ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL
Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin’s chromatin residence time to minutes, it has been reported tha...
Saved in:
Published in | eLife Vol. 9 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
eLife Sciences Publications Ltd
17.02.2020
eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2050-084X 2050-084X |
DOI | 10.7554/eLife.52091 |
Cover
Loading…
Abstract | Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin’s chromatin residence time to minutes, it has been reported that some loops exist for hours. How these loops can persist is unknown. We show that during G1-phase, mammalian cells contain acetylated cohesinSTAG1 which binds chromatin for hours, whereas cohesinSTAG2 binds chromatin for minutes. Our results indicate that CTCF and the acetyltransferase ESCO1 protect a subset of cohesinSTAG1 complexes from WAPL, thereby enable formation of long and presumably long-lived loops, and that ESCO1, like CTCF, contributes to boundary formation in chromatin looping. Our data are consistent with a model of nested loop extrusion, in which acetylated cohesinSTAG1 forms stable loops between CTCF sites, demarcating the boundaries of more transient cohesinSTAG2 extrusion activity. |
---|---|
AbstractList | Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin’s chromatin residence time to minutes, it has been reported that some loops exist for hours. How these loops can persist is unknown. We show that during G1-phase, mammalian cells contain acetylated cohesinSTAG1 which binds chromatin for hours, whereas cohesinSTAG2 binds chromatin for minutes. Our results indicate that CTCF and the acetyltransferase ESCO1 protect a subset of cohesinSTAG1 complexes from WAPL, thereby enable formation of long and presumably long-lived loops, and that ESCO1, like CTCF, contributes to boundary formation in chromatin looping. Our data are consistent with a model of nested loop extrusion, in which acetylated cohesinSTAG1 forms stable loops between CTCF sites, demarcating the boundaries of more transient cohesinSTAG2 extrusion activity. Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin's chromatin residence time to minutes, it has been reported that some loops exist for hours. How these loops can persist is unknown. We show that during G1-phase, mammalian cells contain acetylated cohesinSTAG1 which binds chromatin for hours, whereas cohesinSTAG2 binds chromatin for minutes. Our results indicate that CTCF and the acetyltransferase ESCO1 protect a subset of cohesinSTAG1 complexes from WAPL, thereby enable formation of long and presumably long-lived loops, and that ESCO1, like CTCF, contributes to boundary formation in chromatin looping. Our data are consistent with a model of nested loop extrusion, in which acetylated cohesinSTAG1 forms stable loops between CTCF sites, demarcating the boundaries of more transient cohesinSTAG2 extrusion activity.Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin's chromatin residence time to minutes, it has been reported that some loops exist for hours. How these loops can persist is unknown. We show that during G1-phase, mammalian cells contain acetylated cohesinSTAG1 which binds chromatin for hours, whereas cohesinSTAG2 binds chromatin for minutes. Our results indicate that CTCF and the acetyltransferase ESCO1 protect a subset of cohesinSTAG1 complexes from WAPL, thereby enable formation of long and presumably long-lived loops, and that ESCO1, like CTCF, contributes to boundary formation in chromatin looping. Our data are consistent with a model of nested loop extrusion, in which acetylated cohesinSTAG1 forms stable loops between CTCF sites, demarcating the boundaries of more transient cohesinSTAG2 extrusion activity. Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin’s chromatin residence time to minutes, it has been reported that some loops exist for hours. How these loops can persist is unknown. We show that during G1-phase, mammalian cells contain acetylated cohesin STAG1 which binds chromatin for hours, whereas cohesin STAG2 binds chromatin for minutes. Our results indicate that CTCF and the acetyltransferase ESCO1 protect a subset of cohesin STAG1 complexes from WAPL, thereby enable formation of long and presumably long-lived loops, and that ESCO1, like CTCF, contributes to boundary formation in chromatin looping. Our data are consistent with a model of nested loop extrusion, in which acetylated cohesin STAG1 forms stable loops between CTCF sites, demarcating the boundaries of more transient cohesin STAG2 extrusion activity. |
Author | Roitinger, Elisabeth Mechtler, Karl Peters, Jan-Michael Nagasaka, Kota Ivanov, Miroslav P Várnai, Csilla Dürnberger, Gerhard Ladurner, Rene Schoenfelder, Stefan Fraser, Peter Tang, Wen Huang, Xingfan Davidson, Iain Finley Wutz, Gordana Sanborn, Adrian van der Lelij, Petra St Hilaire, Brian Glenn Stocsits, Roman R Lieberman-Aiden, Erez Pignard, Benoit |
Author_xml | – sequence: 1 givenname: Gordana orcidid: 0000-0002-6842-0795 surname: Wutz fullname: Wutz, Gordana organization: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria – sequence: 2 givenname: Rene surname: Ladurner fullname: Ladurner, Rene organization: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria – sequence: 3 givenname: Brian Glenn surname: St Hilaire fullname: St Hilaire, Brian Glenn organization: The Center for Genome Architecture, Baylor College of Medicine, Houston, United States, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States, Center for Theoretical Biological Physics, Rice University, Houston, United States – sequence: 4 givenname: Roman R surname: Stocsits fullname: Stocsits, Roman R organization: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria – sequence: 5 givenname: Kota orcidid: 0000-0003-0765-638X surname: Nagasaka fullname: Nagasaka, Kota organization: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria – sequence: 6 givenname: Benoit surname: Pignard fullname: Pignard, Benoit organization: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria – sequence: 7 givenname: Adrian surname: Sanborn fullname: Sanborn, Adrian organization: The Center for Genome Architecture, Baylor College of Medicine, Houston, United States, Department of Computer Science, Stanford University, Stanford, United States – sequence: 8 givenname: Wen surname: Tang fullname: Tang, Wen organization: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria – sequence: 9 givenname: Csilla surname: Várnai fullname: Várnai, Csilla organization: Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom, Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom – sequence: 10 givenname: Miroslav P orcidid: 0000-0001-9352-0969 surname: Ivanov fullname: Ivanov, Miroslav P organization: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria – sequence: 11 givenname: Stefan orcidid: 0000-0002-3200-8133 surname: Schoenfelder fullname: Schoenfelder, Stefan organization: Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom – sequence: 12 givenname: Petra surname: van der Lelij fullname: van der Lelij, Petra organization: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria – sequence: 13 givenname: Xingfan surname: Huang fullname: Huang, Xingfan organization: The Center for Genome Architecture, Baylor College of Medicine, Houston, United States, Departments of Computer Science and Computational and Applied Mathematics, Rice University, Houston, United States, Departments of Computer Science and Genome Sciences, University of Washington, Seattle, United States – sequence: 14 givenname: Gerhard surname: Dürnberger fullname: Dürnberger, Gerhard organization: Institute of Molecular Biotechnology, Vienna Biocenter (VBC), Vienna, Austria – sequence: 15 givenname: Elisabeth surname: Roitinger fullname: Roitinger, Elisabeth organization: Institute of Molecular Biotechnology, Vienna Biocenter (VBC), Vienna, Austria – sequence: 16 givenname: Karl surname: Mechtler fullname: Mechtler, Karl organization: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria, Institute of Molecular Biotechnology, Vienna Biocenter (VBC), Vienna, Austria – sequence: 17 givenname: Iain Finley surname: Davidson fullname: Davidson, Iain Finley organization: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria – sequence: 18 givenname: Peter surname: Fraser fullname: Fraser, Peter organization: Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom, Department of Biological Science, Florida State University, Tallahassee, United States – sequence: 19 givenname: Erez surname: Lieberman-Aiden fullname: Lieberman-Aiden, Erez organization: The Center for Genome Architecture, Baylor College of Medicine, Houston, United States, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States, Center for Theoretical Biological Physics, Rice University, Houston, United States, Departments of Computer Science and Computational and Applied Mathematics, Rice University, Houston, United States, Broad Institute of MIT and Harvard, Cambridge, United States – sequence: 20 givenname: Jan-Michael orcidid: 0000-0003-2820-3195 surname: Peters fullname: Peters, Jan-Michael organization: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria |
BookMark | eNptkl1rkzEUx4NM3Jy78gsEvBFGZ16bJzdCedjmoDBhFb0QQl7blKdJTZ4K-_am7QQ3zE2S__mdf8g55y04STl5AN5jdCU4Z5_8PAZ_xQmS-BU4I4ijCerYj5N_zqfgotY1akuwrsPyDTilBE057_AZ-Hn90N9jqJOD_aK_gT5pM3gYctnoMeYEc4BDTktoVyXvpdSueVuheYTbkkdvm9SieeVrTA-L2S2GoZHw--zr_B14HfRQ_cXTfg6-3Vwv-i-T-f3tXT-bTyyjFE-Ypp2UlkonHJKUBcKFsIZaG0RnjPTOB8K4s9ozQfYioZoga5tszBTRc3B39HVZr9W2xI0ujyrrqA5CLkulyxjt4BVHQRqOWxmoZc4TozuPmA5Odowz4ZrX56PXdmc23lmfxqKHZ6bPIymu1DL_VgJx1mrcDD4-GZT8a-frqDaxWj8MOvm8q4pQPuWdbN1p6IcX6DrvSmqlalTHBMNiihuFj5Qtudbig7JxPDSnvR8HhZHaj4I6jII6jELLuXyR8_cD_6P_ALvptT8 |
CitedBy_id | crossref_primary_10_1126_sciadv_abg8205 crossref_primary_10_1172_JCI165448 crossref_primary_10_7554_eLife_88656_4 crossref_primary_10_1242_jcs_247577 crossref_primary_10_1016_j_jbc_2024_107341 crossref_primary_10_1038_s44319_024_00210_w crossref_primary_10_1186_s13072_022_00469_0 crossref_primary_10_1038_s41594_022_00780_0 crossref_primary_10_1016_j_molcel_2022_09_003 crossref_primary_10_1134_S0006297924040023 crossref_primary_10_7554_eLife_73348 crossref_primary_10_1126_sciadv_adp0855 crossref_primary_10_1080_10409238_2023_2182273 crossref_primary_10_1093_nar_gkab864 crossref_primary_10_1002_bies_202400137 crossref_primary_10_1016_j_molcel_2023_07_006 crossref_primary_10_1038_s41375_020_0981_z crossref_primary_10_1016_j_isci_2022_103840 crossref_primary_10_1016_j_tcb_2023_03_006 crossref_primary_10_1101_gr_253211_119 crossref_primary_10_7554_eLife_74447 crossref_primary_10_1111_febs_16362 crossref_primary_10_1016_j_ceb_2020_11_009 crossref_primary_10_1186_s12864_022_08574_w crossref_primary_10_1016_j_celrep_2022_111501 crossref_primary_10_1016_j_molcel_2024_02_004 crossref_primary_10_1038_s41467_025_56889_5 crossref_primary_10_3389_fonc_2021_821495 crossref_primary_10_1038_s44319_024_00303_6 crossref_primary_10_1042_BCJ20210140 crossref_primary_10_1038_s41594_022_00773_z crossref_primary_10_1038_s41467_024_49882_x crossref_primary_10_1186_s13072_020_00353_9 crossref_primary_10_1038_s41467_023_37583_w crossref_primary_10_1016_j_tcb_2021_03_005 crossref_primary_10_1038_s41467_024_45955_z crossref_primary_10_1080_19491034_2020_1782024 crossref_primary_10_1016_j_jbc_2022_102117 crossref_primary_10_1128_JVI_00364_21 crossref_primary_10_1093_nar_gkae391 crossref_primary_10_1016_j_sbi_2023_102622 crossref_primary_10_7554_eLife_77848 crossref_primary_10_1038_s41594_020_00539_5 crossref_primary_10_1038_s41580_021_00349_7 crossref_primary_10_1016_j_molcel_2023_07_024 crossref_primary_10_3390_ijms22136788 crossref_primary_10_3390_cells10123455 crossref_primary_10_3390_ijms22115868 crossref_primary_10_1186_s13059_023_02996_9 crossref_primary_10_1038_s41586_020_03121_7 crossref_primary_10_31857_S0320972524040024 crossref_primary_10_3390_ncrna7040067 crossref_primary_10_1038_s41576_022_00530_4 crossref_primary_10_1083_jcb_202405169 crossref_primary_10_15252_embr_202255146 crossref_primary_10_1126_science_abn6583 crossref_primary_10_7554_eLife_59889 crossref_primary_10_3390_genes13040583 crossref_primary_10_1038_s12276_024_01233_y crossref_primary_10_1038_s41586_023_05961_5 crossref_primary_10_1038_s41467_023_41265_y crossref_primary_10_1016_j_gde_2023_102061 crossref_primary_10_1007_s00018_024_05122_5 crossref_primary_10_1038_s41588_023_01364_4 crossref_primary_10_1002_advs_202414018 crossref_primary_10_1073_pnas_2017176118 crossref_primary_10_1080_10985549_2023_2199660 crossref_primary_10_1093_nargab_lqab040 crossref_primary_10_3389_fmolb_2021_818707 crossref_primary_10_1016_j_gde_2020_10_005 crossref_primary_10_1038_s41588_022_01232_7 crossref_primary_10_1038_s41586_020_2578_0 crossref_primary_10_1016_j_celrep_2020_108014 crossref_primary_10_1038_s41467_023_36900_7 crossref_primary_10_1016_j_ceb_2020_12_001 crossref_primary_10_1016_j_gde_2023_102052 crossref_primary_10_1016_j_ceb_2020_04_011 crossref_primary_10_1038_s41388_024_03221_y crossref_primary_10_1016_j_celrep_2024_114498 crossref_primary_10_1016_j_gde_2020_02_024 crossref_primary_10_1038_s41467_024_49178_0 crossref_primary_10_1038_s41588_021_00863_6 crossref_primary_10_1038_s41467_023_41316_4 crossref_primary_10_1038_s41467_021_21366_2 crossref_primary_10_1038_s41580_024_00710_6 crossref_primary_10_1186_s13059_022_02790_z crossref_primary_10_7554_eLife_79386 crossref_primary_10_1016_j_molcel_2022_04_006 crossref_primary_10_1038_s41467_021_24808_z crossref_primary_10_1002_bies_202400121 crossref_primary_10_1038_s41568_020_0270_1 crossref_primary_10_7554_eLife_88656 crossref_primary_10_1172_jci_insight_142149 crossref_primary_10_1007_s00294_020_01150_3 crossref_primary_10_1016_j_molcel_2023_03_009 crossref_primary_10_7554_eLife_61405 crossref_primary_10_1038_s41588_024_01832_5 crossref_primary_10_3390_cells13221896 crossref_primary_10_1080_10428194_2024_2400210 crossref_primary_10_1093_genetics_iyae128 crossref_primary_10_3390_biology10040272 crossref_primary_10_1007_s10142_023_01146_5 crossref_primary_10_1016_j_molcel_2025_02_005 crossref_primary_10_1038_s41467_021_25604_5 |
Cites_doi | 10.1073/pnas.1708291114 10.1146/annurev-genom-083115-022339 10.15252/embj.201797150 10.1083/jcb.123.6.1635 10.1126/science.1157880 10.1534/g3.113.005777 10.1038/nature12471 10.15252/embj.201798004 10.1038/ng.3168 10.1038/nature21711 10.1073/pnas.1011069107 10.1016/j.cell.2017.09.026 10.1016/j.molcel.2020.01.019 10.1038/embor.2012.72 10.1126/science.1157774 10.1126/science.aaz4475 10.1016/j.molcel.2005.03.017 10.1101/gad.605910 10.1016/j.celrep.2019.05.078 10.1073/pnas.1306900110 10.1016/j.ymeth.2009.03.001 10.1126/science.1203619 10.1083/jcb.201801048 10.1038/nprot.2013.143 10.1038/nature22063 10.1371/journal.pgen.1000739 10.1101/gad.306084.117 10.1073/pnas.1518552112 10.1016/bs.ai.2018.07.001 10.1016/j.cell.2014.11.021 10.1186/gb-2008-9-9-r137 10.1126/science.aao6135 10.1016/j.febslet.2014.08.015 10.1002/9780470151808.sc01c03s3 10.7554/eLife.46269 10.1016/j.jcp.2008.01.047 10.1016/j.cels.2016.07.002 10.1038/nsmb.2880 10.1083/jcb.150.3.405 10.1016/j.stem.2019.08.003 10.1016/j.cub.2014.08.011 10.1038/s41594-018-0070-4 10.1038/nature06634 10.1101/gad.1844309 10.1083/jcb.151.4.749 10.1186/1471-2105-13-134 10.1016/j.cels.2015.07.012 10.1038/nature07098 10.1016/j.cell.2017.04.013 10.1016/j.cub.2006.06.068 10.1038/nmeth.1199 10.1038/s41586-018-0518-z 10.1016/j.molcel.2016.02.033 10.1016/j.cub.2007.02.029 10.1093/emboj/20.23.6877 10.1093/bioinformatics/bts607 10.1038/emboj.2012.60 10.1038/nature11049 10.1016/j.cell.2008.01.011 10.1016/j.cub.2015.12.073 10.1126/science.aaz3418 10.1016/j.celrep.2016.04.085 10.1016/j.cell.2012.07.028 10.1016/j.cell.2010.10.031 10.1016/j.cell.2018.03.072 10.1016/j.cell.2006.09.040 10.1016/j.cub.2015.05.017 10.15252/embj.201798083 10.1016/j.celrep.2015.02.004 10.1038/emboj.2011.381 10.1126/science.aar7831 10.1016/S1097-2765(00)80420-7 10.1101/642959 10.1038/nature24281 10.1016/j.cell.2017.05.004 10.1038/nature08079 10.1038/nature11082 10.1073/pnas.1505323112 10.1038/nature23001 10.1038/nmeth.2019 10.15252/embj.201592532 10.1038/nature12912 10.1038/nature12593 10.1016/j.molcel.2015.09.023 10.1016/j.cpc.2015.02.028 |
ContentType | Journal Article |
Copyright | 2020, Wutz et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020, Wutz et al. 2020, Wutz et al 2020 Wutz et al |
Copyright_xml | – notice: 2020, Wutz et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020, Wutz et al. – notice: 2020, Wutz et al 2020 Wutz et al |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.52091 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_50f9b518193c4de2ba8e04afd984547d PMC7054000 10_7554_eLife_52091 |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: EPIC-XS 823839 – fundername: ; grantid: Z196-B20 Wittgenstein award – fundername: ; grantid: 3686 International Project – fundername: ; grantid: SFB F34 – fundername: ; grantid: BB/J004480/1 – fundername: ; grantid: 693949 – fundername: ; grantid: WWTF LS09-13 – fundername: ; grantid: 5UM1HG009375-03 – fundername: ; grantid: Fellowship LT001527/2017 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c4331-4a3899c39d7d0934f2577cb3ccf78bb9edef245dcae472cf7823a20ccef2bb603 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:21:59 EDT 2025 Thu Aug 21 18:29:05 EDT 2025 Fri Jul 11 12:02:21 EDT 2025 Fri Jul 25 11:45:58 EDT 2025 Thu Apr 24 23:11:12 EDT 2025 Tue Jul 01 04:12:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4331-4a3899c39d7d0934f2577cb3ccf78bb9edef245dcae472cf7823a20ccef2bb603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The Francis Crick Institute, London, United Kingdom. Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom. Gregor Mendel Institute of Molecular Plant Biology Austrian Academy of Sciences, Vienna, Austria. Department of Biochemistry, Stanford University School of Medicine, Stanford, United States. |
ORCID | 0000-0003-2820-3195 0000-0002-3200-8133 0000-0003-0765-638X 0000-0002-6842-0795 0000-0001-9352-0969 |
OpenAccessLink | https://www.proquest.com/docview/2384741761?pq-origsite=%requestingapplication% |
PMID | 32065581 |
PQID | 2384741761 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_50f9b518193c4de2ba8e04afd984547d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7054000 proquest_miscellaneous_2356589050 proquest_journals_2384741761 crossref_citationtrail_10_7554_eLife_52091 crossref_primary_10_7554_eLife_52091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200217 |
PublicationDateYYYYMMDD | 2020-02-17 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200217 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | eLife |
PublicationYear | 2020 |
Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Vietri Rudan (bib79) 2015; 10 Roig (bib63) 2014; 588 Holzmann (bib30) 2019; 8 Kawasumi (bib32) 2017; 31 Rao (bib60) 2014; 159 Schmitz (bib68) 2007; 17 Michalska (bib46) 2007; 3 Unal (bib76) 2008; 321 Strunnikov (bib72) 1993; 123 Losada (bib44) 2000; 150 Nora (bib52) 2012; 485 Walther (bib81) 2018; 217 Sumara (bib73) 2000; 151 Tedeschi (bib75) 2013; 501 Alomer (bib1) 2017; 114 Elbashir (bib18) 2001; 20 Remeseiro (bib62) 2012; 31 Ran (bib58) 2013; 8 Sanborn (bib65) 2015; 112 Vian (bib78) 2018; 173 Burkhardt (bib4) 2016; 26 Wutz (bib84) 2017; 36 Solomon (bib71) 2011; 333 Gerlich (bib23) 2006; 16 Ladurner (bib38) 2020 Durand (bib16) 2016; 3 Anderson (bib2) 2008; 227 Wendt (bib82) 2008; 451 Parelho (bib55) 2008; 132 Hadjur (bib27) 2009; 460 Schwarzer (bib69) 2017; 551 Vaur (bib77) 2012; 13 Gibcus (bib24) 2018; 359 Lawrence (bib41) 2014; 505 Busslinger (bib5) 2017; 544 Kim (bib33) 2019; 366 Rahman (bib57) 2015; 112 Whelan (bib83) 2012; 31 Haering (bib28) 2008; 454 Leiserson (bib42) 2015; 47 Viny (bib80) 2019; 25 Cai (bib6) 2018; 561 Schindelin (bib66) 2012; 9 Kueng (bib35) 2006; 127 Ye (bib85) 2012; 13 Ganji (bib21) 2018; 360 Merkenschlager (bib45) 2016; 17 de Wit (bib14) 2015; 60 Lafont (bib39) 2010; 107 Rolef Ben-Shahar (bib64) 2008; 321 Schmidt (bib67) 2009; 48 Minamino (bib47) 2015; 25 Gassler (bib22) 2017; 36 Kojic (bib34) 2018; 25 Nora (bib53) 2017; 169 Davidson (bib13) 2019; 366 Nishiyama (bib51) 2010; 143 Ivanov (bib31) 2018; 37 Landry (bib40) 2013; 3 Poser (bib56) 2008; 5 Zhang (bib86) 2008; 9 Ouyang (bib54) 2016; 62 Shintomi (bib70) 2009; 23 Casa (bib7) 2019 Ladurner (bib37) 2016; 35 Dixon (bib15) 2012; 485 Fudenberg (bib20) 2016; 15 Hara (bib29) 2014; 21 Chan (bib8) 2012; 150 Dauban (bib12) 2020 Rao (bib61) 2017; 171 Durand (bib17) 2016; 3 Aszódi (bib3) 2012; 28 Nagano (bib48) 2013; 502 Haarhuis (bib26) 2017; 169 Cuadrado (bib11) 2019; 27 Lin (bib43) 2018; 139 Nagano (bib49) 2017; 547 Ladurner (bib36) 2014; 24 Rankin (bib59) 2005; 18 Ciosk (bib10) 2000; 5 Glaser (bib25) 2015; 192 Chan (bib9) 2013; 110 Nativio (bib50) 2009; 5 Flyamer (bib19) 2017; 544 Tachibana-Konwalski (bib74) 2010; 24 |
References_xml | – volume: 114 start-page: 9906 year: 2017 ident: bib1 article-title: Esco1 and Esco2 regulate distinct cohesin functions during cell cycle progression publication-title: PNAS doi: 10.1073/pnas.1708291114 – volume: 17 start-page: 17 year: 2016 ident: bib45 article-title: CTCF and cohesin in genome folding and transcriptional gene regulation publication-title: Annual Review of Genomics and Human Genetics doi: 10.1146/annurev-genom-083115-022339 – volume: 37 year: 2018 ident: bib31 article-title: The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion publication-title: The EMBO Journal doi: 10.15252/embj.201797150 – volume: 123 start-page: 1635 year: 1993 ident: bib72 article-title: SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family publication-title: The Journal of Cell Biology doi: 10.1083/jcb.123.6.1635 – volume: 321 start-page: 566 year: 2008 ident: bib76 article-title: A molecular determinant for the establishment of sister chromatid cohesion publication-title: Science doi: 10.1126/science.1157880 – volume: 3 start-page: 1213 year: 2013 ident: bib40 article-title: The genomic and transcriptomic landscape of a HeLa cell line publication-title: G3: Genes|Genomes|Genetics doi: 10.1534/g3.113.005777 – volume: 501 start-page: 564 year: 2013 ident: bib75 article-title: Wapl is an essential regulator of chromatin structure and chromosome segregation publication-title: Nature doi: 10.1038/nature12471 – volume: 36 start-page: 3573 year: 2017 ident: bib84 article-title: Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins publication-title: The EMBO Journal doi: 10.15252/embj.201798004 – volume: 47 start-page: 106 year: 2015 ident: bib42 article-title: Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes publication-title: Nature Genetics doi: 10.1038/ng.3168 – volume: 544 start-page: 110 year: 2017 ident: bib19 article-title: Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition publication-title: Nature doi: 10.1038/nature21711 – volume: 107 start-page: 20364 year: 2010 ident: bib39 article-title: Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion publication-title: PNAS doi: 10.1073/pnas.1011069107 – volume: 171 start-page: 305 year: 2017 ident: bib61 article-title: Cohesin loss eliminates all loop domains publication-title: Cell doi: 10.1016/j.cell.2017.09.026 – year: 2020 ident: bib12 article-title: Regulation of Cohesin-Mediated chromosome folding by Eco1 and other partners publication-title: Molecular Cell doi: 10.1016/j.molcel.2020.01.019 – volume: 13 start-page: 645 year: 2012 ident: bib77 article-title: Pds5 promotes cohesin acetylation and stable cohesin-chromosome interaction publication-title: EMBO Reports doi: 10.1038/embor.2012.72 – volume: 321 start-page: 563 year: 2008 ident: bib64 article-title: Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion publication-title: Science doi: 10.1126/science.1157774 – volume: 366 start-page: 1345 year: 2019 ident: bib33 article-title: Human cohesin compacts DNA by loop extrusion publication-title: Science doi: 10.1126/science.aaz4475 – volume: 18 start-page: 185 year: 2005 ident: bib59 article-title: Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates publication-title: Molecular Cell doi: 10.1016/j.molcel.2005.03.017 – volume: 24 start-page: 2505 year: 2010 ident: bib74 article-title: Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes publication-title: Genes & Development doi: 10.1101/gad.605910 – volume: 27 start-page: 3500 year: 2019 ident: bib11 article-title: Specific contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and polycomb domains in embryonic stem cells publication-title: Cell Reports doi: 10.1016/j.celrep.2019.05.078 – volume: 110 start-page: 13020 year: 2013 ident: bib9 article-title: Pds5 promotes and protects cohesin acetylation publication-title: PNAS doi: 10.1073/pnas.1306900110 – volume: 48 start-page: 240 year: 2009 ident: bib67 article-title: ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions publication-title: Methods doi: 10.1016/j.ymeth.2009.03.001 – volume: 333 start-page: 1039 year: 2011 ident: bib71 article-title: Mutational inactivation of STAG2 causes aneuploidy in human Cancer publication-title: Science doi: 10.1126/science.1203619 – volume: 217 start-page: 2309 year: 2018 ident: bib81 article-title: A quantitative map of human condensins provides new insights into mitotic chromosome architecture publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201801048 – volume: 8 start-page: 2281 year: 2013 ident: bib58 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nature Protocols doi: 10.1038/nprot.2013.143 – volume: 544 start-page: 503 year: 2017 ident: bib5 article-title: Cohesin is positioned in mammalian genomes by transcription, CTCF and wapl publication-title: Nature doi: 10.1038/nature22063 – volume: 5 year: 2009 ident: bib50 article-title: Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1000739 – volume: 31 start-page: 2136 year: 2017 ident: bib32 article-title: ESCO1/2's roles in chromosome structure and interphase chromatin organization publication-title: Genes & Development doi: 10.1101/gad.306084.117 – volume-title: GitHub year: 2020 ident: bib38 article-title: STAG1 – volume: 112 start-page: E6456 year: 2015 ident: bib65 article-title: Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes publication-title: PNAS doi: 10.1073/pnas.1518552112 – volume: 139 start-page: 93 year: 2018 ident: bib43 article-title: RAG chromatin scanning during V(D)J recombination and chromatin loop extrusion are related processes publication-title: Advances in Immunology doi: 10.1016/bs.ai.2018.07.001 – volume: 159 start-page: 1665 year: 2014 ident: bib60 article-title: A 3D map of the human genome at Kilobase resolution reveals principles of chromatin looping publication-title: Cell doi: 10.1016/j.cell.2014.11.021 – volume: 9 year: 2008 ident: bib86 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biology doi: 10.1186/gb-2008-9-9-r137 – volume: 359 year: 2018 ident: bib24 article-title: A pathway for mitotic chromosome formation publication-title: Science doi: 10.1126/science.aao6135 – volume: 588 start-page: 3692 year: 2014 ident: bib63 article-title: Structure and function of cohesin's Scc3/SA regulatory subunit publication-title: FEBS Letters doi: 10.1016/j.febslet.2014.08.015 – volume: 3 start-page: 1C.3.1 year: 2007 ident: bib46 article-title: Isolation and propagation of mouse embryonic fibroblasts and preparation of mouse embryonic feeder layer cells publication-title: Current Protocols in Stem Cell Biology doi: 10.1002/9780470151808.sc01c03s3 – volume: 8 year: 2019 ident: bib30 article-title: Absolute quantification of Cohesin, CTCF and their regulators in human cells publication-title: eLife doi: 10.7554/eLife.46269 – volume: 227 start-page: 5342 year: 2008 ident: bib2 article-title: General purpose molecular dynamics simulations fully implemented on graphics processing units publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2008.01.047 – volume: 3 start-page: 95 year: 2016 ident: bib17 article-title: Juicer provides a One-Click system for analyzing Loop-Resolution Hi-C experiments publication-title: Cell Systems doi: 10.1016/j.cels.2016.07.002 – volume: 21 start-page: 864 year: 2014 ident: bib29 article-title: Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion publication-title: Nature Structural & Molecular Biology doi: 10.1038/nsmb.2880 – volume: 150 start-page: 405 year: 2000 ident: bib44 article-title: Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes publication-title: The Journal of Cell Biology doi: 10.1083/jcb.150.3.405 – volume: 25 start-page: 682 year: 2019 ident: bib80 article-title: Cohesin members Stag1 and Stag2 display distinct roles in chromatin accessibility and topological control of HSC Self-Renewal and differentiation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.08.003 – volume: 24 start-page: 2228 year: 2014 ident: bib36 article-title: Cohesin's ATPase activity couples cohesin loading onto DNA with Smc3 acetylation publication-title: Current Biology doi: 10.1016/j.cub.2014.08.011 – volume: 25 start-page: 496 year: 2018 ident: bib34 article-title: Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization publication-title: Nature Structural & Molecular Biology doi: 10.1038/s41594-018-0070-4 – volume: 451 start-page: 796 year: 2008 ident: bib82 article-title: Cohesin mediates transcriptional insulation by CCCTC-binding factor publication-title: Nature doi: 10.1038/nature06634 – volume: 23 start-page: 2224 year: 2009 ident: bib70 article-title: Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1 publication-title: Genes & Development doi: 10.1101/gad.1844309 – volume: 151 start-page: 749 year: 2000 ident: bib73 article-title: Characterization of vertebrate cohesin complexes and their regulation in prophase publication-title: The Journal of Cell Biology doi: 10.1083/jcb.151.4.749 – volume: 13 year: 2012 ident: bib85 article-title: Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-134 – volume: 3 start-page: 99 year: 2016 ident: bib16 article-title: Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom publication-title: Cell Systems doi: 10.1016/j.cels.2015.07.012 – volume: 454 start-page: 297 year: 2008 ident: bib28 article-title: The cohesin ring concatenates sister DNA molecules publication-title: Nature doi: 10.1038/nature07098 – volume: 169 start-page: 693 year: 2017 ident: bib26 article-title: The cohesin release factor WAPL restricts chromatin loop extension publication-title: Cell doi: 10.1016/j.cell.2017.04.013 – volume: 16 start-page: 1571 year: 2006 ident: bib23 article-title: Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication publication-title: Current Biology doi: 10.1016/j.cub.2006.06.068 – volume: 5 start-page: 409 year: 2008 ident: bib56 article-title: BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals publication-title: Nature Methods doi: 10.1038/nmeth.1199 – volume: 561 start-page: 411 year: 2018 ident: bib6 article-title: Experimental and computational framework for a dynamic protein atlas of human cell division publication-title: Nature doi: 10.1038/s41586-018-0518-z – volume: 62 start-page: 248 year: 2016 ident: bib54 article-title: Structural basis and IP6 requirement for Pds5-Dependent cohesin dynamics publication-title: Molecular Cell doi: 10.1016/j.molcel.2016.02.033 – volume: 17 start-page: 630 year: 2007 ident: bib68 article-title: Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase publication-title: Current Biology doi: 10.1016/j.cub.2007.02.029 – volume: 20 start-page: 6877 year: 2001 ident: bib18 article-title: Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate publication-title: The EMBO Journal doi: 10.1093/emboj/20.23.6877 – volume: 28 start-page: 3318 year: 2012 ident: bib3 article-title: MULTOVL: fast multiple overlaps of genomic regions publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts607 – volume: 31 start-page: 2090 year: 2012 ident: bib62 article-title: A unique role of cohesin-SA1 in gene regulation and development publication-title: The EMBO Journal doi: 10.1038/emboj.2012.60 – volume: 485 start-page: 381 year: 2012 ident: bib52 article-title: Spatial partitioning of the regulatory landscape of the X-inactivation centre publication-title: Nature doi: 10.1038/nature11049 – volume: 132 start-page: 422 year: 2008 ident: bib55 article-title: Cohesins functionally associate with CTCF on mammalian chromosome arms publication-title: Cell doi: 10.1016/j.cell.2008.01.011 – volume: 26 start-page: 678 year: 2016 ident: bib4 article-title: Chromosome cohesion established by Rec8-Cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice publication-title: Current Biology doi: 10.1016/j.cub.2015.12.073 – volume: 366 start-page: 1338 year: 2019 ident: bib13 article-title: DNA loop extrusion by human cohesin publication-title: Science doi: 10.1126/science.aaz3418 – volume: 15 start-page: 2038 year: 2016 ident: bib20 article-title: Formation of chromosomal domains by loop extrusion publication-title: Cell Reports doi: 10.1016/j.celrep.2016.04.085 – volume: 150 start-page: 961 year: 2012 ident: bib8 article-title: Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation publication-title: Cell doi: 10.1016/j.cell.2012.07.028 – volume: 143 start-page: 737 year: 2010 ident: bib51 article-title: Sororin mediates sister chromatid cohesion by antagonizing wapl publication-title: Cell doi: 10.1016/j.cell.2010.10.031 – volume: 173 start-page: 1165 year: 2018 ident: bib78 article-title: The energetics and physiological impact of cohesin extrusion publication-title: Cell doi: 10.1016/j.cell.2018.03.072 – volume: 127 start-page: 955 year: 2006 ident: bib35 article-title: Wapl controls the dynamic association of cohesin with chromatin publication-title: Cell doi: 10.1016/j.cell.2006.09.040 – volume: 25 start-page: 1694 year: 2015 ident: bib47 article-title: Esco1 acetylates cohesin via a mechanism different from that of Esco2 publication-title: Current Biology doi: 10.1016/j.cub.2015.05.017 – volume: 36 start-page: 3600 year: 2017 ident: bib22 article-title: A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture publication-title: The EMBO Journal doi: 10.15252/embj.201798083 – volume: 10 start-page: 1297 year: 2015 ident: bib79 article-title: Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture publication-title: Cell Reports doi: 10.1016/j.celrep.2015.02.004 – volume: 31 start-page: 71 year: 2012 ident: bib83 article-title: Cohesin acetyltransferase Esco2 is a cell viability factor and is required for cohesion in pericentric heterochromatin publication-title: The EMBO Journal doi: 10.1038/emboj.2011.381 – volume: 360 start-page: 102 year: 2018 ident: bib21 article-title: Real-time imaging of DNA loop extrusion by condensin publication-title: Science doi: 10.1126/science.aar7831 – volume: 5 start-page: 243 year: 2000 ident: bib10 article-title: Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins publication-title: Molecular Cell doi: 10.1016/S1097-2765(00)80420-7 – volume-title: bioRxiv year: 2019 ident: bib7 article-title: Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcription control doi: 10.1101/642959 – volume: 551 start-page: 51 year: 2017 ident: bib69 article-title: Two independent modes of chromatin organization revealed by cohesin removal publication-title: Nature doi: 10.1038/nature24281 – volume: 169 start-page: 930 year: 2017 ident: bib53 article-title: Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization publication-title: Cell doi: 10.1016/j.cell.2017.05.004 – volume: 460 start-page: 410 year: 2009 ident: bib27 article-title: Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus publication-title: Nature doi: 10.1038/nature08079 – volume: 485 start-page: 376 year: 2012 ident: bib15 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature doi: 10.1038/nature11082 – volume: 112 start-page: 11270 year: 2015 ident: bib57 article-title: Cohesin recruits the Esco1 acetyltransferase genome wide to repress transcription and promote cohesion in somatic cells publication-title: PNAS doi: 10.1073/pnas.1505323112 – volume: 547 start-page: 61 year: 2017 ident: bib49 article-title: Cell-cycle dynamics of chromosomal organization at single-cell resolution publication-title: Nature doi: 10.1038/nature23001 – volume: 9 start-page: 676 year: 2012 ident: bib66 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nature Methods doi: 10.1038/nmeth.2019 – volume: 35 start-page: 635 year: 2016 ident: bib37 article-title: Sororin actively maintains sister chromatid cohesion publication-title: The EMBO Journal doi: 10.15252/embj.201592532 – volume: 505 start-page: 495 year: 2014 ident: bib41 article-title: Discovery and saturation analysis of Cancer genes across 21 tumour types publication-title: Nature doi: 10.1038/nature12912 – volume: 502 start-page: 59 year: 2013 ident: bib48 article-title: Single-cell Hi-C reveals cell-to-cell variability in chromosome structure publication-title: Nature doi: 10.1038/nature12593 – volume: 60 start-page: 676 year: 2015 ident: bib14 article-title: CTCF binding polarity determines chromatin looping publication-title: Molecular Cell doi: 10.1016/j.molcel.2015.09.023 – volume: 192 start-page: 97 year: 2015 ident: bib25 article-title: Strong scaling of general-purpose molecular dynamics simulations on GPUs publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2015.02.028 |
SSID | ssj0000748819 |
Score | 2.553768 |
Snippet | Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by... Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
SubjectTerms | Acetyltransferase Cell Biology Cell cycle Chromatin chromatin structure Chromosomes Chromosomes and Gene Expression Cohesin CTCF Deoxyribonucleic acid DNA Experiments genome organization Genomes Hypotheses loops Mammalian cells Proteins TADs |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEA8iCL4c5xfuuUoEn4SeaZM2zeO6uIr4ceCKPgglX71dWFJx1wf_e2faumzh4F58ayYDTSaTzAzJ_IaQEw9Ko2WuIziA00hoJiJtDXyBd2EVV2B08Ub39i67ehTXz-nzSqkvfBPWwAM3gjtLWalMCnZIcSucT4zOPRO6dCpHLCqHpy_YvJVgqj6DJShmrJqEPAkm88zfTEv_Gx99xB0TVCP1d9zL7uPIFWsz-kl-tG4iHTTD2yJrPmyTjaZw5McOebl4GN7HVAdHh-PhiPo6A4ouMxFpVdJZFf5SO3mrkBSgWb3OqfmgLTLDFHuriZ9Pw8N4cBlTTDShT4M_N7vkcXQxHl5FbZ2EyGK-E0gYQfIsV046prgoYRtKa7i1pcyNUd75MhGps9oLmSAx4Tph1gLZmIzxPbIequD3CdUuLY3XWloQrxQZxGPcaSVyK7TLuO6R0y_RFbYFEcdaFrMCggmUc1HLuajl3CMnS-bXBjvj32znuAZLFgS8rgmgBkWrBsX_1KBH-l8rWLS7cF6AOwKTiGUG_zhedsP-wUsRHXz1jjzg0uaKpaxHZGflOwPq9oTppEbilujwMvbrO2ZwQDYTjOWx2Izsk_XF27s_BIdnYY5q3f4EBA8Anw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBddy2AvY-s25q0bKvRp4FWx5Mh6GlloWkrbDZqyPAyMvtwEipQl7UP_-905ijfD2Jt9OrC50-l3ku6DkCMPk0bLSuewAJe50Ezk2hp4Au_CKq4AdPFG9_JqeHYjzmflLB24rVNY5XZNbBdqFy2ekR8DtAhAP9h1f1n-yrFrFN6uphYaT8geli7DkC45k90ZC8BjBYi3ScuTAJzH_mLR-M8Y-jHoAVFbr7_nZPZDJP_CnMkL8jw5i3S00e5LsuPDPnm6aR_5-Ir8PLkefxtQHRwdT8cT6ts8KNrlI9LY0LsYbqmdryKSArzG5ZqaR5rqMyxwNM79ehGup6PTAcV0E_pj9P3iNbmZnEzHZ3nqlpBbzHoCOWOpPMuVk44pLhowRmkNt7aRlTHKO98UonRWeyELJBZcF8xaIBszZPwN2Q0x-LeEalc2xmstrUKhD2FXxp1WorJCuyHXGfm0FV1tUylx7GhxV8OWAuVct3KuWzln5KhjXm4qaPyb7SvqoGPBstctIa5u62RFdckaZUpwShS3wvnC6MozoRsH_1kK6TJysNVgnWxxXf-ZORk57IbBivBqRAcfH5AHHNtKsZJlRPY03_uh_khYzNt63BLdXsbe_f_j78mzAvfq2ExGHpDd-9WD_wAOzb352M7a31jm9-s priority: 102 providerName: ProQuest |
Title | ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL |
URI | https://www.proquest.com/docview/2384741761 https://www.proquest.com/docview/2356589050 https://pubmed.ncbi.nlm.nih.gov/PMC7054000 https://doaj.org/article/50f9b518193c4de2ba8e04afd984547d |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBddy2AvY58sWxc06NPAmWLJlvU00pCsjLYra8LyMDD6chMIcpe0sPz3u1OcMI8-7M2Wzlg63fl-Z-nuCDnxIDRaFjqBD3CWCM1Eoq2BK0AXVnEFRhd3dC8u87Op-DrLZgdkV4yzYeD6QdcO60lNV8ve71-bz6DwgF97EqzhJ3--qHwPz3OAG3QEJkmihl40OD9-kiXIaSzykbIs5jKdbWP1_n2-ZZ1iEv8W8myfm_zLEI2fkacNgqSD7ZI_Jwc-vCCPtzUlNy_Jz9H18Fuf6uDocDIcUx-Do-g-SJHWFV3W4Yba-arGpgC39e2amg1tkjYssLee-_UiXE8GX_oUY1Doj8HV-SsyHY8mw7OkKaGQWAyFAuZj_jzLlZOOKS4q0FBpDbe2koUxyjtfpSJzVnshU2xMuU6ZtdBsTM74a3IY6uDfEKpdVhmvtbQKLJrIwVXjTitRWKFdznWHfNyxrrRNfnEsc7Eswc9APpeRz2Xkc4ec7Ilvt2k1HiY7xTXYk2Au7NhQr27KRrXKjFXKZIBUFLfC-dTowjOhKwfjzIR0HXK8W8FyJ18lIBWYRF_m8I4P-25QLdwv0cHX90gDaLdQIDEdIlsr3xpQuycs5jFJt0QszNjb_5voO_IkRUceK83IY3J4t7r37wHt3JkueSRnskuOTkeXV9-78Z9BN0r3HxWfAog |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSIbggnsJQYJHKBcnUsddZ-4BQGhJSmoaKpmoPSGZfbiJVdkhaofwU38iMX2AJcevNnh3Zq3nszOzuzADsWhQaKSLp4gIculx63JVa4RN6FzoOYjS6dKJ7NO2NT_nn8_B8C37VuTB0rbJeE4uF2uSa9sj30LRwtH4YdX9Y_nCpaxSdrtYtNEqxOLSbnxiyrd8ffET-vvH90XA2GLtVVwFXU3YQzodKyukgNsJgOM9TFFqhVaB1KiKlYmts6vPQaGm58AnoB9L3tEawUj0vwO_egm0eYCjTge394fT4a7OrgwY5QhtbJgIKNNV7drJI7Tu6bNJtmb6iQ0DLrW1fyvzLyo3uw73KPWX9Up4ewJbNHsLtsmHl5hF8G54MvnSZzAwbzAYjZovMK9ZkQLI8ZZd5dsH0fJUTKMPXfLlmasOqihALGs3ndr3ITmb9T11GCS7srH88eQynN0LJJ9DJ8sw-BSZNmCorpdAxsbmHcWBgZMwjzaXpBdKBtzXpEl0VL6ceGpcJBjFE56Sgc1LQ2YHdBnlZ1uz4N9o-8aBBoULbBSBfXSSV3iahl8YqRDcoDjQ31lcysh6XqcF5hlwYB3ZqDiaV9q-TP7LqwOtmGPWWDmNkZvNrwkFXOoq90HNAtDjfmlB7JFvMiwrgghxtz3v2_5-_gjvj2dEkmRxMD5_DXZ92CqiVjdiBztXq2r5Ad-pKvaxkmMH3m1ab33meN20 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFSKQFwQT2EosEjlgmTi2OusfUAopA0tDaVSU5ED0rIvN5EqOyStUH6Nr2PGL7CEuPVmz67s1bxnd2cGYNch0yiRKB8VcOxzFXBfGY1P6F2YNErR6NKJ7ufjwcEZ_zSLZ1vwq8mFoWuVjU4sFbUtDO2R99C0cLR-GHX3svpaxMne-P3yh08dpOiktWmnUbHIkdv8xPBt_e5wD2n9OgzH-9PRgV93GPANZQrh2qi8nIlSKyyG9jxDBhZGR8ZkItE6ddZlIY-tUY6LkIBhpMLAGARrPQgi_O4NuCmiuE8yJmai3d9B05ygta1SAgUa7Z6bLDL3lq6d9DtGsOwV0HFwu9cz_7J343twt3ZU2bDirPuw5fIHcKtqXbl5CN_2T0df-kzllo2mozFzZQ4Wa3MhWZGxiyI_Z2a-KgiU42uxXDO9YXVtiAWNFnO3XuSn0-HHPqNUF_Z1eDJ5BGfXgsfHsJ0XuXsCTNk4004pYVIi-AAjwsiqlCeGKzuIlAdvGtRJU5cxp24aFxLDGcKzLPEsSzx7sNtOXlbVO_497QPRoJ1CJbdLQLE6l7UEyzjIUh2jQ5RGhlsXapW4gKvM4jpjLqwHOw0FZa0H1vIP13rwqh1GCaZjGZW74ormoFOdpEEceCA6lO8sqDuSL-ZlLXBBLncQPP3_z1_CbRQWOTk8PnoGd0LaMqCeNmIHti9XV-45-lWX-kXJwAy-X7fE_AZSfjo9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ESCO1+and+CTCF+enable+formation+of+long+chromatin+loops+by+protecting+cohesinSTAG1+from+WAPL&rft.jtitle=eLife&rft.au=Wutz%2C+Gordana&rft.au=Ladurner%2C+Rene&rft.au=St+Hilaire%2C+Brian+Glenn&rft.au=Stocsits%2C+Roman+R&rft.date=2020-02-17&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=9&rft_id=info:doi/10.7554%2FeLife.52091&rft.externalDBID=n%2Fa&rft.externalDocID=10_7554_eLife_52091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |