Self-Assembly at Different Length Scales: Polyphilic Star-Branched Liquid Crystals and Miktoarm Star Copolymers

The diversity of phase morphologies observed recently in star‐branched liquid‐crystalline and polymeric compounds containing at least three immiscible segments is reviewed. Bolaamphiphiles and facial amphiphiles with rodlike aromatic cores, two end‐groups, and one (T‐shape) or two (X‐shape) chains a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 21; no. 7; pp. 1296 - 1323
Main Authors Ungar, Goran, Tschierske, Carsten, Abetz, Volker, Holyst, Robert, Bates, Martin A., Liu, Feng, Prehm, Marko, Kieffer, Robert, Zeng, Xiangbing, Walker, Martin, Glettner, Benjamin, Zywocinski, Andrzej
Format Journal Article
LanguageEnglish
Published New York WILEY-VCH Verlag 08.04.2011
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The diversity of phase morphologies observed recently in star‐branched liquid‐crystalline and polymeric compounds containing at least three immiscible segments is reviewed. Bolaamphiphiles and facial amphiphiles with rodlike aromatic cores, two end‐groups, and one (T‐shape) or two (X‐shape) chains attached laterally to the core, form numerous honeycomblike liquid‐crystal phases, as well as a variety of novel lamellar and 3D‐ordered mesophases. Molecular self‐organization is described in bulk phases and in thin films on solid and liquid surfaces, as well as in Langmuir–Blodgett films. The remarkably reversible formation of mono‐ and trilayer films is highlighted. In the bulk, T‐shaped “rod–coil” molecules without appended end‐groups form predominantly lamellar phases if the core is a straight rod, but the bent‐core variety forms hexagonal honeycombs. Furthermore, self‐assembly of “Janus”‐type molecules, is discussed. Also covered is the diversity of morphologies observed in miktoarm star terpolymers, i.e., polymers with three different and incompatible arms of well defined lengths. Similarities and differences are highlighted between the liquid‐crystal morphologies on the 3–15 nm scale and the polymer morphologies on the scale of 10–100 nm. A separate section is dedicated to computer simulations of such systems, particularly those using dissipative particle and molecular dynamics. Of special interest are the recently synthesised X‐shaped tetraphilic molecules, where two different and incompatible side‐chains are attached at opposite sides of the rodlike core. The tendency for their phase separation produces liquid‐crystal honeycombs with cells of different compositions that can be represented as a plane paved with different colored tiles. The independent variation of chain length and “color” creates the potential for developing a considerable range of complex new 2D and 3D soft nanostructures. Analogous X‐shaped rod–coil compounds with unequal side groups are also of considerable interest, forming tubular lyotropic structures capable of confining strings of guest molecules. Star‐branched, low‐molecular‐weight, liquid‐crystalline molecules and miktoarm star terpolymers, i.e., small molecules and polymers with three or four different and incompatible arms, form a wide variety of new and complex morphologies in 3D or 2D ordered soft bulk phases and in thin films on solid and liquid surfaces, ranging in length scale from a few nanometers to hundreds of nanometers.
AbstractList The diversity of phase morphologies observed recently in star‐branched liquid‐crystalline and polymeric compounds containing at least three immiscible segments is reviewed. Bolaamphiphiles and facial amphiphiles with rodlike aromatic cores, two end‐groups, and one (T‐shape) or two (X‐shape) chains attached laterally to the core, form numerous honeycomblike liquid‐crystal phases, as well as a variety of novel lamellar and 3D‐ordered mesophases. Molecular self‐organization is described in bulk phases and in thin films on solid and liquid surfaces, as well as in Langmuir–Blodgett films. The remarkably reversible formation of mono‐ and trilayer films is highlighted. In the bulk, T‐shaped “rod–coil” molecules without appended end‐groups form predominantly lamellar phases if the core is a straight rod, but the bent‐core variety forms hexagonal honeycombs. Furthermore, self‐assembly of “Janus”‐type molecules, is discussed. Also covered is the diversity of morphologies observed in miktoarm star terpolymers, i.e., polymers with three different and incompatible arms of well defined lengths. Similarities and differences are highlighted between the liquid‐crystal morphologies on the 3–15 nm scale and the polymer morphologies on the scale of 10–100 nm. A separate section is dedicated to computer simulations of such systems, particularly those using dissipative particle and molecular dynamics. Of special interest are the recently synthesised X‐shaped tetraphilic molecules, where two different and incompatible side‐chains are attached at opposite sides of the rodlike core. The tendency for their phase separation produces liquid‐crystal honeycombs with cells of different compositions that can be represented as a plane paved with different colored tiles. The independent variation of chain length and “color” creates the potential for developing a considerable range of complex new 2D and 3D soft nanostructures. Analogous X‐shaped rod–coil compounds with unequal side groups are also of considerable interest, forming tubular lyotropic structures capable of confining strings of guest molecules. Star‐branched, low‐molecular‐weight, liquid‐crystalline molecules and miktoarm star terpolymers, i.e., small molecules and polymers with three or four different and incompatible arms, form a wide variety of new and complex morphologies in 3D or 2D ordered soft bulk phases and in thin films on solid and liquid surfaces, ranging in length scale from a few nanometers to hundreds of nanometers.
Abstract The diversity of phase morphologies observed recently in star‐branched liquid‐crystalline and polymeric compounds containing at least three immiscible segments is reviewed. Bolaamphiphiles and facial amphiphiles with rodlike aromatic cores, two end‐groups, and one (T‐shape) or two (X‐shape) chains attached laterally to the core, form numerous honeycomblike liquid‐crystal phases, as well as a variety of novel lamellar and 3D‐ordered mesophases. Molecular self‐organization is described in bulk phases and in thin films on solid and liquid surfaces, as well as in Langmuir–Blodgett films. The remarkably reversible formation of mono‐ and trilayer films is highlighted. In the bulk, T‐shaped “rod–coil” molecules without appended end‐groups form predominantly lamellar phases if the core is a straight rod, but the bent‐core variety forms hexagonal honeycombs. Furthermore, self‐assembly of “Janus”‐type molecules, is discussed. Also covered is the diversity of morphologies observed in miktoarm star terpolymers, i.e., polymers with three different and incompatible arms of well defined lengths. Similarities and differences are highlighted between the liquid‐crystal morphologies on the 3–15 nm scale and the polymer morphologies on the scale of 10–100 nm. A separate section is dedicated to computer simulations of such systems, particularly those using dissipative particle and molecular dynamics. Of special interest are the recently synthesised X‐shaped tetraphilic molecules, where two different and incompatible side‐chains are attached at opposite sides of the rodlike core. The tendency for their phase separation produces liquid‐crystal honeycombs with cells of different compositions that can be represented as a plane paved with different colored tiles. The independent variation of chain length and “color” creates the potential for developing a considerable range of complex new 2D and 3D soft nanostructures. Analogous X‐shaped rod–coil compounds with unequal side groups are also of considerable interest, forming tubular lyotropic structures capable of confining strings of guest molecules.
Author Zeng, Xiangbing
Kieffer, Robert
Glettner, Benjamin
Holyst, Robert
Bates, Martin A.
Walker, Martin
Tschierske, Carsten
Liu, Feng
Zywocinski, Andrzej
Abetz, Volker
Prehm, Marko
Ungar, Goran
Author_xml – sequence: 1
  givenname: Goran
  surname: Ungar
  fullname: Ungar, Goran
  email: g.ungar@shef.ac.uk
  organization: Department of Materials Science and Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
– sequence: 2
  givenname: Carsten
  surname: Tschierske
  fullname: Tschierske, Carsten
  email: carsten.tschierske@chemie.uni-halle.de
  organization: Organic Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany
– sequence: 3
  givenname: Volker
  surname: Abetz
  fullname: Abetz, Volker
  organization: Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
– sequence: 4
  givenname: Robert
  surname: Holyst
  fullname: Holyst, Robert
  organization: Institute of Physical Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
– sequence: 5
  givenname: Martin A.
  surname: Bates
  fullname: Bates, Martin A.
  organization: Department of Chemistry, University of York, York, YO10 5DD, UK
– sequence: 6
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
  organization: Department of Materials Science and Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
– sequence: 7
  givenname: Marko
  surname: Prehm
  fullname: Prehm, Marko
  organization: Organic Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany
– sequence: 8
  givenname: Robert
  surname: Kieffer
  fullname: Kieffer, Robert
  organization: Organic Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany
– sequence: 9
  givenname: Xiangbing
  surname: Zeng
  fullname: Zeng, Xiangbing
  organization: Department of Materials Science and Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
– sequence: 10
  givenname: Martin
  surname: Walker
  fullname: Walker, Martin
  organization: Department of Chemistry, University of York, York, YO10 5DD, UK
– sequence: 11
  givenname: Benjamin
  surname: Glettner
  fullname: Glettner, Benjamin
  organization: Organic Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany
– sequence: 12
  givenname: Andrzej
  surname: Zywocinski
  fullname: Zywocinski, Andrzej
  organization: Institute of Physical Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
BookMark eNqFkL1OwzAYRS0EEm1hZfYLpNhxYqdsJaUFlJaK8rdZjmNT0_wUOwjy9iQUVWwMn-4dzvmG2weHZVUqAM4wGmKE_HOR6WLoo66jET4APUwx9Qjyo8N9xy_HoO_cG0KYMRL0QLVSufbGzqkizRsoajgxWiuryhomqnyt13AlRa7cBVxWebNdm9xIuKqF9S6tKOVaZTAx7x8mg7FtXC1yB0WZwbnZ1JWwxQ8K42rbyoWy7gQc6ZZRp785AI_Tq4f42kvuZjfxOPFkQAj2wgipUOg0a4_iNJBKYx3oSLIwRVrSFAtEpC8yH0dSCEwYogFiVLEAdwAZgOHur7SVc1ZpvrWmELbhGPFuIt7NxfdztcJoJ3yaXDX_0Hw8mc7_ut7ONa5WX3tX2A2njLCQPy9m_IktlnN6T_gt-QY3CoHE
CitedBy_id crossref_primary_10_1021_cm402505p
crossref_primary_10_1002_chem_201502714
crossref_primary_10_1021_ja2095816
crossref_primary_10_1002_ange_201103303
crossref_primary_10_1007_s10904_014_0143_8
crossref_primary_10_1002_marc_201800571
crossref_primary_10_1080_10610278_2013_831860
crossref_primary_10_1021_acsami_3c09139
crossref_primary_10_1103_PhysRevE_85_031802
crossref_primary_10_1021_acs_macromol_5b00875
crossref_primary_10_1039_C1NJ20530G
crossref_primary_10_1038_s41467_022_28024_1
crossref_primary_10_1002_ijch_201200053
crossref_primary_10_1039_c2cp41970j
crossref_primary_10_1039_C7SM02429K
crossref_primary_10_1039_C8PY00085A
crossref_primary_10_1021_ma501695b
crossref_primary_10_1039_C4TC02347A
crossref_primary_10_1039_c2sm26575c
crossref_primary_10_1002_macp_201800334
crossref_primary_10_1021_acs_orglett_5b01388
crossref_primary_10_1039_C3SC53353K
crossref_primary_10_1039_c2sm07249a
crossref_primary_10_1039_C8ME00111A
crossref_primary_10_1039_C5CP00561B
crossref_primary_10_1039_c4sm00036f
crossref_primary_10_1039_c2sm00022a
crossref_primary_10_1039_c3sc50664a
crossref_primary_10_1002_anie_201103303
crossref_primary_10_1021_cr400334b
crossref_primary_10_1021_la202112r
crossref_primary_10_1002_chem_201802050
crossref_primary_10_1021_ma301973v
crossref_primary_10_1002_ange_201300872
crossref_primary_10_1021_ma302060m
crossref_primary_10_1039_c3sm51554k
crossref_primary_10_1039_C4NJ01855A
crossref_primary_10_1021_ma3015118
crossref_primary_10_1039_c2sm26671g
crossref_primary_10_1016_j_polymer_2020_122749
crossref_primary_10_1021_ja3060904
crossref_primary_10_1002_chem_201905432
crossref_primary_10_1098_rsfs_2011_0087
crossref_primary_10_1002_adfm_201804162
crossref_primary_10_1002_chem_201003671
crossref_primary_10_1038_srep28659
crossref_primary_10_1021_ma202747h
crossref_primary_10_1039_D1ME00021G
crossref_primary_10_1002_anie_201300872
crossref_primary_10_1021_jo302297j
crossref_primary_10_1002_chem_201901549
crossref_primary_10_1038_ncomms2096
crossref_primary_10_4028_www_scientific_net_AMR_750_752_1358
crossref_primary_10_1002_adfm_201606294
crossref_primary_10_1021_la400483d
crossref_primary_10_1039_C3PY00985H
crossref_primary_10_1039_C8TC04890H
crossref_primary_10_1021_acs_nanolett_5b05203
crossref_primary_10_1039_C7PY01638G
crossref_primary_10_1016_j_cclet_2015_05_031
crossref_primary_10_1021_acs_chemrev_5b00190
crossref_primary_10_1039_D0TC04571C
crossref_primary_10_1021_cm503981t
crossref_primary_10_1002_chem_202301015
crossref_primary_10_1002_marc_201300845
crossref_primary_10_1002_ijch_201100151
crossref_primary_10_1039_D0TC01879A
crossref_primary_10_1039_c2jm33751g
crossref_primary_10_1039_C6NJ01080F
crossref_primary_10_1002_macp_202100216
crossref_primary_10_1002_pola_26808
crossref_primary_10_1021_ja502410e
crossref_primary_10_1016_j_molstruc_2015_02_050
crossref_primary_10_1039_C7CC06714C
crossref_primary_10_1039_C7PY01476G
crossref_primary_10_1039_C7SM00776K
crossref_primary_10_3390_polym9100471
crossref_primary_10_1002_asia_201201089
crossref_primary_10_1016_j_polymer_2013_04_004
crossref_primary_10_1016_j_molliq_2020_114521
crossref_primary_10_1038_s41557_023_01166_5
Cites_doi 10.1021/ja073079h
10.1021/ja9615738
10.1002/adma.200701252
10.1126/science.1120411
10.1126/science.1185547
10.1021/cm071676x
10.1209/epl/i2005-10459-5
10.1080/00268948808082203
10.1039/b615517k
10.1039/b803000f
10.1002/anie.200704460
10.1016/j.tsf.2006.09.014
10.1007/3-540-46778-5_2
10.1016/S1359-0294(98)80022-8
10.1021/cr900157q
10.1021/ja905373d
10.1016/S0022-1139(99)00205-5
10.1039/B511758E
10.1039/b303654e
10.1063/1.1571812
10.1039/b718131k
10.1021/jp045298k
10.1021/ma101990e
10.1063/1.458541
10.1039/b615791b
10.1021/cr900182s
10.1039/b701411b
10.1002/9783527629091.ch9
10.1002/anie.200701585
10.1002/pola.10717
10.1021/ma980251g
10.1021/cm101654q
10.1002/chem.200903210
10.1209/0295-5075/19/3/001
10.1063/1.477011
10.1063/1.1792171
10.1021/ja805672q
10.1002/cphc.200600260
10.1021/la980502e
10.1039/b902937k
10.1002/anie.200802957
10.1002/(SICI)1521-3935(20000201)201:3<296::AID-MACP296>3.0.CO;2-U
10.1080/026782998206092
10.1126/science.278.5337.449
10.1039/B504400F
10.1021/ja909279b
10.1021/cm702967c
10.1103/PhysRevA.42.2215
10.1063/1.474784
10.1021/ja981550o
10.1002/macp.1987.021880821
10.1126/science.273.5273.343
10.1002/chem.200501195
10.1021/jp065066g
10.1021/ma801367v
10.1021/ma00235a003
10.1021/ja0480015
10.1002/9783527620555
10.1051/jphyslet:019830044019082300
10.1103/PhysRevLett.92.015501
10.1021/ma980622t
10.1063/1.1649729
10.1002/chem.200800664
10.1016/S1359-0294(02)00087-0
10.1021/ma801369w
10.1039/a802167h
10.1063/1.3089701
10.1080/02678290500125459
10.1021/jp000896u
10.1002/cphc.200500472
10.1021/ja8038932
10.1021/cr8004229
10.1021/ma9921551
10.1080/00268970110061829
10.1039/b413416h
10.1039/b804945a
10.1126/science.1078849
10.1002/anie.200353259
10.1002/1521-4095(200108)13:16<1217::AID-ADMA1217>3.0.CO;2-D
10.1063/1.473129
10.1063/1.1479139
10.1021/ma9511558
10.1039/b417320c
10.1021/cm052221f
10.1002/anie.200900079
10.1021/ma060001x
10.1021/la050187d
10.1021/ja104432d
10.1021/ja0289999
10.1080/02678290410001665995
10.1063/1.1557525
10.1143/JJAP.31.2155
10.1002/mats.200400024
10.1080/02678290412331298111
10.1021/cm0207200
10.1103/PhysRevLett.28.1683
10.1021/jp101129p
10.1002/chem.200305100
10.1021/nn901725b
10.1021/ma010194i
10.1039/b818871h
10.1016/S0379-6779(01)00513-6
10.1007/12_004
10.1021/ja00133a012
10.1039/b104960g
10.1021/ja057685t
10.1039/b104289k
10.1021/ma060497i
10.1016/j.tetlet.2008.07.048
10.1002/cphc.200900803
10.1039/b902060h
10.1080/026782997209144
10.1039/b813015a
10.1002/adma.200803403
10.1002/marc.200600640
10.1002/chem.200900493
10.1080/02678290412331329215
10.1021/cm703508t
10.1063/1.3025918
10.1039/b415892j
10.1039/b502443a
10.1039/b408258c
10.1021/la049093e
10.1039/b901601e
10.1080/026782900750018627
10.1016/S0032-3861(97)00089-X
10.1038/nature02368
10.1002/anie.200802021
10.1021/la00019a048
10.1002/anie.199720871
10.1063/1.1630014
10.1021/ja0357947
10.1016/j.tetlet.2005.02.100
10.1080/15421400903051069
10.1002/anie.200703171
10.1016/S0022-1139(00)00380-8
10.1021/ja027869x
10.1140/epje/i2010-10586-2
10.1039/b516768j
10.1016/0009-2614(88)80207-0
10.1021/cr0001131
10.1126/science.1193052
10.1002/anie.200804307
10.1021/ja037380j
10.1021/cm800509u
10.1103/PhysRevE.56.1844
10.1002/marc.200600187
10.1002/adma.200602516
10.1080/02678290902755556
10.1080/15421400390213708
10.1021/ja003124k
10.1021/jp037282k
10.1126/science.1105612
10.1080/02678299608032881
10.1021/ja0535357
10.1002/marc.200800775
10.1080/15421401003799797
10.1021/ja963687p
10.1021/jp044202j
10.1002/anie.200501254
10.1080/10587250108025766
10.1021/jp073173k
10.1039/b414649b
10.1021/ja048224v
10.1007/b136670
10.1016/j.polymer.2006.05.039
10.1126/science.270.5243.1789
10.1021/ma990020p
10.1016/0032-3861(92)90890-9
10.1021/ma048893t
10.1039/a900867e
10.1021/cr9002984
10.1080/02678290512331324011
10.1063/1.441483
10.1021/ma00109a048
10.1021/la981567k
10.1080/14786430500363148
10.1021/ma0009606
10.1016/j.mser.2004.12.003
10.1021/jp9055158
10.1295/polymj.PJ2007132
10.1016/j.polymer.2008.09.059
10.1016/j.polymer.2009.02.047
10.1080/026782998206821
10.1021/cm960267q
10.1063/1.476300
10.1002/adfm.200902140
10.1021/ma050716k
10.1080/02678290500354505
10.1021/ma00117a027
10.1088/1742-6596/247/1/012032
10.1021/ja963295i
10.1002/marc.200900251
10.1021/ma034840k
10.1021/ma00112a023
10.1002/anie.200903658
10.1080/02678290500268176
10.1002/anie.200460762
10.1039/b707880c
10.1039/B618320B
10.1002/ejic.200701341
10.1039/b700972k
10.1209/0295-5075/21/3/018
10.1021/la960809i
10.1039/b922638a
10.1209/epl/i1998-00445-5
10.1021/la00016a045
10.1002/1521-3773(20021104)41:21<4031::AID-ANIE4031>3.0.CO;2-5
10.1063/1.478563
10.1080/02678290701211496
10.1021/cm062949b
10.1063/1.462458
10.1080/02678299008047368
10.1039/b415910a
10.1039/b501804h
10.1021/ja907457h
10.1021/jp972613c
10.1002/anie.200503402
10.1002/polb.20537
10.1021/ar990159k
10.1021/cr068010r
10.1126/science.1162950
10.1002/chem.200600449
10.1039/b819877b
10.1080/026782999204534
10.1039/b910496h
10.1002/chem.200800141
10.1002/anie.200701111
10.1103/PhysRevA.44.3692
10.1021/ma0710885
10.1002/anie.200600019
10.1039/b818926a
10.1021/ja807035j
10.1021/ma00017a036
10.1002/anie.200903247
10.1002/chem.200802625
10.1016/j.mser.2008.04.001
10.1021/la804043z
10.1021/la970761o
10.1002/1521-3773(20010119)40:2<428::AID-ANIE428>3.0.CO;2-N
10.1021/ja809946z
10.1021/ma800146p
10.1021/nl902646e
10.1080/026782900203335
10.1126/science.276.5311.384
10.1016/j.progpolymsci.2005.04.001
10.1103/PhysRevLett.65.2157
10.1002/marc.201000169
10.1021/ja036213g
10.1039/B511832H
10.1021/ja810123b
10.1039/b501600m
10.1039/b802452a
10.1021/j100069a017
10.1039/B618403K
10.1021/ma902631e
10.1039/b303776b
10.1039/b819165d
10.1039/b917403f
10.1002/adma.200300009
10.1021/ja805742t
10.1021/ma971848j
10.1039/CC9960000237
10.1080/02678290410001695668
10.1039/a807003b
10.1002/marc.1996.030170814
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/adfm.201002091
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 1323
ExternalDocumentID 10_1002_adfm_201002091
ADFM201002091
ark_67375_WNG_V7NPM6R3_J
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AITYG
HGLYW
OIG
AAYXX
CITATION
ID FETCH-LOGICAL-c4331-580e5afbdafb61b4cef1f4f8c75b0fc6b1a03c2ad218caa137064076e741b0fc3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Aug 23 00:33:17 EDT 2024
Sat Aug 24 01:04:44 EDT 2024
Wed Jan 17 05:01:40 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4331-580e5afbdafb61b4cef1f4f8c75b0fc6b1a03c2ad218caa137064076e741b0fc3
Notes ark:/67375/WNG-V7NPM6R3-J
istex:88D7CFEEE059A4386EFC4294FD608E016A596C11
ArticleID:ADFM201002091
OpenAccessLink http://www.hzg.de/imperia/md/content/gkss/zentrale_einrichtungen/bibliothek/journals/2011/Ungar-adfuncmat.pdf
PageCount 28
ParticipantIDs crossref_primary_10_1002_adfm_201002091
wiley_primary_10_1002_adfm_201002091_ADFM201002091
istex_primary_ark_67375_WNG_V7NPM6R3_J
PublicationCentury 2000
PublicationDate April 8, 2011
PublicationDateYYYYMMDD 2011-04-08
PublicationDate_xml – month: 04
  year: 2011
  text: April 8, 2011
  day: 08
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References J. Prost, R. Bruinsma, F. Tournilhac, J. Phys. (Paris) II 1994, 4, 169
b) S. Becker, C. Ego, A. C. Grimsdale, E. J. W. List, D. Marsitzky, A. Pogantsch, S. Setayesh, G. Leising, K. Müllen, Synth. Metals 2001, 125, 73
b) J. T. Chen, E. L. Thomas, C. K. Ober, S. S. Hwang, Science 1997, 273, 343
b) X. Zeng, G. Ungar, Phil. Mag. 2006, 86, 1093.
a) X. H. He, H. J. Liang, C. Y. Pan, J. Chem. Phys. 2002, 116, 10508
S. Sioula, N. Hadjichristidis, E. L. Thomas, Macromolecules 1998, 31, 8429.
a) J. A. Schröter, R. Plehnert, C. Tschierske, S. Katholy, D. Janietz, F. Penacorada, L. Brehmer, Langmuir 1997, 13, 796
B. Rapp, H. Gruler, Phys. Rev. A 1990, 42, 2215.
b) B. Donnio, P. García-Vázquez, J.-L. Gallani, D. Guillon, E. Terazzi, Adv. Mater. 2007, 19, 3534.
a) M. Gharbia, A. Gharbi, H. T. Nguyen, J. Malthete, Curr. Opin. Colloid Interface Sci. 2002, 7, 312
d) B. Bilgin-Eran, C. Yorur, C. Tschierske, M. Prehm, U. Baumeister, J. Mater. Chem. 2007, 17, 2319.
H. A. Klok, J. F. Langenwalter, S. Lecommandoux, Macromolecules 2000, 33, 7819.
c) K. Borisch, S. Diele, P. Göring, H. Kresse, C. Tschierske, Angew. Chem. Int. Ed. 1997, 36, 2087.
M. A. Bates, M. Walker, Mol. Cryst. Liq. Cryst. 2010, 525, 204.
D. Davidson, A. M. Levelut, H. Strzelecka, V. Gionis, J. Phys. Lett. 1983, 44, L-823
H. Hückstädt, T. Goldacker, A. Göpfert, V. Abetz, Macromolecules 2000, 33, 3757.
a) P. J. Hoogerbrugge, J. M. V. A. Koelman, Europhys. Lett. 1992, 19, 155
M. Lee, B. K. Cho, W. C. Zin, Chem. Rev. 2001, 101, 3869
c) D. Lose, S. Diele, G. Pelzl, E. Dietzmann, W. Weissflog, Liq. Cryst. 1998, 24, 707
a) M. W. Neiser, S. Muth, U. Kolb, J. R. Harris, J. Okuda, M. Schmidt, Angew. Chem. Int. Ed. 2004, 43, 3192
c) M. Prehm, S. Diele, M. K. Das, C. Tschierske, J. Am. Chem. Soc. 2003, 125, 614
N. Sary, L. Rubatat, C. Brochon, G. Hadziioannou, J. Ruokolainen, R. Mezzenga, Macromolecules 2007, 40, 6990.
a) J. Xin, D. Liu, C. Zhong, J. Phys. Chem. B 2007, 111, 13675
a) T. S. Perova, J. K. Vij, A. Kocot, Europhys. Lett. 1998, 44, 198
a) E. Grelet, H. Bock, Europhys. Lett. 2006, 73, 712
G. L. Gaines, Insoluble monolayers at Liquid-Gas Interfeces, Interscience, New York 1966.
H. Hückstädt, A. Göpfert, V. Abetz, Macromol. Chem. Phys. 2000, 201, 296.
c) D. Janietz, A. Kohlmeier, Liq. Cryst. 2009, 36, 685.
Y. H. Kim, D K. Yoon H.-T. Jung, J. Mater. Chem. 2009, 19, 9091.
b) L.-M. Liu, B.-Y. Zhang, X.-Z. He, C.-S. Cheng, Liq. Cryst. 2004, 31, 781.
Taper-shaped molecules with fluorinated segments: a) V. Percec, G. Johansson, G. Ungar, J. Zhou, J. Am. Chem. Soc. 1996, 118, 9855
S. Hassan, W. Rowe, G. J. T. Tiddy, in Handbook of Applied Surface and Colloid Chemistry (Ed: K. Holmberg), Vol. 1, Wiley-VCH, Chichester 2002, p. 465.
Handbook of Liquid Crystals (Eds: D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, V. Vill), Wiley- VCH, Weinheim, Germany 1998.
S. Okamoto, H. Hasegawa, T. Hashimoto, T. Fujimoto, H. Zhang, T. Kazama, A. Takano, Y. Isono, Polymer 1997, 38, 5275.
W.T. Li, D. Gersappe, Macromolecules 2001, 34, 6783.
f) D. Guillon, M. A. Osipov, S. Mery, M. Siffert, J.-F. Nicoud, C. Bourgogne, P. Sebastiao, J. Mater. Chem. 2001, 11, 2700
M. N. G. de Mul, J. A. Mann, Langmuir 1994, 10, 2311.
b) C. Tang, E. M. Lennon, G. H. Fredrickson, E. J. Kramer, C. J. Hawker, Science 2008, 322, 429.
U. Stalmach, B. de Boer, A. D. Post, P. F. van Hutten, G. Hadziioannou, Angew. Chem. Int. Ed. 2001, 40, 428
R. Kieffer, M. Prehm, K. Pelz, U. Baumeister, F. Liu, H. Hahn, H. Lang, G. Ungar, C. Tschierske, Soft Matter 2009, 5, 1214.
a) L. Liu, J. K. Kim, M. Lee, ChemPhysChem 2010, 11, 706
a) C. L. Chochos, J. K. Kallitsis, V. G. Gregoriou, J. Phys. Chem. B 2005, 109, 8755
b) X. Cheng, M. K. Das, U. Baumeister, S. Diele, C. Tschierske, J. Am. Chem. Soc. 2004, 126, 12930.
G. Ungar, F. Liu, X. B. Zeng, B. Glettner, M. Prehm, R. Kieffer, C. Tschierske, J. Phys., Conf. Series 2010, 247, 012032.
X. B. Zeng, R. Kieffer, B. Glettner, C. Nürnberger, F. Liu, K. Pelz, M. Prehm, U. Baumeister, H. Hahn, H. Lang, G. A. Gehring, C. H. M. Weber, J. K. Hobbs, C. Tschierske, G. Ungar, Science 2011, 331, 1302.
a) A. Kohlmeier, D. Janietz, Liq. Cryst. 2007, 34, 289
a) V. S. K. Balagurusamy, G. Ungar, V. Percec, G. Johansson, J. Am. Chem. Soc. 1997, 119, 1539
b) S. Pensec, F.-G. Tournilhac, P. Bassoul, C. Durliat, J. Phys. Chem. B 1998, 102, 52.
a) E. Terazzi, C. Bourgogne, R. Welter, J. L. Gallani, D. Guillon, G. Rogez, B. Donnio, Angew. Chem. Int. Ed. 2008, 47, 490
b) K. K. Borisch, S. Diele, P. Göring, H. Müller, C. Tschierske, Liq. Cryst. 1997, 22, 427
a) W. Pisula, M. Zorn, J. Y. Chang, K. Müllen, R. Zentel, Macromol. Rapid Commun. 2009, 30, 1179
A. G. Cook, U. Baumeister, C. Tschierske, J. Mater. Chem. 2005, 15, 1708.
M. Peterca, M. R. Imam, P. Leowanawat, B. M. Rosen, D. A. Wilson, C. J. Wilson, X. B. Zeng, G. Ungar, P. A. Heiney, V. Percec, J. Am. Chem. Soc. 2010, 132, 11288.
a) M. Ibn-Elhaj, H. Möhwald, M. Z. Cherkaoui, R. Zniber, Langmuir 1998, 14, 504
c) R. A. Reddy, U. Baumeister, C. Keith, H. Hahn, H. Lang, C. Tschierske, Soft Matter 2007, 3, 558
b) C. Pugh, J.-Y. Bae, J. Dharia, J. J. Ge, S. Z. D. Cheng, Macromolecules 1998, 31, 5188
a) R. D. Groot, P. B. Warren, J. Chem. Phys. 1997, 107, 4423
b) M. O'Neill, S. Kelly, Adv. Mater. 2003, 15, 1135
a) X. Cheng, M. Prehm, M. K. Das, J. Kain, U. Baumeister, S. Diele, D. Leine, A. Blume, C. Tschierske, J. Am. Chem. Soc. 2003, 125, 10977
i) A. Komp, H. Finkelmann, Macromol. Rapid Commun. 2007, 28, 55.
c) S. De Feyter, F. C. De Schryver, J. Phys. Chem. B 2005, 109, 4290
M. W. Matsen, C. Barrett, J. Chem. Phys. 1998, 109, 4108
R. Hosemann, S. N. Bagchi, Direct Analysis of Diffraction by Matter, North-Holland, Amsterdam, Netherlands 1962.
c) D. R. Dukeson, G. Ungar, V. S. K. Balagurusamy, V. Percec, G. A. Johansson, M. Glodde, J. Am. Chem. Soc. 2003, 125, 15974.
b) B. Grünbaum, G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987.
c) A. Schaz, E. Valaityte, G. Lattermann, Liq. Cryst. 2005, 32, 513
M. Prehm, F. Liu, U. Baumeister, X. Zeng, G. Ungar, C. Tschierske, Angew. Chem. Int. Ed. 2007, 46, 7972.
b) D. Janietz, A. Kohlmeier, Mol. Cryst. Liq. Cryst. 2009, 509, 39
B. Chen, X. Zeng, U. Baumeister, G. Ungar, C. Tschierske, Science 2005, 307, 96.
For a review of 3D structures in LCs see G. Ungar, X. B. Zeng, Soft Matter 2005, 1, 95.
A. Zelcer, B. Donnio, C. Bourgogne, F. D. Cukiernik, D. Guillon, Chem. Mater. 2007, 19, 1992.
T. Nishizawa, H. K. Lim, K. Tajima, K. Hashimoto, Chem. Commun. 2009, 2469.
e) G. H. Mehl, J. W. Goodby, Chem. Commun. 1999, 13
b) S. Sauer, N. Steinke, A. Baro, S. Laschat, F. Giesselmann, W. Kantlehner, Chem. Mater. 2008, 20, 1909
M. Bates, M. Walker, Soft Matter 2009, 5, 346.
b) V. Percec, J. Heck, G. Ungar, Macromolecules 1991, 24, 4957
e) S. Kumar, S. Kumar Pal, Tetrahedron Lett. 2005, 46, 2607
M. A. Bates, M. Walker, Phys. Chem. Chem. Phys. 2009, 11, 1893.
d) L. Li, C. D. Jones, J. Magolan, R. P. Lemieux, J. Mater. Chem. 2007, 17, 2313
b) X. H. He, H. J. Liang, C. Y. Pan, J. Chem. Phys. 2003, 118, 9861
b) R. Plehnert, J. A. Schröter, C. Tschierske, Langmuir 1998, 14, 5245
A. Mishra, C.-Q. Ma, P. Bäuerle, Chem. Rev. 2009, 109, 1141.
A. J. Crane, E. A. Müller, Faraday Discuss. 2010, 144, 187.
c) G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
a) U. H. F. Bunz, Macromol. Rapid Commun. 2009, 30, 772
V. Abetz, A. Boschetti-de-Fierro, J. F. Gohy, in Controlled and Living Polymerizations:From Mechanisms to Applications (Eds: A. H. E. Müller, K. Matyjaszewski), Wiley-VCH, Weinheim, Germany 2009, p. 493.
G. Ungar, Y. S. Liu, X. B. Zeng, V. Percec, W. D. Cho, Science 2003, 299, 1208.
A. M. González-Delgado, M. Pérez-Morales, J. J. Giner-Casares, E. Muñoz, M. a. T. Martín-Romero, L. Camacho, J. Phys. Chem. B 2009, 113, 13249.
b) M. A. Horsch, Z. Zhang, S. C. Glotzer, Soft Matter 2010, 6, 945
f) B. Bilgin-Eran, C. Tschierske, S. Diele, U. Baumeister, J. Mater. Chem. 2006, 16, 1136
a) M. Lehmann, M. Jahr, J. Gutmann, J. Mater. Chem. 2008, 18, 2995
b) Y. Matsushita, A. Takano, K. Hayashida, T. Asari, A. Noro, Polymer 2009, 50, 2191.
The concept of polyphilicity was recently applied to bent-core molecules where the two distinct terminal chains were modified by adding fluorinated segments, oligo(siloxane) units, or polar groups: a) R. A. Reddy, C. Tschierske, J. Mater. Chem. 2006, 16, 907
M. C. Holmes, Curr. Opin. Colloid Interface Sci. 1998, 3, 485.
a) S. Meuer, K. Fischer, I. Mey, A. Janshoff, M. Schmidt, R. Zentel, Macromolecules 2008, 41, 7946
c) T. Lu, X. H. He, H. J. Liang, J. Chem. Phys. 2004, 121, 9702.
a) D. J. Tweet, R. Holstrokyst, B. D. Swanson, H. Stragier, L. B. Sorensen, Phys. Rev. Lett. 1990, 65, 2157
d) N. M. Patel, M. R. Dodge, M. H. Zhu, R. G. Petschek, C. Rosenblatt, M. Prehm, C. Tschierske, Phys. Rev. Lett. 2004, 92, 015501
V. Abetz, P. F. W. Simon, Adv. Polymer Sci. 2005, 189, 125.
b) I. M. Saez, J. W. Goodby, J. Mater. Chem. 2005, 15, 26
b) L. Liu, D.-J. Hong, M. Lee, Langmuir 2009, 25, 5061.
Metallomesogens with perfluorinated segments and polyphilic metallomesogens: a) M.-A. Guillevic, D. W. Bruce, Liq. Cryst. 2000, 27, 153
M. A. Bates, G. R. Luckhurst, Mol. Phys. 2001, 99, 1365.
M. A. Bates, G. R. Luckhurst, J. Chem. Phys. 2004, 120, 394.
B. Chen, U. Baumeister, G. Pelzl, M. K. Das, X. Zeng, G. Ungar, C. Tschierske, J. Am. Chem. Soc. 2005, 127, 16578.
d) I. M. Saez, J. W. Goodby, J. Mater. Chem. 2003, 13, 2727.
A. Gitsas, G. Floudas, M. Mondeshki, I. Lieberwirth, H. W. Spiess, H. Iatrou, N. Hadjichristidis, A. Hirao, Macromolecules 2010, 43, 1874.
M. Pérez-Morales, J. M. Pedrosa, M. T. Martín-Romero, D. Möbius, L. Camacho, J. Phys. Chem. B 2004, 108, 4457.
R. Thomas, S. Varghese, G. U. Kulkarni, J. Mater. Chem. 2009, 19, 4401.
A. Hirao, T. Higashihara, K. Inoue, Macromolecules 2008, 41, 3579.
b) S. Meuer, P. Oberle, P. Theato, W. Tremel, R. Zentel, Adv. Mater. 2007, 19, 2073.
T. Uchida, H. Seki, in Liquid Crystals: Applications and Uses(Ed: B. Bahadur), World Scientific, Singapore 1992.
H. Qi, A. Lepp, P. A. Heiney, T. Hegmann, J. Mater. Chem. 2007, 17, 2139.
U. Krappe, R. Stadler, I.
2010 2009; 11 25
1998 1997; 14 56
2004; 20
2010; 16
1997 1998 1999; 13 14 15
2008 2011; 130
1997; 276
2004; 6
2009; 113
1972
2009 1999; 30 32
2007 2009 2009; 34 509 36
1983; 16
2006 2010; 12 328
2010; 22
2009; 11
1990; 42
2010; 20
1983 2002; 44 12
1995; 28
2002 2000; 7 33
2002 2003 2004; 116 118 121
2005; 189
2003 2009; 125 19
2010; 114
2004; 37
1994 1996; 4 21
2009 2008; 9 322
1998 2004; 109 120
2008; 20
2009; 19
1981; 74
1999 2001 1998 1997 1998 1999; 100 107 8 119 31 26
2004; 43
2007; 17
2007; 19
1996; 17
1998
2002; 1
2003; 36
1988; 165
1992
1991
1977 1987
1992; 31
2009 2009; 48 48
1992; 33
2008 2007; 47 19
2003; 299
2009 2010 2005; 109 110
2010; 43
2008 2009; 18 15
2006 2004 2005 2007 2008; 7 31 32 17 130
2010; 46
2006; 45
2000; 104
2005; 127
2008; 49
2010 2010 2008; 4 6 129
2004 2006; 428 86
2008; 47
1999; 110
2001 2006 1995; 40 39 117
1997 1997 2003; 119 278 125
1997; 38
1998; 3
2005; 1
1990 1991 1998 2003 2002; 84 24 24 13 7
2008; 41
2005; 15
2000 2001 2005 2008 2009 2006 2006; 27 362 32 10 19 16 16
2001; 34
2009; 109
2008; 130
1998 2003; 44 397
1996; 118
1994; 10
1994; 98
2008 2009; 40 50
2004; 120
2004; 126
2003; 118
1996 1996 1997; 118 29 9
2010; 144
1992 1993; 19 21
2008; 4
1990 1991; 65 44
1997 1998; 107 108
2007; 36
2009; 48
2009 2003 2007 2007; 30 15 107 36
2008 2007; 41 19
1992; 96
1997; 106
2000; 201
2006 2005 2005 2009 2009 2006; 110 258 109 15 131 7
2006 2006 2007 2006 2005; 16 126 3 45 15
2005 2001 1995; 109 125 270
2005; 30
1988 1998; 145 102
2005; 307
2005; 32
2003; 1
2001; 99
2005; 38
2008 2010; 4 328
2008; R62
1996 1997 1997; 22 36
1990; 92
2006 2010; 73 31
1998; 120
2010 2009; 31
2001; 123
2007; 129
2009; 21
2010; 525
2005; 310
2006; 16
2010; 247
1995 1997 2006; 28 273 47
2008; 14
2009
1987 1998 1998 1999 1999 2001 2002 2000 2007; 188 31 25 9 13 11 14 27 28
2008
2005; 43
2000; 152
2004
2009; 130
2009; 131
2006; 2
2002
2005; 48
2004; 108
2006 2008 2006 2008 2005 2005 2009; 39 20 18 20 46 131
2005; 44
2011; 331
2004 2005 2003; 43 21 41
1972; 28
2003 2004; 125 126
1999 2004; 9 31
2008 2005 2003 2003; 47 15 9 13
2001 2001; 101 13
2009; 30
2007; 515
2006 2005 2005 2007; 12 32 32 17
2000; 33
2004; 13
2010; 132
2002 2002 2003 2004 2005; 41 124 125 92 32
1962
2007 2006; 111 27
2008 2007; 37 36
2009; 5
2007; 40
1998; 31
2007; 46
1966
e_1_2_11_93_2
e_1_2_11_70_2
e_1_2_11_55_2
e_1_2_11_55_3
e_1_2_11_78_2
e_1_2_11_32_2
e_1_2_11_102_2
e_1_2_11_125_2
e_1_2_11_148_2
e_1_2_11_4_3
e_1_2_11_102_3
e_1_2_11_4_2
e_1_2_11_102_4
Grünbaum B. (e_1_2_11_2_3) 1987
e_1_2_11_29_2
e_1_2_11_140_2
e_1_2_11_163_2
e_1_2_11_140_3
Gaines G. L. (e_1_2_11_101_2) 1966
e_1_2_11_81_2
e_1_2_11_43_2
e_1_2_11_66_2
e_1_2_11_89_2
e_1_2_11_89_3
e_1_2_11_66_4
e_1_2_11_66_3
e_1_2_11_20_3
e_1_2_11_17_2
e_1_2_11_113_2
e_1_2_11_159_2
e_1_2_11_136_2
e_1_2_11_17_6
e_1_2_11_17_5
e_1_2_11_17_4
e_1_2_11_17_3
e_1_2_11_174_3
e_1_2_11_151_2
e_1_2_11_174_2
e_1_2_11_31_2
e_1_2_11_54_2
e_1_2_11_77_2
Mehl G. H. (e_1_2_11_13_6) 1999; 13
Hosemann R. (e_1_2_11_119_2) 1962
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_103_2
e_1_2_11_149_2
e_1_2_11_89_8
e_1_2_11_126_2
e_1_2_11_28_6
e_1_2_11_89_6
e_1_2_11_28_5
e_1_2_11_89_7
e_1_2_11_28_4
e_1_2_11_89_4
e_1_2_11_28_3
e_1_2_11_89_5
e_1_2_11_164_2
e_1_2_11_141_2
Prehm M. (e_1_2_11_47_3) 2011
Abetz V. (e_1_2_11_123_2) 2003
e_1_2_11_80_2
e_1_2_11_65_2
e_1_2_11_88_2
e_1_2_11_42_2
e_1_2_11_16_3
e_1_2_11_114_2
e_1_2_11_137_2
e_1_2_11_16_2
e_1_2_11_137_3
Uchida T. (e_1_2_11_92_2) 1992
e_1_2_11_16_6
e_1_2_11_16_5
e_1_2_11_16_4
e_1_2_11_39_2
e_1_2_11_175_2
e_1_2_11_152_2
e_1_2_11_180_2
e_1_2_11_180_3
e_1_2_11_57_2
e_1_2_11_11_3
e_1_2_11_34_2
e_1_2_11_72_2
e_1_2_11_11_2
e_1_2_11_95_2
e_1_2_11_104_2
e_1_2_11_127_2
e_1_2_11_23_4
e_1_2_11_104_3
e_1_2_11_69_3
e_1_2_11_142_4
e_1_2_11_69_2
e_1_2_11_165_3
e_1_2_11_142_2
e_1_2_11_165_2
e_1_2_11_142_3
e_1_2_11_60_2
Hassan S. (e_1_2_11_50_2) 2002
e_1_2_11_45_2
e_1_2_11_68_2
e_1_2_11_60_4
e_1_2_11_60_3
e_1_2_11_22_2
e_1_2_11_83_2
e_1_2_11_138_2
e_1_2_11_115_3
e_1_2_11_115_2
e_1_2_11_176_5
e_1_2_11_19_4
e_1_2_11_57_3
e_1_2_11_176_4
Wells A. F. (e_1_2_11_2_2) 1977
e_1_2_11_19_3
e_1_2_11_176_3
e_1_2_11_19_2
e_1_2_11_153_2
e_1_2_11_176_2
e_1_2_11_19_8
e_1_2_11_19_7
e_1_2_11_19_6
e_1_2_11_130_2
e_1_2_11_19_5
e_1_2_11_71_2
e_1_2_11_181_2
Abetz V. (e_1_2_11_131_2) 1998
e_1_2_11_56_2
e_1_2_11_79_2
e_1_2_11_117_2
e_1_2_11_33_2
e_1_2_11_94_2
e_1_2_11_10_2
e_1_2_11_94_3
e_1_2_11_3_2
e_1_2_11_105_2
e_1_2_11_143_3
e_1_2_11_120_2
e_1_2_11_143_4
e_1_2_11_166_2
e_1_2_11_143_2
e_1_2_11_82_2
e_1_2_11_44_2
e_1_2_11_67_2
e_1_2_11_82_5
e_1_2_11_105_3
e_1_2_11_128_2
e_1_2_11_82_3
e_1_2_11_21_2
e_1_2_11_82_4
e_1_2_11_116_2
e_1_2_11_154_3
e_1_2_11_18_4
e_1_2_11_177_2
e_1_2_11_18_3
e_1_2_11_18_2
e_1_2_11_154_2
e_1_2_11_182_2
e_1_2_11_13_2
e_1_2_11_118_2
e_1_2_11_51_2
e_1_2_11_97_2
e_1_2_11_51_3
e_1_2_11_74_3
e_1_2_11_74_2
e_1_2_11_25_2
e_1_2_11_121_2
e_1_2_11_144_2
e_1_2_11_167_2
e_1_2_11_48_2
Frenkel D. (e_1_2_11_145_2) 2002
e_1_2_11_24_2
e_1_2_11_62_2
e_1_2_11_85_2
e_1_2_11_106_2
e_1_2_11_129_2
e_1_2_11_8_3
e_1_2_11_8_2
e_1_2_11_62_4
e_1_2_11_62_3
e_1_2_11_13_5
e_1_2_11_13_4
e_1_2_11_13_3
e_1_2_11_36_2
e_1_2_11_155_2
e_1_2_11_178_2
e_1_2_11_13_9
e_1_2_11_59_2
e_1_2_11_155_3
e_1_2_11_13_8
e_1_2_11_59_3
e_1_2_11_13_7
e_1_2_11_59_4
e_1_2_11_132_2
e_1_2_11_170_3
e_1_2_11_170_2
e_1_2_11_12_3
e_1_2_11_35_2
e_1_2_11_73_2
e_1_2_11_96_2
e_1_2_11_12_2
e_1_2_11_73_3
e_1_2_11_1_7
e_1_2_11_1_6
e_1_2_11_1_5
e_1_2_11_1_4
e_1_2_11_168_2
e_1_2_11_1_3
e_1_2_11_47_2
e_1_2_11_1_2
e_1_2_11_122_2
e_1_2_11_160_2
e_1_2_11_46_2
e_1_2_11_23_3
e_1_2_11_84_3
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_61_2
e_1_2_11_107_2
e_1_2_11_84_2
e_1_2_11_12_7
e_1_2_11_12_6
e_1_2_11_12_5
e_1_2_11_12_4
e_1_2_11_179_2
e_1_2_11_58_2
e_1_2_11_110_2
e_1_2_11_133_2
e_1_2_11_156_2
e_1_2_11_171_3
e_1_2_11_171_2
e_1_2_11_91_2
e_1_2_11_76_3
e_1_2_11_30_2
e_1_2_11_76_2
e_1_2_11_76_4
e_1_2_11_53_2
e_1_2_11_6_2
e_1_2_11_27_2
e_1_2_11_146_2
e_1_2_11_169_2
Niton P. (e_1_2_11_103_3)
e_1_2_11_100_2
e_1_2_11_161_2
e_1_2_11_13_10
Abetz V. (e_1_2_11_134_2) 2004
Eichhorn S. H. (e_1_2_11_95_3) 2003; 397
e_1_2_11_87_4
e_1_2_11_87_5
e_1_2_11_87_2
e_1_2_11_87_3
e_1_2_11_41_2
e_1_2_11_64_2
e_1_2_11_108_2
e_1_2_11_6_3
e_1_2_11_15_3
e_1_2_11_15_2
e_1_2_11_157_2
e_1_2_11_157_3
e_1_2_11_38_2
e_1_2_11_111_2
e_1_2_11_172_2
e_1_2_11_90_2
e_1_2_11_98_2
e_1_2_11_52_2
e_1_2_11_75_2
e_1_2_11_124_2
e_1_2_11_26_2
e_1_2_11_147_2
e_1_2_11_49_2
e_1_2_11_162_2
e_1_2_11_86_3
e_1_2_11_40_2
e_1_2_11_86_2
e_1_2_11_40_3
e_1_2_11_7_2
e_1_2_11_40_4
e_1_2_11_63_2
e_1_2_11_109_2
e_1_2_11_14_5
e_1_2_11_14_4
e_1_2_11_14_3
e_1_2_11_135_2
e_1_2_11_158_2
e_1_2_11_14_2
Sinha A. K. (e_1_2_11_139_2) 1972
Prost J. (e_1_2_11_20_2) 1994; 4
e_1_2_11_37_2
e_1_2_11_112_2
e_1_2_11_14_6
e_1_2_11_173_4
e_1_2_11_173_3
e_1_2_11_173_2
Ulman A. (e_1_2_11_99_2) 1991
e_1_2_11_150_2
References_xml – volume: 99
  start-page: 1365
  year: 2001
  publication-title: Mol. Phys.
– volume: 3
  start-page: 485
  year: 1998
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 331
  start-page: 1302
  year: 2011
  publication-title: Science
– volume: 101 13
  start-page: 3869 1217
  year: 2001 2001
  publication-title: Chem. Rev. Adv. Mater.
– volume: 16
  start-page: 4588
  year: 2010
  publication-title: Chem. Eur. J.
– volume: 19
  start-page: 9091
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 120
  start-page: 394
  year: 2004
  publication-title: J. Chem. Phys.
– year: 1966
– volume: 28
  start-page: 4558
  year: 1995
  publication-title: Macromolecules
– volume: 20
  start-page: 914
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 47 19
  start-page: 490 3534
  year: 2008 2007
  publication-title: Angew. Chem. Int. Ed. Adv. Mater.
– volume: 131
  start-page: 2464
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 65 44
  start-page: 2157 3692
  year: 1990 1991
  publication-title: Phys. Rev. Lett. Phys. Rev. A
– start-page: 493
  year: 2009
– volume: 41
  start-page: 6269
  year: 2008
  publication-title: Macromolecules
– volume: 5
  start-page: 346
  year: 2009
  publication-title: Soft Matter
– volume: 12 32 32 17
  start-page: 6298 407 513 2319
  year: 2006 2005 2005 2007
  publication-title: Chem. Eur. J. Liq. Cryst. Liq. Cryst. J. Mater. Chem.
– volume: 11 25
  start-page: 706 5061
  year: 2010 2009
  publication-title: ChemPhysChem Langmuir
– volume: 43
  start-page: 4621
  year: 2004
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  start-page: 6783
  year: 2001
  publication-title: Macromolecules
– year: 1998
– year: 1977 1987
– volume: 17
  start-page: 4196
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 118
  start-page: 9855
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 13249
  year: 2009
  publication-title: J. Phys. Chem. B
– volume: 247
  start-page: 012032
  year: 2010
  publication-title: J. Phys., Conf. Series
– volume: 37
  start-page: 9941
  year: 2004
  publication-title: Macromolecules
– volume: 9 31
  start-page: 353 781
  year: 1999 2004
  publication-title: J. Mater. Chem. Liq. Cryst.
– volume: 1
  start-page: 465
  year: 2002
– volume: 13 14 15
  start-page: 796 5245 3773
  year: 1997 1998 1999
  publication-title: Langmuir Langmuir Langmuir
– volume: 31
  start-page: 5272
  year: 1998
  publication-title: Macromolecules
– volume: 7 33
  start-page: 312 831
  year: 2002 2000
  publication-title: Curr. Opin. Colloid Interface Sci. Acc. Chem. Res.
– volume: 9 322
  start-page: 4364 429
  year: 2009 2008
  publication-title: Nano Lett. Science
– volume: 43
  start-page: 2427
  year: 2005
  publication-title: J. Polymer Sci. B: Polymer Phys.
– volume: 109 120
  start-page: 4108 5824
  year: 1998 2004
  publication-title: J. Chem. Phys. J. Chem. Phys.
– year: 1972
– volume: 30 15 107 36
  start-page: 1179 1135 718 1902
  year: 2009 2003 2007 2007
  publication-title: Macromol. Rapid Commun. Adv. Mater. Chem. Rev. Chem. Soc. Rev.
– volume: 118
  start-page: 6605
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 114
  start-page: 7189
  year: 2010
  publication-title: J. Phys. Chem. B
– volume: 17
  start-page: 599
  year: 1996
  publication-title: Macromol. Rapid Commun.
– volume: 11
  start-page: 1893
  year: 2009
  publication-title: Phys. Chem. Chem. Phys.
– volume: 84 24 24 13 7
  start-page: 533 4957 707 1887 312
  year: 1990 1991 1998 2003 2002
  publication-title: Liq. Cryst. Macromolecules Liq. Cryst. J. Mater. Chem. Curr. Opin. Colloid Interf. Sci.
– volume: 31
  start-page: 2155
  year: 1992
  publication-title: Jpn. J. Appl. Phys.
– volume: 43 21 41
  start-page: 3192 6576 1799
  year: 2004 2005 2003
  publication-title: Angew. Chem. Int. Ed. Langmuir J. Polym. Sci. A – Polym. Chem.
– volume: 130
  start-page: 124910
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 515
  start-page: 2990
  year: 2007
  publication-title: Thin Solid Films
– volume: 22
  start-page: 4762
  year: 2010
  publication-title: Chem. Mater.
– volume: 310
  start-page: 1166
  year: 2005
  publication-title: Science
– volume: 123
  start-page: 6809
  year: 2001
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 9666
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 4457
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 36
  start-page: 6962
  year: 2003
  publication-title: Macromolecules
– volume: 100 107 8 119 31 26
  start-page: 85 363 1555 3027 5188 849
  year: 1999 2001 1998 1997 1998 1999
  publication-title: J. Fluorine Chem. J. Fluorine Chem. J. Mater. Chem. J. Am. Chem. Soc. Macro‐molecules Liq. Cryst.
– start-page: 3861
  year: 2008
  publication-title: Chem. Commun.
– volume: 21
  start-page: 1746
  year: 2009
  publication-title: Adv. Mater.
– volume: 109 125 270
  start-page: 8755 73 1789
  year: 2005 2001 1995
  publication-title: J. Phys. Chem. B Synth. Metals Science
– volume: 41 124 125 92 32
  start-page: 4031 12072 614 015501 55
  year: 2002 2002 2003 2004 2005
  publication-title: Angew. Chem. Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. Phys. Rev. Lett. Liq. Cryst.
– volume: 130
  start-page: 14448
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 165
  start-page: 233
  year: 1988
  publication-title: Mol. Cryst. Liqu. Cryst.
– volume: 31
  start-page: 1579 493
  year: 2010 2009
  publication-title: Macromol. Rapid Commun.
– volume: 36
  start-page: 1930
  year: 2007
  publication-title: Chem. Soc. Rev.
– volume: 19
  start-page: 6445
  year: 2007
  publication-title: Chem. Mater.
– year: 1992
– volume: 48 48
  start-page: 3657 1664
  year: 2009 2009
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed.
– volume: 43
  start-page: 9071
  year: 2010
  publication-title: Macromolecules
– volume: 20
  start-page: 7991
  year: 2004
  publication-title: Langmuir
– volume: 1
  start-page: 95
  year: 2005
  publication-title: Soft Matter
– volume: 4
  start-page: 1820
  year: 2008
  publication-title: Soft Matter
– volume: 131
  start-page: 18242
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 119 278 125
  start-page: 1539 449 15974
  year: 1997 1997 2003
  publication-title: J. Am. Chem. Soc. Science J. Am. Chem. Soc.
– volume: 30
  start-page: 772
  year: 2009
  publication-title: Macromol. Rapid Commun.
– year: 2002
– volume: 144
  start-page: 187
  year: 2010
  publication-title: Faraday Discuss.
– volume: 19
  start-page: 4401
  year: 2009
  publication-title: J. Mater. Chem.
– start-page: 222
  year: 1998
– volume: 47
  start-page: 6080
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 6957
  year: 2008
  publication-title: Chem. Eur. J.
– volume: 111 27
  start-page: 13675 1110
  year: 2007 2006
  publication-title: J. Phys. Chem. B Macromol. Rapid Commun.
– volume: 27 362 32 10 19 16 16
  start-page: 153 147 651 1565 1395 1136 1145
  year: 2000 2001 2005 2008 2009 2006 2006
  publication-title: Liq. Cryst. Mol. Cryst. Liq. Cryst. Liq. Cryst. Eur. J. Inorg. Chem. J. Mater. Chem. J. Mater. Chem. J. Mater. Chem.
– volume: 40 39 117
  start-page: 428 4289 7389
  year: 2001 2006 1995
  publication-title: Angew. Chem. Int. Ed. Macromolecules J. Am. Chem. Soc.
– volume: 10
  start-page: 1251
  year: 1994
  publication-title: Langmuir
– volume: 15
  start-page: 1708
  year: 2005
  publication-title: J. Mater. Chem.
– volume: 125 19
  start-page: 9012 1564
  year: 2003 2009
  publication-title: J. Am. Chem. Soc. J. Mater. Chem.
– volume: 96
  start-page: 730
  year: 1992
  publication-title: J. Chem. Phys.
– volume: 1
  start-page: 482
  year: 2003
– volume: 28
  start-page: 2765
  year: 1995
  publication-title: Macromolecules
– volume: 48
  start-page: 8014
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 5522
  year: 2008
  publication-title: Tetrahedron Lett.
– volume: 4 6 129
  start-page: 2585 945 244903
  year: 2010 2010 2008
  publication-title: ACS Nano Soft Matter J. Chem. Phys.
– volume: 125 126
  start-page: 10977 12930
  year: 2003 2004
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 6
  start-page: 401.
  year: 2004
  publication-title: CrystEngComm.
– year: 1962
– volume: 116 118 121
  start-page: 10508 9861 9702
  year: 2002 2003 2004
  publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys.
– volume: 48
  start-page: 7837
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 42
  start-page: 2215
  year: 1990
  publication-title: Phys. Rev. A
– volume: 92
  start-page: 5057
  year: 1990
  publication-title: J. Chem. Phys.
– volume: 4 328
  start-page: 663 1009
  year: 2008 2010
  publication-title: Soft Matter Science
– volume: 110
  start-page: 7087
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 28 273 47
  start-page: 1688 343 5275
  year: 1995 1997 2006
  publication-title: Macromolecules Science Polymer
– volume: 16
  start-page: 907
  year: 2006
  publication-title: J. Mater. Chem.
– volume: 131
  start-page: 17371
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 11288
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 10
  year: 1983
  publication-title: Macromolecules
– volume: 48
  start-page: 191
  year: 2005
  publication-title: Mater. Sci. Eng. R
– volume: 4 21
  start-page: 169 695
  year: 1994 1996
  publication-title: J. Phys. (Paris) II Liq. Cryst.
– volume: 73 31
  start-page: 712 343
  year: 2006 2010
  publication-title: Europhys. Lett. Eur. Phys. J. E
– volume: 33
  start-page: 2208
  year: 1992
  publication-title: Polymer
– volume: 30
  start-page: 725
  year: 2005
  publication-title: Prog. Polym. Sci.
– volume: 46
  start-page: 7856
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 107 108
  start-page: 4423 8713
  year: 1997 1998
  publication-title: J. Chem. Phys. J. Chem. Phys.
– volume: 46
  start-page: 1896
  year: 2010
  publication-title: Chem. Commun. Chem. Eur. J.
– volume: 106
  start-page: 4260
  year: 1997
  publication-title: J. Chem. Phys.
– volume: 307
  start-page: 96
  year: 2005
  publication-title: Science
– volume: 44 12
  start-page: L‐823 37
  year: 1983 2002
  publication-title: J. Phys. Lett. J. Mater. Chem.
– volume: 38
  start-page: 8022
  year: 2005
  publication-title: Macromolecules
– volume: 33
  start-page: 3757
  year: 2000
  publication-title: Macromolecules
– volume: 14
  start-page: 6352
  year: 2008
  publication-title: Chem. Eur. J.
– volume: 109
  start-page: 6275
  year: 2009
  publication-title: Chem. Rev.
– volume: 18 15
  start-page: 2995 3638
  year: 2008 2009
  publication-title: J. Mater. Chem. Chem. Eur. J.
– volume: 428 86
  start-page: 157 1093
  year: 2004 2006
  publication-title: Nature Phil. Mag.
– volume: 33
  start-page: 7819
  year: 2000
  publication-title: Macromolecules
– volume: 10
  start-page: 2311
  year: 1994
  publication-title: Langmuir
– volume: 31
  start-page: 8429
  year: 1998
  publication-title: Macromolecules
– volume: 22 36
  start-page: 237 427 2087
  year: 1996 1997 1997
  publication-title: Chem. Commun. Liq. Cryst. Angew. Chem. Int. Ed.
– volume: 37 36
  start-page: 191 770
  year: 2008 2007
  publication-title: Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 120
  start-page: 10669
  year: 1998
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 1683
  year: 1972
  publication-title: Phys. Rev. Lett.
– start-page: 54
  year: 2004
  publication-title: e‐Polymers
– volume: 49
  start-page: 5596
  year: 2008
  publication-title: Polymer
– volume: 47 15 9 13
  start-page: 2754 26 4869 2727
  year: 2008 2005 2003 2003
  publication-title: Angew. Chem. Int. Ed. J. Mater. Chem. Chem. Eur. J. J. Mater. Chem.
– volume: 129
  start-page: 9578
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 4729
  year: 2008
  publication-title: Chem. Mater.
– volume: 104
  start-page: 6332
  year: 2000
  publication-title: J. Phys. Chem. B
– volume: 2
  start-page: 157
  year: 2006
  publication-title: Soft Matter
– volume: 44 397
  start-page: 198 47
  year: 1998 2003
  publication-title: Europhys. Lett. Mol. Cryst. Liq. Cryst.
– volume: 19
  start-page: 1992
  year: 2007
  publication-title: Chem. Mater.
– volume: 201
  start-page: 296
  year: 2000
  publication-title: Macromol. Chem. Phys.
– volume: 19 21
  start-page: 155 363
  year: 1992 1993
  publication-title: Europhys. Lett. Europhys. Lett.
– volume: 130
  start-page: 14922
  year: 2008 2011
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc
– volume: 109 110
  start-page: 5868 6689 3245
  year: 2009 2010 2005
  publication-title: Chem. Rev. Chem. Rev. Chem. Commun.
– volume: 38
  start-page: 5275
  year: 1997
  publication-title: Polymer
– volume: 276
  start-page: 384
  year: 1997
  publication-title: Science
– volume: 14 56
  start-page: 504 1844
  year: 1998 1997
  publication-title: Langmuir Phys. Rev. E
– volume: 17
  start-page: 2139
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 127
  start-page: 16578
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 1874
  year: 2010
  publication-title: Macromolecules
– volume: 126
  start-page: 8608
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 7972
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 7 31 32 17 130
  start-page: 20 883 1139 2313 13842
  year: 2006 2004 2005 2007 2008
  publication-title: ChemPhysChem Liq. Cryst. Liq. Cryst. J. Mater. Chem. J. Am. Chem. Soc.
– volume: 45
  start-page: 4203
  year: 2006
  publication-title: Angew. Chem. Int. Ed.
– volume: 40
  start-page: 6990
  year: 2007
  publication-title: Macromolecules
– volume: 525
  start-page: 204
  year: 2010
  publication-title: Mol. Cryst. Liq. Cryst.
– volume: 299
  start-page: 1208
  year: 2003
  publication-title: Science
– volume: 189
  start-page: 125
  year: 2005
  publication-title: Adv. Polymer Sci.
– volume: 118 29 9
  start-page: 9855 646 164
  year: 1996 1996 1997
  publication-title: J. Am. Chem. Soc. Macromolecule Chem. Mater.
– volume: 39 20 18 20 46 131
  start-page: 2536 1909 968 2394 2607 101 17722
  year: 2006 2008 2006 2008 2005 2005 2009
  publication-title: Macromolecules Chem. Mater. Chem. Mater. Chem. Mater. Tetrahedron Lett. Chem. Commun. J. Am. Chem. Soc.
– volume: 12 328
  start-page: 8396 1009
  year: 2006 2010
  publication-title: Chem. Eur. J. Science
– volume: 30 32
  start-page: 772 4460
  year: 2009 1999
  publication-title: Macromol. Rapid Commun. Macromolecules
– volume: 5
  start-page: 1214
  year: 2009
  publication-title: Soft Matter
– volume: 109
  start-page: 1141
  year: 2009
  publication-title: Chem. Rev.
– volume: 40 50
  start-page: 177 2191
  year: 2008 2009
  publication-title: Polym. J. Polymer
– volume: 110 258 109 15 131 7
  start-page: 23472 205 4290 5418 3881 1641
  year: 2006 2005 2005 2009 2009 2006
  publication-title: J. Phys. Chem. B J. Phys. Chem. B Chem. Eur. J. J. Am. Chem. Soc. ChemPhysChem
– volume: 44
  start-page: 4739
  year: 2005
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 512
  year: 2004
  publication-title: Macromol. Theory Simul.
– volume: 188 31 25 9 13 11 14 27 28
  start-page: 1993 5188 301 1085 2700 5134 1463 55
  year: 1987 1998 1998 1999 1999 2001 2002 2000 2007
  publication-title: Makromol. Chem. Macromolecules Liq. Cryst. J. Mater. Chem. Chem. Commun. J. Mater. Chem. Chem. Mater. Liq. Cryst. Macromol. Rapid Commun.
– volume: 152
  start-page: 41
  year: 2000
  publication-title: Adv. Polym. Sci.
– start-page: 2469
  year: 2009
  publication-title: Chem. Commun.
– volume: 16 126 3 45 15
  start-page: 907 3051 558 1928 1722
  year: 2006 2006 2007 2006 2005
  publication-title: J. Mater. Chem. J. Am. Chem. Soc. Soft Matter Angew. Chem. Int. Ed. J. Mater. Chem.
– volume: 98
  start-page: 4870
  year: 1994
  publication-title: J. Phys. Chem.
– year: 1991
– volume: 32
  start-page: 1365
  year: 2005
  publication-title: Liq. Cryst.
– volume: 41 19
  start-page: 7946 2073
  year: 2008 2007
  publication-title: Macromolecules Adv. Mater.
– volume: 145 102
  start-page: 482 52
  year: 1988 1998
  publication-title: Chem. Phys. Lett. J. Phys. Chem. B
– volume: 41
  start-page: 3579
  year: 2008
  publication-title: Macromolecules
– volume: 47
  start-page: 9063
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 34 509 36
  start-page: 289 39 685
  year: 2007 2009 2009
  publication-title: Liq. Cryst. Mol. Cryst. Liq. Cryst. Liq. Cryst.
– volume: R62
  start-page: 37
  year: 2008
  publication-title: Mater. Sci. Eng.
– volume: 74
  start-page: 3316
  year: 1981
  publication-title: J. Chem. Phys.
– ident: e_1_2_11_32_2
  doi: 10.1021/ja073079h
– ident: e_1_2_11_96_2
  doi: 10.1021/ja9615738
– ident: e_1_2_11_170_3
  doi: 10.1002/adma.200701252
– ident: e_1_2_11_3_2
  doi: 10.1126/science.1120411
– volume-title: Tilings and Patterns
  year: 1987
  ident: e_1_2_11_2_3
  contributor:
    fullname: Grünbaum B.
– ident: e_1_2_11_84_3
  doi: 10.1126/science.1185547
– ident: e_1_2_11_83_2
  doi: 10.1021/cm071676x
– ident: e_1_2_11_94_2
  doi: 10.1209/epl/i2005-10459-5
– ident: e_1_2_11_79_2
  doi: 10.1080/00268948808082203
– ident: e_1_2_11_5_2
  doi: 10.1039/b615517k
– ident: e_1_2_11_73_2
  doi: 10.1039/b803000f
– ident: e_1_2_11_170_2
  doi: 10.1002/anie.200704460
– ident: e_1_2_11_113_2
  doi: 10.1016/j.tsf.2006.09.014
– ident: e_1_2_11_152_2
  doi: 10.1007/3-540-46778-5_2
– ident: e_1_2_11_31_2
  doi: 10.1016/S1359-0294(98)80022-8
– ident: e_1_2_11_53_2
  doi: 10.1021/cr900157q
– ident: e_1_2_11_89_8
  doi: 10.1021/ja905373d
– ident: e_1_2_11_12_2
  doi: 10.1016/S0022-1139(99)00205-5
– ident: e_1_2_11_19_7
  doi: 10.1039/B511758E
– ident: e_1_2_11_82_5
  doi: 10.1039/b303654e
– ident: e_1_2_11_23_3
  doi: 10.1063/1.1571812
– ident: e_1_2_11_55_2
  doi: 10.1039/b718131k
– ident: e_1_2_11_1_4
  doi: 10.1021/jp045298k
– ident: e_1_2_11_144_2
  doi: 10.1021/ma101990e
– ident: e_1_2_11_153_2
  doi: 10.1063/1.458541
– ident: e_1_2_11_17_4
  doi: 10.1039/b615791b
– ident: e_1_2_11_40_2
  doi: 10.1021/cr900182s
– ident: e_1_2_11_168_2
  doi: 10.1039/b701411b
– ident: e_1_2_11_6_3
  doi: 10.1002/9783527629091.ch9
– ident: e_1_2_11_35_2
  doi: 10.1002/anie.200701585
– ident: e_1_2_11_62_4
  doi: 10.1002/pola.10717
– ident: e_1_2_11_13_3
  doi: 10.1021/ma980251g
– ident: e_1_2_11_85_2
  doi: 10.1021/cm101654q
– ident: e_1_2_11_78_2
  doi: 10.1002/chem.200903210
– ident: e_1_2_11_154_2
  doi: 10.1209/0295-5075/19/3/001
– ident: e_1_2_11_165_2
  doi: 10.1063/1.477011
– ident: e_1_2_11_23_4
  doi: 10.1063/1.1792171
– ident: e_1_2_11_16_6
  doi: 10.1021/ja805672q
– ident: e_1_2_11_1_7
  doi: 10.1002/cphc.200600260
– ident: e_1_2_11_102_3
  doi: 10.1021/la980502e
– ident: e_1_2_11_175_2
  doi: 10.1039/b902937k
– ident: e_1_2_11_54_2
  doi: 10.1002/anie.200802957
– ident: e_1_2_11_129_2
  doi: 10.1002/(SICI)1521-3935(20000201)201:3<296::AID-MACP296>3.0.CO;2-U
– ident: e_1_2_11_13_4
  doi: 10.1080/026782998206092
– ident: e_1_2_11_143_3
  doi: 10.1126/science.278.5337.449
– ident: e_1_2_11_17_2
  doi: 10.1039/B504400F
– ident: e_1_2_11_70_2
  doi: 10.1021/ja909279b
– ident: e_1_2_11_89_3
  doi: 10.1021/cm702967c
– ident: e_1_2_11_107_2
  doi: 10.1103/PhysRevA.42.2215
– ident: e_1_2_11_155_2
  doi: 10.1063/1.474784
– ident: e_1_2_11_163_2
  doi: 10.1021/ja981550o
– ident: e_1_2_11_13_2
  doi: 10.1002/macp.1987.021880821
– ident: e_1_2_11_66_3
  doi: 10.1126/science.273.5273.343
– ident: e_1_2_11_87_2
  doi: 10.1002/chem.200501195
– ident: e_1_2_11_1_2
  doi: 10.1021/jp065066g
– ident: e_1_2_11_141_2
  doi: 10.1021/ma801367v
– ident: e_1_2_11_125_2
  doi: 10.1021/ma00235a003
– ident: e_1_2_11_9_2
  doi: 10.1021/ja0480015
– ident: e_1_2_11_24_2
  doi: 10.1002/9783527620555
– ident: e_1_2_11_74_2
  doi: 10.1051/jphyslet:019830044019082300
– ident: e_1_2_11_28_5
  doi: 10.1103/PhysRevLett.92.015501
– ident: e_1_2_11_124_2
  doi: 10.1021/ma980622t
– ident: e_1_2_11_165_3
  doi: 10.1063/1.1649729
– ident: e_1_2_11_177_2
  doi: 10.1002/chem.200800664
– ident: e_1_2_11_51_2
  doi: 10.1016/S1359-0294(02)00087-0
– ident: e_1_2_11_171_2
  doi: 10.1021/ma801369w
– ident: e_1_2_11_12_4
  doi: 10.1039/a802167h
– ident: e_1_2_11_156_2
  doi: 10.1063/1.3089701
– ident: e_1_2_11_19_4
  doi: 10.1080/02678290500125459
– ident: e_1_2_11_67_2
  doi: 10.1021/jp000896u
– start-page: 465
  volume-title: Handbook of Applied Surface and Colloid Chemistry
  year: 2002
  ident: e_1_2_11_50_2
  contributor:
    fullname: Hassan S.
– ident: e_1_2_11_16_2
  doi: 10.1002/cphc.200500472
– ident: e_1_2_11_33_2
  doi: 10.1021/ja8038932
– ident: e_1_2_11_37_2
  doi: 10.1021/cr8004229
– ident: e_1_2_11_130_2
  doi: 10.1021/ma9921551
– volume-title: Direct Analysis of Diffraction by Matter
  year: 1962
  ident: e_1_2_11_119_2
  contributor:
    fullname: Hosemann R.
– ident: e_1_2_11_149_2
  doi: 10.1080/00268970110061829
– ident: e_1_2_11_82_3
  doi: 10.1039/b413416h
– ident: e_1_2_11_48_2
  doi: 10.1039/b804945a
– ident: e_1_2_11_138_2
  doi: 10.1126/science.1078849
– ident: e_1_2_11_62_2
  doi: 10.1002/anie.200353259
– ident: e_1_2_11_57_3
  doi: 10.1002/1521-4095(200108)13:16<1217::AID-ADMA1217>3.0.CO;2-D
– ident: e_1_2_11_167_2
  doi: 10.1063/1.473129
– ident: e_1_2_11_23_2
  doi: 10.1063/1.1479139
– ident: e_1_2_11_18_3
  doi: 10.1021/ma9511558
– ident: e_1_2_11_176_5
  doi: 10.1039/b417320c
– ident: e_1_2_11_89_4
  doi: 10.1021/cm052221f
– start-page: 54
  year: 2004
  ident: e_1_2_11_134_2
  publication-title: e‐Polymers
  contributor:
    fullname: Abetz V.
– ident: e_1_2_11_69_2
  doi: 10.1002/anie.200900079
– ident: e_1_2_11_89_2
  doi: 10.1021/ma060001x
– ident: e_1_2_11_62_3
  doi: 10.1021/la050187d
– ident: e_1_2_11_80_2
  doi: 10.1021/ja104432d
– ident: e_1_2_11_28_4
  doi: 10.1021/ja0289999
– ident: e_1_2_11_15_3
  doi: 10.1080/02678290410001665995
– ident: e_1_2_11_150_2
  doi: 10.1063/1.1557525
– ident: e_1_2_11_91_2
  doi: 10.1143/JJAP.31.2155
– ident: e_1_2_11_135_2
  doi: 10.1002/mats.200400024
– volume-title: Understanding Molecular Simulation: From Algorithms to Applications
  year: 2002
  ident: e_1_2_11_145_2
  contributor:
    fullname: Frenkel D.
– ident: e_1_2_11_87_3
  doi: 10.1080/02678290412331298111
– ident: e_1_2_11_49_2
– ident: e_1_2_11_13_8
  doi: 10.1021/cm0207200
– ident: e_1_2_11_90_2
  doi: 10.1103/PhysRevLett.28.1683
– ident: e_1_2_11_172_2
  doi: 10.1021/jp101129p
– ident: e_1_2_11_82_4
  doi: 10.1002/chem.200305100
– ident: e_1_2_11_173_2
  doi: 10.1021/nn901725b
– ident: e_1_2_11_166_2
  doi: 10.1021/ma010194i
– ident: e_1_2_11_45_2
  doi: 10.1039/b818871h
– ident: e_1_2_11_59_3
  doi: 10.1016/S0379-6779(01)00513-6
– ident: e_1_2_11_118_2
  doi: 10.1007/12_004
– ident: e_1_2_11_60_4
  doi: 10.1021/ja00133a012
– ident: e_1_2_11_13_7
  doi: 10.1039/b104960g
– ident: e_1_2_11_17_3
  doi: 10.1021/ja057685t
– ident: e_1_2_11_74_3
  doi: 10.1039/b104289k
– ident: e_1_2_11_60_3
  doi: 10.1021/ma060497i
– ident: e_1_2_11_100_2
  doi: 10.1016/j.tetlet.2008.07.048
– ident: e_1_2_11_115_2
  doi: 10.1002/cphc.200900803
– ident: e_1_2_11_179_2
  doi: 10.1039/b902060h
– ident: e_1_2_11_142_3
  doi: 10.1080/026782997209144
– ident: e_1_2_11_158_2
  doi: 10.1039/b813015a
– ident: e_1_2_11_169_2
  doi: 10.1002/adma.200803403
– volume-title: Three‐Dimensional Nets and Polyhedra
  year: 1977
  ident: e_1_2_11_2_2
  contributor:
    fullname: Wells A. F.
– ident: e_1_2_11_13_10
  doi: 10.1002/marc.200600640
– ident: e_1_2_11_1_5
  doi: 10.1002/chem.200900493
– ident: e_1_2_11_87_4
  doi: 10.1080/02678290412331329215
– ident: e_1_2_11_89_5
  doi: 10.1021/cm703508t
– ident: e_1_2_11_173_4
  doi: 10.1063/1.3025918
– ident: e_1_2_11_29_2
  doi: 10.1039/b415892j
– ident: e_1_2_11_52_2
  doi: 10.1039/b502443a
– ident: e_1_2_11_181_2
  doi: 10.1039/b408258c
– ident: e_1_2_11_109_2
  doi: 10.1021/la049093e
– ident: e_1_2_11_161_2
  doi: 10.1039/b901601e
– ident: e_1_2_11_13_9
  doi: 10.1080/026782900750018627
– ident: e_1_2_11_121_2
  doi: 10.1016/S0032-3861(97)00089-X
– ident: e_1_2_11_140_2
  doi: 10.1038/nature02368
– ident: e_1_2_11_38_2
  doi: 10.1002/anie.200802021
– ident: e_1_2_11_106_2
  doi: 10.1021/la00019a048
– ident: e_1_2_11_142_4
  doi: 10.1002/anie.199720871
– ident: e_1_2_11_148_2
  doi: 10.1063/1.1630014
– ident: e_1_2_11_86_2
  doi: 10.1021/ja0357947
– ident: e_1_2_11_89_6
  doi: 10.1016/j.tetlet.2005.02.100
– ident: e_1_2_11_76_3
  doi: 10.1080/15421400903051069
– ident: e_1_2_11_42_2
  doi: 10.1002/anie.200703171
– ident: e_1_2_11_12_3
  doi: 10.1016/S0022-1139(00)00380-8
– ident: e_1_2_11_28_3
  doi: 10.1021/ja027869x
– ident: e_1_2_11_94_3
  doi: 10.1140/epje/i2010-10586-2
– ident: e_1_2_11_112_2
  doi: 10.1039/b516768j
– ident: e_1_2_11_11_2
  doi: 10.1016/0009-2614(88)80207-0
– ident: e_1_2_11_57_2
  doi: 10.1021/cr0001131
– ident: e_1_2_11_56_2
  doi: 10.1126/science.1193052
– ident: e_1_2_11_69_3
  doi: 10.1002/anie.200804307
– ident: e_1_2_11_143_4
  doi: 10.1021/ja037380j
– ident: e_1_2_11_36_2
  doi: 10.1021/cm800509u
– ident: e_1_2_11_105_3
  doi: 10.1103/PhysRevE.56.1844
– volume: 4
  start-page: 169
  year: 1994
  ident: e_1_2_11_20_2
  publication-title: J. Phys. (Paris) II
  contributor:
    fullname: Prost J.
– ident: e_1_2_11_157_3
  doi: 10.1002/marc.200600187
– ident: e_1_2_11_171_3
  doi: 10.1002/adma.200602516
– ident: e_1_2_11_76_4
  doi: 10.1080/02678290902755556
– volume: 397
  start-page: 47
  year: 2003
  ident: e_1_2_11_95_3
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421400390213708
  contributor:
    fullname: Eichhorn S. H.
– ident: e_1_2_11_26_2
  doi: 10.1021/ja003124k
– ident: e_1_2_11_111_2
  doi: 10.1021/jp037282k
– ident: e_1_2_11_27_2
  doi: 10.1126/science.1105612
– ident: e_1_2_11_20_3
  doi: 10.1080/02678299608032881
– ident: e_1_2_11_30_2
  doi: 10.1021/ja0535357
– ident: e_1_2_11_174_2
  doi: 10.1002/marc.200800775
– ident: e_1_2_11_18_2
  doi: 10.1021/ja9615738
– ident: e_1_2_11_162_2
  doi: 10.1080/15421401003799797
– ident: e_1_2_11_12_5
  doi: 10.1021/ja963687p
– ident: e_1_2_11_59_2
  doi: 10.1021/jp044202j
– ident: e_1_2_11_77_2
  doi: 10.1002/anie.200501254
– ident: e_1_2_11_19_3
  doi: 10.1080/10587250108025766
– ident: e_1_2_11_157_2
  doi: 10.1021/jp073173k
– ident: e_1_2_11_89_7
  doi: 10.1039/b414649b
– ident: e_1_2_11_8_3
  doi: 10.1021/ja048224v
– ident: e_1_2_11_1_3
  doi: 10.1007/b136670
– volume-title: Insoluble monolayers at Liquid‐Gas Interfeces
  year: 1966
  ident: e_1_2_11_101_2
  contributor:
    fullname: Gaines G. L.
– ident: e_1_2_11_66_4
  doi: 10.1016/j.polymer.2006.05.039
– ident: e_1_2_11_59_4
  doi: 10.1126/science.270.5243.1789
– ident: e_1_2_11_174_3
  doi: 10.1021/ma990020p
– ident: e_1_2_11_120_2
  doi: 10.1016/0032-3861(92)90890-9
– ident: e_1_2_11_136_2
  doi: 10.1021/ma048893t
– ident: e_1_2_11_13_5
  doi: 10.1039/a900867e
– ident: e_1_2_11_40_3
  doi: 10.1021/cr9002984
– ident: e_1_2_11_28_6
  doi: 10.1080/02678290512331324011
– ident: e_1_2_11_146_2
  doi: 10.1063/1.441483
– ident: e_1_2_11_103_3
  publication-title: Chem. Eur. J.
  contributor:
    fullname: Niton P.
– ident: e_1_2_11_66_2
  doi: 10.1021/ma00109a048
– ident: e_1_2_11_102_4
  doi: 10.1021/la981567k
– ident: e_1_2_11_140_3
  doi: 10.1080/14786430500363148
– ident: e_1_2_11_61_2
  doi: 10.1021/ma0009606
– ident: e_1_2_11_116_2
  doi: 10.1016/j.mser.2004.12.003
– ident: e_1_2_11_182_2
– ident: e_1_2_11_114_2
  doi: 10.1021/jp9055158
– ident: e_1_2_11_137_2
  doi: 10.1295/polymj.PJ2007132
– ident: e_1_2_11_64_2
  doi: 10.1016/j.polymer.2008.09.059
– start-page: 482
  volume-title: Encyclopedia of Polymer Science and Technology
  year: 2003
  ident: e_1_2_11_123_2
  contributor:
    fullname: Abetz V.
– ident: e_1_2_11_137_3
  doi: 10.1016/j.polymer.2009.02.047
– ident: e_1_2_11_14_4
  doi: 10.1080/026782998206821
– ident: e_1_2_11_18_4
  doi: 10.1021/cm960267q
– ident: e_1_2_11_155_3
  doi: 10.1063/1.476300
– ident: e_1_2_11_97_2
  doi: 10.1002/adfm.200902140
– ident: e_1_2_11_127_2
  doi: 10.1021/ma050716k
– ident: e_1_2_11_151_2
  doi: 10.1080/02678290500354505
– ident: e_1_2_11_22_2
  doi: 10.1021/ma00117a027
– ident: e_1_2_11_43_2
  doi: 10.1088/1742-6596/247/1/012032
– ident: e_1_2_11_143_2
  doi: 10.1021/ja963295i
– ident: e_1_2_11_176_2
  doi: 10.1002/marc.200900251
– ident: e_1_2_11_126_2
  doi: 10.1021/ma034840k
– ident: e_1_2_11_72_2
– ident: e_1_2_11_164_2
  doi: 10.1021/ma00112a023
– ident: e_1_2_11_81_2
  doi: 10.1002/anie.200903658
– ident: e_1_2_11_16_4
  doi: 10.1080/02678290500268176
– ident: e_1_2_11_41_2
  doi: 10.1039/B504400F
– year: 2011
  ident: e_1_2_11_47_3
  publication-title: J. Am. Chem. Soc
  contributor:
    fullname: Prehm M.
– ident: e_1_2_11_25_2
  doi: 10.1002/anie.200460762
– ident: e_1_2_11_75_2
  doi: 10.1039/b707880c
– ident: e_1_2_11_55_3
  doi: 10.1126/science.1185547
– ident: e_1_2_11_4_2
  doi: 10.1039/B618320B
– ident: e_1_2_11_19_5
  doi: 10.1002/ejic.200701341
– ident: e_1_2_11_16_5
  doi: 10.1039/b700972k
– ident: e_1_2_11_154_3
  doi: 10.1209/0295-5075/21/3/018
– volume-title: Liquid Crystals: Applications and Uses
  year: 1992
  ident: e_1_2_11_92_2
  contributor:
    fullname: Uchida T.
– ident: e_1_2_11_102_2
  doi: 10.1021/la960809i
– ident: e_1_2_11_103_2
  doi: 10.1039/b922638a
– ident: e_1_2_11_95_2
  doi: 10.1209/epl/i1998-00445-5
– ident: e_1_2_11_108_2
  doi: 10.1021/la00016a045
– ident: e_1_2_11_28_2
  doi: 10.1002/1521-3773(20021104)41:21<4031::AID-ANIE4031>3.0.CO;2-5
– ident: e_1_2_11_147_2
  doi: 10.1063/1.478563
– ident: e_1_2_11_76_2
  doi: 10.1080/02678290701211496
– ident: e_1_2_11_88_2
  doi: 10.1021/cm062949b
– volume-title: Topologically Close Packed Structures of TransitionMetal Alloys
  year: 1972
  ident: e_1_2_11_139_2
  contributor:
    fullname: Sinha A. K.
– ident: e_1_2_11_63_2
  doi: 10.1063/1.462458
– ident: e_1_2_11_14_2
  doi: 10.1080/02678299008047368
– ident: e_1_2_11_17_6
  doi: 10.1039/b415910a
– ident: e_1_2_11_40_4
  doi: 10.1039/b501804h
– ident: e_1_2_11_71_2
  doi: 10.1021/ja907457h
– ident: e_1_2_11_11_3
  doi: 10.1021/jp972613c
– ident: e_1_2_11_17_5
  doi: 10.1002/anie.200503402
– ident: e_1_2_11_98_2
– ident: e_1_2_11_10_2
  doi: 10.1002/polb.20537
– ident: e_1_2_11_51_3
  doi: 10.1021/ar990159k
– ident: e_1_2_11_176_4
  doi: 10.1021/cr068010r
– ident: e_1_2_11_180_3
  doi: 10.1126/science.1162950
– ident: e_1_2_11_84_2
  doi: 10.1002/chem.200600449
– ident: e_1_2_11_86_3
  doi: 10.1039/b819877b
– start-page: 222
  volume-title: Tätigkeitsbericht
  year: 1998
  ident: e_1_2_11_131_2
  contributor:
    fullname: Abetz V.
– ident: e_1_2_11_12_7
  doi: 10.1080/026782999204534
– ident: e_1_2_11_39_2
  doi: 10.1002/marc.200800775
– ident: e_1_2_11_93_2
  doi: 10.1039/b910496h
– ident: e_1_2_11_46_2
  doi: 10.1002/chem.200800141
– ident: e_1_2_11_117_2
  doi: 10.1002/9783527629091.ch9
– ident: e_1_2_11_82_2
  doi: 10.1002/anie.200701111
– ident: e_1_2_11_104_3
  doi: 10.1103/PhysRevA.44.3692
– ident: e_1_2_11_65_2
  doi: 10.1021/ma0710885
– ident: e_1_2_11_44_2
  doi: 10.1002/anie.200600019
– volume-title: An Introduction to Ultrathin Organic Films: From Langmuir‐Blodgett to Self‐assembly
  year: 1991
  ident: e_1_2_11_99_2
  contributor:
    fullname: Ulman A.
– ident: e_1_2_11_159_2
  doi: 10.1039/b818926a
– ident: e_1_2_11_68_2
  doi: 10.1021/ja807035j
– ident: e_1_2_11_14_3
  doi: 10.1021/ma00017a036
– ident: e_1_2_11_34_2
  doi: 10.1002/anie.200903247
– ident: e_1_2_11_73_3
  doi: 10.1002/chem.200802625
– ident: e_1_2_11_58_2
  doi: 10.1016/j.mser.2008.04.001
– ident: e_1_2_11_115_3
  doi: 10.1021/la804043z
– ident: e_1_2_11_105_2
  doi: 10.1021/la970761o
– ident: e_1_2_11_12_6
  doi: 10.1021/ma980251g
– ident: e_1_2_11_60_2
  doi: 10.1002/1521-3773(20010119)40:2<428::AID-ANIE428>3.0.CO;2-N
– ident: e_1_2_11_1_6
  doi: 10.1021/ja809946z
– ident: e_1_2_11_132_2
  doi: 10.1021/ma800146p
– ident: e_1_2_11_180_2
  doi: 10.1021/nl902646e
– ident: e_1_2_11_19_2
  doi: 10.1080/026782900203335
– ident: e_1_2_11_21_2
  doi: 10.1126/science.276.5311.384
– ident: e_1_2_11_7_2
  doi: 10.1016/j.progpolymsci.2005.04.001
– ident: e_1_2_11_104_2
  doi: 10.1103/PhysRevLett.65.2157
– ident: e_1_2_11_6_2
  doi: 10.1002/marc.201000169
– ident: e_1_2_11_8_2
  doi: 10.1021/ja036213g
– ident: e_1_2_11_19_8
  doi: 10.1039/B511832H
– ident: e_1_2_11_178_2
  doi: 10.1021/ja810123b
– ident: e_1_2_11_4_3
  doi: 10.1039/b501600m
– volume: 13
  year: 1999
  ident: e_1_2_11_13_6
  publication-title: Chem. Commun.
  contributor:
    fullname: Mehl G. H.
– ident: e_1_2_11_160_2
  doi: 10.1039/b802452a
– ident: e_1_2_11_110_2
  doi: 10.1021/j100069a017
– ident: e_1_2_11_87_5
  doi: 10.1039/B618403K
– ident: e_1_2_11_133_2
  doi: 10.1021/ma902631e
– ident: e_1_2_11_14_5
  doi: 10.1039/b303776b
– ident: e_1_2_11_19_6
  doi: 10.1039/b819165d
– ident: e_1_2_11_173_3
  doi: 10.1039/b917403f
– ident: e_1_2_11_176_3
  doi: 10.1002/adma.200300009
– ident: e_1_2_11_47_2
  doi: 10.1021/ja805742t
– ident: e_1_2_11_122_2
  doi: 10.1021/ma971848j
– ident: e_1_2_11_142_2
  doi: 10.1039/CC9960000237
– ident: e_1_2_11_16_3
  doi: 10.1080/02678290410001695668
– ident: e_1_2_11_14_6
  doi: 10.1016/S1359-0294(02)00087-0
– ident: e_1_2_11_15_2
  doi: 10.1039/a807003b
– ident: e_1_2_11_128_2
  doi: 10.1002/marc.1996.030170814
SSID ssj0017734
Score 2.386864
Snippet The diversity of phase morphologies observed recently in star‐branched liquid‐crystalline and polymeric compounds containing at least three immiscible segments...
Abstract The diversity of phase morphologies observed recently in star‐branched liquid‐crystalline and polymeric compounds containing at least three immiscible...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1296
SubjectTerms columnar liquid crystals
honeycombs
Langmuir films
rod-coil molecules
simulation
Title Self-Assembly at Different Length Scales: Polyphilic Star-Branched Liquid Crystals and Miktoarm Star Copolymers
URI https://api.istex.fr/ark:/67375/WNG-V7NPM6R3-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201002091
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQXODAjiibfEBwCmRx7JQbFApCtEKsvUVeoWqbQppKlBOfwDfyJdhOGygXJDjkEMljJTN2_DLLGwC2MWaRpMh3AiyEgzyFnUhR7BChQkJ4IMvS-CFrdXx2i84bYeNbFX_OD1E43MzOsN9rs8Ep6-1_kYZSoTo2NUsDHlu-btj0DCq6KvijPELysDL2TIKX1xixNrr-_rj42Kk0ZRT8Mo5W7XFTnQN09KB5lklrr5-xPf76g8PxP28yD2aHWBQe5otnAUzIZBHMfGMoXAK9a9lWH2_vJjbcYe0BpBk8HvZUyeCFTB6yR3it7Sx7B_Cy2x48GQcNhxrDplrsyLTteJQCXjSf-00BK-lAo9F2D9JEwFqzlXVp2rGDYcV0axgYL_oyuK2e3FTOnGGfBoebeisnjFwZUsWEvrDHEJfKU0hFnITMVRwzj7oB96nQcIJT6gXEhg-x1GjGDAhWwGTSTeQqgLiMEcUalShXIsXL1JVBoH-RCBeozDEqgd2RneKnnI4jzomX_dioMS7UWAI71ozFMJq2TBIbCeP7-ml8R-qXNXwVxOcl4Fvj_DJffHhcrRV3a38RWgfTuUcaOW60ASaztC83NaTJ2JZdtp9Eu_B0
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9gAcaHmJUAp7QHBy68d61-HWpoRQ4qjqA3pb7ZNGSZziOBLpiZ_Ab-SXsLNODOGCBAcfLM1Y9s6O99uZ2W8QekmpzIwgcZBQrQMSWRpkVtCAaZsyphLTNhCHzAe0d0GOL9NVNSGchan5IZqAG3iG_1-Dg0NAev8Xa6jQduJrsxzigfPrm87nU7-rOm0YpCLG6sQyjaDEK7pc8TaG8f66_tq6tAlD_HUdr_oFp7uF5OpV6zqT0d68knvq5g8Wx__6lm10bwlH8UE9f-6jW6Z4gO7-RlL4EM3OzNj--PYd0sMTOV5gUeGjZVuVCvdN8bm6wmfO1Gb2Bp9Mx4triNEo7GBs6dQOoXPHldG4P_wyH2rcKRcOkI5nWBQa58NRNRXlxAvjDjRsWEAg_RG66L497_SCZauGQMGRqyDNQpMKK7W7aCSJMjayxGaKpTK0ispIhImKhXaIQgkRJcxnEKlxgAYEksdoo5gW5gnCtE2JoA6Y2NAQq9oiNEnidklMadJWlLTQ65Wh-HXNyMFr7uWYwzDyZhhb6JW3YyMmyhHUsbGUfxq84x_Z4CSnpwk_bqHYW-cvz-MHR928uXv6L0ov0O3eed7n_feDDzvoTh2gJkGYPUMbVTk3uw7hVPK5n8M_AWCx9JY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hkFB7aHlVTctjD6icDLZ3vetwg4TwaBJFUNrcVut9lCiJExxHIpz4CfxGfgm7dmIIF6T24IOlnZU9M-v9PDvzDQC7hESh4th3EJHSwZ4mTqg5cajUAaUCqbKycchGk5xd44t20H5VxZ_zQxQBN7sysu-1XeBDqQ9eSEO51P0sNcsAHlu-voQJ8q1fVy8LAimP0vxcmXg2w8trz2gbXf9gXn5uW1qyGr6bh6vZflP7DPjsSfM0k-7-OI32xf0bEsf_eZUV8GkKRuFR7j2rYEHFa-DjK4rCdTC6Uj399PBoD4f7UW8CeQqr06YqKayr-G96A6-ModXoELYGvcnQRmgENCA2MWLHtm_HjZKw3rkddySsJBMDR3sjyGMJG51uOuBJPxsMK7Zdw8SG0TfAde3kV-XMmTZqcIQtuHKC0FUB15E0F_EiLJT2NNahoEHkakEij7tI-FwaPCE49xDNzg-JMnDGDkBfwGI8iNVXAEmZYE4MLNGuwlqUuasQMv9IVEhcFgSXwN7MTmyY83GwnHnZZ1aNrFBjCfzIzFgM40nXZrHRgP1pnrLftNlqkEvELkrAz4zzznzsqFprFHff_kVoByy3qjVWP2_-_A4-5NFp7LjhJlhMk7HaMvAmjbYzD34Gjr_zRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Assembly+at+Different+Length+Scales%3A+Polyphilic+Star%E2%80%90Branched+Liquid+Crystals+and+Miktoarm+Star+Copolymers&rft.jtitle=Advanced+functional+materials&rft.au=Ungar%2C+Goran&rft.au=Tschierske%2C+Carsten&rft.au=Abetz%2C+Volker&rft.au=Holyst%2C+Robert&rft.date=2011-04-08&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=21&rft.issue=7&rft.spage=1296&rft.epage=1323&rft_id=info:doi/10.1002%2Fadfm.201002091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201002091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon