-CvEkxdT9sFeR4vkaJRUInnETjWsSKFnG7KFekYuOnF-n_CzS3_oj0Cbf0KplxSPpPnaxWZP5ZRrf-ufNbQ51jFckpxytnsHp_OjL7JgOjydQLziXtPX401FV0SOIilo3LERlRW2ZsLZiSmNp9A2vfVlFV4rgGimdaMvaISbQjj-H3W7RxRdAlFdcCx4E10EkFvQWt0kfW1Fqa5sQC6jG6TR-YBZPD1xcmuzh5tr0IjAoApNFYGQB77Ztvve8Gv-sfZiktK2ZOLHzh8Xyqxl0xFROlm3VtgEhj8BJcJ4r5xsnGqeUDnUB-6OMzbBQV4bhCSNBHIZ9vNkW4xJLfhPbxcUm18FR4FbICtAT3ZgMaFrSXZxnsm48cuO-WTcFvB_V6Hfvf__jl_9X_RU8ZEnB0aiyeh9218tNPEC0tHav8_L4BcMxEdk
  priority: 102
  providerName: Springer Nature
Title Microwave-induced conductance replicas in hybrid Josephson junctions without Floquet—Andreev states
URI https://link.springer.com/article/10.1038/s41467-023-42357-5
https://www.proquest.com/docview/2882124425
https://www.proquest.com/docview/2883577302
https://pubmed.ncbi.nlm.nih.gov/PMC10603169
https://doaj.org/article/1b50f1ffd2224c43bc37bc9b49b778d6
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELb2ISQuiKcILJWRuIEh8SN2Dgh1qy2rSl0hoFJvVvwIu6hKoY-F3vgR_EJ-CWMnKepqQeLSSrHbOJ4ZzzcZ-xuEnqmqdF4JRXxlUsJFZkkJfpFI6qy01oksEs-Pz_LTCR9NxXQPdeWO2glcXhvahXpSk8Xs5fevmzdg8K-bI-Pq1ZJHcwfvQ3hgbyFiHx2CZ5LBUMct3I8rMysgoAmJZpryjIDvZu05muv_ZsdXRUr_HRx6dRfllVRq9FDD2-hWCy1xv9GFO2jP13fRjabY5OYe8uOw9-5beekJxOEgUYchFg50r0HweOFjJnuJL2p8vgnnuHCTHQBAjj-D94sKisN72_l6hYezML7Vrx8_45ZIf4nj0aTlfTQZnnwcnJK2yAKxnDFBKgsP7WXmLYAtr1RBnZclz0vKyzKjUkGrtwXLbZp5k3JnCiEMr9LcAHZQhj1AB_W89g8RllYyxZnjTDke2NIrWE6tr3iqyrJwPkFZN53atgzkoRDGTMdMOFO6EYEGEegoAi0S9Hz7my8N_8Y_ex8HKW17Bu7seGG--KRbU9SZEWmVVZUDaMRhEoxl0tjC8MJIqVyeoKNOxrrTR00hEglQiMI9nm6bwRRDfqWs_Xwd-8AoYMmkCVI7urEzoN2W-uI8knpDaA7ra14k6EWnRn_u_vcnfvRf8_MY3aRBv8H30vwIHawWa_8EQNXK9NC-nEr4VMO3PXTY748-jOD7-OTs3Xu4OsgHvfi6ohct6jf3aiOe
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qRQg2iKcaKGAkWIHVxLFjZ4EQr2pKO1210uxM_AgtqjJlHq1mx0fwHXwUX8K1k0w1leiu29gzcXzPfdjXPhfglaor55VQ1NcmpVxkllboF6lkzkprncgi8fxwvxgc8q8jMVqDP_1dmHCssreJ0VC7sQ175FsMQ8Hgi5h4f_qThqpRIbval9BoYbHrF-e4ZJu-2_mM8n3N2PaXg08D2lUVoJbnuaC1RdvgZeYtRhdeqZI5LyteVIxXVcakwlZvy7ywaeZNyp0phTC8TguDzlKZHP_3BtxEx5sGjZIjudzTCWzrivPubk6aq60pj5YIHSPlgViGihX_F8sErMS2l09mXkrPRq-3fQ_uduEq-dDi6z6s-eYB3GoLWC4egh-G83zn1ZmnuLZHlDiC6-tAIRvARCY-Zsen5LghR4twN4y0GQcM8skP9KgR9CTsBY_nM7J9EsY3-_vrdzxm6c9IvO40fQSH1zLFj2G9GTd-A4i0Mlc8dzxXjgcG9hpNtPU1T1VVlc4nkPXTqW3Hah6Ka5zomF3PlW5FoFEEOopAiwTeLH9z2nJ6XNn7Y5DSsmfg444PxpPvulNvnRmR1lldOwy3OE6Csbk0tjS8NFIqVySw2ctYd0Ziqi8gncDLZTOqd8jZVI0fz2MfHAWaYZaAWsHGyoBWW5rjo0gUjghFm12UCbztYXTx9v9_8ZOrB_sCbg8Ohnt6b2d_9yncYQHc6MxZsQnrs8ncP8MobWaeR9Ug8O26dfEfSLFQKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKEYgN4qkGChgJVmBN4kfsLBACyqiltGJBpdmZ-BFaVCVlMtNqdnwEX8Pn8CVcO8lUU4nuuo09E8f37Xt9LkIvVFU6r4QivjIp4SKzpAS7SCR1VlrrRBaB5_f28-0D_mkiJmvoz3AXJpRVDjoxKmrX2HBGPqLgCgZbRMWo6ssivmyN3578JKGDVMi0Du00OhbZ9YszCN_aNztbQOuXlI4_fv2wTfoOA8RyxgSpLOgJLzNvwdPwShXUeVnyvKS8LDMqFYx6W7Dcppk3KXemEMLwKs0NGE5lGPzvNXRdMpEFGZMTuTzfCcjrivP-nk7K1KjlUSuBkSQ8gMwQsWILY8uAFT_3YpXmhVRttIDjO-h277ridx2v3UVrvr6HbnTNLBf3kd8LtX1n5aknEOcDxzgMsXaAkw2Mhac-ZspbfFTjw0W4J4a77AM4_PgHWNcoADicCzfzGR4fh_XN_v76HUsu_SmOV5_aB-jgSrb4IVqvm9pvICytZIozx5lyPKCxV6Cura94qsqycD5B2bCd2vYI56HRxrGOmXamdEcCDSTQkQRaJOjV8jcnHb7HpbPfByotZwZs7vigmX7XvajrzIi0yqrKgevFYROMZdLYwvDCSKlcnqDNgca6VxitPmfvBD1fDoOoh_xNWftmHufAKkAl0wSpFd5YWdDqSH10GEHDIfQH_Z0XCXo9sNH52___xY8uX-wzdBOkUH_e2d99jG7RwNtg12m-idZn07l_Ag7bzDyNkoHRt6sWxX_iN1Rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microwave-induced+conductance+replicas+in+hybrid+Josephson+junctions+without+Floquet%E2%80%94Andreev+states&rft.jtitle=Nature+communications&rft.au=Haxell%2C+Daniel+Z.&rft.au=Coraiola%2C+Marco&rft.au=Sabonis%2C+Deividas&rft.au=Hinderling%2C+Manuel&rft.date=2023-10-26&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-42357-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_42357_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon