Evaluation of Carotid–Femoral Pulse Wave Velocity: Influence of Timing Algorithm and Heart Rate

Carotid–femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated...

Full description

Saved in:
Bibliographic Details
Published inHypertension (Dallas, Tex. 1979) Vol. 45; no. 2; pp. 222 - 226
Main Authors Millasseau, Sandrine C., Stewart, Andrew D., Patel, Sundip J., Redwood, Simon R., Chowienczyk, Philip J.
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Heart Association, Inc 01.02.2005
Hagerstown, MD Lippincott
Subjects
Online AccessGet full text
ISSN0194-911X
1524-4563
1524-4563
DOI10.1161/01.HYP.0000154229.97341.d2

Cover

Loading…
Abstract Carotid–femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during β-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7±0.75 m/s (mean±SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 μg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18±3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7±0.2 m/s and 0.9±0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1±0.5 m/s and 1.1±0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P<0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid–femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate.
AbstractList Carotid–femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during β-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7±0.75 m/s (mean±SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 μg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18±3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7±0.2 m/s and 0.9±0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1±0.5 m/s and 1.1±0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P<0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid–femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate.
Carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during β-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7±0.75 m/s (mean±SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 μg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18±3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7±0.2 m/s and 0.9±0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1±0.5 m/s and 1.1±0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P <0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid-femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate.
Carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during beta-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7+/-0.75 m/s (mean+/-SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 microg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18+/-3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7+/-0.2 m/s and 0.9+/-0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1+/-0.5 m/s and 1.1+/-0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P<0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid-femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate.Carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during beta-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7+/-0.75 m/s (mean+/-SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 microg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18+/-3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7+/-0.2 m/s and 0.9+/-0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1+/-0.5 m/s and 1.1+/-0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P<0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid-femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate.
Carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during beta-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7+/-0.75 m/s (mean+/-SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 microg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18+/-3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7+/-0.2 m/s and 0.9+/-0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1+/-0.5 m/s and 1.1+/-0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P<0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid-femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate.
Author Patel, Sundip J.
Chowienczyk, Philip J.
Redwood, Simon R.
Stewart, Andrew D.
Millasseau, Sandrine C.
AuthorAffiliation From the Cardiovascular Division, GKT School of Medicine, King’s College London, United Kingdom
AuthorAffiliation_xml – name: From the Cardiovascular Division, GKT School of Medicine, King’s College London, United Kingdom
Author_xml – sequence: 1
  givenname: Sandrine
  surname: Millasseau
  middlename: C.
  fullname: Millasseau, Sandrine C.
  organization: From the Cardiovascular Division, GKT School of Medicine, King’s College London, United Kingdom
– sequence: 2
  givenname: Andrew
  surname: Stewart
  middlename: D.
  fullname: Stewart, Andrew D.
– sequence: 3
  givenname: Sundip
  surname: Patel
  middlename: J.
  fullname: Patel, Sundip J.
– sequence: 4
  givenname: Simon
  surname: Redwood
  middlename: R.
  fullname: Redwood, Simon R.
– sequence: 5
  givenname: Philip
  surname: Chowienczyk
  middlename: J.
  fullname: Chowienczyk, Philip J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16514579$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15642772$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhi1URKeFV0AWEuwSfEs86Ypq1DKVKlGhcltZjnPSMThxsZ1W3fEOfcM-CZ4LVGKFF7Z09P3_OT7_Adob_QgIvaKkpLSmbwktl98uSpIPrQRjTdlILmjZsSdoRismClHVfA_NCG1E0VD6dR8dxPg940II-Qzt06oWTEo2Q_rkRrtJJ-tH7Hu80MEn2z38uj-FwQft8MXkIuAv-gbwZ3De2HR3hM_G3k0wGlhrLu1gxyt87K58sGk1YD12eAk6JPxRJ3iOnvY6e7zYvYfo0-nJ5WJZnH94f7Y4Pi-M4FwUhrM5YQBtlYdsZNWB5H0ugtSiaxsDbT_vDO8l8IrMW5Ci5pIAGN7KvtbAD9Gbre918D8niEkNNhpwTo_gp6hqyef5-yyDL3fg1A7QqetgBx3u1J-lZOD1DtDRaNcHPRobH7k6j1jJJnPvtpwJPsYAvcrb2awyBW2dokSt81KEqpyXesxLbfJS3brV0T8Wf7v8j1hsxbfeJQjxh5tuIagVaJdWG4Vg9bxghFQkX6RYewj-G9q3q1A
CODEN HPRTDN
CitedBy_id crossref_primary_10_1097_HJH_0000000000000014
crossref_primary_10_1152_ajpheart_00963_2012
crossref_primary_10_1088_1361_6579_ab165f
crossref_primary_10_3389_fcvm_2020_592834
crossref_primary_10_1016_j_healun_2008_11_002
crossref_primary_10_1007_s00421_018_3893_0
crossref_primary_10_1161_HYPERTENSIONAHA_116_07462
crossref_primary_10_18705_1607_419X_2022_28_3_243_252
crossref_primary_10_1258_vasc_2011_ra0054
crossref_primary_10_3923_itj_2013_1412_1417
crossref_primary_10_1152_ajpheart_00218_2019
crossref_primary_10_1016_j_ultrasmedbio_2018_10_032
crossref_primary_10_1016_j_ihj_2014_05_020
crossref_primary_10_1097_JCN_0b013e3182376685
crossref_primary_10_1016_j_amjmed_2022_08_012
crossref_primary_10_1093_eurheartj_ehq211
crossref_primary_10_1136_bmjopen_2023_082725
crossref_primary_10_1038_hr_2014_101
crossref_primary_10_1093_ajh_hpx140
crossref_primary_10_1016_j_jbiomech_2013_04_019
crossref_primary_10_1152_ajpheart_00551_2020
crossref_primary_10_4137_BECB_S40094
crossref_primary_10_1155_2017_4198095
crossref_primary_10_1007_s00421_008_0868_6
crossref_primary_10_1016_j_jpeds_2018_06_047
crossref_primary_10_3390_jcm11174937
crossref_primary_10_1088_0967_3334_33_12_1993
crossref_primary_10_1152_ajpheart_00175_2015
crossref_primary_10_1093_ajh_hpx059
crossref_primary_10_1161_CIRCRESAHA_121_318061
crossref_primary_10_1016_j_actbio_2018_04_036
crossref_primary_10_1093_ndt_gft309
crossref_primary_10_1088_0967_3334_31_1_R01
crossref_primary_10_1038_hr_2012_144
crossref_primary_10_1016_j_jpsychores_2005_10_011
crossref_primary_10_1097_HJH_0b013e328363c789
crossref_primary_10_1002_jum_16469
crossref_primary_10_1186_s40697_016_0109_6
crossref_primary_10_1097_HJH_0000000000003418
crossref_primary_10_1093_ajh_hps031
crossref_primary_10_1016_j_artres_2014_01_006
crossref_primary_10_1371_journal_pone_0290618
crossref_primary_10_1016_j_artres_2015_11_002
crossref_primary_10_1109_TBME_2021_3055154
crossref_primary_10_1088_2057_1976_aa8bf2
crossref_primary_10_1038_s41598_023_35055_1
crossref_primary_10_1016_j_artres_2009_02_006
crossref_primary_10_1111_jch_12899
crossref_primary_10_3389_fcvm_2023_1280966
crossref_primary_10_1111_jnc_14235
crossref_primary_10_1186_1476_7120_8_22
crossref_primary_10_1038_s41598_017_05807_x
crossref_primary_10_1001_jamapediatrics_2024_1701
crossref_primary_10_1142_S0219519412500285
crossref_primary_10_3389_fphys_2023_1162391
crossref_primary_10_1016_j_envint_2023_107923
crossref_primary_10_1097_HJH_0000000000003845
crossref_primary_10_1016_j_artres_2011_08_003
crossref_primary_10_1016_j_numecd_2021_09_027
crossref_primary_10_1097_HJH_0000000000002081
crossref_primary_10_1111_psyp_12638
crossref_primary_10_1016_j_cjca_2016_01_039
crossref_primary_10_1097_HJH_0b013e32832f5890
crossref_primary_10_1016_j_ultrasmedbio_2006_08_014
crossref_primary_10_1038_s41598_021_96998_x
crossref_primary_10_1109_TBME_2019_2928416
crossref_primary_10_1016_j_ultrasmedbio_2006_11_018
crossref_primary_10_1161_JAHA_121_024769
crossref_primary_10_3390_jcm13226811
crossref_primary_10_1161_HYPERTENSIONAHA_123_21618
crossref_primary_10_1016_j_hjc_2021_02_005
crossref_primary_10_1088_0967_3334_31_11_004
crossref_primary_10_3390_ijms20153664
crossref_primary_10_1515_med_2024_1003
crossref_primary_10_1016_j_artres_2015_12_001
crossref_primary_10_1016_j_artres_2014_04_004
crossref_primary_10_1016_j_artres_2012_05_004
crossref_primary_10_1097_HJH_0000000000002416
crossref_primary_10_1016_j_echo_2013_04_014
crossref_primary_10_1097_HJH_0b013e32832cb04e
crossref_primary_10_1155_2012_169359
crossref_primary_10_1088_0967_3334_30_3_002
crossref_primary_10_1097_HJH_0b013e3283639460
crossref_primary_10_1109_TUFFC_2019_2951922
crossref_primary_10_1093_ajh_hpt179
crossref_primary_10_1093_eurheartj_ehq165
crossref_primary_10_1097_JCN_0000000000000460
crossref_primary_10_1016_j_jpsychores_2014_08_010
crossref_primary_10_1109_TMI_2008_928179
crossref_primary_10_5617_jeb_2575
crossref_primary_10_1016_j_artres_2015_06_001
crossref_primary_10_4236_jbise_2015_84022
crossref_primary_10_1152_japplphysiol_00475_2013
crossref_primary_10_3938_jkps_77_1061
crossref_primary_10_1016_j_artres_2011_10_003
crossref_primary_10_1007_s44200_024_00044_w
crossref_primary_10_1097_HJH_0b013e328331b81e
crossref_primary_10_1016_j_arr_2019_05_001
crossref_primary_10_2478_pjmpe_2023_0016
crossref_primary_10_2174_011573403X256094231031074753
crossref_primary_10_1007_s10439_010_9945_1
crossref_primary_10_1038_ajh_2011_147
crossref_primary_10_1088_0967_3334_36_1_149
crossref_primary_10_2139_ssrn_3961369
crossref_primary_10_1038_hr_2010_280
crossref_primary_10_1097_HJH_0b013e32830a4a25
crossref_primary_10_1088_1361_6579_aa905a
crossref_primary_10_1109_RBME_2021_3092208
crossref_primary_10_1038_hr_2009_154
crossref_primary_10_1007_s00421_018_3900_5
crossref_primary_10_1097_CRD_0000000000000031
crossref_primary_10_1016_j_ajog_2024_08_045
crossref_primary_10_1097_HJH_0b013e328311cdd5
crossref_primary_10_2165_11588020_000000000_00000
crossref_primary_10_1088_1361_6579_aac76a
crossref_primary_10_1038_sj_jhh_1002120
crossref_primary_10_1097_HJH_0b013e328354f385
crossref_primary_10_3390_s19194295
crossref_primary_10_1042_CS20040352
crossref_primary_10_1093_aje_kwae169
crossref_primary_10_1093_ajh_hpu034
crossref_primary_10_1097_HJH_0000000000003239
crossref_primary_10_1016_j_jash_2018_06_016
crossref_primary_10_1021_acsmaterialslett_0c00160
crossref_primary_10_1007_s10237_010_0213_y
crossref_primary_10_1007_s13239_013_0125_y
crossref_primary_10_1161_ATVBAHA_120_311909
crossref_primary_10_1097_HJH_0000000000000091
crossref_primary_10_1097_MD_0000000000005957
crossref_primary_10_1097_HJH_0b013e32830e4932
crossref_primary_10_1016_j_jclinane_2014_06_011
crossref_primary_10_1097_HJH_0000000000002731
crossref_primary_10_1016_j_rmed_2013_06_008
crossref_primary_10_1097_HJH_0000000000001886
crossref_primary_10_1016_j_diabres_2025_112032
crossref_primary_10_1080_08964289_2020_1825921
crossref_primary_10_1088_1361_6579_aacfe1
crossref_primary_10_1007_s00330_018_5705_7
crossref_primary_10_1088_1361_6579_aada72
crossref_primary_10_1097_MBP_0000000000000369
crossref_primary_10_1371_journal_pone_0220689
crossref_primary_10_1186_1471_2261_13_102
crossref_primary_10_1016_j_bspc_2024_106161
crossref_primary_10_1097_HJH_0000000000003935
crossref_primary_10_1111_dme_13666
crossref_primary_10_1152_ajpregu_00270_2023
crossref_primary_10_1519_JSC_0000000000004321
crossref_primary_10_2217_ahe_10_15
crossref_primary_10_1097_HJH_0000000000002608
crossref_primary_10_1016_j_artres_2008_11_002
crossref_primary_10_1152_japplphysiol_00445_2016
crossref_primary_10_1016_j_artres_2010_03_001
crossref_primary_10_3109_03091902_2015_1016190
crossref_primary_10_1155_2017_6790292
crossref_primary_10_1143_JJAP_48_07GJ09
crossref_primary_10_1016_j_echo_2021_01_003
crossref_primary_10_1002_jmri_22143
crossref_primary_10_1016_j_maturitas_2022_01_012
crossref_primary_10_1097_HJH_0b013e32833b4a55
crossref_primary_10_1152_japplphysiol_00198_2021
crossref_primary_10_2147_vhrm_2006_2_1_19
crossref_primary_10_1097_HJH_0000000000000617
crossref_primary_10_1016_j_ultrasmedbio_2017_02_005
crossref_primary_10_1159_000461594
crossref_primary_10_3389_fphys_2021_762437
crossref_primary_10_1016_j_mri_2014_08_021
crossref_primary_10_1007_s10877_015_9695_6
crossref_primary_10_1113_JP273136
crossref_primary_10_1016_j_echo_2016_07_013
crossref_primary_10_1038_jhh_2015_17
crossref_primary_10_1016_j_jash_2015_02_011
crossref_primary_10_1097_HJH_0000000000002583
crossref_primary_10_1016_j_optlaseng_2017_05_013
crossref_primary_10_1371_journal_pone_0112895
crossref_primary_10_1152_ajpheart_00258_2023
crossref_primary_10_1016_j_jacc_2012_08_959
crossref_primary_10_1088_0957_0233_25_6_065701
crossref_primary_10_1007_s11357_024_01240_x
crossref_primary_10_1177_1741826710391118
crossref_primary_10_1016_j_artres_2015_03_001
crossref_primary_10_1038_s41598_022_09256_z
crossref_primary_10_1161_JAHA_120_018092
crossref_primary_10_1159_000366467
crossref_primary_10_1097_HJH_0b013e3283313a8a
crossref_primary_10_1016_j_artres_2015_04_002
crossref_primary_10_1097_HJH_0000000000000755
crossref_primary_10_1016_j_cmpb_2022_106997
crossref_primary_10_1093_ajh_hpw045
crossref_primary_10_1159_000367791
crossref_primary_10_1177_0003319716675076
crossref_primary_10_1136_heartasia_2013_010492
crossref_primary_10_1016_j_echo_2018_01_003
crossref_primary_10_1152_japplphysiol_00173_2022
crossref_primary_10_1177_1550147719837877
crossref_primary_10_1073_pnas_2010989117
crossref_primary_10_1113_JP272623
crossref_primary_10_1016_j_atherosclerosis_2020_04_026
crossref_primary_10_1097_JCN_0b013e318291ee43
crossref_primary_10_1016_j_ifacol_2017_08_254
crossref_primary_10_1097_HJH_0000000000002925
crossref_primary_10_1007_s13239_018_00377_z
crossref_primary_10_1097_HJH_0000000000000867
crossref_primary_10_1007_s00421_006_0303_9
crossref_primary_10_1007_s10558_007_9032_x
crossref_primary_10_1038_jhh_2015_9
crossref_primary_10_3390_s18061894
crossref_primary_10_1007_s13239_020_00479_7
crossref_primary_10_1093_ajh_hpv064
crossref_primary_10_1161_HYP_0000000000000033
crossref_primary_10_23736_S0026_4806_21_07631_X
crossref_primary_10_1038_jhh_2008_42
crossref_primary_10_1378_chest_13_1809
Cites_doi 10.2307/2532835
10.1161/hyp.39.1.10
10.3109/03091908409032067
10.1161/res.49.2.7249280
10.1161/01.str.0000065428.03209.64
10.1161/atvb.21.12.2046
10.1097/00004872-200303000-00009
10.1161/01.hyp.0000038734.25997.a9
10.1097/00004872-200303000-00021
10.1016/0002-8703(91)90153-9
10.1097/00004872-199715120-00009
10.1161/hyp.37.5.1236
10.1161/01.hyp.0000019132.41066.95
10.1161/hyp.26.3.485
10.1161/circ.99.18.2434
10.1113/jphysiol.1961.sp006687
10.1016/S0895-7061(01)02319-6
10.1046/j.1440-1681.2001.03591.x
10.1097/01.hjh.0000125447.28861.18
10.1016/S0895-7061(02)02962-X
10.1161/01.cir.0000033824.02722.f7
10.1161/01.hyp.0000092882.65699.19
10.1097/00004872-200106000-00007
ContentType Journal Article
Copyright 2005 American Heart Association, Inc.
2005 INIST-CNRS
Copyright_xml – notice: 2005 American Heart Association, Inc.
– notice: 2005 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/01.HYP.0000154229.97341.d2
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4563
EndPage 226
ExternalDocumentID 15642772
16514579
10_1161_01_HYP_0000154229_97341_d2
00004268-200502000-00014
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.-D
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
18M
1J1
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAFWJ
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFBFQ
AFDTB
AFEXH
AFFNX
AFNMH
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BAWUL
BCGUY
BOYCO
BQLVK
BS7
C1A
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N4W
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB3
OCUKA
ODA
ODMTH
OGROG
OHYEH
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YHZ
YOC
YYM
YYP
ZFV
ZGI
ZZMQN
AAYXX
ADGHP
CITATION
IQODW
OZ-
ACIJW
AWKKM
CGR
CUY
CVF
ECM
EIF
NPM
OLW
RHF
7X8
ID FETCH-LOGICAL-c4334-c32802eeb5144975de73fc32e7a4db9cebf8dc3f7e3508be746370eec3b7f6ae3
ISSN 0194-911X
1524-4563
IngestDate Tue Aug 05 10:43:09 EDT 2025
Wed Feb 19 01:37:40 EST 2025
Mon Jul 21 09:15:18 EDT 2025
Tue Jul 01 04:30:36 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Fri May 16 03:51:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Waveform
Human
Systolic pressure
Femoral artery
risk factors
Arterial pulse
Algorithm
β-Adrenergic receptor
Heart rate
Tachycardia
Pacemaker
Carotid
compliance
Risk factor
pulse
Arterial pressure
Blood pressure
Stiffness
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4334-c32802eeb5144975de73fc32e7a4db9cebf8dc3f7e3508be746370eec3b7f6ae3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 15642772
PQID 67384442
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_67384442
pubmed_primary_15642772
pascalfrancis_primary_16514579
crossref_citationtrail_10_1161_01_HYP_0000154229_97341_d2
crossref_primary_10_1161_01_HYP_0000154229_97341_d2
wolterskluwer_health_00004268-200502000-00014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-February
PublicationDateYYYYMMDD 2005-02-01
PublicationDate_xml – month: 02
  year: 2005
  text: 2005-February
PublicationDecade 2000
PublicationPlace Philadelphia, PA
Hagerstown, MD
PublicationPlace_xml – name: Philadelphia, PA
– name: Hagerstown, MD
– name: United States
PublicationTitle Hypertension (Dallas, Tex. 1979)
PublicationTitleAlternate Hypertension
PublicationYear 2005
Publisher American Heart Association, Inc
Lippincott
Publisher_xml – name: American Heart Association, Inc
– name: Lippincott
References e_1_3_2_26_2
e_1_3_2_27_2
(e_1_3_2_8_2) 1878; 5
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_18_2
– ident: e_1_3_2_15_2
– ident: e_1_3_2_17_2
  doi: 10.2307/2532835
– ident: e_1_3_2_2_2
  doi: 10.1161/hyp.39.1.10
– ident: e_1_3_2_24_2
  doi: 10.3109/03091908409032067
– ident: e_1_3_2_25_2
  doi: 10.1161/res.49.2.7249280
– ident: e_1_3_2_3_2
  doi: 10.1161/01.str.0000065428.03209.64
– ident: e_1_3_2_6_2
  doi: 10.1161/atvb.21.12.2046
– ident: e_1_3_2_12_2
  doi: 10.1097/00004872-200303000-00009
– ident: e_1_3_2_11_2
  doi: 10.1161/01.hyp.0000038734.25997.a9
– ident: e_1_3_2_7_2
– ident: e_1_3_2_22_2
  doi: 10.1097/00004872-200303000-00021
– ident: e_1_3_2_13_2
  doi: 10.1016/0002-8703(91)90153-9
– ident: e_1_3_2_26_2
  doi: 10.1097/00004872-199715120-00009
– ident: e_1_3_2_4_2
  doi: 10.1161/hyp.37.5.1236
– ident: e_1_3_2_19_2
  doi: 10.1161/01.hyp.0000019132.41066.95
– volume: 5
  start-page: 520
  year: 1878
  ident: e_1_3_2_8_2
  publication-title: Annals of Physics and Chemistry (NS)
– ident: e_1_3_2_14_2
  doi: 10.1161/hyp.26.3.485
– ident: e_1_3_2_1_2
  doi: 10.1161/circ.99.18.2434
– ident: e_1_3_2_23_2
  doi: 10.1113/jphysiol.1961.sp006687
– ident: e_1_3_2_10_2
  doi: 10.1016/S0895-7061(01)02319-6
– ident: e_1_3_2_27_2
  doi: 10.1046/j.1440-1681.2001.03591.x
– ident: e_1_3_2_21_2
  doi: 10.1097/01.hjh.0000125447.28861.18
– ident: e_1_3_2_9_2
  doi: 10.1016/S0895-7061(02)02962-X
– ident: e_1_3_2_5_2
  doi: 10.1161/01.cir.0000033824.02722.f7
– ident: e_1_3_2_20_2
  doi: 10.1161/01.hyp.0000092882.65699.19
– ident: e_1_3_2_16_2
  doi: 10.1097/00004872-200106000-00007
SSID ssj0014447
Score 2.2973921
Snippet Carotid–femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the...
Carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the...
SourceID proquest
pubmed
pascalfrancis
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 222
SubjectTerms Adrenergic beta-Agonists - administration & dosage
Adult
Aged
Algorithms
Biological and medical sciences
Cardiac Pacing, Artificial
Cardiology - methods
Cardiology. Vascular system
Cardiovascular system
Carotid Arteries - physiopathology
Coronary heart disease
Female
Femoral Artery - physiopathology
Heart
Heart Rate - drug effects
Humans
Investigative techniques of hemodynamics
Investigative techniques, diagnostic techniques (general aspects)
Isoproterenol - administration & dosage
Male
Medical sciences
Middle Aged
Pulse
Tachycardia - etiology
Tachycardia - physiopathology
Time Factors
Title Evaluation of Carotid–Femoral Pulse Wave Velocity: Influence of Timing Algorithm and Heart Rate
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004268-200502000-00014
https://www.ncbi.nlm.nih.gov/pubmed/15642772
https://www.proquest.com/docview/67384442
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBASQlxHuQw_8FalJI6T1LxVNKiDlg3WauUpihN7VExJ1aYa4g_xNzm2c-sYYvASVUmd2_nic_F3zkHoFQG3hzPFbOUUHBSWDqyYg9eqisu5IgYlJ1UccvrRH8_p-4W36HR-tlhL24L3kx9X5pX8j1RhH8hVZcn-g2Trk8IO-A3yhS1IGLbXknFYl-rW7PB4nRfL1JKKPKsSrLag9noXqr2QIgYlqv4_-P-HVVsSTQ9QTb3OevH5Wb5eFl9NvwzV5LroqRoSbdN1DB7rWvPdNWAGIxWCNyQj8b3fc1jAWmGF6eFkMjw5CYdzE3fOUpVm2IrJzsJTsKUbTmVDPT4ezsKJYQxl6XLVLFx9DkenR0cjfQgglpVkxypm4VU05ypmUdeeaEc2GVUz76I9NZtKkyUESXueNcnMpcomJun-d23gOzrDoT_-cqwLVYK9SAjrswB0dz8ljQ6s1v0vqcaasOj4YFh6AbuBbhLwR5QG-PCpWa6ilJZ5-eYZyuq2cP3Xf776jiV0ZxVv4KOUppvKVe4O_OciVwyKzTedQNEyg2b30N3Sf8FDA8b7qCOyB-jWtGRoPERRg0mcS3wJk1hjEitM4gqTb3CNSDXCIBLXiMQAHawRiRUiH6H5u3D2dmyVTTyshLoutRKXDGwiBIcXSFngpSJwJewUQUxTzhLB5SBNXBkIF3wFLgLqu4EtROLyQPqxcB-jvSzPxBOEuRROQhPJ7QGciqRMpLYnGZWM2MKxeRex6oVGSVnhXjVaOY-0p-s7ke1EIIyoEUakhRGlpIvceuzK1Hm51qiDHbk1Q0u8dNHLSpARzNtqMS7ORL7dKD4lPAWFU-wb-TZjPZ8qkHWRtSPwyGRG6_sAu1pPhZ5dlYZw6NO_3cwzdLv5GJ-jvWK9FS_ApC74gYbzL6hJwvA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+carotid-femoral+pulse+wave+velocity%3A+Influence+of+timing+algorithm+and+heart+rate&rft.jtitle=Hypertension+%28Dallas%2C+Tex.+1979%29&rft.au=MILLASSEAU%2C+Sandrine+C&rft.au=STEWART%2C+Andrew+D&rft.au=PATEL%2C+Sundip+J&rft.au=REDWOOD%2C+Simon+R&rft.date=2005-02-01&rft.pub=Lippincott&rft.issn=0194-911X&rft.volume=45&rft.issue=2&rft.spage=222&rft.epage=226&rft_id=info:doi/10.1161%2F01.HYP.0000154229.97341.d2&rft.externalDBID=n%2Fa&rft.externalDocID=16514579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0194-911X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0194-911X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0194-911X&client=summon