Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks

1. Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and understanding of the complexity found in natural ecosystems and is a powerful tool to reveal information on the degree of specialization of the int...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 27; no. 2; pp. 329 - 341
Main Authors Junker, Robert R., Blüthgen, Nico, Brehm, Tanja, Binkenstein, Julia, Paulus, Justina, Schaefer, H. Martin, Stang, Martina
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing 01.04.2013
Wiley-Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1. Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and understanding of the complexity found in natural ecosystems and is a powerful tool to reveal information on the degree of specialization of the interacting partners and their niches. The indices measuring these properties are based on qualitative or quantitative observations of interactions between partners from different trophic levels, which informs about the structure of network patterns, but not about the underlying mechanisms. Functional traits may control the interaction strength between partners and also the (micro-) structure of networks. Here, we ask whether flower visitors specialize on certain plant traits and how this trait specialization contributes to niche partitioning and interaction partner diversity. 2. We introduce two novel statistical approaches suited to evaluate the dimension of the realized niche and to analyse which traits determine niches. As basis for our analysis, we measured 10 quantitative flower traits and evaluated whether 31 arthropod taxa i visited flowers displaying only subsets of the available trait characteristics, indicating a specialization on these traits by narrow trait-widths 〈S i 〉. The product of 10 trait- and species-specific trait-widths 〈S i 〉 was defined as trait-volume V i (expansion of a n-dimensional hypervolume) occupied by each taxon i. These indices are applicable beyond flower—visitor interactions to quantify realized niches based on various biotic and abiotic factors. 3. Each flower visitor species showed some degree of specialization to a unique set of flower traits (realized niche). Overall, our data suggested a hierarchical sequence of flower traits influencing the flower visitors' behaviour and thus network structure: flowering phenology was found to have the strongest effect, followed by flower height, nectar-tube depth and floral reflectance. Less important were pollen-mass/flower, sugar/flower, anther position, phylogeny, display size and abundance. 4. The species-specific specialization on traits suggests that plant communities with more diverse floral niches may sustain a larger number of flower visitors with non-redundant fundamental niches. Our study and statistical approach provide a basis for a better understanding of how plant traits shape interactions between flowers and their visitors and thus network structure.
AbstractList 1. Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and understanding of the complexity found in natural ecosystems and is a powerful tool to reveal information on the degree of specialization of the interacting partners and their niches. The indices measuring these properties are based on qualitative or quantitative observations of interactions between partners from different trophic levels, which informs about the structure of network patterns, but not about the underlying mechanisms. Functional traits may control the interaction strength between partners and also the (micro-) structure of networks. Here, we ask whether flower visitors specialize on certain plant traits and how this trait specialization contributes to niche partitioning and interaction partner diversity. 2. We introduce two novel statistical approaches suited to evaluate the dimension of the realized niche and to analyse which traits determine niches. As basis for our analysis, we measured 10 quantitative flower traits and evaluated whether 31 arthropod taxa i visited flowers displaying only subsets of the available trait characteristics, indicating a specialization on these traits by narrow trait-widths 〈S i 〉. The product of 10 trait- and species-specific trait-widths 〈S i 〉 was defined as trait-volume V i (expansion of a n-dimensional hypervolume) occupied by each taxon i. These indices are applicable beyond flower—visitor interactions to quantify realized niches based on various biotic and abiotic factors. 3. Each flower visitor species showed some degree of specialization to a unique set of flower traits (realized niche). Overall, our data suggested a hierarchical sequence of flower traits influencing the flower visitors' behaviour and thus network structure: flowering phenology was found to have the strongest effect, followed by flower height, nectar-tube depth and floral reflectance. Less important were pollen-mass/flower, sugar/flower, anther position, phylogeny, display size and abundance. 4. The species-specific specialization on traits suggests that plant communities with more diverse floral niches may sustain a larger number of flower visitors with non-redundant fundamental niches. Our study and statistical approach provide a basis for a better understanding of how plant traits shape interactions between flowers and their visitors and thus network structure.
Summary Lay Summary [PUBLICATION ABSTRACT]
Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and understanding of the complexity found in natural ecosystems and is a powerful tool to reveal information on the degree of specialization of the interacting partners and their niches. The indices measuring these properties are based on qualitative or quantitative observations of interactions between partners from different trophic levels, which informs about the structure of network patterns, but not about the underlying mechanisms. Functional traits may control the interaction strength between partners and also the (micro-) structure of networks. Here, we ask whether flower visitors specialize on certain plant traits and how this trait specialization contributes to niche partitioning and interaction partner diversity.We introduce two novel statistical approaches suited to evaluate the dimension of the realized niche and to analyse which traits determine niches. As basis for our analysis, we measured 10 quantitative flower traits and evaluated whether 31 arthropod taxa i visited flowers displaying only subsets of the available trait characteristics, indicating a specialization on these traits by narrow trait-widths . The product of 10 trait- and species-specific trait-widths was defined as trait-volume Vi (expansion of a n-dimensional hypervolume) occupied by each taxon i. These indices are applicable beyond flower-visitor interactions to quantify realized niches based on various biotic and abiotic factors.Each flower visitor species showed some degree of specialization to a unique set of flower traits (realized niche). Overall, our data suggested a hierarchical sequence of flower traits influencing the flower visitors' behaviour and thus network structure: flowering phenology was found to have the strongest effect, followed by flower height, nectar-tube depth and floral reflectance. Less important were pollen-mass/flower, sugar/flower, anther position, phylogeny, display size and abundance.The species-specific specialization on traits suggests that plant communities with more diverse floral niches may sustain a larger number of flower visitors with non-redundant fundamental niches. Our study and statistical approach provide a basis for a better understanding of how plant traits shape interactions between flowers and their visitors and thus network structure.Original Abstract: Lay Summary
Summary Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and understanding of the complexity found in natural ecosystems and is a powerful tool to reveal information on the degree of specialization of the interacting partners and their niches. The indices measuring these properties are based on qualitative or quantitative observations of interactions between partners from different trophic levels, which informs about the structure of network patterns, but not about the underlying mechanisms. Functional traits may control the interaction strength between partners and also the (micro‐) structure of networks. Here, we ask whether flower visitors specialize on certain plant traits and how this trait specialization contributes to niche partitioning and interaction partner diversity. We introduce two novel statistical approaches suited to evaluate the dimension of the realized niche and to analyse which traits determine niches. As basis for our analysis, we measured 10 quantitative flower traits and evaluated whether 31 arthropod taxa i visited flowers displaying only subsets of the available trait characteristics, indicating a specialization on these traits by narrow trait‐widths 〈Si〉. The product of 10 trait‐ and species‐specific trait‐widths 〈Si〉 was defined as trait‐volume Vi (expansion of a n‐dimensional hypervolume) occupied by each taxon i. These indices are applicable beyond flower–visitor interactions to quantify realized niches based on various biotic and abiotic factors. Each flower visitor species showed some degree of specialization to a unique set of flower traits (realized niche). Overall, our data suggested a hierarchical sequence of flower traits influencing the flower visitors' behaviour and thus network structure: flowering phenology was found to have the strongest effect, followed by flower height, nectar‐tube depth and floral reflectance. Less important were pollen‐mass/flower, sugar/flower, anther position, phylogeny, display size and abundance. The species‐specific specialization on traits suggests that plant communities with more diverse floral niches may sustain a larger number of flower visitors with non‐redundant fundamental niches. Our study and statistical approach provide a basis for a better understanding of how plant traits shape interactions between flowers and their visitors and thus network structure. Lay Summary
Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and understanding of the complexity found in natural ecosystems and is a powerful tool to reveal information on the degree of specialization of the interacting partners and their niches. The indices measuring these properties are based on qualitative or quantitative observations of interactions between partners from different trophic levels, which informs about the structure of network patterns, but not about the underlying mechanisms. Functional traits may control the interaction strength between partners and also the (micro‐) structure of networks. Here, we ask whether flower visitors specialize on certain plant traits and how this trait specialization contributes to niche partitioning and interaction partner diversity. We introduce two novel statistical approaches suited to evaluate the dimension of the realized niche and to analyse which traits determine niches. As basis for our analysis, we measured 10 quantitative flower traits and evaluated whether 31 arthropod taxa i visited flowers displaying only subsets of the available trait characteristics, indicating a specialization on these traits by narrow trait‐widths 〈 S i 〉. The product of 10 trait‐ and species‐specific trait‐widths 〈 S i 〉 was defined as trait‐volume V i (expansion of a n ‐dimensional hypervolume) occupied by each taxon i . These indices are applicable beyond flower–visitor interactions to quantify realized niches based on various biotic and abiotic factors. Each flower visitor species showed some degree of specialization to a unique set of flower traits (realized niche). Overall, our data suggested a hierarchical sequence of flower traits influencing the flower visitors' behaviour and thus network structure: flowering phenology was found to have the strongest effect, followed by flower height, nectar‐tube depth and floral reflectance. Less important were pollen‐mass/flower, sugar/flower, anther position, phylogeny, display size and abundance. The species‐specific specialization on traits suggests that plant communities with more diverse floral niches may sustain a larger number of flower visitors with non‐redundant fundamental niches. Our study and statistical approach provide a basis for a better understanding of how plant traits shape interactions between flowers and their visitors and thus network structure. Lay Summary
Author Blüthgen, Nico
Binkenstein, Julia
Stang, Martina
Schaefer, H. Martin
Junker, Robert R.
Brehm, Tanja
Paulus, Justina
Author_xml – sequence: 1
  givenname: Robert R.
  surname: Junker
  fullname: Junker, Robert R.
– sequence: 2
  givenname: Nico
  surname: Blüthgen
  fullname: Blüthgen, Nico
– sequence: 3
  givenname: Tanja
  surname: Brehm
  fullname: Brehm, Tanja
– sequence: 4
  givenname: Julia
  surname: Binkenstein
  fullname: Binkenstein, Julia
– sequence: 5
  givenname: Justina
  surname: Paulus
  fullname: Paulus, Justina
– sequence: 6
  givenname: H. Martin
  surname: Schaefer
  fullname: Schaefer, H. Martin
– sequence: 7
  givenname: Martina
  surname: Stang
  fullname: Stang, Martina
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27145757$$DView record in Pascal Francis
BookMark eNqFkc9rFDEUx4NUcLt69iQERPAybX5MZrJHWVpbKHhQz0Mm89LNOpuseRmXevBvN9OtFXppCISEz-e9PL6n5CTEAIS85eyMl3XOZaMqUUt1xgVj6gVZPL6ckAUTzarSdSNfkVPELWNspYRYkD9f92C9Gf1vk30MtOycjM9IDdLeoEfqYqJ5AzR4u4GqT2CGvKHRUTfGAyT6y6PPMRUjDLOFOU02T8mHW7oDuzHB427mwcYx3nprRhogH2L6ga_JS2dGhDcP55J8v7z4tr6qbr58vl5_uqlsLaWqjLRKcC0bV25N2zvXq9oOauhXdhDgVq7vpdbatKAYcGUb2bTcSQec67rmckk-HuvuU_w5AeZu59HCOJoAccKOS6GVYHXpsSTvn6DbOKVQflcoxZSSWs0FPzxQBstALplgPXb75Hcm3XWi5bVqVVu48yNnU0RM4B4Rzro5t25OqZtT6u5zK4Z6Ylif78OZgxmf9w5-hLvn2nSXF-t_3rujt8WS4v8JZK2Zlkz-BTP6tsE
CODEN FECOE5
CitedBy_id crossref_primary_10_1111_ele_13510
crossref_primary_10_1086_718684
crossref_primary_10_1098_rsos_140536
crossref_primary_10_3390_insects11110818
crossref_primary_10_1007_s11829_014_9353_9
crossref_primary_10_1111_btp_12170
crossref_primary_10_1590_0001_3765202120201022
crossref_primary_10_1111_oik_03869
crossref_primary_10_1111_oik_06104
crossref_primary_10_1111_oik_06621
crossref_primary_10_1038_s41598_020_58388_7
crossref_primary_10_1007_s00265_013_1570_1
crossref_primary_10_1111_oik_06183
crossref_primary_10_1007_s11829_016_9493_1
crossref_primary_10_1111_1365_2664_14205
crossref_primary_10_1007_s00436_013_3677_8
crossref_primary_10_1111_1365_2435_13642
crossref_primary_10_1111_1365_2664_13232
crossref_primary_10_1177_19400829211030834
crossref_primary_10_1111_nph_18386
crossref_primary_10_1016_j_landurbplan_2013_08_013
crossref_primary_10_1002_ecs2_2957
crossref_primary_10_1017_S0266467418000263
crossref_primary_10_1038_s41598_019_53829_4
crossref_primary_10_1111_oik_01439
crossref_primary_10_3389_fpls_2024_1355680
crossref_primary_10_1016_j_baae_2021_10_002
crossref_primary_10_1146_annurev_ecolsys_110316_022928
crossref_primary_10_1111_1365_2664_13483
crossref_primary_10_1111_1365_2745_13334
crossref_primary_10_1111_1365_2664_12670
crossref_primary_10_1111_oik_02256
crossref_primary_10_1111_oik_04436
crossref_primary_10_1111_jvs_12877
crossref_primary_10_1111_tpj_13543
crossref_primary_10_1007_s00035_019_00225_3
crossref_primary_10_1016_j_cub_2023_04_054
crossref_primary_10_1111_2041_210X_12232
crossref_primary_10_1111_icad_12193
crossref_primary_10_3389_fpls_2023_1084995
crossref_primary_10_1093_aobpla_plv076
crossref_primary_10_1111_2041_210X_12471
crossref_primary_10_1002_eap_3067
crossref_primary_10_1016_j_biocon_2018_01_028
crossref_primary_10_3389_fpls_2019_01371
crossref_primary_10_1086_702959
crossref_primary_10_1007_s00442_014_3056_x
crossref_primary_10_1111_een_13231
crossref_primary_10_7717_peerj_13671
crossref_primary_10_1038_srep45908
crossref_primary_10_1016_j_agee_2020_107033
crossref_primary_10_1086_720421
crossref_primary_10_1111_1365_2656_12158
crossref_primary_10_1111_ecog_00983
crossref_primary_10_1007_s11258_020_01032_1
crossref_primary_10_1007_s11829_016_9431_2
crossref_primary_10_1002_ecy_3028
crossref_primary_10_1111_plb_12322
crossref_primary_10_1016_j_foreco_2023_120883
crossref_primary_10_1016_j_actao_2018_02_011
crossref_primary_10_1111_1365_2656_13806
crossref_primary_10_1038_s41598_021_01160_2
crossref_primary_10_1111_1365_2435_13784
crossref_primary_10_1111_ecog_07490
crossref_primary_10_1111_gcb_13601
crossref_primary_10_1111_brv_12230
crossref_primary_10_1016_j_jenvman_2023_119222
crossref_primary_10_3390_insects12080680
crossref_primary_10_1007_s10886_020_01239_6
crossref_primary_10_1111_1365_2435_13035
crossref_primary_10_3390_plants9111432
crossref_primary_10_1007_s10841_023_00528_1
crossref_primary_10_3390_insects8030101
crossref_primary_10_1016_j_agee_2024_109327
crossref_primary_10_1111_1365_2656_12441
crossref_primary_10_1002_ece3_9435
crossref_primary_10_1002_ecs2_4162
crossref_primary_10_1016_j_agee_2017_08_014
crossref_primary_10_1016_j_agee_2021_107717
crossref_primary_10_1002_ece3_2768
crossref_primary_10_1007_s00442_016_3552_2
crossref_primary_10_1371_journal_pone_0173921
crossref_primary_10_1016_j_agee_2017_01_005
crossref_primary_10_1086_714420
crossref_primary_10_1093_aob_mcac082
crossref_primary_10_1371_journal_pone_0150824
crossref_primary_10_1093_jpe_rtw029
crossref_primary_10_1111_1365_2664_12530
crossref_primary_10_1111_ele_12347
crossref_primary_10_1016_j_agee_2022_107930
crossref_primary_10_1098_rstb_2021_0402
crossref_primary_10_1016_j_biocon_2022_109822
crossref_primary_10_1016_j_fooweb_2018_e00093
crossref_primary_10_26786_1920_7603_2021_648
crossref_primary_10_1016_j_ppees_2021_125646
crossref_primary_10_1111_ele_12342
crossref_primary_10_1007_s00442_020_04661_5
crossref_primary_10_7717_peerj_8314
crossref_primary_10_1111_icad_12565
crossref_primary_10_1186_s12898_020_00323_5
crossref_primary_10_1111_1365_2745_12293
crossref_primary_10_1111_ele_13836
crossref_primary_10_3389_fevo_2021_655086
crossref_primary_10_7717_peerj_4998
crossref_primary_10_1007_s00035_024_00308_w
crossref_primary_10_3897_BDJ_10_e83523
crossref_primary_10_1111_geb_13077
crossref_primary_10_1093_aobpla_plab001
crossref_primary_10_1002_ece3_6060
crossref_primary_10_1016_j_flora_2023_152439
crossref_primary_10_3390_biology11040522
crossref_primary_10_1111_geb_12776
crossref_primary_10_1371_journal_pone_0112013
crossref_primary_10_1016_j_cois_2024_101224
crossref_primary_10_7717_peerj_13009
crossref_primary_10_1007_s00035_021_00255_w
crossref_primary_10_1186_s12898_016_0080_1
crossref_primary_10_1016_j_agee_2024_109382
crossref_primary_10_1007_s00442_022_05151_6
crossref_primary_10_1111_jeb_12380
crossref_primary_10_3389_fpls_2020_564802
crossref_primary_10_1007_s00035_017_0198_6
crossref_primary_10_1146_annurev_ecolsys_102722_021904
crossref_primary_10_1111_nph_13858
crossref_primary_10_3389_fpls_2020_602951
crossref_primary_10_1007_s00040_014_0366_2
crossref_primary_10_1111_1365_2745_13013
crossref_primary_10_1111_1365_2745_13893
crossref_primary_10_1111_ele_70073
crossref_primary_10_1007_s00442_014_3035_2
crossref_primary_10_1007_s11258_022_01275_0
crossref_primary_10_1890_13_2261_1
crossref_primary_10_1093_aob_mcad195
crossref_primary_10_1111_oik_01361
crossref_primary_10_1371_journal_pone_0154728
crossref_primary_10_1007_s10682_014_9747_2
crossref_primary_10_1038_s41467_021_22011_8
crossref_primary_10_1093_icb_icae070
crossref_primary_10_1111_jzo_13244
crossref_primary_10_1038_s41467_018_05610_w
crossref_primary_10_1111_oik_01426
crossref_primary_10_1111_1365_2745_13207
crossref_primary_10_1111_ele_70002
crossref_primary_10_1007_s10886_013_0325_9
crossref_primary_10_1016_j_agee_2020_107231
crossref_primary_10_1590_0102_33062020abb0025
crossref_primary_10_1098_rspb_2015_2444
crossref_primary_10_1111_brv_12828
crossref_primary_10_1038_s41467_018_03448_w
crossref_primary_10_1007_s12229_021_09273_z
crossref_primary_10_1016_j_asoc_2018_07_035
crossref_primary_10_1093_aob_mcz079
crossref_primary_10_1073_pnas_2317228120
crossref_primary_10_2139_ssrn_4110981
crossref_primary_10_1016_j_fooweb_2020_e00171
crossref_primary_10_1111_ibi_12732
crossref_primary_10_1098_rspb_2017_0788
crossref_primary_10_1111_1365_2435_12932
crossref_primary_10_1016_j_agee_2025_109544
crossref_primary_10_2179_16_108
crossref_primary_10_1111_ecog_00819
crossref_primary_10_1111_nph_15453
crossref_primary_10_1111_ele_13823
crossref_primary_10_3390_land12030706
crossref_primary_10_1111_plb_13343
crossref_primary_10_1111_een_12298
crossref_primary_10_1890_14_0024_1
crossref_primary_10_1016_j_baae_2024_04_006
crossref_primary_10_1111_2041_210X_13306
crossref_primary_10_1007_s11829_013_9274_z
crossref_primary_10_1111_2041_210X_12611
crossref_primary_10_1111_ecog_07440
crossref_primary_10_1111_geb_12355
Cites_doi 10.1016/j.pbi.2006.05.002
10.1242/jeb.052688
10.2307/1940063
10.1007/BF00199331
10.1186/1745-6150-5-4
10.1890/10-1367.1
10.1016/j.tree.2006.02.002
10.1016/j.cub.2009.11.071
10.1186/1472-6785-6-9
10.1007/BF00378548
10.1111/j.1365-2656.2008.01460.x
10.1093/bioinformatics/btn453
10.1007/s00442-006-0585-y
10.1101/SQB.1957.022.01.039
10.1093/oso/9780198570851.003.0018
10.1093/aob/mcp027
10.1890/07-0451.1
10.1111/j.1600-0706.2010.18450.x
10.2307/2426743
10.1016/j.agee.2009.11.004
10.1111/j.0013-8703.2004.00212.x
10.1111/j.0030-1299.2006.14199.x
10.1007/s00442-008-1066-2
10.1371/journal.pone.0014287
10.1890/09-0941.1
10.1007/s001140050636
10.1111/j.1469-8137.2010.03296.x
10.1093/aob/mcp057
10.1146/annurev.ento.46.1.471
10.1111/j.0030-1299.2005.13619.x
10.1007/BF02232711
10.1051/apido/2009083
10.1016/j.ympev.2009.01.008
10.1038/nature05956
10.1126/science.1127863
10.1016/j.gene.2008.10.012
10.1111/j.0030-1299.2008.16391.x
10.1111/j.0014-3820.2001.tb01313.x
10.1007/s00442-010-1709-y
10.1093/nar/gkp966
10.1111/j.1365-2656.2010.01698.x
10.1086/656597
10.1093/oso/9780195160437.003.0002
10.1007/s00442-005-0165-6
10.1073/pnas.0706375104
10.1093/nar/gkn723
10.1086/657993
10.1007/BF00243394
10.1086/378682
10.1186/1756-0500-1-91
10.1890/08-1837.1
10.1016/j.tree.2010.01.007
10.1016/j.baae.2010.11.001
10.1016/j.cub.2006.12.039
10.2307/1941320
ContentType Journal Article
Copyright 2013 British Ecological Society
2012 The Authors. Functional Ecology© 2012 British Ecological Society
2014 INIST-CNRS
Functional Ecology © 2013 British Ecological Society
Copyright_xml – notice: 2013 British Ecological Society
– notice: 2012 The Authors. Functional Ecology© 2012 British Ecological Society
– notice: 2014 INIST-CNRS
– notice: Functional Ecology © 2013 British Ecological Society
DBID AAYXX
CITATION
IQODW
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
DOI 10.1111/1365-2435.12005
DatabaseName CrossRef
Pascal-Francis
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Entomology Abstracts
Ecology Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 341
ExternalDocumentID 2969308341
27145757
10_1111_1365_2435_12005
FEC12005
23480830
Genre article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGUYK
AGXDD
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
31~
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
MVM
VOH
WRC
ZY4
AAYXX
AGHNM
CITATION
IQODW
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
ID FETCH-LOGICAL-c4335-a3c521836f33567bffb54cd5db9cd2ef9fbb3888a7e50e15c63671f3fe1184413
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 03:17:37 EDT 2025
Mon Jul 14 07:38:08 EDT 2025
Wed Apr 02 07:25:22 EDT 2025
Thu Apr 24 23:05:40 EDT 2025
Tue Jul 01 01:15:41 EDT 2025
Wed Jan 22 16:22:53 EST 2025
Sun Aug 24 12:10:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords floral resources
Flower
floral filters
Visitor
Color
Ecology
flower colour
Pollination
n-dimensional hypervolume
Hierarchy
Specialization
Filter
Morphology
Ecological niche
niche
hierarchy of traits
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4335-a3c521836f33567bffb54cd5db9cd2ef9fbb3888a7e50e15c63671f3fe1184413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1350553851
PQPubID 1066355
PageCount 13
ParticipantIDs proquest_miscellaneous_1328520418
proquest_journals_1350553851
pascalfrancis_primary_27145757
crossref_primary_10_1111_1365_2435_12005
crossref_citationtrail_10_1111_1365_2435_12005
wiley_primary_10_1111_1365_2435_12005_FEC12005
jstor_primary_23480830
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2013
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: April 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: London
PublicationTitle Functional ecology
PublicationYear 2013
Publisher Blackwell Publishing
Wiley-Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing
– name: Wiley-Blackwell
– name: Wiley Subscription Services, Inc
References 2009; 430
2010; 188
2009b; 90
1999; 86
2011; 12
1995; 177
1985; 66
2008; 1
2001; 46
1979
2010; 20
2009; 52
2010; 25
2009a; 103
2010; 119
2005; 145
2006; 21
1993; 74
2003; 162
2005; 108
2008; 117
2008; 24
1862
2008; 157
2001; 55
1996; 136
2012; 24
2010; 5
2007; 17
2011; 214
2010; 38
2007; 448
2010; 79
2011
2011; 81
2006; 9
1998
2006; 6
2006
2010; 164
2004
2002
2006; 313
2007; 11
2006; 112
2010; 41
2011; 177
1957; 22
2009; 78
1984; 31
1992; 170
2004; 113
2007; 151
2010; 136
2008; 89
2010; 171
2010; 91
2009; 103
2009; 37
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Junker R.R. (e_1_2_6_29_1) 2012; 24
Campbell B.E. (e_1_2_6_13_1) 2006
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_7_1
Armbruster W. (e_1_2_6_2_1) 2004
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Begon M. (e_1_2_6_5_1) 1998
e_1_2_6_50_1
Klotz S. (e_1_2_6_36_1) 2002
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
Darwin C. (e_1_2_6_18_1) 1862
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
R Development Core Team (e_1_2_6_48_1) 2011
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
Faegri K. (e_1_2_6_19_1) 1979
e_1_2_6_23_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – year: 2011
– volume: 162
  start-page: S63
  year: 2003
  end-page: S79
  article-title: Competition and coexistence: exploring mechanisms that restrict and maintain diversity within mutualist guilds
  publication-title: The American Naturalist
– volume: 31
  start-page: 142
  year: 1984
  end-page: 154
  article-title: Nectar thievery by ants from southern Spanish insect‐pollinated flowers
  publication-title: Insectes Sociaux
– volume: 6
  start-page: 9
  year: 2006
  article-title: Measuring specialization in species interaction networks
  publication-title: BMC Ecology
– volume: 5
  start-page: 4
  year: 2010
  article-title: Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees
  publication-title: Biology Direct
– volume: 136
  start-page: 35
  year: 2010
  end-page: 39
  article-title: Effect of conservation management on bees and insect‐pollinated grassland plant communities in three European countries
  publication-title: Agriculture Ecosystems & Environment
– volume: 12
  start-page: 282
  year: 2011
  end-page: 291
  article-title: Functional complementarity and specialisation: the role of biodiversity in plant‐pollinator interactions
  publication-title: Basic and Applied Ecology
– volume: 157
  start-page: 249
  year: 2008
  end-page: 257
  article-title: The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities
  publication-title: Oecologia
– volume: 52
  start-page: 520
  year: 2009
  end-page: 523
  article-title: ITS2 sequence‐structure analysis in phylogenetics: a how‐to manual for molecular systematics
  publication-title: Molecular Phylogenetics and Evolution
– volume: 24
  start-page: 2401
  year: 2008
  end-page: 2402
  article-title: ProfDistS: (profile‐) distance based phylogeny on sequence‐structure alignments
  publication-title: Bioinformatics
– volume: 17
  start-page: 341
  year: 2007
  end-page: 346
  article-title: Specialization, constraints, and conflicting interests in mutualistic networks
  publication-title: Current Biology
– volume: 117
  start-page: 875
  year: 2008
  end-page: 882
  article-title: Coexistence of succulent tree aloes: partitioning of bird pollinators by floral traits and flowering phenology
  publication-title: Oikos
– volume: 55
  start-page: 1963
  year: 2001
  end-page: 1971
  article-title: Down the tube: pollinators, predators, and the evolution of flower shape in the Alpine Skypilot,
  publication-title: Evolution
– volume: 112
  start-page: 111
  year: 2006
  end-page: 121
  article-title: Size constraints and flower abundance determine the number of interactions in a plant‐flower visitor web
  publication-title: Oikos
– volume: 151
  start-page: 442
  year: 2007
  end-page: 453
  article-title: Asymmetric specialization and extinction risk in plant–flower visitor webs: a matter of morphology or abundance?
  publication-title: Oecologia
– volume: 430
  start-page: 50
  year: 2009
  end-page: 57
  article-title: 5.8S‐28S rRNA interaction and HMM‐based ITS2 annotation
  publication-title: Gene
– volume: 79
  start-page: 818
  year: 2010
  end-page: 823
  article-title: Responses to olfactory signals reflect network structure of flower‐visitor interactions
  publication-title: Journal of Animal Ecology
– year: 1979
– volume: 24
  start-page: 21
  year: 2012
  end-page: 36
  article-title: Floral filters: inviting mutualists and screening out antagonists
  publication-title: Entomologie heute
– volume: 90
  start-page: 2039
  year: 2009b
  end-page: 2046
  article-title: Evaluating multiple determinants of the structure of plant‐animal mutualistic networks
  publication-title: Ecology
– volume: 38
  start-page: D275
  year: 2010
  end-page: D279
  article-title: The ITS2 Database III–sequences and structures for phylogeny
  publication-title: Nucleic Acids Research
– year: 1862
– year: 1998
– volume: 188
  start-page: 385
  year: 2010
  end-page: 392
  article-title: Pollinator‐mediated selection on floral display, spur length and flowering phenology in the deceptive orchid
  publication-title: New Phytologist
– volume: 25
  start-page: 345
  year: 2010
  end-page: 353
  article-title: Global pollinator declines: trends, impacts and drivers
  publication-title: Trends in Ecology & Evolution
– volume: 1
  start-page: 91
  year: 2008
  article-title: Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE
  publication-title: BMC Research Notes
– volume: 9
  start-page: 428
  year: 2006
  end-page: 435
  article-title: Recognition of flowers by pollinators
  publication-title: Current Opinion in Plant Biology
– volume: 103
  start-page: 1445
  year: 2009a
  end-page: 1457
  article-title: Uniting pattern and process in plant‐animal mutualistic networks: a review
  publication-title: Annals of Botany
– volume: 177
  start-page: 1
  year: 1995
  end-page: 19
  article-title: Innate color preferences of flower visitors
  publication-title: Journal of Comparative Physiology. A, Sensory Neural and Behavioral Physiology
– volume: 91
  start-page: 2638
  year: 2010
  end-page: 2649
  article-title: Flower color influences insect visitation in alpine New Zealand
  publication-title: Ecology
– volume: 78
  start-page: 253
  year: 2009
  end-page: 269
  article-title: Ecological networks – beyond food webs
  publication-title: Journal of Animal Ecology
– volume: 5
  start-page: e14287
  issue: 12
  year: 2010
  article-title: FReD: the floral reflectance database – a web portal for analyses of flower colour
  publication-title: PLoS ONE
– volume: 145
  start-page: 586
  year: 2005
  end-page: 594
  article-title: Relationships between species' floral traits and pollinator visitation in a temperate grassland
  publication-title: Oecologia
– volume: 74
  start-page: 1326
  year: 1993
  end-page: 1336
  article-title: Hierarchical mechanisms of fruit selection by an avian frugivore
  publication-title: Ecology
– volume: 119
  start-page: 1581
  year: 2010
  end-page: 1590
  article-title: Pollinator diversity and specialization in relation to flower diversity
  publication-title: Oikos
– volume: 313
  start-page: 351
  year: 2006
  end-page: 354
  article-title: Parallel declines in pollinators and insect‐pollinated plants in Britain and the Netherlands
  publication-title: Science
– volume: 20
  start-page: 237
  year: 2010
  end-page: 242
  article-title: Changing pollinators as a means of escaping herbivores
  publication-title: Current Biology
– volume: 66
  start-page: 198
  year: 1985
  end-page: 210
  article-title: Morphology as a predictor of flower choice by bumble bees
  publication-title: Ecology
– volume: 177
  start-page: 258
  year: 2011
  end-page: 272
  article-title: Dosage‐dependent impacts of a floral volatile compound on pollinators, larcenists, and the potential for floral evolution in the Alpine Skypilot
  publication-title: The American Naturalist
– start-page: 326
  year: 2006
  end-page: 345
– volume: 86
  start-page: 361
  year: 1999
  end-page: 377
  article-title: Flower constancy, insect psychology, and plant evolution
  publication-title: Naturwissenschaften
– volume: 66
  start-page: 25
  year: 1985
  end-page: 32
  article-title: Competition between hummingbirds and bumble bees for nectar in flowers of
  publication-title: Oecologia
– volume: 136
  start-page: 401
  year: 1996
  end-page: 406
  article-title: Resource partitioning and per‐flower foraging efficiency in two bumble bee species
  publication-title: American Midland Naturalist
– volume: 22
  start-page: 415
  year: 1957
  end-page: 427
  article-title: Concluding remarks
  publication-title: Cold Spring Harbor Symposium on Quantitative Biology
– volume: 113
  start-page: 103
  year: 2004
  end-page: 107
  article-title: Nectar resource diversity organises flower‐visitor community structure
  publication-title: Entomologia Experimentalis et Applicata
– volume: 170
  start-page: 533
  year: 1992
  end-page: 543
  article-title: The color hexagon – a chromaticity diagram based on photoreceptor excitations as a generalized representation of color opponency
  publication-title: Journal of Comparative Physiology. A, Sensory Neural and Behavioral Physiology
– volume: 46
  start-page: 471
  year: 2001
  end-page: 510
  article-title: The evolution of color vision in insects
  publication-title: Annual Review of Entomology
– volume: 89
  start-page: 1573
  year: 2008
  end-page: 1582
  article-title: Temporal dynamics in a pollination network
  publication-title: Ecology
– volume: 81
  start-page: 295
  year: 2011
  end-page: 311
  article-title: Hawaiian ant‐flower networks: nectar‐thieving ants prefer undefended native over introduced plants with floral defenses
  publication-title: Ecological Monographs
– volume: 108
  start-page: 421
  year: 2005
  end-page: 426
  article-title: Degree distribution in plant‐animal mutualistic networks: forbidden links or random interactions?
  publication-title: Oikos
– volume: 214
  start-page: 1607
  year: 2011
  end-page: 1612
  article-title: Avoidance of achromatic colours by bees provides a private niche for hummingbirds
  publication-title: Journal of Experimental Biology
– volume: 164
  start-page: 713
  year: 2010
  end-page: 720
  article-title: Escape from floral herbivory by early flowering in subsp.
  publication-title: Oecologia
– year: 2002
– volume: 448
  start-page: 925
  year: 2007
  end-page: 929
  article-title: Non‐random coextinctions in phylogenetically structured mutualistic networks
  publication-title: Nature
– volume: 37
  start-page: D26
  year: 2009
  end-page: D31
  article-title: GenBank
  publication-title: Nucleic Acids Research
– volume: 21
  start-page: 178
  year: 2006
  end-page: 185
  article-title: Rebuilding community ecology from functional traits
  publication-title: Trends in Ecology & Evolution
– volume: 11
  start-page: 19891
  year: 2007
  end-page: 19896
  article-title: The modularity of pollination networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 103
  start-page: 1459
  year: 2009
  end-page: 1469
  article-title: Size‐specific interaction patterns and size matching in a plant‐pollinator interaction web
  publication-title: Annals of Botany
– volume: 41
  start-page: 476
  year: 2010
  end-page: 487
  article-title: Pollen amino acids and flower specialisation in solitary bees
  publication-title: Apidologie
– volume: 171
  start-page: 999
  year: 2010
  end-page: 1009
  article-title: Pollinator‐mediated selection on floral display and spur length in the orchid
  publication-title: International Journal of Plant Sciences
– start-page: 23
  year: 2004
  end-page: 49
– ident: e_1_2_6_16_1
  doi: 10.1016/j.pbi.2006.05.002
– ident: e_1_2_6_41_1
  doi: 10.1242/jeb.052688
– ident: e_1_2_6_50_1
  doi: 10.2307/1940063
– ident: e_1_2_6_15_1
  doi: 10.1007/BF00199331
– ident: e_1_2_6_34_1
  doi: 10.1186/1745-6150-5-4
– ident: e_1_2_6_31_1
  doi: 10.1890/10-1367.1
– ident: e_1_2_6_42_1
  doi: 10.1016/j.tree.2006.02.002
– ident: e_1_2_6_35_1
  doi: 10.1016/j.cub.2009.11.071
– ident: e_1_2_6_9_1
  doi: 10.1186/1472-6785-6-9
– ident: e_1_2_6_38_1
  doi: 10.1007/BF00378548
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1365-2656.2008.01460.x
– ident: e_1_2_6_62_1
  doi: 10.1093/bioinformatics/btn453
– ident: e_1_2_6_56_1
  doi: 10.1007/s00442-006-0585-y
– ident: e_1_2_6_27_1
  doi: 10.1101/SQB.1957.022.01.039
– start-page: 326
  volume-title: Ecology and Evolution of Flowers
  year: 2006
  ident: e_1_2_6_13_1
  doi: 10.1093/oso/9780198570851.003.0018
– ident: e_1_2_6_57_1
  doi: 10.1093/aob/mcp027
– ident: e_1_2_6_44_1
  doi: 10.1890/07-0451.1
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1600-0706.2010.18450.x
– ident: e_1_2_6_23_1
  doi: 10.2307/2426743
– volume-title: BIOLFLOR – Eine Datenbank zu biologisch‐ökologischen Merkmalen der Gefäßpflanzen in Deutschland
  year: 2002
  ident: e_1_2_6_36_1
– ident: e_1_2_6_4_1
  doi: 10.1016/j.agee.2009.11.004
– ident: e_1_2_6_46_1
  doi: 10.1111/j.0013-8703.2004.00212.x
– ident: e_1_2_6_55_1
  doi: 10.1111/j.0030-1299.2006.14199.x
– ident: e_1_2_6_39_1
  doi: 10.1007/s00442-008-1066-2
– ident: e_1_2_6_3_1
  doi: 10.1371/journal.pone.0014287
– ident: e_1_2_6_14_1
  doi: 10.1890/09-0941.1
– ident: e_1_2_6_17_1
  doi: 10.1007/s001140050636
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1469-8137.2010.03296.x
– ident: e_1_2_6_60_1
  doi: 10.1093/aob/mcp057
– volume-title: Ökologie
  year: 1998
  ident: e_1_2_6_5_1
– ident: e_1_2_6_12_1
  doi: 10.1146/annurev.ento.46.1.471
– ident: e_1_2_6_58_1
  doi: 10.1111/j.0030-1299.2005.13619.x
– ident: e_1_2_6_26_1
  doi: 10.1007/BF02232711
– ident: e_1_2_6_61_1
  doi: 10.1051/apido/2009083
– volume: 24
  start-page: 21
  year: 2012
  ident: e_1_2_6_29_1
  article-title: Floral filters: inviting mutualists and screening out antagonists
  publication-title: Entomologie heute
– ident: e_1_2_6_51_1
  doi: 10.1016/j.ympev.2009.01.008
– ident: e_1_2_6_49_1
  doi: 10.1038/nature05956
– ident: e_1_2_6_7_1
  doi: 10.1126/science.1127863
– ident: e_1_2_6_33_1
  doi: 10.1016/j.gene.2008.10.012
– ident: e_1_2_6_11_1
  doi: 10.1111/j.0030-1299.2008.16391.x
– ident: e_1_2_6_21_1
  doi: 10.1111/j.0014-3820.2001.tb01313.x
– ident: e_1_2_6_32_1
  doi: 10.1007/s00442-010-1709-y
– ident: e_1_2_6_37_1
  doi: 10.1093/nar/gkp966
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1365-2656.2010.01698.x
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2011
  ident: e_1_2_6_48_1
– ident: e_1_2_6_53_1
  doi: 10.1086/656597
– start-page: 23
  volume-title: Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes
  year: 2004
  ident: e_1_2_6_2_1
  doi: 10.1093/oso/9780195160437.003.0002
– ident: e_1_2_6_25_1
  doi: 10.1007/s00442-005-0165-6
– volume-title: On the Various Contrivances by Which British and Foreign Orchids are Fertilised by Insects
  year: 1862
  ident: e_1_2_6_18_1
– volume-title: The Principles of Pollination Ecology
  year: 1979
  ident: e_1_2_6_19_1
– ident: e_1_2_6_43_1
  doi: 10.1073/pnas.0706375104
– ident: e_1_2_6_6_1
  doi: 10.1093/nar/gkn723
– ident: e_1_2_6_22_1
  doi: 10.1086/657993
– ident: e_1_2_6_40_1
  doi: 10.1007/BF00243394
– ident: e_1_2_6_45_1
  doi: 10.1086/378682
– ident: e_1_2_6_52_1
  doi: 10.1186/1756-0500-1-91
– ident: e_1_2_6_59_1
  doi: 10.1890/08-1837.1
– ident: e_1_2_6_47_1
  doi: 10.1016/j.tree.2010.01.007
– ident: e_1_2_6_8_1
  doi: 10.1016/j.baae.2010.11.001
– ident: e_1_2_6_10_1
  doi: 10.1016/j.cub.2006.12.039
– ident: e_1_2_6_24_1
  doi: 10.2307/1941320
SSID ssj0009522
Score 2.4880967
Snippet 1. Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and...
Summary Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and...
Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and...
Summary Lay Summary [PUBLICATION ABSTRACT]
SourceID proquest
pascalfrancis
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 329
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Animals
Arthropoda
Autoecology
Biological and medical sciences
Ecology
Evolutionary ecology
floral filters
floral resources
flower colour
Flowers
Fundamental and applied biological sciences. Psychology
General aspects
hierarchy of traits
Human ecology
morphology
niche
n‐dimensional hypervolume
Phenotypic traits
Plant ecology
Plant taxonomy
Plants
pollination
Species
Taxa
Title Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks
URI https://www.jstor.org/stable/23480830
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12005
https://www.proquest.com/docview/1350553851
https://www.proquest.com/docview/1328520418
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5KoNBL36bbpEGFHnpZ49VjH8cSbEKhPZQGelskrURDk3VBzqE95Sf0N-aXdEbSOnaglFLwQbZnjDU70nzanfkG4I10riKaqBKDvSmlEaZs22FREpRAgE8cdXS_48PH-vRMvv-ipmxCqoVJ_BDbG260MuJ-TQtcm7CzyFN-Fkb7eZVZTOkTgkWf-A7tbnqOwOuuxEgrMrkP5fLc0d-LSyk1kfIkdUBT-dTjYg-E7kLZGItWj8BMs0gpKN_mVxsztz_vEDz-1zQfw8OMVNm75FpP4J4bn8L91LvyB46WNo9my9tiOVTIu0V4Bte5uX0u9WT4oo4Um8B0YBg-zwNDyMwQgrKRMlJvrn_hAV0Pm69s7Zm_oAZujIrfqSMQ0-NAeonwNhZXsktHdcvn4ZLknZ32cTam3PbwHM5Wy88np2Xu-FBaKYQqtbCKMFvt8V3dGO-NknZQg-nswJ3vvDECz-y6cWqBTmZrUTeVF97hOQmBnZjBwbge3QtgtRJcK-s94i_pOmM63holnLNKVt7bAubT9e5tpkMnG1z007GILN-T5fto-QLebhW-JyaQP4vOogNt5biQLWLdRQHHex51K9BUEoFzU8DR5GJ93kwC_jrCVAxMqirg9fZr3Abo2Y4e3fqKZHir-EJWLU4s-tPf_mS_Wp7Ewct_VTiEBzw2BaH8pSM4wOvuXiE025jjuPp-A85MLKA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KQmkvTV9L3SapCj304mWthx_HEHbZtkkOJYHcjCVLNCTxFrw5tKf8hP7G_pLOSPJmN1BKKfggsyNjzY5mvpHnAfBeWptRmagUjb1OpRY6Lct2khKUQIBPNerovOP4JJ-fyU_n6nwtFybUh1gduNHO8PqaNjgdSK_t8hCgheZ-nIUyptvU19u7VV_4WuHd8CWB51WKtlbE8j4UzXPvARuWKQQnUqRk0yOzXOhysQFD18Gst0azHTDDOkIQyuX4ZqnH5se9Eo__t9Cn8CSCVXYQpOsZPLDdc3gY2ld-x9HUxNFoepcvhxOiwuhfwG3sbx-zPRle1JRi2bOmZ2hBL3qGqJkhCmUdBaX-uv2JPnrTLr-yhWPuinq4Mcp_p6ZArOlamhdq3vr8SnZtKXX5or8memsGVc66EN7ev4Sz2fT0cJ7Gpg-pkUKotBFGEWzLHd7lhXZOK2la1erKtNy6ymkt0G1vCqsmKGcmF3mROeEsukqI7cQItrpFZ18By5XgjTLOIQSTttK64qVWwlqjZOacSWA8_OG1iRXRiQdX9eAZEedr4nztOZ_Ah9WEb6EYyJ9JR16CVnRcyBLh7iSB_Q2RuiMoMonYuUhgd5CxOuqTHp-OSBVtk8oSeLf6GTUBfd5pOru4IRpeKj6RWYkL8wL1t5esZ9NDP3j9rxPewqP56fFRffTx5PMbeMx9jxAKZ9qFLZQBu4dIban3_Vb8DYtaMLs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KSksvfS91mqYq9NCLF1sPP44l2SV9hVIa6M1YskRCE2_Am0Nzyk_ob-wv6Ywkb3YDpZTCHrTsyFizo5lP9sw3AK-ltTnRRKUY7HUqtdBpVXVZSlACAT5x1NHzjk-HxcGRfP9NjdmEVAsT-CFWD9xoZ3h_TRv8vHNrmzzkZ2G0n-aBxfS2LLKKDHv_C1_j3Q0vEnhRpxhqRWT3oWSeGxfYCEwhN5ESJdsBdeVCk4sNFLqOZX0wmj8APS4j5KB8n14s9dRc3mB4_K91PoT7Eaqyt8G2HsEt2z-GO6F55Q8czUwcTWbX1XI4IbqL4Qlcxe72sdaT4YdaUiwH1g4M4-fJwBAzM8SgrKeU1F9XP_GE3nbLY7ZwzJ1SBzdG1e_UEoi1fUfzAuOtr65kZ5YKl0-GM5K3ZnTkrA_J7cNTOJrPvu4dpLHlQ2qkECpthVEE2gqH34pSO6eVNJ3qdG06bl3ttBZ4aG9LqzK0MlOIosydcBYPSojsxAS2-kVvnwErlOCtMs4hAJO21rrmlVbCWqNk7pxJYDr-342JfOikg9NmPBeR5hvSfOM1n8Cb1YTzQAXyZ9GJN6CVHBeyQrCbJbC7YVHXAmUuETmXCeyMJtZEbzLg1RGnYmRSeQKvVj-jH6CXO21vFxckwyvFM5lXuDBvT3-7yWY-2_OD7X-d8BLuft6fNx_fHX54Dve4bxBCuUw7sIUmYF8gTFvqXb8RfwPmxC9z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specialization+on+traits+as+basis+for+the+niche%E2%80%90breadth+of+flower+visitors+and+as+structuring+mechanism+of+ecological+networks&rft.jtitle=Functional+ecology&rft.au=Junker%2C+Robert+R.&rft.au=Bl%C3%BCthgen%2C+Nico&rft.au=Brehm%2C+Tanja&rft.au=Binkenstein%2C+Julia&rft.date=2013-04-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=27&rft.issue=2&rft.spage=329&rft.epage=341&rft_id=info:doi/10.1111%2F1365-2435.12005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2435_12005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon