Microwave-induced conductance replicas in hybrid Josephson junctions without Floquet—Andreev states
Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current–phas...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 6798 - 8 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.10.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current–phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current–phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet–Andreev states, our study rules out this scenario. The distortion of the current–phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light–matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet–Andreev states in mesoscopic devices.
The authors study conductance replicas emerging under microwave irradiation in the tunnelling spectrum of Josephson junctions in InAs/Al heterostructures, focusing on distinguishing the signatures of Floquet-Andreev states (FASs) from those of photon-assisted tunneling (PAT). They establish that PAT largely dominates the response to microwave radiation in their device. |
---|---|
AbstractList | Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current–phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current–phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet–Andreev states, our study rules out this scenario. The distortion of the current–phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light–matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet–Andreev states in mesoscopic devices.
The authors study conductance replicas emerging under microwave irradiation in the tunnelling spectrum of Josephson junctions in InAs/Al heterostructures, focusing on distinguishing the signatures of Floquet-Andreev states (FASs) from those of photon-assisted tunneling (PAT). They establish that PAT largely dominates the response to microwave radiation in their device. Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current–phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current–phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet–Andreev states, our study rules out this scenario. The distortion of the current–phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light–matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet–Andreev states in mesoscopic devices.The authors study conductance replicas emerging under microwave irradiation in the tunnelling spectrum of Josephson junctions in InAs/Al heterostructures, focusing on distinguishing the signatures of Floquet-Andreev states (FASs) from those of photon-assisted tunneling (PAT). They establish that PAT largely dominates the response to microwave radiation in their device. Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current–phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current–phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet–Andreev states, our study rules out this scenario. The distortion of the current–phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light–matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet–Andreev states in mesoscopic devices. Abstract Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current–phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current–phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet–Andreev states, our study rules out this scenario. The distortion of the current–phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light–matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet–Andreev states in mesoscopic devices. Light-matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting-semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current-phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current-phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet-Andreev states, our study rules out this scenario. The distortion of the current-phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light-matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet-Andreev states in mesoscopic devices.Light-matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting-semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current-phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current-phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet-Andreev states, our study rules out this scenario. The distortion of the current-phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light-matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet-Andreev states in mesoscopic devices. |
ArticleNumber | 6798 |
Author | Hinderling, Manuel Nichele, Fabrizio Belzig, Wolfgang Cheah, Erik Sabonis, Deividas Schott, Rüdiger ten Kate, Sofieke C. Krizek, Filip Wegscheider, Werner Cuevas, Juan Carlos Haxell, Daniel Z. Coraiola, Marco |
Author_xml | – sequence: 1 givenname: Daniel Z. surname: Haxell fullname: Haxell, Daniel Z. organization: IBM Research Europe—Zurich – sequence: 2 givenname: Marco surname: Coraiola fullname: Coraiola, Marco organization: IBM Research Europe—Zurich – sequence: 3 givenname: Deividas surname: Sabonis fullname: Sabonis, Deividas organization: IBM Research Europe—Zurich – sequence: 4 givenname: Manuel surname: Hinderling fullname: Hinderling, Manuel organization: IBM Research Europe—Zurich – sequence: 5 givenname: Sofieke C. surname: ten Kate fullname: ten Kate, Sofieke C. organization: IBM Research Europe—Zurich – sequence: 6 givenname: Erik orcidid: 0000-0003-4240-8680 surname: Cheah fullname: Cheah, Erik organization: Laboratory for Solid State Physics, ETH Zürich – sequence: 7 givenname: Filip surname: Krizek fullname: Krizek, Filip organization: IBM Research Europe—Zurich, Laboratory for Solid State Physics, ETH Zürich – sequence: 8 givenname: Rüdiger orcidid: 0000-0002-9320-0313 surname: Schott fullname: Schott, Rüdiger organization: Laboratory for Solid State Physics, ETH Zürich – sequence: 9 givenname: Werner orcidid: 0000-0002-2138-5558 surname: Wegscheider fullname: Wegscheider, Werner organization: Laboratory for Solid State Physics, ETH Zürich – sequence: 10 givenname: Wolfgang orcidid: 0000-0002-5109-2203 surname: Belzig fullname: Belzig, Wolfgang organization: Fachbereich Physik, Universität Konstanz – sequence: 11 givenname: Juan Carlos orcidid: 0000-0001-7421-0682 surname: Cuevas fullname: Cuevas, Juan Carlos organization: Fachbereich Physik, Universität Konstanz, Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid – sequence: 12 givenname: Fabrizio orcidid: 0000-0002-6320-5754 surname: Nichele fullname: Nichele, Fabrizio email: fni@zurich.ibm.com organization: IBM Research Europe—Zurich |
BookMark | eNp9Ustu1DAUtVARLUN_gFUkNmwCfiV2VqiqWigqYgNry3ZuZjzK2IPtTNUdH8EX8iU4TRG0i3rjK_uccx_nvkRHPnhA6DXB7whm8n3ihLeixpTVnLJG1M0zdEIxJzURlB39Fx-j05S2uBzWEcn5C3TMhCxBh08QfHE2hht9gNr5frLQVzbMQdbeQhVhPzqrU-V8tbk10fXV55Bgv0nBV9vJ2-yCT9WNy5sw5epyDD8myL9__jrzfQQ4VCnrDOkVej7oMcHp_b1C3y8vvp1_qq-_frw6P7uuLWesqQdbWgJBwOKuASk72oPQvNWUa02okOUXbMdaiwkYzHvTNY3hA24NxUQatkJXi24f9Fbto9vpeKuCduruIcS10jE7O4IipsEDGYaeUspLemOZMLYzvDNCyL4tWh8Wrf1kdtBb8Dnq8YHowx_vNmodDorgFjPSdkXh7b1CnMeSstq5ZGEctYcwJUWlLMYJVjxcoTePoNswRV9mNaMooZzTpqDkgiqWpRRhUNaV-RYLSgFuLJnVvBtq2Q1VdNXdbqiZSh9R_zbyJIktpFTAfg3xX1VPsP4A_abO5w |
CitedBy_id | crossref_primary_10_1103_PhysRevB_110_024517 crossref_primary_10_1103_PhysRevLett_133_246606 crossref_primary_10_1038_s41467_025_57335_2 |
Cites_doi | 10.1103/PhysRevLett.112.156801 10.1038/s41567-020-0858-0 10.1103/PhysRevB.84.054504 10.1103/PhysRevApplied.4.034011 10.1103/PhysRevLett.106.220402 10.1103/PhysRevB.84.235108 10.1021/acs.nanolett.2c01840 10.1038/s42254-020-0170-z 10.1038/nphys4150 10.1103/PhysRevApplied.14.064038 10.1103/PhysRevLett.128.197702 10.1103/PhysRevLett.31.524 10.1103/PhysRevB.100.041102 10.1103/PhysRevLett.104.247003 10.1063/1.93685 10.1038/nphys4224 10.1103/PhysRevResearch.3.L032009 10.1126/science.1239834 10.1103/PhysRevLett.66.3056 10.1103/PhysRevB.93.155402 10.1103/PhysRevLett.115.127002 10.1038/nature16522 10.1126/science.aab2179 10.1103/PhysRevLett.121.127705 10.1038/s41586-019-1068-8 10.1103/PhysRevB.101.134507 10.1038/s41565-018-0329-2 10.1103/RevModPhys.89.011004 10.1038/nphys1926 10.1038/s41567-020-0972-z 10.1103/PhysRevLett.88.157001 10.1103/PhysRevApplied.7.034029 10.1103/PhysRevLett.102.127001 10.1103/PhysRevLett.115.127001 10.1103/PhysRevLett.124.226801 10.1126/science.1197294 10.1038/nphys1811 10.1126/science.abf0345 10.1103/PhysRevResearch.3.023108 10.1103/PhysRevLett.90.087003 10.1103/PhysRev.129.647 10.1103/PhysRevLett.97.067006 10.1103/PhysRevB.79.081406 10.1103/PhysRevB.97.195423 10.1146/annurev-conmatphys-031218-013423 10.1103/PhysRevB.99.094303 10.1038/nphys4110 10.1016/j.physrep.2004.01.004 10.1080/00018732.2015.1055918 10.1038/s41586-021-04364-8 10.1038/s41567-019-0698-y 10.1103/PhysRevLett.129.080402 10.1038/s41565-018-0207-y |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. The Author(s). |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-42357-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_1b50f1ffd2224c43bc37bc9b49b778d6 PMC10603169 10_1038_s41467_023_42357_5 |
GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: 200021_201082 funderid: https://doi.org/10.13039/501100001711 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 804273 funderid: https://doi.org/10.13039/100010663 – fundername: ; grantid: 200021_201082 – fundername: ; grantid: 804273 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c4335-fc467e71ec095e8892de7a46a24aa127867eec936c01eb04db955b4f06b2018b3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:27 EDT 2025 Thu Aug 21 18:36:21 EDT 2025 Fri Jul 11 04:03:27 EDT 2025 Wed Aug 13 01:46:24 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 01 02:10:41 EDT 2025 Fri Feb 21 02:39:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4335-fc467e71ec095e8892de7a46a24aa127867eec936c01eb04db955b4f06b2018b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6320-5754 0000-0002-5109-2203 0000-0001-7421-0682 0000-0003-4240-8680 0000-0002-2138-5558 0000-0002-9320-0313 |
OpenAccessLink | https://www.proquest.com/docview/2882124425?pq-origsite=%requestingapplication% |
PMID | 37884490 |
PQID | 2882124425 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1b50f1ffd2224c43bc37bc9b49b778d6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10603169 proquest_miscellaneous_2883577302 proquest_journals_2882124425 crossref_citationtrail_10_1038_s41467_023_42357_5 crossref_primary_10_1038_s41467_023_42357_5 springer_journals_10_1038_s41467_023_42357_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231026 |
PublicationDateYYYYMMDD | 2023-10-26 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231026 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Liu, Shabani, Mitra (CR37) 2019; 99 Spanton (CR51) 2017; 13 Matute-Cañadas (CR32) 2022; 128 Cuevas, Heurich, Martín-Rodero, Levy Yeyati, Schön (CR14) 2002; 88 Rudner, Lindner (CR9) 2020; 2 Janvier (CR25) 2015; 349 Oka, Aoki (CR1) 2009; 79 Beenakker, van Houten (CR19) 1991; 66 Platero, Aguado (CR45) 2004; 395 McIver (CR8) 2020; 16 Kitagawa, Oka, Brataas, Fu, Demler (CR3) 2011; 84 Danchi, Habbal, Tinkham (CR11) 1982; 41 Fornieri (CR48) 2019; 569 Ji (CR39) 2022; 129 Eckardt (CR7) 2017; 89 Venitucci, Feinberg, Mélin, Douçot (CR43) 2018; 97 Jiang (CR35) 2011; 106 Peters (CR18) 2020; 16 Peng, Haim, Karzig, Peng, Refael (CR38) 2021; 3 Oka, Kitamura (CR46) 2019; 10 Pita-Vidal (CR30) 2020; 14 Wang, Steinberg, Jarillo-Herrero, Gedik (CR4) 2013; 342 Tosi (CR24) 2019; 9 Bauer (CR36) 2019; 100 Shabani (CR47) 2016; 93 Nichele (CR42) 2020; 124 Gregers-Hansen, Hendricks, Levinsen, Pickett (CR13) 1973; 31 Hays (CR31) 2021; 373 Wang (CR29) 2019; 14 Fuechsle (CR55) 2009; 102 Grushin, Gómez-León, Neupert (CR5) 2014; 112 CR12 Su (CR50) 2018; 121 de Lange (CR27) 2015; 115 Bukov, D’Alessio, Polkovnikov (CR6) 2015; 64 Roychowdhury, Dreyer, Anderson, Lobb, Wellstood (CR16) 2015; 4 Tien, Gordon (CR10) 1963; 129 van Woerkom (CR23) 2017; 13 Casparis (CR28) 2018; 13 Park (CR44) 2022; 603 Kot (CR17) 2020; 101 Carrad (CR34) 2022; 22 Fausti (CR21) 2011; 331 Bretheau (CR41) 2017; 13 Lindner, Refael, Galitski (CR2) 2011; 7 Mitrano (CR22) 2016; 530 Chauvin (CR15) 2006; 97 Kjaergaard (CR49) 2017; 7 van Zanten (CR33) 2020; 16 Zazunov, Shumeiko, Bratus, Lantz, Wendin (CR20) 2003; 90 Bergeret, Virtanen, Ozaeta, Heikkilä, Cuevas (CR52) 2011; 84 Virtanen, Heikkilä, Bergeret, Cuevas (CR54) 2010; 104 Larsen (CR26) 2015; 115 Dou (CR53) 2021; 3 Pillet (CR40) 2010; 6 Z Dou (42357_CR53) 2021; 3 Z Su (42357_CR50) 2018; 121 L Bretheau (42357_CR41) 2017; 13 JW McIver (42357_CR8) 2020; 16 F Nichele (42357_CR42) 2020; 124 DMT van Zanten (42357_CR33) 2020; 16 C Janvier (42357_CR25) 2015; 349 O Peters (42357_CR18) 2020; 16 FJ Matute-Cañadas (42357_CR32) 2022; 128 JC Cuevas (42357_CR14) 2002; 88 YH Wang (42357_CR4) 2013; 342 L Jiang (42357_CR35) 2011; 106 L Tosi (42357_CR24) 2019; 9 M Mitrano (42357_CR22) 2016; 530 M Hays (42357_CR31) 2021; 373 S-C Ji (42357_CR39) 2022; 129 J-D Pillet (42357_CR40) 2010; 6 T Oka (42357_CR1) 2009; 79 FS Bergeret (42357_CR52) 2011; 84 M Chauvin (42357_CR15) 2006; 97 G Platero (42357_CR45) 2004; 395 M Kjaergaard (42357_CR49) 2017; 7 MS Rudner (42357_CR9) 2020; 2 TW Larsen (42357_CR26) 2015; 115 AG Grushin (42357_CR5) 2014; 112 PK Tien (42357_CR10) 1963; 129 J Shabani (42357_CR47) 2016; 93 42357_CR12 CWJ Beenakker (42357_CR19) 1991; 66 M Fuechsle (42357_CR55) 2009; 102 A Fornieri (42357_CR48) 2019; 569 T Kitagawa (42357_CR3) 2011; 84 DT Liu (42357_CR37) 2019; 99 B Bauer (42357_CR36) 2019; 100 D Fausti (42357_CR21) 2011; 331 PE Gregers-Hansen (42357_CR13) 1973; 31 JI-J Wang (42357_CR29) 2019; 14 P Kot (42357_CR17) 2020; 101 A Eckardt (42357_CR7) 2017; 89 NH Lindner (42357_CR2) 2011; 7 T Oka (42357_CR46) 2019; 10 C Peng (42357_CR38) 2021; 3 M Pita-Vidal (42357_CR30) 2020; 14 B Venitucci (42357_CR43) 2018; 97 WC Danchi (42357_CR11) 1982; 41 A Zazunov (42357_CR20) 2003; 90 L Casparis (42357_CR28) 2018; 13 S Park (42357_CR44) 2022; 603 DJ van Woerkom (42357_CR23) 2017; 13 EM Spanton (42357_CR51) 2017; 13 M Bukov (42357_CR6) 2015; 64 G de Lange (42357_CR27) 2015; 115 A Roychowdhury (42357_CR16) 2015; 4 DJ Carrad (42357_CR34) 2022; 22 P Virtanen (42357_CR54) 2010; 104 |
References_xml | – volume: 112 start-page: 156801 year: 2014 ident: CR5 article-title: Floquet fractional Chern insulators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.156801 – volume: 16 start-page: 663 year: 2020 end-page: 668 ident: CR33 article-title: Photon-assisted tunnelling of zero modes in a Majorana wire publication-title: Nat. Phys. doi: 10.1038/s41567-020-0858-0 – volume: 84 start-page: 054504 year: 2011 ident: CR52 article-title: Supercurrent and Andreev bound state dynamics in superconducting quantum point contacts under microwave irradiation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.054504 – ident: CR12 – volume: 4 start-page: 034011 year: 2015 ident: CR16 article-title: Microwave photon-assisted incoherent cooper-pair tunneling in a Josephson STM publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.4.034011 – volume: 106 start-page: 220402 year: 2011 ident: CR35 article-title: Majorana fermions in equilibrium and in driven cold-atom quantum wires publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.220402 – volume: 84 start-page: 235108 year: 2011 ident: CR3 article-title: Transport properties of nonequilibrium systems under the application of light: photoinduced quantum hall insulators without landau levels publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.235108 – volume: 22 start-page: 6262 year: 2022 end-page: 6267 ident: CR34 article-title: Photon-assisted tunneling of high-order multiple Andreev reflections in epitaxial nanowire Josephson junctions publication-title: Nano. Lett. doi: 10.1021/acs.nanolett.2c01840 – volume: 2 start-page: 229 year: 2020 end-page: 244 ident: CR9 article-title: Band structure engineering and non-equilibrium dynamics in Floquet topological insulators publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-020-0170-z – volume: 13 start-page: 876 year: 2017 end-page: 881 ident: CR23 article-title: Microwave spectroscopy of spinful Andreev bound states in ballistic semiconductor Josephson junctions publication-title: Nat. Phys. doi: 10.1038/nphys4150 – volume: 14 start-page: 064038 year: 2020 ident: CR30 article-title: Gate-tunable field-compatible fluxonium publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.064038 – volume: 128 start-page: 197702 year: 2022 ident: CR32 article-title: Signatures of interactions in the Andreev spectrum of nanowire Josephson junctions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.197702 – volume: 31 start-page: 524 year: 1973 end-page: 527 ident: CR13 article-title: Subharmonic energy-gap structure and a Josephson-radiation-enhanced gap in dayem bridges publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.31.524 – volume: 100 start-page: 041102 year: 2019 ident: CR36 article-title: Topologically protected braiding in a single wire using Floquet Majorana modes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.041102 – volume: 104 start-page: 247003 year: 2010 ident: CR54 article-title: Theory of microwave-assisted supercurrent in diffusive SNS junctions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.247003 – volume: 41 start-page: 883 year: 1982 end-page: 885 ident: CR11 article-title: ac Josephson effect in small-area superconducting tunnel junctions at 604 GHz publication-title: Appl. Phys. Lett. doi: 10.1063/1.93685 – volume: 13 start-page: 1177 year: 2017 end-page: 1181 ident: CR51 article-title: Current-phase relations of few-mode in as nanowire Josephson junctions publication-title: Nat. Phys. doi: 10.1038/nphys4224 – volume: 3 start-page: 032009 year: 2021 ident: CR53 article-title: Microwave photoassisted dissipation and supercurrent of a phase-biased graphene-superconductor ring publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.L032009 – volume: 342 start-page: 453 year: 2013 end-page: 457 ident: CR4 article-title: Observation of Floquet-Bloch states on the surface of a topological insulator publication-title: Science doi: 10.1126/science.1239834 – volume: 66 start-page: 3056 year: 1991 end-page: 3059 ident: CR19 article-title: Josephson current through a superconducting quantum point contact shorter than the coherence length publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.3056 – volume: 93 start-page: 155402 year: 2016 ident: CR47 article-title: Two-dimensional epitaxial superconductor-semiconductor heterostructures: a platform for topological superconducting networks publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.155402 – volume: 115 start-page: 127002 year: 2015 ident: CR27 article-title: Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.127002 – volume: 530 start-page: 461 year: 2016 end-page: 464 ident: CR22 article-title: Possible light-induced superconductivity in K3C60 at high temperature publication-title: Nature doi: 10.1038/nature16522 – volume: 349 start-page: 1199 year: 2015 end-page: 1202 ident: CR25 article-title: Coherent manipulation of Andreev states in superconducting atomic contacts publication-title: Science doi: 10.1126/science.aab2179 – volume: 121 start-page: 127705 year: 2018 ident: CR50 article-title: Mirage Andreev spectra generated by mesoscopic leads in nanowire quantum dots publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.127705 – volume: 569 start-page: 89 year: 2019 end-page: 92 ident: CR48 article-title: Evidence of topological superconductivity in planar Josephson junctions publication-title: Nature doi: 10.1038/s41586-019-1068-8 – volume: 101 start-page: 134507 year: 2020 ident: CR17 article-title: Microwave-assisted tunneling and interference effects in superconducting junctions under fast driving signals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.134507 – volume: 14 start-page: 120 year: 2019 end-page: 125 ident: CR29 article-title: Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0329-2 – volume: 89 start-page: 011004 year: 2017 ident: CR7 article-title: Colloquium: atomic quantum gases in periodically driven optical lattices publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.011004 – volume: 7 start-page: 490 year: 2011 end-page: 495 ident: CR2 article-title: Floquet topological insulator in semiconductor quantum wells publication-title: Nat. Phys. doi: 10.1038/nphys1926 – volume: 16 start-page: 1222 year: 2020 end-page: 1226 ident: CR18 article-title: Resonant Andreev reflections probed by photon-assisted tunnelling at the atomic scale publication-title: Nat. Phys. doi: 10.1038/s41567-020-0972-z – volume: 88 start-page: 157001 year: 2002 ident: CR14 article-title: Subharmonic shapiro steps and assisted tunneling in superconducting point contacts publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.157001 – volume: 7 start-page: 034029 year: 2017 ident: CR49 article-title: Transparent semiconductor-superconductor interface and induced gap in an epitaxial heterostructure Josephson junction publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.7.034029 – volume: 102 start-page: 127001 year: 2009 ident: CR55 article-title: Effect of microwaves on the current-phase relation of superconductor–normal-metal–superconductor Josephson junctions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.127001 – volume: 115 start-page: 127001 year: 2015 ident: CR26 article-title: Semiconductor-nanowire-based superconducting qubit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.127001 – volume: 124 start-page: 226801 year: 2020 ident: CR42 article-title: Relating Andreev bound states and supercurrents in hybrid Josephson junctions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.226801 – volume: 331 start-page: 189 year: 2011 end-page: 191 ident: CR21 article-title: Light-induced superconductivity in a stripe-ordered cuprate publication-title: Science doi: 10.1126/science.1197294 – volume: 6 start-page: 965 year: 2010 end-page: 969 ident: CR40 article-title: Andreev bound states in supercurrent-carrying carbon nanotubes revealed publication-title: Nat. Phys. doi: 10.1038/nphys1811 – volume: 373 start-page: 430 year: 2021 end-page: 433 ident: CR31 article-title: Coherent manipulation of an Andreev spin qubit publication-title: Science doi: 10.1126/science.abf0345 – volume: 3 start-page: 023108 year: 2021 ident: CR38 article-title: Floquet Majorana bound states in voltage-biased planar Josephson junctions publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.023108 – volume: 90 start-page: 087003 year: 2003 ident: CR20 article-title: Andreev level qubit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.087003 – volume: 129 start-page: 647 year: 1963 end-page: 651 ident: CR10 article-title: Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films publication-title: Phys. Rev. doi: 10.1103/PhysRev.129.647 – volume: 97 start-page: 067006 year: 2006 ident: CR15 article-title: Superconducting atomic contacts under microwave irradiation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.067006 – volume: 79 start-page: 081406 year: 2009 ident: CR1 article-title: Photovoltaic hall effect in graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.081406 – volume: 97 start-page: 195423 year: 2018 ident: CR43 article-title: Nonadiabatic Josephson current pumping by chiral microwave irradiation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.195423 – volume: 10 start-page: 387 year: 2019 end-page: 408 ident: CR46 article-title: Floquet engineering of quantum materials publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031218-013423 – volume: 99 start-page: 094303 year: 2019 ident: CR37 article-title: Floquet Majorana zero and modes in planar Josephson junctions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.094303 – volume: 13 start-page: 756 year: 2017 end-page: 760 ident: CR41 article-title: Tunnelling spectroscopy of Andreev states in graphene publication-title: Nat. Phys. doi: 10.1038/nphys4110 – volume: 395 start-page: 1 year: 2004 end-page: 157 ident: CR45 article-title: Photon-assisted transport in semiconductor nanostructures publication-title: Phys. Rep. doi: 10.1016/j.physrep.2004.01.004 – volume: 9 start-page: 011010 year: 2019 ident: CR24 article-title: Spin-orbit splitting of Andreev states revealed by microwave spectroscopy publication-title: Phys. Rev. X – volume: 64 start-page: 139 year: 2015 end-page: 226 ident: CR6 article-title: Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering publication-title: Adv. Phys. doi: 10.1080/00018732.2015.1055918 – volume: 603 start-page: 421 year: 2022 end-page: 426 ident: CR44 article-title: Steady floquet-Andreev states in graphene Josephson junctions publication-title: Nature doi: 10.1038/s41586-021-04364-8 – volume: 16 start-page: 38 year: 2020 end-page: 41 ident: CR8 article-title: Light-induced anomalous hall effect in graphene publication-title: Nat. Phys. doi: 10.1038/s41567-019-0698-y – volume: 129 start-page: 080402 year: 2022 ident: CR39 article-title: Floquet engineering a bosonic Josephson junction publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.080402 – volume: 13 start-page: 915 year: 2018 end-page: 919 ident: CR28 article-title: Superconducting gatemon qubit based on a proximitized two-dimensional electron gas publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0207-y – volume: 89 start-page: 011004 year: 2017 ident: 42357_CR7 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.011004 – volume: 331 start-page: 189 year: 2011 ident: 42357_CR21 publication-title: Science doi: 10.1126/science.1197294 – volume: 100 start-page: 041102 year: 2019 ident: 42357_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.041102 – volume: 342 start-page: 453 year: 2013 ident: 42357_CR4 publication-title: Science doi: 10.1126/science.1239834 – volume: 14 start-page: 120 year: 2019 ident: 42357_CR29 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0329-2 – volume: 22 start-page: 6262 year: 2022 ident: 42357_CR34 publication-title: Nano. Lett. doi: 10.1021/acs.nanolett.2c01840 – volume: 13 start-page: 876 year: 2017 ident: 42357_CR23 publication-title: Nat. Phys. doi: 10.1038/nphys4150 – volume: 13 start-page: 1177 year: 2017 ident: 42357_CR51 publication-title: Nat. Phys. doi: 10.1038/nphys4224 – volume: 129 start-page: 647 year: 1963 ident: 42357_CR10 publication-title: Phys. Rev. doi: 10.1103/PhysRev.129.647 – volume: 129 start-page: 080402 year: 2022 ident: 42357_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.080402 – ident: 42357_CR12 – volume: 106 start-page: 220402 year: 2011 ident: 42357_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.220402 – volume: 121 start-page: 127705 year: 2018 ident: 42357_CR50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.127705 – volume: 99 start-page: 094303 year: 2019 ident: 42357_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.094303 – volume: 101 start-page: 134507 year: 2020 ident: 42357_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.134507 – volume: 530 start-page: 461 year: 2016 ident: 42357_CR22 publication-title: Nature doi: 10.1038/nature16522 – volume: 84 start-page: 235108 year: 2011 ident: 42357_CR3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.235108 – volume: 9 start-page: 011010 year: 2019 ident: 42357_CR24 publication-title: Phys. Rev. X – volume: 10 start-page: 387 year: 2019 ident: 42357_CR46 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031218-013423 – volume: 3 start-page: 032009 year: 2021 ident: 42357_CR53 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.L032009 – volume: 16 start-page: 1222 year: 2020 ident: 42357_CR18 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0972-z – volume: 124 start-page: 226801 year: 2020 ident: 42357_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.226801 – volume: 31 start-page: 524 year: 1973 ident: 42357_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.31.524 – volume: 104 start-page: 247003 year: 2010 ident: 42357_CR54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.247003 – volume: 79 start-page: 081406 year: 2009 ident: 42357_CR1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.081406 – volume: 90 start-page: 087003 year: 2003 ident: 42357_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.087003 – volume: 102 start-page: 127001 year: 2009 ident: 42357_CR55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.127001 – volume: 13 start-page: 915 year: 2018 ident: 42357_CR28 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0207-y – volume: 14 start-page: 064038 year: 2020 ident: 42357_CR30 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.064038 – volume: 2 start-page: 229 year: 2020 ident: 42357_CR9 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-020-0170-z – volume: 16 start-page: 663 year: 2020 ident: 42357_CR33 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0858-0 – volume: 88 start-page: 157001 year: 2002 ident: 42357_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.157001 – volume: 64 start-page: 139 year: 2015 ident: 42357_CR6 publication-title: Adv. Phys. doi: 10.1080/00018732.2015.1055918 – volume: 569 start-page: 89 year: 2019 ident: 42357_CR48 publication-title: Nature doi: 10.1038/s41586-019-1068-8 – volume: 13 start-page: 756 year: 2017 ident: 42357_CR41 publication-title: Nat. Phys. doi: 10.1038/nphys4110 – volume: 395 start-page: 1 year: 2004 ident: 42357_CR45 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2004.01.004 – volume: 349 start-page: 1199 year: 2015 ident: 42357_CR25 publication-title: Science doi: 10.1126/science.aab2179 – volume: 373 start-page: 430 year: 2021 ident: 42357_CR31 publication-title: Science doi: 10.1126/science.abf0345 – volume: 128 start-page: 197702 year: 2022 ident: 42357_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.197702 – volume: 93 start-page: 155402 year: 2016 ident: 42357_CR47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.155402 – volume: 66 start-page: 3056 year: 1991 ident: 42357_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.3056 – volume: 7 start-page: 490 year: 2011 ident: 42357_CR2 publication-title: Nat. Phys. doi: 10.1038/nphys1926 – volume: 7 start-page: 034029 year: 2017 ident: 42357_CR49 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.7.034029 – volume: 115 start-page: 127001 year: 2015 ident: 42357_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.127001 – volume: 16 start-page: 38 year: 2020 ident: 42357_CR8 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0698-y – volume: 41 start-page: 883 year: 1982 ident: 42357_CR11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.93685 – volume: 112 start-page: 156801 year: 2014 ident: 42357_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.156801 – volume: 97 start-page: 195423 year: 2018 ident: 42357_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.195423 – volume: 4 start-page: 034011 year: 2015 ident: 42357_CR16 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.4.034011 – volume: 6 start-page: 965 year: 2010 ident: 42357_CR40 publication-title: Nat. Phys. doi: 10.1038/nphys1811 – volume: 84 start-page: 054504 year: 2011 ident: 42357_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.054504 – volume: 97 start-page: 067006 year: 2006 ident: 42357_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.067006 – volume: 603 start-page: 421 year: 2022 ident: 42357_CR44 publication-title: Nature doi: 10.1038/s41586-021-04364-8 – volume: 3 start-page: 023108 year: 2021 ident: 42357_CR38 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.023108 – volume: 115 start-page: 127002 year: 2015 ident: 42357_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.127002 |
SSID | ssj0000391844 |
Score | 2.4588733 |
Snippet | Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson junction... Light-matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting-semiconducting Josephson junction... Abstract Light–matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting–semiconducting Josephson... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6798 |
SubjectTerms | 639/766/119/1000/1018 639/766/119/1003 639/766/119/995 Conductance Coupling Elementary excitations Heterostructures Humanities and Social Sciences Irradiation Josephson junctions Microwave radiation Microwaves multidisciplinary Photons Science Science (multidisciplinary) Signatures Spectroscopy Spectrum analysis |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA6lIHQjPlocrRLBXRs6k8cks1TxUgp1ZaG7kMcJrZS50ntvpTt_hL_QX-JJZu61U6hu3E4y5HFOziPn5DuEvDPJRTDKMEi-ZlI1gTnUi0zzGHQIUTUFeP70c3t8Jk_O1fmdUl85J2yABx427qjxqk5NShEVmQxS-CC0D52XndfaxAK2jTrvjjNVZLDo0HWR4yuZWpijhSwyAVUUkxnihamJJiqA_RMr836O5L1AadE_syfk8Wg40vfDhJ-SLeifkUdDKcnb5wROc2bdd3cDDL1spFek6OlmMNdMVnoNJU69oJc9vbjNr7TocPeP5jb9irqtsB_Nt7Lz1ZLOrvL8lr9-_CwJj3BDy8OjxS45m3368vGYjSUUGG6VUCwFXDToBgKaUmBMxyNoJ1vHpXMN1wZbIXSiDXUDvpbRd0p5merWo2VgvNgj2_28hxeE6qCFkSJKYaLMWOgJhWWAJGvjXBehIs16O20Y8cVzmYsrW-LcwtiBBBZJYAsJrKrIweafbwO6xl97f8hU2vTMyNjlA_KLHfnF_otfKrK_prEdj-vCcvQzsqHDcYy3m2Y8aDl64nqYr0ofnAUKRF4RM-GNyYSmLf3lRYHsRscbpWfbVeRwzUZ_Rn94xS__x4pfkR2e2R4VLm_3yfbyegWv0ZJa-jfl0PwG_BYdAg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG1hNYjt2TggQqwqpnKi0N8tPWlQlZbNb1Bs_gl_IL2HGyW6VSvQaO4rjeXpm_A0hb3SyIWqpWUyuZEJWnlmwi0zVwSvvg6wy8PzR1-bwWHxZyuUUcBumssqtTsyKOvQeY-QHNbiCaItq-f78J8OuUZhdnVpo3CZ3ELoMS7rUUu1iLIh-roWY7sqUXB8MImsGMFRMINALkzN7lGH7Z77m9UrJa-nSbIUWD8j9yX2kH0Z6PyS3YveI3B0bSl4-JvEI6-t-2YvI4KwNVAsUzrsI6YrEpauYs9UDPe3oySXe1aJjBgCcbvoDLFxmQoqx2X6zposzXN_67-8_uewxXtB8_Wh4Qo4Xn799OmRTIwXmBeeSJQ8_HVUVPThUUeu2DlFZ0dhaWFvVSsNo9C1vfFlFV4rgWimdSGXjwD_Qjj8le13fxWeEKq-4FjwIroNARPQEKtPHJEptbRtiQartdho_oYxjs4szk7PdXJuRBAZIYDIJjCzI29075yPGxo2zPyKVdjMRHzs_6FffzSRupnKyTFVKAdwfAZvgPFfOt060TikdmoLsb2lsJqEdzBWLFeT1bhjEDXMotov9Js-BVYBarAuiZ7wxW9B8pDs9ycDdcPwGHdq0BXm3ZaOrr___j5_fvNgX5F6NDA0GtW72yd56tYkvwVNau1dZHP4BHgAUBw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qRfBF6g1XW4ngmwZ3c9lkH-2hhyLUJwt9C7mtrZQ9ci6VvvVH9Bf6S5xkd49sUcHXTUKymUnmS2bmC8Bb3doQtdQ0tq6kQlaeWrSLVLHglfdBVpl4_uRzfXwqPp3Jsx1gYy5MDtrPlJZ5mx6jwz6sRF7SaGGoSAwtVN6D-4m6PWn1rJ5t71US47kWYsiPKbn-Q9OJDcpU_RN8eTc68o6LNFue-R48GiAj-dgP8jHsxO4JPOgfkbx-CvEkxdT9sFeR4vkaJRUInnETjWsSKFnG7KFekYuOnF-n_CzS3_oj0Cbf0KplxSPpPnaxWZP5ZRrf-ufNbQ51jFckpxytnsHp_OjL7JgOjydQLziXtPX401FV0SOIilo3LERlRW2ZsLZiSmNp9A2vfVlFV4rgGimdaMvaISbQjj-H3W7RxRdAlFdcCx4E10EkFvQWt0kfW1Fqa5sQC6jG6TR-YBZPD1xcmuzh5tr0IjAoApNFYGQB77Ztvve8Gv-sfZiktK2ZOLHzh8Xyqxl0xFROlm3VtgEhj8BJcJ4r5xsnGqeUDnUB-6OMzbBQV4bhCSNBHIZ9vNkW4xJLfhPbxcUm18FR4FbICtAT3ZgMaFrSXZxnsm48cuO-WTcFvB_V6Hfvf__jl_9X_RU8ZEnB0aiyeh9218tNPEC0tHav8_L4BcMxEdk priority: 102 providerName: Springer Nature |
Title | Microwave-induced conductance replicas in hybrid Josephson junctions without Floquet—Andreev states |
URI | https://link.springer.com/article/10.1038/s41467-023-42357-5 https://www.proquest.com/docview/2882124425 https://www.proquest.com/docview/2883577302 https://pubmed.ncbi.nlm.nih.gov/PMC10603169 https://doaj.org/article/1b50f1ffd2224c43bc37bc9b49b778d6 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELb2ISQuiKcILJWRuIEh8SN2Dgh1qy2rSl0hoFJvVvwIu6hKoY-F3vgR_EJ-CWMnKepqQeLSSrHbOJ4ZzzcZ-xuEnqmqdF4JRXxlUsJFZkkJfpFI6qy01oksEs-Pz_LTCR9NxXQPdeWO2glcXhvahXpSk8Xs5fevmzdg8K-bI-Pq1ZJHcwfvQ3hgbyFiHx2CZ5LBUMct3I8rMysgoAmJZpryjIDvZu05muv_ZsdXRUr_HRx6dRfllVRq9FDD2-hWCy1xv9GFO2jP13fRjabY5OYe8uOw9-5beekJxOEgUYchFg50r0HweOFjJnuJL2p8vgnnuHCTHQBAjj-D94sKisN72_l6hYezML7Vrx8_45ZIf4nj0aTlfTQZnnwcnJK2yAKxnDFBKgsP7WXmLYAtr1RBnZclz0vKyzKjUkGrtwXLbZp5k3JnCiEMr9LcAHZQhj1AB_W89g8RllYyxZnjTDke2NIrWE6tr3iqyrJwPkFZN53atgzkoRDGTMdMOFO6EYEGEegoAi0S9Hz7my8N_8Y_ex8HKW17Bu7seGG--KRbU9SZEWmVVZUDaMRhEoxl0tjC8MJIqVyeoKNOxrrTR00hEglQiMI9nm6bwRRDfqWs_Xwd-8AoYMmkCVI7urEzoN2W-uI8knpDaA7ra14k6EWnRn_u_vcnfvRf8_MY3aRBv8H30vwIHawWa_8EQNXK9NC-nEr4VMO3PXTY748-jOD7-OTs3Xu4OsgHvfi6ohct6jf3aiOe |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qRQg2iKcaKGAkWIHVxLFjZ4EQr2pKO1210uxM_AgtqjJlHq1mx0fwHXwUX8K1k0w1leiu29gzcXzPfdjXPhfglaor55VQ1NcmpVxkllboF6lkzkprncgi8fxwvxgc8q8jMVqDP_1dmHCssreJ0VC7sQ175FsMQ8Hgi5h4f_qThqpRIbval9BoYbHrF-e4ZJu-2_mM8n3N2PaXg08D2lUVoJbnuaC1RdvgZeYtRhdeqZI5LyteVIxXVcakwlZvy7ywaeZNyp0phTC8TguDzlKZHP_3BtxEx5sGjZIjudzTCWzrivPubk6aq60pj5YIHSPlgViGihX_F8sErMS2l09mXkrPRq-3fQ_uduEq-dDi6z6s-eYB3GoLWC4egh-G83zn1ZmnuLZHlDiC6-tAIRvARCY-Zsen5LghR4twN4y0GQcM8skP9KgR9CTsBY_nM7J9EsY3-_vrdzxm6c9IvO40fQSH1zLFj2G9GTd-A4i0Mlc8dzxXjgcG9hpNtPU1T1VVlc4nkPXTqW3Hah6Ka5zomF3PlW5FoFEEOopAiwTeLH9z2nJ6XNn7Y5DSsmfg444PxpPvulNvnRmR1lldOwy3OE6Csbk0tjS8NFIqVySw2ctYd0Ziqi8gncDLZTOqd8jZVI0fz2MfHAWaYZaAWsHGyoBWW5rjo0gUjghFm12UCbztYXTx9v9_8ZOrB_sCbg8Ohnt6b2d_9yncYQHc6MxZsQnrs8ncP8MobWaeR9Ug8O26dfEfSLFQKg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKEYgN4qkGChgJVmBN4kfsLBACyqiltGJBpdmZ-BFaVCVlMtNqdnwEX8Pn8CVcO8lUU4nuuo09E8f37Xt9LkIvVFU6r4QivjIp4SKzpAS7SCR1VlrrRBaB5_f28-0D_mkiJmvoz3AXJpRVDjoxKmrX2HBGPqLgCgZbRMWo6ssivmyN3578JKGDVMi0Du00OhbZ9YszCN_aNztbQOuXlI4_fv2wTfoOA8RyxgSpLOgJLzNvwdPwShXUeVnyvKS8LDMqFYx6W7Dcppk3KXemEMLwKs0NGE5lGPzvNXRdMpEFGZMTuTzfCcjrivP-nk7K1KjlUSuBkSQ8gMwQsWILY8uAFT_3YpXmhVRttIDjO-h277ridx2v3UVrvr6HbnTNLBf3kd8LtX1n5aknEOcDxzgMsXaAkw2Mhac-ZspbfFTjw0W4J4a77AM4_PgHWNcoADicCzfzGR4fh_XN_v76HUsu_SmOV5_aB-jgSrb4IVqvm9pvICytZIozx5lyPKCxV6Cura94qsqycD5B2bCd2vYI56HRxrGOmXamdEcCDSTQkQRaJOjV8jcnHb7HpbPfByotZwZs7vigmX7XvajrzIi0yqrKgevFYROMZdLYwvDCSKlcnqDNgca6VxitPmfvBD1fDoOoh_xNWftmHufAKkAl0wSpFd5YWdDqSH10GEHDIfQH_Z0XCXo9sNH52___xY8uX-wzdBOkUH_e2d99jG7RwNtg12m-idZn07l_Ag7bzDyNkoHRt6sWxX_iN1Rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microwave-induced+conductance+replicas+in+hybrid+Josephson+junctions+without+Floquet%E2%80%94Andreev+states&rft.jtitle=Nature+communications&rft.au=Haxell%2C+Daniel+Z.&rft.au=Coraiola%2C+Marco&rft.au=Sabonis%2C+Deividas&rft.au=Hinderling%2C+Manuel&rft.date=2023-10-26&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-42357-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_42357_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |