Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks
1. Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and understanding of the complexity found in natural ecosystems and is a powerful tool to reveal information on the degree of specialization of the int...
Saved in:
Published in | Functional ecology Vol. 27; no. 2; pp. 329 - 341 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing
01.04.2013
Wiley-Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1. Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and understanding of the complexity found in natural ecosystems and is a powerful tool to reveal information on the degree of specialization of the interacting partners and their niches. The indices measuring these properties are based on qualitative or quantitative observations of interactions between partners from different trophic levels, which informs about the structure of network patterns, but not about the underlying mechanisms. Functional traits may control the interaction strength between partners and also the (micro-) structure of networks. Here, we ask whether flower visitors specialize on certain plant traits and how this trait specialization contributes to niche partitioning and interaction partner diversity. 2. We introduce two novel statistical approaches suited to evaluate the dimension of the realized niche and to analyse which traits determine niches. As basis for our analysis, we measured 10 quantitative flower traits and evaluated whether 31 arthropod taxa i visited flowers displaying only subsets of the available trait characteristics, indicating a specialization on these traits by narrow trait-widths 〈S i 〉. The product of 10 trait- and species-specific trait-widths 〈S i 〉 was defined as trait-volume V i (expansion of a n-dimensional hypervolume) occupied by each taxon i. These indices are applicable beyond flower—visitor interactions to quantify realized niches based on various biotic and abiotic factors. 3. Each flower visitor species showed some degree of specialization to a unique set of flower traits (realized niche). Overall, our data suggested a hierarchical sequence of flower traits influencing the flower visitors' behaviour and thus network structure: flowering phenology was found to have the strongest effect, followed by flower height, nectar-tube depth and floral reflectance. Less important were pollen-mass/flower, sugar/flower, anther position, phylogeny, display size and abundance. 4. The species-specific specialization on traits suggests that plant communities with more diverse floral niches may sustain a larger number of flower visitors with non-redundant fundamental niches. Our study and statistical approach provide a basis for a better understanding of how plant traits shape interactions between flowers and their visitors and thus network structure. |
---|---|
AbstractList | 1. Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and understanding of the complexity found in natural ecosystems and is a powerful tool to reveal information on the degree of specialization of the interacting partners and their niches. The indices measuring these properties are based on qualitative or quantitative observations of interactions between partners from different trophic levels, which informs about the structure of network patterns, but not about the underlying mechanisms. Functional traits may control the interaction strength between partners and also the (micro-) structure of networks. Here, we ask whether flower visitors specialize on certain plant traits and how this trait specialization contributes to niche partitioning and interaction partner diversity. 2. We introduce two novel statistical approaches suited to evaluate the dimension of the realized niche and to analyse which traits determine niches. As basis for our analysis, we measured 10 quantitative flower traits and evaluated whether 31 arthropod taxa i visited flowers displaying only subsets of the available trait characteristics, indicating a specialization on these traits by narrow trait-widths 〈S i 〉. The product of 10 trait- and species-specific trait-widths 〈S i 〉 was defined as trait-volume V i (expansion of a n-dimensional hypervolume) occupied by each taxon i. These indices are applicable beyond flower—visitor interactions to quantify realized niches based on various biotic and abiotic factors. 3. Each flower visitor species showed some degree of specialization to a unique set of flower traits (realized niche). Overall, our data suggested a hierarchical sequence of flower traits influencing the flower visitors' behaviour and thus network structure: flowering phenology was found to have the strongest effect, followed by flower height, nectar-tube depth and floral reflectance. Less important were pollen-mass/flower, sugar/flower, anther position, phylogeny, display size and abundance. 4. The species-specific specialization on traits suggests that plant communities with more diverse floral niches may sustain a larger number of flower visitors with non-redundant fundamental niches. Our study and statistical approach provide a basis for a better understanding of how plant traits shape interactions between flowers and their visitors and thus network structure. Summary Lay Summary [PUBLICATION ABSTRACT] Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and understanding of the complexity found in natural ecosystems and is a powerful tool to reveal information on the degree of specialization of the interacting partners and their niches. The indices measuring these properties are based on qualitative or quantitative observations of interactions between partners from different trophic levels, which informs about the structure of network patterns, but not about the underlying mechanisms. Functional traits may control the interaction strength between partners and also the (micro-) structure of networks. Here, we ask whether flower visitors specialize on certain plant traits and how this trait specialization contributes to niche partitioning and interaction partner diversity.We introduce two novel statistical approaches suited to evaluate the dimension of the realized niche and to analyse which traits determine niches. As basis for our analysis, we measured 10 quantitative flower traits and evaluated whether 31 arthropod taxa i visited flowers displaying only subsets of the available trait characteristics, indicating a specialization on these traits by narrow trait-widths . The product of 10 trait- and species-specific trait-widths was defined as trait-volume Vi (expansion of a n-dimensional hypervolume) occupied by each taxon i. These indices are applicable beyond flower-visitor interactions to quantify realized niches based on various biotic and abiotic factors.Each flower visitor species showed some degree of specialization to a unique set of flower traits (realized niche). Overall, our data suggested a hierarchical sequence of flower traits influencing the flower visitors' behaviour and thus network structure: flowering phenology was found to have the strongest effect, followed by flower height, nectar-tube depth and floral reflectance. Less important were pollen-mass/flower, sugar/flower, anther position, phylogeny, display size and abundance.The species-specific specialization on traits suggests that plant communities with more diverse floral niches may sustain a larger number of flower visitors with non-redundant fundamental niches. Our study and statistical approach provide a basis for a better understanding of how plant traits shape interactions between flowers and their visitors and thus network structure.Original Abstract: Lay Summary Summary Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and understanding of the complexity found in natural ecosystems and is a powerful tool to reveal information on the degree of specialization of the interacting partners and their niches. The indices measuring these properties are based on qualitative or quantitative observations of interactions between partners from different trophic levels, which informs about the structure of network patterns, but not about the underlying mechanisms. Functional traits may control the interaction strength between partners and also the (micro‐) structure of networks. Here, we ask whether flower visitors specialize on certain plant traits and how this trait specialization contributes to niche partitioning and interaction partner diversity. We introduce two novel statistical approaches suited to evaluate the dimension of the realized niche and to analyse which traits determine niches. As basis for our analysis, we measured 10 quantitative flower traits and evaluated whether 31 arthropod taxa i visited flowers displaying only subsets of the available trait characteristics, indicating a specialization on these traits by narrow trait‐widths 〈Si〉. The product of 10 trait‐ and species‐specific trait‐widths 〈Si〉 was defined as trait‐volume Vi (expansion of a n‐dimensional hypervolume) occupied by each taxon i. These indices are applicable beyond flower–visitor interactions to quantify realized niches based on various biotic and abiotic factors. Each flower visitor species showed some degree of specialization to a unique set of flower traits (realized niche). Overall, our data suggested a hierarchical sequence of flower traits influencing the flower visitors' behaviour and thus network structure: flowering phenology was found to have the strongest effect, followed by flower height, nectar‐tube depth and floral reflectance. Less important were pollen‐mass/flower, sugar/flower, anther position, phylogeny, display size and abundance. The species‐specific specialization on traits suggests that plant communities with more diverse floral niches may sustain a larger number of flower visitors with non‐redundant fundamental niches. Our study and statistical approach provide a basis for a better understanding of how plant traits shape interactions between flowers and their visitors and thus network structure. Lay Summary Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and understanding of the complexity found in natural ecosystems and is a powerful tool to reveal information on the degree of specialization of the interacting partners and their niches. The indices measuring these properties are based on qualitative or quantitative observations of interactions between partners from different trophic levels, which informs about the structure of network patterns, but not about the underlying mechanisms. Functional traits may control the interaction strength between partners and also the (micro‐) structure of networks. Here, we ask whether flower visitors specialize on certain plant traits and how this trait specialization contributes to niche partitioning and interaction partner diversity. We introduce two novel statistical approaches suited to evaluate the dimension of the realized niche and to analyse which traits determine niches. As basis for our analysis, we measured 10 quantitative flower traits and evaluated whether 31 arthropod taxa i visited flowers displaying only subsets of the available trait characteristics, indicating a specialization on these traits by narrow trait‐widths 〈 S i 〉. The product of 10 trait‐ and species‐specific trait‐widths 〈 S i 〉 was defined as trait‐volume V i (expansion of a n ‐dimensional hypervolume) occupied by each taxon i . These indices are applicable beyond flower–visitor interactions to quantify realized niches based on various biotic and abiotic factors. Each flower visitor species showed some degree of specialization to a unique set of flower traits (realized niche). Overall, our data suggested a hierarchical sequence of flower traits influencing the flower visitors' behaviour and thus network structure: flowering phenology was found to have the strongest effect, followed by flower height, nectar‐tube depth and floral reflectance. Less important were pollen‐mass/flower, sugar/flower, anther position, phylogeny, display size and abundance. The species‐specific specialization on traits suggests that plant communities with more diverse floral niches may sustain a larger number of flower visitors with non‐redundant fundamental niches. Our study and statistical approach provide a basis for a better understanding of how plant traits shape interactions between flowers and their visitors and thus network structure. Lay Summary |
Author | Blüthgen, Nico Binkenstein, Julia Stang, Martina Schaefer, H. Martin Junker, Robert R. Brehm, Tanja Paulus, Justina |
Author_xml | – sequence: 1 givenname: Robert R. surname: Junker fullname: Junker, Robert R. – sequence: 2 givenname: Nico surname: Blüthgen fullname: Blüthgen, Nico – sequence: 3 givenname: Tanja surname: Brehm fullname: Brehm, Tanja – sequence: 4 givenname: Julia surname: Binkenstein fullname: Binkenstein, Julia – sequence: 5 givenname: Justina surname: Paulus fullname: Paulus, Justina – sequence: 6 givenname: H. Martin surname: Schaefer fullname: Schaefer, H. Martin – sequence: 7 givenname: Martina surname: Stang fullname: Stang, Martina |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27145757$$DView record in Pascal Francis |
BookMark | eNqFkc9rFDEUx4NUcLt69iQERPAybX5MZrJHWVpbKHhQz0Mm89LNOpuseRmXevBvN9OtFXppCISEz-e9PL6n5CTEAIS85eyMl3XOZaMqUUt1xgVj6gVZPL6ckAUTzarSdSNfkVPELWNspYRYkD9f92C9Gf1vk30MtOycjM9IDdLeoEfqYqJ5AzR4u4GqT2CGvKHRUTfGAyT6y6PPMRUjDLOFOU02T8mHW7oDuzHB427mwcYx3nprRhogH2L6ga_JS2dGhDcP55J8v7z4tr6qbr58vl5_uqlsLaWqjLRKcC0bV25N2zvXq9oOauhXdhDgVq7vpdbatKAYcGUb2bTcSQec67rmckk-HuvuU_w5AeZu59HCOJoAccKOS6GVYHXpsSTvn6DbOKVQflcoxZSSWs0FPzxQBstALplgPXb75Hcm3XWi5bVqVVu48yNnU0RM4B4Rzro5t25OqZtT6u5zK4Z6Ylif78OZgxmf9w5-hLvn2nSXF-t_3rujt8WS4v8JZK2Zlkz-BTP6tsE |
CODEN | FECOE5 |
CitedBy_id | crossref_primary_10_1111_ele_13510 crossref_primary_10_1086_718684 crossref_primary_10_1098_rsos_140536 crossref_primary_10_3390_insects11110818 crossref_primary_10_1007_s11829_014_9353_9 crossref_primary_10_1111_btp_12170 crossref_primary_10_1590_0001_3765202120201022 crossref_primary_10_1111_oik_03869 crossref_primary_10_1111_oik_06104 crossref_primary_10_1111_oik_06621 crossref_primary_10_1038_s41598_020_58388_7 crossref_primary_10_1007_s00265_013_1570_1 crossref_primary_10_1111_oik_06183 crossref_primary_10_1007_s11829_016_9493_1 crossref_primary_10_1111_1365_2664_14205 crossref_primary_10_1007_s00436_013_3677_8 crossref_primary_10_1111_1365_2435_13642 crossref_primary_10_1111_1365_2664_13232 crossref_primary_10_1177_19400829211030834 crossref_primary_10_1111_nph_18386 crossref_primary_10_1016_j_landurbplan_2013_08_013 crossref_primary_10_1002_ecs2_2957 crossref_primary_10_1017_S0266467418000263 crossref_primary_10_1038_s41598_019_53829_4 crossref_primary_10_1111_oik_01439 crossref_primary_10_3389_fpls_2024_1355680 crossref_primary_10_1016_j_baae_2021_10_002 crossref_primary_10_1146_annurev_ecolsys_110316_022928 crossref_primary_10_1111_1365_2664_13483 crossref_primary_10_1111_1365_2745_13334 crossref_primary_10_1111_1365_2664_12670 crossref_primary_10_1111_oik_02256 crossref_primary_10_1111_oik_04436 crossref_primary_10_1111_jvs_12877 crossref_primary_10_1111_tpj_13543 crossref_primary_10_1007_s00035_019_00225_3 crossref_primary_10_1016_j_cub_2023_04_054 crossref_primary_10_1111_2041_210X_12232 crossref_primary_10_1111_icad_12193 crossref_primary_10_3389_fpls_2023_1084995 crossref_primary_10_1093_aobpla_plv076 crossref_primary_10_1111_2041_210X_12471 crossref_primary_10_1002_eap_3067 crossref_primary_10_1016_j_biocon_2018_01_028 crossref_primary_10_3389_fpls_2019_01371 crossref_primary_10_1086_702959 crossref_primary_10_1007_s00442_014_3056_x crossref_primary_10_1111_een_13231 crossref_primary_10_7717_peerj_13671 crossref_primary_10_1038_srep45908 crossref_primary_10_1016_j_agee_2020_107033 crossref_primary_10_1086_720421 crossref_primary_10_1111_1365_2656_12158 crossref_primary_10_1111_ecog_00983 crossref_primary_10_1007_s11258_020_01032_1 crossref_primary_10_1007_s11829_016_9431_2 crossref_primary_10_1002_ecy_3028 crossref_primary_10_1111_plb_12322 crossref_primary_10_1016_j_foreco_2023_120883 crossref_primary_10_1016_j_actao_2018_02_011 crossref_primary_10_1111_1365_2656_13806 crossref_primary_10_1038_s41598_021_01160_2 crossref_primary_10_1111_1365_2435_13784 crossref_primary_10_1111_ecog_07490 crossref_primary_10_1111_gcb_13601 crossref_primary_10_1111_brv_12230 crossref_primary_10_1016_j_jenvman_2023_119222 crossref_primary_10_3390_insects12080680 crossref_primary_10_1007_s10886_020_01239_6 crossref_primary_10_1111_1365_2435_13035 crossref_primary_10_3390_plants9111432 crossref_primary_10_1007_s10841_023_00528_1 crossref_primary_10_3390_insects8030101 crossref_primary_10_1016_j_agee_2024_109327 crossref_primary_10_1111_1365_2656_12441 crossref_primary_10_1002_ece3_9435 crossref_primary_10_1002_ecs2_4162 crossref_primary_10_1016_j_agee_2017_08_014 crossref_primary_10_1016_j_agee_2021_107717 crossref_primary_10_1002_ece3_2768 crossref_primary_10_1007_s00442_016_3552_2 crossref_primary_10_1371_journal_pone_0173921 crossref_primary_10_1016_j_agee_2017_01_005 crossref_primary_10_1086_714420 crossref_primary_10_1093_aob_mcac082 crossref_primary_10_1371_journal_pone_0150824 crossref_primary_10_1093_jpe_rtw029 crossref_primary_10_1111_1365_2664_12530 crossref_primary_10_1111_ele_12347 crossref_primary_10_1016_j_agee_2022_107930 crossref_primary_10_1098_rstb_2021_0402 crossref_primary_10_1016_j_biocon_2022_109822 crossref_primary_10_1016_j_fooweb_2018_e00093 crossref_primary_10_26786_1920_7603_2021_648 crossref_primary_10_1016_j_ppees_2021_125646 crossref_primary_10_1111_ele_12342 crossref_primary_10_1007_s00442_020_04661_5 crossref_primary_10_7717_peerj_8314 crossref_primary_10_1111_icad_12565 crossref_primary_10_1186_s12898_020_00323_5 crossref_primary_10_1111_1365_2745_12293 crossref_primary_10_1111_ele_13836 crossref_primary_10_3389_fevo_2021_655086 crossref_primary_10_7717_peerj_4998 crossref_primary_10_1007_s00035_024_00308_w crossref_primary_10_3897_BDJ_10_e83523 crossref_primary_10_1111_geb_13077 crossref_primary_10_1093_aobpla_plab001 crossref_primary_10_1002_ece3_6060 crossref_primary_10_1016_j_flora_2023_152439 crossref_primary_10_3390_biology11040522 crossref_primary_10_1111_geb_12776 crossref_primary_10_1371_journal_pone_0112013 crossref_primary_10_1016_j_cois_2024_101224 crossref_primary_10_7717_peerj_13009 crossref_primary_10_1007_s00035_021_00255_w crossref_primary_10_1186_s12898_016_0080_1 crossref_primary_10_1016_j_agee_2024_109382 crossref_primary_10_1007_s00442_022_05151_6 crossref_primary_10_1111_jeb_12380 crossref_primary_10_3389_fpls_2020_564802 crossref_primary_10_1007_s00035_017_0198_6 crossref_primary_10_1146_annurev_ecolsys_102722_021904 crossref_primary_10_1111_nph_13858 crossref_primary_10_3389_fpls_2020_602951 crossref_primary_10_1007_s00040_014_0366_2 crossref_primary_10_1111_1365_2745_13013 crossref_primary_10_1111_1365_2745_13893 crossref_primary_10_1111_ele_70073 crossref_primary_10_1007_s00442_014_3035_2 crossref_primary_10_1007_s11258_022_01275_0 crossref_primary_10_1890_13_2261_1 crossref_primary_10_1093_aob_mcad195 crossref_primary_10_1111_oik_01361 crossref_primary_10_1371_journal_pone_0154728 crossref_primary_10_1007_s10682_014_9747_2 crossref_primary_10_1038_s41467_021_22011_8 crossref_primary_10_1093_icb_icae070 crossref_primary_10_1111_jzo_13244 crossref_primary_10_1038_s41467_018_05610_w crossref_primary_10_1111_oik_01426 crossref_primary_10_1111_1365_2745_13207 crossref_primary_10_1111_ele_70002 crossref_primary_10_1007_s10886_013_0325_9 crossref_primary_10_1016_j_agee_2020_107231 crossref_primary_10_1590_0102_33062020abb0025 crossref_primary_10_1098_rspb_2015_2444 crossref_primary_10_1111_brv_12828 crossref_primary_10_1038_s41467_018_03448_w crossref_primary_10_1007_s12229_021_09273_z crossref_primary_10_1016_j_asoc_2018_07_035 crossref_primary_10_1093_aob_mcz079 crossref_primary_10_1073_pnas_2317228120 crossref_primary_10_2139_ssrn_4110981 crossref_primary_10_1016_j_fooweb_2020_e00171 crossref_primary_10_1111_ibi_12732 crossref_primary_10_1098_rspb_2017_0788 crossref_primary_10_1111_1365_2435_12932 crossref_primary_10_1016_j_agee_2025_109544 crossref_primary_10_2179_16_108 crossref_primary_10_1111_ecog_00819 crossref_primary_10_1111_nph_15453 crossref_primary_10_1111_ele_13823 crossref_primary_10_3390_land12030706 crossref_primary_10_1111_plb_13343 crossref_primary_10_1111_een_12298 crossref_primary_10_1890_14_0024_1 crossref_primary_10_1016_j_baae_2024_04_006 crossref_primary_10_1111_2041_210X_13306 crossref_primary_10_1007_s11829_013_9274_z crossref_primary_10_1111_2041_210X_12611 crossref_primary_10_1111_ecog_07440 crossref_primary_10_1111_geb_12355 |
Cites_doi | 10.1016/j.pbi.2006.05.002 10.1242/jeb.052688 10.2307/1940063 10.1007/BF00199331 10.1186/1745-6150-5-4 10.1890/10-1367.1 10.1016/j.tree.2006.02.002 10.1016/j.cub.2009.11.071 10.1186/1472-6785-6-9 10.1007/BF00378548 10.1111/j.1365-2656.2008.01460.x 10.1093/bioinformatics/btn453 10.1007/s00442-006-0585-y 10.1101/SQB.1957.022.01.039 10.1093/oso/9780198570851.003.0018 10.1093/aob/mcp027 10.1890/07-0451.1 10.1111/j.1600-0706.2010.18450.x 10.2307/2426743 10.1016/j.agee.2009.11.004 10.1111/j.0013-8703.2004.00212.x 10.1111/j.0030-1299.2006.14199.x 10.1007/s00442-008-1066-2 10.1371/journal.pone.0014287 10.1890/09-0941.1 10.1007/s001140050636 10.1111/j.1469-8137.2010.03296.x 10.1093/aob/mcp057 10.1146/annurev.ento.46.1.471 10.1111/j.0030-1299.2005.13619.x 10.1007/BF02232711 10.1051/apido/2009083 10.1016/j.ympev.2009.01.008 10.1038/nature05956 10.1126/science.1127863 10.1016/j.gene.2008.10.012 10.1111/j.0030-1299.2008.16391.x 10.1111/j.0014-3820.2001.tb01313.x 10.1007/s00442-010-1709-y 10.1093/nar/gkp966 10.1111/j.1365-2656.2010.01698.x 10.1086/656597 10.1093/oso/9780195160437.003.0002 10.1007/s00442-005-0165-6 10.1073/pnas.0706375104 10.1093/nar/gkn723 10.1086/657993 10.1007/BF00243394 10.1086/378682 10.1186/1756-0500-1-91 10.1890/08-1837.1 10.1016/j.tree.2010.01.007 10.1016/j.baae.2010.11.001 10.1016/j.cub.2006.12.039 10.2307/1941320 |
ContentType | Journal Article |
Copyright | 2013 British Ecological Society 2012 The Authors. Functional Ecology© 2012 British Ecological Society 2014 INIST-CNRS Functional Ecology © 2013 British Ecological Society |
Copyright_xml | – notice: 2013 British Ecological Society – notice: 2012 The Authors. Functional Ecology© 2012 British Ecological Society – notice: 2014 INIST-CNRS – notice: Functional Ecology © 2013 British Ecological Society |
DBID | AAYXX CITATION IQODW 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 |
DOI | 10.1111/1365-2435.12005 |
DatabaseName | CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Entomology Abstracts Ecology Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 341 |
ExternalDocumentID | 2969308341 27145757 10_1111_1365_2435_12005 FEC12005 23480830 |
Genre | article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG) |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGUYK AGXDD AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT 31~ 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD MVM VOH WRC ZY4 AAYXX AGHNM CITATION IQODW 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 |
ID | FETCH-LOGICAL-c4335-a3c521836f33567bffb54cd5db9cd2ef9fbb3888a7e50e15c63671f3fe1184413 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 03:17:37 EDT 2025 Mon Jul 14 07:38:08 EDT 2025 Wed Apr 02 07:25:22 EDT 2025 Thu Apr 24 23:05:40 EDT 2025 Tue Jul 01 01:15:41 EDT 2025 Wed Jan 22 16:22:53 EST 2025 Sun Aug 24 12:10:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | floral resources Flower floral filters Visitor Color Ecology flower colour Pollination n-dimensional hypervolume Hierarchy Specialization Filter Morphology Ecological niche niche hierarchy of traits |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4335-a3c521836f33567bffb54cd5db9cd2ef9fbb3888a7e50e15c63671f3fe1184413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1350553851 |
PQPubID | 1066355 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1328520418 proquest_journals_1350553851 pascalfrancis_primary_27145757 crossref_primary_10_1111_1365_2435_12005 crossref_citationtrail_10_1111_1365_2435_12005 wiley_primary_10_1111_1365_2435_12005_FEC12005 jstor_primary_23480830 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2013 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: April 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Wiley-Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing – name: Wiley-Blackwell – name: Wiley Subscription Services, Inc |
References | 2009; 430 2010; 188 2009b; 90 1999; 86 2011; 12 1995; 177 1985; 66 2008; 1 2001; 46 1979 2010; 20 2009; 52 2010; 25 2009a; 103 2010; 119 2005; 145 2006; 21 1993; 74 2003; 162 2005; 108 2008; 117 2008; 24 1862 2008; 157 2001; 55 1996; 136 2012; 24 2010; 5 2007; 17 2011; 214 2010; 38 2007; 448 2010; 79 2011 2011; 81 2006; 9 1998 2006; 6 2006 2010; 164 2004 2002 2006; 313 2007; 11 2006; 112 2010; 41 2011; 177 1957; 22 2009; 78 1984; 31 1992; 170 2004; 113 2007; 151 2010; 136 2008; 89 2010; 171 2010; 91 2009; 103 2009; 37 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Junker R.R. (e_1_2_6_29_1) 2012; 24 Campbell B.E. (e_1_2_6_13_1) 2006 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_7_1 Armbruster W. (e_1_2_6_2_1) 2004 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 Begon M. (e_1_2_6_5_1) 1998 e_1_2_6_50_1 Klotz S. (e_1_2_6_36_1) 2002 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 Darwin C. (e_1_2_6_18_1) 1862 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 R Development Core Team (e_1_2_6_48_1) 2011 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 Faegri K. (e_1_2_6_19_1) 1979 e_1_2_6_23_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – year: 2011 – volume: 162 start-page: S63 year: 2003 end-page: S79 article-title: Competition and coexistence: exploring mechanisms that restrict and maintain diversity within mutualist guilds publication-title: The American Naturalist – volume: 31 start-page: 142 year: 1984 end-page: 154 article-title: Nectar thievery by ants from southern Spanish insect‐pollinated flowers publication-title: Insectes Sociaux – volume: 6 start-page: 9 year: 2006 article-title: Measuring specialization in species interaction networks publication-title: BMC Ecology – volume: 5 start-page: 4 year: 2010 article-title: Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees publication-title: Biology Direct – volume: 136 start-page: 35 year: 2010 end-page: 39 article-title: Effect of conservation management on bees and insect‐pollinated grassland plant communities in three European countries publication-title: Agriculture Ecosystems & Environment – volume: 12 start-page: 282 year: 2011 end-page: 291 article-title: Functional complementarity and specialisation: the role of biodiversity in plant‐pollinator interactions publication-title: Basic and Applied Ecology – volume: 157 start-page: 249 year: 2008 end-page: 257 article-title: The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities publication-title: Oecologia – volume: 52 start-page: 520 year: 2009 end-page: 523 article-title: ITS2 sequence‐structure analysis in phylogenetics: a how‐to manual for molecular systematics publication-title: Molecular Phylogenetics and Evolution – volume: 24 start-page: 2401 year: 2008 end-page: 2402 article-title: ProfDistS: (profile‐) distance based phylogeny on sequence‐structure alignments publication-title: Bioinformatics – volume: 17 start-page: 341 year: 2007 end-page: 346 article-title: Specialization, constraints, and conflicting interests in mutualistic networks publication-title: Current Biology – volume: 117 start-page: 875 year: 2008 end-page: 882 article-title: Coexistence of succulent tree aloes: partitioning of bird pollinators by floral traits and flowering phenology publication-title: Oikos – volume: 55 start-page: 1963 year: 2001 end-page: 1971 article-title: Down the tube: pollinators, predators, and the evolution of flower shape in the Alpine Skypilot, publication-title: Evolution – volume: 112 start-page: 111 year: 2006 end-page: 121 article-title: Size constraints and flower abundance determine the number of interactions in a plant‐flower visitor web publication-title: Oikos – volume: 151 start-page: 442 year: 2007 end-page: 453 article-title: Asymmetric specialization and extinction risk in plant–flower visitor webs: a matter of morphology or abundance? publication-title: Oecologia – volume: 430 start-page: 50 year: 2009 end-page: 57 article-title: 5.8S‐28S rRNA interaction and HMM‐based ITS2 annotation publication-title: Gene – volume: 79 start-page: 818 year: 2010 end-page: 823 article-title: Responses to olfactory signals reflect network structure of flower‐visitor interactions publication-title: Journal of Animal Ecology – year: 1979 – volume: 24 start-page: 21 year: 2012 end-page: 36 article-title: Floral filters: inviting mutualists and screening out antagonists publication-title: Entomologie heute – volume: 90 start-page: 2039 year: 2009b end-page: 2046 article-title: Evaluating multiple determinants of the structure of plant‐animal mutualistic networks publication-title: Ecology – volume: 38 start-page: D275 year: 2010 end-page: D279 article-title: The ITS2 Database III–sequences and structures for phylogeny publication-title: Nucleic Acids Research – year: 1862 – year: 1998 – volume: 188 start-page: 385 year: 2010 end-page: 392 article-title: Pollinator‐mediated selection on floral display, spur length and flowering phenology in the deceptive orchid publication-title: New Phytologist – volume: 25 start-page: 345 year: 2010 end-page: 353 article-title: Global pollinator declines: trends, impacts and drivers publication-title: Trends in Ecology & Evolution – volume: 1 start-page: 91 year: 2008 article-title: Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE publication-title: BMC Research Notes – volume: 9 start-page: 428 year: 2006 end-page: 435 article-title: Recognition of flowers by pollinators publication-title: Current Opinion in Plant Biology – volume: 103 start-page: 1445 year: 2009a end-page: 1457 article-title: Uniting pattern and process in plant‐animal mutualistic networks: a review publication-title: Annals of Botany – volume: 177 start-page: 1 year: 1995 end-page: 19 article-title: Innate color preferences of flower visitors publication-title: Journal of Comparative Physiology. A, Sensory Neural and Behavioral Physiology – volume: 91 start-page: 2638 year: 2010 end-page: 2649 article-title: Flower color influences insect visitation in alpine New Zealand publication-title: Ecology – volume: 78 start-page: 253 year: 2009 end-page: 269 article-title: Ecological networks – beyond food webs publication-title: Journal of Animal Ecology – volume: 5 start-page: e14287 issue: 12 year: 2010 article-title: FReD: the floral reflectance database – a web portal for analyses of flower colour publication-title: PLoS ONE – volume: 145 start-page: 586 year: 2005 end-page: 594 article-title: Relationships between species' floral traits and pollinator visitation in a temperate grassland publication-title: Oecologia – volume: 74 start-page: 1326 year: 1993 end-page: 1336 article-title: Hierarchical mechanisms of fruit selection by an avian frugivore publication-title: Ecology – volume: 119 start-page: 1581 year: 2010 end-page: 1590 article-title: Pollinator diversity and specialization in relation to flower diversity publication-title: Oikos – volume: 313 start-page: 351 year: 2006 end-page: 354 article-title: Parallel declines in pollinators and insect‐pollinated plants in Britain and the Netherlands publication-title: Science – volume: 20 start-page: 237 year: 2010 end-page: 242 article-title: Changing pollinators as a means of escaping herbivores publication-title: Current Biology – volume: 66 start-page: 198 year: 1985 end-page: 210 article-title: Morphology as a predictor of flower choice by bumble bees publication-title: Ecology – volume: 177 start-page: 258 year: 2011 end-page: 272 article-title: Dosage‐dependent impacts of a floral volatile compound on pollinators, larcenists, and the potential for floral evolution in the Alpine Skypilot publication-title: The American Naturalist – start-page: 326 year: 2006 end-page: 345 – volume: 86 start-page: 361 year: 1999 end-page: 377 article-title: Flower constancy, insect psychology, and plant evolution publication-title: Naturwissenschaften – volume: 66 start-page: 25 year: 1985 end-page: 32 article-title: Competition between hummingbirds and bumble bees for nectar in flowers of publication-title: Oecologia – volume: 136 start-page: 401 year: 1996 end-page: 406 article-title: Resource partitioning and per‐flower foraging efficiency in two bumble bee species publication-title: American Midland Naturalist – volume: 22 start-page: 415 year: 1957 end-page: 427 article-title: Concluding remarks publication-title: Cold Spring Harbor Symposium on Quantitative Biology – volume: 113 start-page: 103 year: 2004 end-page: 107 article-title: Nectar resource diversity organises flower‐visitor community structure publication-title: Entomologia Experimentalis et Applicata – volume: 170 start-page: 533 year: 1992 end-page: 543 article-title: The color hexagon – a chromaticity diagram based on photoreceptor excitations as a generalized representation of color opponency publication-title: Journal of Comparative Physiology. A, Sensory Neural and Behavioral Physiology – volume: 46 start-page: 471 year: 2001 end-page: 510 article-title: The evolution of color vision in insects publication-title: Annual Review of Entomology – volume: 89 start-page: 1573 year: 2008 end-page: 1582 article-title: Temporal dynamics in a pollination network publication-title: Ecology – volume: 81 start-page: 295 year: 2011 end-page: 311 article-title: Hawaiian ant‐flower networks: nectar‐thieving ants prefer undefended native over introduced plants with floral defenses publication-title: Ecological Monographs – volume: 108 start-page: 421 year: 2005 end-page: 426 article-title: Degree distribution in plant‐animal mutualistic networks: forbidden links or random interactions? publication-title: Oikos – volume: 214 start-page: 1607 year: 2011 end-page: 1612 article-title: Avoidance of achromatic colours by bees provides a private niche for hummingbirds publication-title: Journal of Experimental Biology – volume: 164 start-page: 713 year: 2010 end-page: 720 article-title: Escape from floral herbivory by early flowering in subsp. publication-title: Oecologia – year: 2002 – volume: 448 start-page: 925 year: 2007 end-page: 929 article-title: Non‐random coextinctions in phylogenetically structured mutualistic networks publication-title: Nature – volume: 37 start-page: D26 year: 2009 end-page: D31 article-title: GenBank publication-title: Nucleic Acids Research – volume: 21 start-page: 178 year: 2006 end-page: 185 article-title: Rebuilding community ecology from functional traits publication-title: Trends in Ecology & Evolution – volume: 11 start-page: 19891 year: 2007 end-page: 19896 article-title: The modularity of pollination networks publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 103 start-page: 1459 year: 2009 end-page: 1469 article-title: Size‐specific interaction patterns and size matching in a plant‐pollinator interaction web publication-title: Annals of Botany – volume: 41 start-page: 476 year: 2010 end-page: 487 article-title: Pollen amino acids and flower specialisation in solitary bees publication-title: Apidologie – volume: 171 start-page: 999 year: 2010 end-page: 1009 article-title: Pollinator‐mediated selection on floral display and spur length in the orchid publication-title: International Journal of Plant Sciences – start-page: 23 year: 2004 end-page: 49 – ident: e_1_2_6_16_1 doi: 10.1016/j.pbi.2006.05.002 – ident: e_1_2_6_41_1 doi: 10.1242/jeb.052688 – ident: e_1_2_6_50_1 doi: 10.2307/1940063 – ident: e_1_2_6_15_1 doi: 10.1007/BF00199331 – ident: e_1_2_6_34_1 doi: 10.1186/1745-6150-5-4 – ident: e_1_2_6_31_1 doi: 10.1890/10-1367.1 – ident: e_1_2_6_42_1 doi: 10.1016/j.tree.2006.02.002 – ident: e_1_2_6_35_1 doi: 10.1016/j.cub.2009.11.071 – ident: e_1_2_6_9_1 doi: 10.1186/1472-6785-6-9 – ident: e_1_2_6_38_1 doi: 10.1007/BF00378548 – ident: e_1_2_6_28_1 doi: 10.1111/j.1365-2656.2008.01460.x – ident: e_1_2_6_62_1 doi: 10.1093/bioinformatics/btn453 – ident: e_1_2_6_56_1 doi: 10.1007/s00442-006-0585-y – ident: e_1_2_6_27_1 doi: 10.1101/SQB.1957.022.01.039 – start-page: 326 volume-title: Ecology and Evolution of Flowers year: 2006 ident: e_1_2_6_13_1 doi: 10.1093/oso/9780198570851.003.0018 – ident: e_1_2_6_57_1 doi: 10.1093/aob/mcp027 – ident: e_1_2_6_44_1 doi: 10.1890/07-0451.1 – ident: e_1_2_6_20_1 doi: 10.1111/j.1600-0706.2010.18450.x – ident: e_1_2_6_23_1 doi: 10.2307/2426743 – volume-title: BIOLFLOR – Eine Datenbank zu biologisch‐ökologischen Merkmalen der Gefäßpflanzen in Deutschland year: 2002 ident: e_1_2_6_36_1 – ident: e_1_2_6_4_1 doi: 10.1016/j.agee.2009.11.004 – ident: e_1_2_6_46_1 doi: 10.1111/j.0013-8703.2004.00212.x – ident: e_1_2_6_55_1 doi: 10.1111/j.0030-1299.2006.14199.x – ident: e_1_2_6_39_1 doi: 10.1007/s00442-008-1066-2 – ident: e_1_2_6_3_1 doi: 10.1371/journal.pone.0014287 – ident: e_1_2_6_14_1 doi: 10.1890/09-0941.1 – ident: e_1_2_6_17_1 doi: 10.1007/s001140050636 – ident: e_1_2_6_54_1 doi: 10.1111/j.1469-8137.2010.03296.x – ident: e_1_2_6_60_1 doi: 10.1093/aob/mcp057 – volume-title: Ökologie year: 1998 ident: e_1_2_6_5_1 – ident: e_1_2_6_12_1 doi: 10.1146/annurev.ento.46.1.471 – ident: e_1_2_6_58_1 doi: 10.1111/j.0030-1299.2005.13619.x – ident: e_1_2_6_26_1 doi: 10.1007/BF02232711 – ident: e_1_2_6_61_1 doi: 10.1051/apido/2009083 – volume: 24 start-page: 21 year: 2012 ident: e_1_2_6_29_1 article-title: Floral filters: inviting mutualists and screening out antagonists publication-title: Entomologie heute – ident: e_1_2_6_51_1 doi: 10.1016/j.ympev.2009.01.008 – ident: e_1_2_6_49_1 doi: 10.1038/nature05956 – ident: e_1_2_6_7_1 doi: 10.1126/science.1127863 – ident: e_1_2_6_33_1 doi: 10.1016/j.gene.2008.10.012 – ident: e_1_2_6_11_1 doi: 10.1111/j.0030-1299.2008.16391.x – ident: e_1_2_6_21_1 doi: 10.1111/j.0014-3820.2001.tb01313.x – ident: e_1_2_6_32_1 doi: 10.1007/s00442-010-1709-y – ident: e_1_2_6_37_1 doi: 10.1093/nar/gkp966 – ident: e_1_2_6_30_1 doi: 10.1111/j.1365-2656.2010.01698.x – volume-title: R: A Language and Environment for Statistical Computing year: 2011 ident: e_1_2_6_48_1 – ident: e_1_2_6_53_1 doi: 10.1086/656597 – start-page: 23 volume-title: Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes year: 2004 ident: e_1_2_6_2_1 doi: 10.1093/oso/9780195160437.003.0002 – ident: e_1_2_6_25_1 doi: 10.1007/s00442-005-0165-6 – volume-title: On the Various Contrivances by Which British and Foreign Orchids are Fertilised by Insects year: 1862 ident: e_1_2_6_18_1 – volume-title: The Principles of Pollination Ecology year: 1979 ident: e_1_2_6_19_1 – ident: e_1_2_6_43_1 doi: 10.1073/pnas.0706375104 – ident: e_1_2_6_6_1 doi: 10.1093/nar/gkn723 – ident: e_1_2_6_22_1 doi: 10.1086/657993 – ident: e_1_2_6_40_1 doi: 10.1007/BF00243394 – ident: e_1_2_6_45_1 doi: 10.1086/378682 – ident: e_1_2_6_52_1 doi: 10.1186/1756-0500-1-91 – ident: e_1_2_6_59_1 doi: 10.1890/08-1837.1 – ident: e_1_2_6_47_1 doi: 10.1016/j.tree.2010.01.007 – ident: e_1_2_6_8_1 doi: 10.1016/j.baae.2010.11.001 – ident: e_1_2_6_10_1 doi: 10.1016/j.cub.2006.12.039 – ident: e_1_2_6_24_1 doi: 10.2307/1941320 |
SSID | ssj0009522 |
Score | 2.4880967 |
Snippet | 1. Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and... Summary Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and... Biotic interactions do not occur in isolation but are imbedded in a network of species interactions. Network analysis facilitates the compilation and... Summary Lay Summary [PUBLICATION ABSTRACT] |
SourceID | proquest pascalfrancis crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 329 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Animals Arthropoda Autoecology Biological and medical sciences Ecology Evolutionary ecology floral filters floral resources flower colour Flowers Fundamental and applied biological sciences. Psychology General aspects hierarchy of traits Human ecology morphology niche n‐dimensional hypervolume Phenotypic traits Plant ecology Plant taxonomy Plants pollination Species Taxa |
Title | Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks |
URI | https://www.jstor.org/stable/23480830 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12005 https://www.proquest.com/docview/1350553851 https://www.proquest.com/docview/1328520418 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5KoNBL36bbpEGFHnpZ49VjH8cSbEKhPZQGelskrURDk3VBzqE95Sf0N-aXdEbSOnaglFLwQbZnjDU70nzanfkG4I10riKaqBKDvSmlEaZs22FREpRAgE8cdXS_48PH-vRMvv-ipmxCqoVJ_BDbG260MuJ-TQtcm7CzyFN-Fkb7eZVZTOkTgkWf-A7tbnqOwOuuxEgrMrkP5fLc0d-LSyk1kfIkdUBT-dTjYg-E7kLZGItWj8BMs0gpKN_mVxsztz_vEDz-1zQfw8OMVNm75FpP4J4bn8L91LvyB46WNo9my9tiOVTIu0V4Bte5uX0u9WT4oo4Um8B0YBg-zwNDyMwQgrKRMlJvrn_hAV0Pm69s7Zm_oAZujIrfqSMQ0-NAeonwNhZXsktHdcvn4ZLknZ32cTam3PbwHM5Wy88np2Xu-FBaKYQqtbCKMFvt8V3dGO-NknZQg-nswJ3vvDECz-y6cWqBTmZrUTeVF97hOQmBnZjBwbge3QtgtRJcK-s94i_pOmM63holnLNKVt7bAubT9e5tpkMnG1z007GILN-T5fto-QLebhW-JyaQP4vOogNt5biQLWLdRQHHex51K9BUEoFzU8DR5GJ93kwC_jrCVAxMqirg9fZr3Abo2Y4e3fqKZHir-EJWLU4s-tPf_mS_Wp7Ewct_VTiEBzw2BaH8pSM4wOvuXiE025jjuPp-A85MLKA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KQmkvTV9L3SapCj304mWthx_HEHbZtkkOJYHcjCVLNCTxFrw5tKf8hP7G_pLOSPJmN1BKKfggsyNjzY5mvpHnAfBeWptRmagUjb1OpRY6Lct2khKUQIBPNerovOP4JJ-fyU_n6nwtFybUh1gduNHO8PqaNjgdSK_t8hCgheZ-nIUyptvU19u7VV_4WuHd8CWB51WKtlbE8j4UzXPvARuWKQQnUqRk0yOzXOhysQFD18Gst0azHTDDOkIQyuX4ZqnH5se9Eo__t9Cn8CSCVXYQpOsZPLDdc3gY2ld-x9HUxNFoepcvhxOiwuhfwG3sbx-zPRle1JRi2bOmZ2hBL3qGqJkhCmUdBaX-uv2JPnrTLr-yhWPuinq4Mcp_p6ZArOlamhdq3vr8SnZtKXX5or8memsGVc66EN7ev4Sz2fT0cJ7Gpg-pkUKotBFGEWzLHd7lhXZOK2la1erKtNy6ymkt0G1vCqsmKGcmF3mROeEsukqI7cQItrpFZ18By5XgjTLOIQSTttK64qVWwlqjZOacSWA8_OG1iRXRiQdX9eAZEedr4nztOZ_Ah9WEb6EYyJ9JR16CVnRcyBLh7iSB_Q2RuiMoMonYuUhgd5CxOuqTHp-OSBVtk8oSeLf6GTUBfd5pOru4IRpeKj6RWYkL8wL1t5esZ9NDP3j9rxPewqP56fFRffTx5PMbeMx9jxAKZ9qFLZQBu4dIban3_Vb8DYtaMLs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KSksvfS91mqYq9NCLF1sPP44l2SV9hVIa6M1YskRCE2_Am0Nzyk_ob-wv6Ywkb3YDpZTCHrTsyFizo5lP9sw3AK-ltTnRRKUY7HUqtdBpVXVZSlACAT5x1NHzjk-HxcGRfP9NjdmEVAsT-CFWD9xoZ3h_TRv8vHNrmzzkZ2G0n-aBxfS2LLKKDHv_C1_j3Q0vEnhRpxhqRWT3oWSeGxfYCEwhN5ESJdsBdeVCk4sNFLqOZX0wmj8APS4j5KB8n14s9dRc3mB4_K91PoT7Eaqyt8G2HsEt2z-GO6F55Q8czUwcTWbX1XI4IbqL4Qlcxe72sdaT4YdaUiwH1g4M4-fJwBAzM8SgrKeU1F9XP_GE3nbLY7ZwzJ1SBzdG1e_UEoi1fUfzAuOtr65kZ5YKl0-GM5K3ZnTkrA_J7cNTOJrPvu4dpLHlQ2qkECpthVEE2gqH34pSO6eVNJ3qdG06bl3ttBZ4aG9LqzK0MlOIosydcBYPSojsxAS2-kVvnwErlOCtMs4hAJO21rrmlVbCWqNk7pxJYDr-342JfOikg9NmPBeR5hvSfOM1n8Cb1YTzQAXyZ9GJN6CVHBeyQrCbJbC7YVHXAmUuETmXCeyMJtZEbzLg1RGnYmRSeQKvVj-jH6CXO21vFxckwyvFM5lXuDBvT3-7yWY-2_OD7X-d8BLuft6fNx_fHX54Dve4bxBCuUw7sIUmYF8gTFvqXb8RfwPmxC9z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specialization+on+traits+as+basis+for+the+niche%E2%80%90breadth+of+flower+visitors+and+as+structuring+mechanism+of+ecological+networks&rft.jtitle=Functional+ecology&rft.au=Junker%2C+Robert+R.&rft.au=Bl%C3%BCthgen%2C+Nico&rft.au=Brehm%2C+Tanja&rft.au=Binkenstein%2C+Julia&rft.date=2013-04-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=27&rft.issue=2&rft.spage=329&rft.epage=341&rft_id=info:doi/10.1111%2F1365-2435.12005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2435_12005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |