Evaluation of Carotid–Femoral Pulse Wave Velocity: Influence of Timing Algorithm and Heart Rate
Carotid–femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated...
Saved in:
Published in | Hypertension (Dallas, Tex. 1979) Vol. 45; no. 2; pp. 222 - 226 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Heart Association, Inc
01.02.2005
Hagerstown, MD Lippincott |
Subjects | |
Online Access | Get full text |
ISSN | 0194-911X 1524-4563 1524-4563 |
DOI | 10.1161/01.HYP.0000154229.97341.d2 |
Cover
Loading…
Abstract | Carotid–femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during β-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7±0.75 m/s (mean±SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 μg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18±3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7±0.2 m/s and 0.9±0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1±0.5 m/s and 1.1±0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P<0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid–femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate. |
---|---|
AbstractList | Carotid–femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during β-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7±0.75 m/s (mean±SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 μg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18±3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7±0.2 m/s and 0.9±0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1±0.5 m/s and 1.1±0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P<0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid–femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate. Carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during β-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7±0.75 m/s (mean±SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 μg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18±3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7±0.2 m/s and 0.9±0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1±0.5 m/s and 1.1±0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P <0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid-femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate. Carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during beta-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7+/-0.75 m/s (mean+/-SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 microg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18+/-3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7+/-0.2 m/s and 0.9+/-0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1+/-0.5 m/s and 1.1+/-0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P<0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid-femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate.Carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during beta-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7+/-0.75 m/s (mean+/-SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 microg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18+/-3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7+/-0.2 m/s and 0.9+/-0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1+/-0.5 m/s and 1.1+/-0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P<0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid-femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate. Carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during beta-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7+/-0.75 m/s (mean+/-SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 microg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18+/-3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7+/-0.2 m/s and 0.9+/-0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1+/-0.5 m/s and 1.1+/-0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P<0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid-femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate. |
Author | Patel, Sundip J. Chowienczyk, Philip J. Redwood, Simon R. Stewart, Andrew D. Millasseau, Sandrine C. |
AuthorAffiliation | From the Cardiovascular Division, GKT School of Medicine, King’s College London, United Kingdom |
AuthorAffiliation_xml | – name: From the Cardiovascular Division, GKT School of Medicine, King’s College London, United Kingdom |
Author_xml | – sequence: 1 givenname: Sandrine surname: Millasseau middlename: C. fullname: Millasseau, Sandrine C. organization: From the Cardiovascular Division, GKT School of Medicine, King’s College London, United Kingdom – sequence: 2 givenname: Andrew surname: Stewart middlename: D. fullname: Stewart, Andrew D. – sequence: 3 givenname: Sundip surname: Patel middlename: J. fullname: Patel, Sundip J. – sequence: 4 givenname: Simon surname: Redwood middlename: R. fullname: Redwood, Simon R. – sequence: 5 givenname: Philip surname: Chowienczyk middlename: J. fullname: Chowienczyk, Philip J. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16514579$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15642772$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu1DAUhi1URKeFV0AWEuwSfEs86Ypq1DKVKlGhcltZjnPSMThxsZ1W3fEOfcM-CZ4LVGKFF7Z09P3_OT7_Adob_QgIvaKkpLSmbwktl98uSpIPrQRjTdlILmjZsSdoRismClHVfA_NCG1E0VD6dR8dxPg940II-Qzt06oWTEo2Q_rkRrtJJ-tH7Hu80MEn2z38uj-FwQft8MXkIuAv-gbwZ3De2HR3hM_G3k0wGlhrLu1gxyt87K58sGk1YD12eAk6JPxRJ3iOnvY6e7zYvYfo0-nJ5WJZnH94f7Y4Pi-M4FwUhrM5YQBtlYdsZNWB5H0ugtSiaxsDbT_vDO8l8IrMW5Ci5pIAGN7KvtbAD9Gbre918D8niEkNNhpwTo_gp6hqyef5-yyDL3fg1A7QqetgBx3u1J-lZOD1DtDRaNcHPRobH7k6j1jJJnPvtpwJPsYAvcrb2awyBW2dokSt81KEqpyXesxLbfJS3brV0T8Wf7v8j1hsxbfeJQjxh5tuIagVaJdWG4Vg9bxghFQkX6RYewj-G9q3q1A |
CODEN | HPRTDN |
CitedBy_id | crossref_primary_10_1097_HJH_0000000000000014 crossref_primary_10_1152_ajpheart_00963_2012 crossref_primary_10_1088_1361_6579_ab165f crossref_primary_10_3389_fcvm_2020_592834 crossref_primary_10_1016_j_healun_2008_11_002 crossref_primary_10_1007_s00421_018_3893_0 crossref_primary_10_1161_HYPERTENSIONAHA_116_07462 crossref_primary_10_18705_1607_419X_2022_28_3_243_252 crossref_primary_10_1258_vasc_2011_ra0054 crossref_primary_10_3923_itj_2013_1412_1417 crossref_primary_10_1152_ajpheart_00218_2019 crossref_primary_10_1016_j_ultrasmedbio_2018_10_032 crossref_primary_10_1016_j_ihj_2014_05_020 crossref_primary_10_1097_JCN_0b013e3182376685 crossref_primary_10_1016_j_amjmed_2022_08_012 crossref_primary_10_1093_eurheartj_ehq211 crossref_primary_10_1136_bmjopen_2023_082725 crossref_primary_10_1038_hr_2014_101 crossref_primary_10_1093_ajh_hpx140 crossref_primary_10_1016_j_jbiomech_2013_04_019 crossref_primary_10_1152_ajpheart_00551_2020 crossref_primary_10_4137_BECB_S40094 crossref_primary_10_1155_2017_4198095 crossref_primary_10_1007_s00421_008_0868_6 crossref_primary_10_1016_j_jpeds_2018_06_047 crossref_primary_10_3390_jcm11174937 crossref_primary_10_1088_0967_3334_33_12_1993 crossref_primary_10_1152_ajpheart_00175_2015 crossref_primary_10_1093_ajh_hpx059 crossref_primary_10_1161_CIRCRESAHA_121_318061 crossref_primary_10_1016_j_actbio_2018_04_036 crossref_primary_10_1093_ndt_gft309 crossref_primary_10_1088_0967_3334_31_1_R01 crossref_primary_10_1038_hr_2012_144 crossref_primary_10_1016_j_jpsychores_2005_10_011 crossref_primary_10_1097_HJH_0b013e328363c789 crossref_primary_10_1002_jum_16469 crossref_primary_10_1186_s40697_016_0109_6 crossref_primary_10_1097_HJH_0000000000003418 crossref_primary_10_1093_ajh_hps031 crossref_primary_10_1016_j_artres_2014_01_006 crossref_primary_10_1371_journal_pone_0290618 crossref_primary_10_1016_j_artres_2015_11_002 crossref_primary_10_1109_TBME_2021_3055154 crossref_primary_10_1088_2057_1976_aa8bf2 crossref_primary_10_1038_s41598_023_35055_1 crossref_primary_10_1016_j_artres_2009_02_006 crossref_primary_10_1111_jch_12899 crossref_primary_10_3389_fcvm_2023_1280966 crossref_primary_10_1111_jnc_14235 crossref_primary_10_1186_1476_7120_8_22 crossref_primary_10_1038_s41598_017_05807_x crossref_primary_10_1001_jamapediatrics_2024_1701 crossref_primary_10_1142_S0219519412500285 crossref_primary_10_3389_fphys_2023_1162391 crossref_primary_10_1016_j_envint_2023_107923 crossref_primary_10_1097_HJH_0000000000003845 crossref_primary_10_1016_j_artres_2011_08_003 crossref_primary_10_1016_j_numecd_2021_09_027 crossref_primary_10_1097_HJH_0000000000002081 crossref_primary_10_1111_psyp_12638 crossref_primary_10_1016_j_cjca_2016_01_039 crossref_primary_10_1097_HJH_0b013e32832f5890 crossref_primary_10_1016_j_ultrasmedbio_2006_08_014 crossref_primary_10_1038_s41598_021_96998_x crossref_primary_10_1109_TBME_2019_2928416 crossref_primary_10_1016_j_ultrasmedbio_2006_11_018 crossref_primary_10_1161_JAHA_121_024769 crossref_primary_10_3390_jcm13226811 crossref_primary_10_1161_HYPERTENSIONAHA_123_21618 crossref_primary_10_1016_j_hjc_2021_02_005 crossref_primary_10_1088_0967_3334_31_11_004 crossref_primary_10_3390_ijms20153664 crossref_primary_10_1515_med_2024_1003 crossref_primary_10_1016_j_artres_2015_12_001 crossref_primary_10_1016_j_artres_2014_04_004 crossref_primary_10_1016_j_artres_2012_05_004 crossref_primary_10_1097_HJH_0000000000002416 crossref_primary_10_1016_j_echo_2013_04_014 crossref_primary_10_1097_HJH_0b013e32832cb04e crossref_primary_10_1155_2012_169359 crossref_primary_10_1088_0967_3334_30_3_002 crossref_primary_10_1097_HJH_0b013e3283639460 crossref_primary_10_1109_TUFFC_2019_2951922 crossref_primary_10_1093_ajh_hpt179 crossref_primary_10_1093_eurheartj_ehq165 crossref_primary_10_1097_JCN_0000000000000460 crossref_primary_10_1016_j_jpsychores_2014_08_010 crossref_primary_10_1109_TMI_2008_928179 crossref_primary_10_5617_jeb_2575 crossref_primary_10_1016_j_artres_2015_06_001 crossref_primary_10_4236_jbise_2015_84022 crossref_primary_10_1152_japplphysiol_00475_2013 crossref_primary_10_3938_jkps_77_1061 crossref_primary_10_1016_j_artres_2011_10_003 crossref_primary_10_1007_s44200_024_00044_w crossref_primary_10_1097_HJH_0b013e328331b81e crossref_primary_10_1016_j_arr_2019_05_001 crossref_primary_10_2478_pjmpe_2023_0016 crossref_primary_10_2174_011573403X256094231031074753 crossref_primary_10_1007_s10439_010_9945_1 crossref_primary_10_1038_ajh_2011_147 crossref_primary_10_1088_0967_3334_36_1_149 crossref_primary_10_2139_ssrn_3961369 crossref_primary_10_1038_hr_2010_280 crossref_primary_10_1097_HJH_0b013e32830a4a25 crossref_primary_10_1088_1361_6579_aa905a crossref_primary_10_1109_RBME_2021_3092208 crossref_primary_10_1038_hr_2009_154 crossref_primary_10_1007_s00421_018_3900_5 crossref_primary_10_1097_CRD_0000000000000031 crossref_primary_10_1016_j_ajog_2024_08_045 crossref_primary_10_1097_HJH_0b013e328311cdd5 crossref_primary_10_2165_11588020_000000000_00000 crossref_primary_10_1088_1361_6579_aac76a crossref_primary_10_1038_sj_jhh_1002120 crossref_primary_10_1097_HJH_0b013e328354f385 crossref_primary_10_3390_s19194295 crossref_primary_10_1042_CS20040352 crossref_primary_10_1093_aje_kwae169 crossref_primary_10_1093_ajh_hpu034 crossref_primary_10_1097_HJH_0000000000003239 crossref_primary_10_1016_j_jash_2018_06_016 crossref_primary_10_1021_acsmaterialslett_0c00160 crossref_primary_10_1007_s10237_010_0213_y crossref_primary_10_1007_s13239_013_0125_y crossref_primary_10_1161_ATVBAHA_120_311909 crossref_primary_10_1097_HJH_0000000000000091 crossref_primary_10_1097_MD_0000000000005957 crossref_primary_10_1097_HJH_0b013e32830e4932 crossref_primary_10_1016_j_jclinane_2014_06_011 crossref_primary_10_1097_HJH_0000000000002731 crossref_primary_10_1016_j_rmed_2013_06_008 crossref_primary_10_1097_HJH_0000000000001886 crossref_primary_10_1016_j_diabres_2025_112032 crossref_primary_10_1080_08964289_2020_1825921 crossref_primary_10_1088_1361_6579_aacfe1 crossref_primary_10_1007_s00330_018_5705_7 crossref_primary_10_1088_1361_6579_aada72 crossref_primary_10_1097_MBP_0000000000000369 crossref_primary_10_1371_journal_pone_0220689 crossref_primary_10_1186_1471_2261_13_102 crossref_primary_10_1016_j_bspc_2024_106161 crossref_primary_10_1097_HJH_0000000000003935 crossref_primary_10_1111_dme_13666 crossref_primary_10_1152_ajpregu_00270_2023 crossref_primary_10_1519_JSC_0000000000004321 crossref_primary_10_2217_ahe_10_15 crossref_primary_10_1097_HJH_0000000000002608 crossref_primary_10_1016_j_artres_2008_11_002 crossref_primary_10_1152_japplphysiol_00445_2016 crossref_primary_10_1016_j_artres_2010_03_001 crossref_primary_10_3109_03091902_2015_1016190 crossref_primary_10_1155_2017_6790292 crossref_primary_10_1143_JJAP_48_07GJ09 crossref_primary_10_1016_j_echo_2021_01_003 crossref_primary_10_1002_jmri_22143 crossref_primary_10_1016_j_maturitas_2022_01_012 crossref_primary_10_1097_HJH_0b013e32833b4a55 crossref_primary_10_1152_japplphysiol_00198_2021 crossref_primary_10_2147_vhrm_2006_2_1_19 crossref_primary_10_1097_HJH_0000000000000617 crossref_primary_10_1016_j_ultrasmedbio_2017_02_005 crossref_primary_10_1159_000461594 crossref_primary_10_3389_fphys_2021_762437 crossref_primary_10_1016_j_mri_2014_08_021 crossref_primary_10_1007_s10877_015_9695_6 crossref_primary_10_1113_JP273136 crossref_primary_10_1016_j_echo_2016_07_013 crossref_primary_10_1038_jhh_2015_17 crossref_primary_10_1016_j_jash_2015_02_011 crossref_primary_10_1097_HJH_0000000000002583 crossref_primary_10_1016_j_optlaseng_2017_05_013 crossref_primary_10_1371_journal_pone_0112895 crossref_primary_10_1152_ajpheart_00258_2023 crossref_primary_10_1016_j_jacc_2012_08_959 crossref_primary_10_1088_0957_0233_25_6_065701 crossref_primary_10_1007_s11357_024_01240_x crossref_primary_10_1177_1741826710391118 crossref_primary_10_1016_j_artres_2015_03_001 crossref_primary_10_1038_s41598_022_09256_z crossref_primary_10_1161_JAHA_120_018092 crossref_primary_10_1159_000366467 crossref_primary_10_1097_HJH_0b013e3283313a8a crossref_primary_10_1016_j_artres_2015_04_002 crossref_primary_10_1097_HJH_0000000000000755 crossref_primary_10_1016_j_cmpb_2022_106997 crossref_primary_10_1093_ajh_hpw045 crossref_primary_10_1159_000367791 crossref_primary_10_1177_0003319716675076 crossref_primary_10_1136_heartasia_2013_010492 crossref_primary_10_1016_j_echo_2018_01_003 crossref_primary_10_1152_japplphysiol_00173_2022 crossref_primary_10_1177_1550147719837877 crossref_primary_10_1073_pnas_2010989117 crossref_primary_10_1113_JP272623 crossref_primary_10_1016_j_atherosclerosis_2020_04_026 crossref_primary_10_1097_JCN_0b013e318291ee43 crossref_primary_10_1016_j_ifacol_2017_08_254 crossref_primary_10_1097_HJH_0000000000002925 crossref_primary_10_1007_s13239_018_00377_z crossref_primary_10_1097_HJH_0000000000000867 crossref_primary_10_1007_s00421_006_0303_9 crossref_primary_10_1007_s10558_007_9032_x crossref_primary_10_1038_jhh_2015_9 crossref_primary_10_3390_s18061894 crossref_primary_10_1007_s13239_020_00479_7 crossref_primary_10_1093_ajh_hpv064 crossref_primary_10_1161_HYP_0000000000000033 crossref_primary_10_23736_S0026_4806_21_07631_X crossref_primary_10_1038_jhh_2008_42 crossref_primary_10_1378_chest_13_1809 |
Cites_doi | 10.2307/2532835 10.1161/hyp.39.1.10 10.3109/03091908409032067 10.1161/res.49.2.7249280 10.1161/01.str.0000065428.03209.64 10.1161/atvb.21.12.2046 10.1097/00004872-200303000-00009 10.1161/01.hyp.0000038734.25997.a9 10.1097/00004872-200303000-00021 10.1016/0002-8703(91)90153-9 10.1097/00004872-199715120-00009 10.1161/hyp.37.5.1236 10.1161/01.hyp.0000019132.41066.95 10.1161/hyp.26.3.485 10.1161/circ.99.18.2434 10.1113/jphysiol.1961.sp006687 10.1016/S0895-7061(01)02319-6 10.1046/j.1440-1681.2001.03591.x 10.1097/01.hjh.0000125447.28861.18 10.1016/S0895-7061(02)02962-X 10.1161/01.cir.0000033824.02722.f7 10.1161/01.hyp.0000092882.65699.19 10.1097/00004872-200106000-00007 |
ContentType | Journal Article |
Copyright | 2005 American Heart Association, Inc. 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 American Heart Association, Inc. – notice: 2005 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/01.HYP.0000154229.97341.d2 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4563 |
EndPage | 226 |
ExternalDocumentID | 15642772 16514579 10_1161_01_HYP_0000154229_97341_d2 00004268-200502000-00014 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 0R~ 18M 1J1 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAFWJ AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO AAYEP ABASU ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFBFQ AFDTB AFEXH AFFNX AFNMH AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BAWUL BCGUY BOYCO BQLVK BS7 C1A C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B N4W N9A N~7 N~B N~M O9- OAG OAH OB3 OCUKA ODA ODMTH OGROG OHYEH OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW V2I VVN W3M W8F WH7 WOQ WOW X3V X3W X7M XXN XYM YFH YHZ YOC YYM YYP ZFV ZGI ZZMQN AAYXX ADGHP CITATION IQODW OZ- ACIJW AWKKM CGR CUY CVF ECM EIF NPM OLW RHF 7X8 |
ID | FETCH-LOGICAL-c4334-c32802eeb5144975de73fc32e7a4db9cebf8dc3f7e3508be746370eec3b7f6ae3 |
ISSN | 0194-911X 1524-4563 |
IngestDate | Tue Aug 05 10:43:09 EDT 2025 Wed Feb 19 01:37:40 EST 2025 Mon Jul 21 09:15:18 EDT 2025 Tue Jul 01 04:30:36 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Fri May 16 03:51:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Waveform Human Systolic pressure Femoral artery risk factors Arterial pulse Algorithm β-Adrenergic receptor Heart rate Tachycardia Pacemaker Carotid compliance Risk factor pulse Arterial pressure Blood pressure Stiffness |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4334-c32802eeb5144975de73fc32e7a4db9cebf8dc3f7e3508be746370eec3b7f6ae3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 15642772 |
PQID | 67384442 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_67384442 pubmed_primary_15642772 pascalfrancis_primary_16514579 crossref_citationtrail_10_1161_01_HYP_0000154229_97341_d2 crossref_primary_10_1161_01_HYP_0000154229_97341_d2 wolterskluwer_health_00004268-200502000-00014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-February |
PublicationDateYYYYMMDD | 2005-02-01 |
PublicationDate_xml | – month: 02 year: 2005 text: 2005-February |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA Hagerstown, MD |
PublicationPlace_xml | – name: Philadelphia, PA – name: Hagerstown, MD – name: United States |
PublicationTitle | Hypertension (Dallas, Tex. 1979) |
PublicationTitleAlternate | Hypertension |
PublicationYear | 2005 |
Publisher | American Heart Association, Inc Lippincott |
Publisher_xml | – name: American Heart Association, Inc – name: Lippincott |
References | e_1_3_2_26_2 e_1_3_2_27_2 (e_1_3_2_8_2) 1878; 5 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 |
References_xml | – ident: e_1_3_2_18_2 – ident: e_1_3_2_15_2 – ident: e_1_3_2_17_2 doi: 10.2307/2532835 – ident: e_1_3_2_2_2 doi: 10.1161/hyp.39.1.10 – ident: e_1_3_2_24_2 doi: 10.3109/03091908409032067 – ident: e_1_3_2_25_2 doi: 10.1161/res.49.2.7249280 – ident: e_1_3_2_3_2 doi: 10.1161/01.str.0000065428.03209.64 – ident: e_1_3_2_6_2 doi: 10.1161/atvb.21.12.2046 – ident: e_1_3_2_12_2 doi: 10.1097/00004872-200303000-00009 – ident: e_1_3_2_11_2 doi: 10.1161/01.hyp.0000038734.25997.a9 – ident: e_1_3_2_7_2 – ident: e_1_3_2_22_2 doi: 10.1097/00004872-200303000-00021 – ident: e_1_3_2_13_2 doi: 10.1016/0002-8703(91)90153-9 – ident: e_1_3_2_26_2 doi: 10.1097/00004872-199715120-00009 – ident: e_1_3_2_4_2 doi: 10.1161/hyp.37.5.1236 – ident: e_1_3_2_19_2 doi: 10.1161/01.hyp.0000019132.41066.95 – volume: 5 start-page: 520 year: 1878 ident: e_1_3_2_8_2 publication-title: Annals of Physics and Chemistry (NS) – ident: e_1_3_2_14_2 doi: 10.1161/hyp.26.3.485 – ident: e_1_3_2_1_2 doi: 10.1161/circ.99.18.2434 – ident: e_1_3_2_23_2 doi: 10.1113/jphysiol.1961.sp006687 – ident: e_1_3_2_10_2 doi: 10.1016/S0895-7061(01)02319-6 – ident: e_1_3_2_27_2 doi: 10.1046/j.1440-1681.2001.03591.x – ident: e_1_3_2_21_2 doi: 10.1097/01.hjh.0000125447.28861.18 – ident: e_1_3_2_9_2 doi: 10.1016/S0895-7061(02)02962-X – ident: e_1_3_2_5_2 doi: 10.1161/01.cir.0000033824.02722.f7 – ident: e_1_3_2_20_2 doi: 10.1161/01.hyp.0000092882.65699.19 – ident: e_1_3_2_16_2 doi: 10.1097/00004872-200106000-00007 |
SSID | ssj0014447 |
Score | 2.2973921 |
Snippet | Carotid–femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the... Carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the... |
SourceID | proquest pubmed pascalfrancis crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 222 |
SubjectTerms | Adrenergic beta-Agonists - administration & dosage Adult Aged Algorithms Biological and medical sciences Cardiac Pacing, Artificial Cardiology - methods Cardiology. Vascular system Cardiovascular system Carotid Arteries - physiopathology Coronary heart disease Female Femoral Artery - physiopathology Heart Heart Rate - drug effects Humans Investigative techniques of hemodynamics Investigative techniques, diagnostic techniques (general aspects) Isoproterenol - administration & dosage Male Medical sciences Middle Aged Pulse Tachycardia - etiology Tachycardia - physiopathology Time Factors |
Title | Evaluation of Carotid–Femoral Pulse Wave Velocity: Influence of Timing Algorithm and Heart Rate |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004268-200502000-00014 https://www.ncbi.nlm.nih.gov/pubmed/15642772 https://www.proquest.com/docview/67384442 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBASQlxHuQw_8FalJI6T1LxVNKiDlg3WauUpihN7VExJ1aYa4g_xNzm2c-sYYvASVUmd2_nic_F3zkHoFQG3hzPFbOUUHBSWDqyYg9eqisu5IgYlJ1UccvrRH8_p-4W36HR-tlhL24L3kx9X5pX8j1RhH8hVZcn-g2Trk8IO-A3yhS1IGLbXknFYl-rW7PB4nRfL1JKKPKsSrLag9noXqr2QIgYlqv4_-P-HVVsSTQ9QTb3OevH5Wb5eFl9NvwzV5LroqRoSbdN1DB7rWvPdNWAGIxWCNyQj8b3fc1jAWmGF6eFkMjw5CYdzE3fOUpVm2IrJzsJTsKUbTmVDPT4ezsKJYQxl6XLVLFx9DkenR0cjfQgglpVkxypm4VU05ypmUdeeaEc2GVUz76I9NZtKkyUESXueNcnMpcomJun-d23gOzrDoT_-cqwLVYK9SAjrswB0dz8ljQ6s1v0vqcaasOj4YFh6AbuBbhLwR5QG-PCpWa6ilJZ5-eYZyuq2cP3Xf776jiV0ZxVv4KOUppvKVe4O_OciVwyKzTedQNEyg2b30N3Sf8FDA8b7qCOyB-jWtGRoPERRg0mcS3wJk1hjEitM4gqTb3CNSDXCIBLXiMQAHawRiRUiH6H5u3D2dmyVTTyshLoutRKXDGwiBIcXSFngpSJwJewUQUxTzhLB5SBNXBkIF3wFLgLqu4EtROLyQPqxcB-jvSzPxBOEuRROQhPJ7QGciqRMpLYnGZWM2MKxeRex6oVGSVnhXjVaOY-0p-s7ke1EIIyoEUakhRGlpIvceuzK1Hm51qiDHbk1Q0u8dNHLSpARzNtqMS7ORL7dKD4lPAWFU-wb-TZjPZ8qkHWRtSPwyGRG6_sAu1pPhZ5dlYZw6NO_3cwzdLv5GJ-jvWK9FS_ApC74gYbzL6hJwvA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+carotid-femoral+pulse+wave+velocity%3A+Influence+of+timing+algorithm+and+heart+rate&rft.jtitle=Hypertension+%28Dallas%2C+Tex.+1979%29&rft.au=MILLASSEAU%2C+Sandrine+C&rft.au=STEWART%2C+Andrew+D&rft.au=PATEL%2C+Sundip+J&rft.au=REDWOOD%2C+Simon+R&rft.date=2005-02-01&rft.pub=Lippincott&rft.issn=0194-911X&rft.volume=45&rft.issue=2&rft.spage=222&rft.epage=226&rft_id=info:doi/10.1161%2F01.HYP.0000154229.97341.d2&rft.externalDBID=n%2Fa&rft.externalDocID=16514579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0194-911X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0194-911X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0194-911X&client=summon |