A corneal elastic dynamic model derived from Scheimpflug imaging technology

Purpose To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data. Methods A spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass‐spring‐damper model. This research derived the dynamic model o...

Full description

Saved in:
Bibliographic Details
Published inOphthalmic & physiological optics Vol. 35; no. 6; pp. 663 - 672
Main Authors Shih, Po-Jen, Cao, Huei-Jyun, Huang, Chun-Ju, Wang, I-Jong, Shih, Wen-Pin, Yen, Jia-Yush
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.11.2015
Subjects
Online AccessGet full text
ISSN0275-5408
1475-1313
1475-1313
DOI10.1111/opo.12240

Cover

Loading…
Abstract Purpose To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data. Methods A spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass‐spring‐damper model. This research derived the dynamic model of a water‐filled spherical diaphragm based on the hydrodynamics and wave propagation theories. By applying modal analysis on the model, one can decouple the cornea vibration into individual modes and reconstruct the air puff vibration from the decoupled responses. By matching this response with the Scheimpflug imaging data from the Corvis® ST, it was then possible to extract multiple physiological properties as desired. Results The dynamic modal analysis was employed to extract the corneal physiological properties of 25 Taiwanese normal subjects. Specifically, the corneal Young's moduli and damping ratios were estimated. In fact the model is dependent on the physiological parameters such as cornea thickness, densities, and intraocular pressure. It is thus also possible to extract these parameters through multi‐goal minimisation processes. Conclusions The spherical diaphragm model was able to better describe the dynamic response of the eyeball. The model analysis also provides additional corneal physiological properties that were not available through other means.
AbstractList Purpose To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data. Methods A spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass‐spring‐damper model. This research derived the dynamic model of a water‐filled spherical diaphragm based on the hydrodynamics and wave propagation theories. By applying modal analysis on the model, one can decouple the cornea vibration into individual modes and reconstruct the air puff vibration from the decoupled responses. By matching this response with the Scheimpflug imaging data from the Corvis® ST, it was then possible to extract multiple physiological properties as desired. Results The dynamic modal analysis was employed to extract the corneal physiological properties of 25 Taiwanese normal subjects. Specifically, the corneal Young's moduli and damping ratios were estimated. In fact the model is dependent on the physiological parameters such as cornea thickness, densities, and intraocular pressure. It is thus also possible to extract these parameters through multi‐goal minimisation processes. Conclusions The spherical diaphragm model was able to better describe the dynamic response of the eyeball. The model analysis also provides additional corneal physiological properties that were not available through other means.
To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data. A spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass-spring-damper model. This research derived the dynamic model of a water-filled spherical diaphragm based on the hydrodynamics and wave propagation theories. By applying modal analysis on the model, one can decouple the cornea vibration into individual modes and reconstruct the air puff vibration from the decoupled responses. By matching this response with the Scheimpflug imaging data from the Corvis(®) ST, it was then possible to extract multiple physiological properties as desired. The dynamic modal analysis was employed to extract the corneal physiological properties of 25 Taiwanese normal subjects. Specifically, the corneal Young's moduli and damping ratios were estimated. In fact the model is dependent on the physiological parameters such as cornea thickness, densities, and intraocular pressure. It is thus also possible to extract these parameters through multi-goal minimisation processes. The spherical diaphragm model was able to better describe the dynamic response of the eyeball. The model analysis also provides additional corneal physiological properties that were not available through other means.
To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data.PURPOSETo simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data.A spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass-spring-damper model. This research derived the dynamic model of a water-filled spherical diaphragm based on the hydrodynamics and wave propagation theories. By applying modal analysis on the model, one can decouple the cornea vibration into individual modes and reconstruct the air puff vibration from the decoupled responses. By matching this response with the Scheimpflug imaging data from the Corvis(®) ST, it was then possible to extract multiple physiological properties as desired.METHODSA spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass-spring-damper model. This research derived the dynamic model of a water-filled spherical diaphragm based on the hydrodynamics and wave propagation theories. By applying modal analysis on the model, one can decouple the cornea vibration into individual modes and reconstruct the air puff vibration from the decoupled responses. By matching this response with the Scheimpflug imaging data from the Corvis(®) ST, it was then possible to extract multiple physiological properties as desired.The dynamic modal analysis was employed to extract the corneal physiological properties of 25 Taiwanese normal subjects. Specifically, the corneal Young's moduli and damping ratios were estimated. In fact the model is dependent on the physiological parameters such as cornea thickness, densities, and intraocular pressure. It is thus also possible to extract these parameters through multi-goal minimisation processes.RESULTSThe dynamic modal analysis was employed to extract the corneal physiological properties of 25 Taiwanese normal subjects. Specifically, the corneal Young's moduli and damping ratios were estimated. In fact the model is dependent on the physiological parameters such as cornea thickness, densities, and intraocular pressure. It is thus also possible to extract these parameters through multi-goal minimisation processes.The spherical diaphragm model was able to better describe the dynamic response of the eyeball. The model analysis also provides additional corneal physiological properties that were not available through other means.CONCLUSIONSThe spherical diaphragm model was able to better describe the dynamic response of the eyeball. The model analysis also provides additional corneal physiological properties that were not available through other means.
Author Huang, Chun-Ju
Wang, I-Jong
Cao, Huei-Jyun
Shih, Po-Jen
Shih, Wen-Pin
Yen, Jia-Yush
Author_xml – sequence: 1
  givenname: Po-Jen
  surname: Shih
  fullname: Shih, Po-Jen
  organization: Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, Taiwan
– sequence: 2
  givenname: Huei-Jyun
  surname: Cao
  fullname: Cao, Huei-Jyun
  organization: Department of Mechanic Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: Chun-Ju
  surname: Huang
  fullname: Huang, Chun-Ju
  organization: Department of Mechanic Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 4
  givenname: I-Jong
  surname: Wang
  fullname: Wang, I-Jong
  organization: Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
– sequence: 5
  givenname: Wen-Pin
  surname: Shih
  fullname: Shih, Wen-Pin
  organization: Department of Mechanic Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 6
  givenname: Jia-Yush
  surname: Yen
  fullname: Yen, Jia-Yush
  email: jyen@ntu.edu.tw
  organization: Department of Mechanic Engineering, National Taiwan University, Taipei, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26353939$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1P3DAQhq2Kqiy0B_5AlWN7CPgrcXKkW74EYlEBUXGxHHuyuHXixc4C--8x3V0OqMxl5vA8r0bvFtrofQ8I7RC8S9Ls-ZnfJZRy_AGNCBdFThhhG2iEaboLjqtNtBXjH4yxEKL6hDZpyQpWs3qETvcz7UMPymXgVByszsyiV13anTfgMgPBPoDJ2uC77FLfge1mrZtPM9upqe2n2QD6rvfOTxef0cdWuQhfVnsbXR8eXI2P87PJ0cl4_yzXnDGcl5SSpiFVURZMUMKwoBWUBmrMqOJgRNOIkmtespYyYypOy6oiRQu8ETUxmG2jb8vcWfD3c4iD7GzU4Jzqwc-jJIKKuk4-TejXFTpvOjByFtLbYSHXBSRgbwno4GMM0EptBzVY3w9BWScJli8Vy1Sx_FdxMr6_Mdah_2NX6Y_WweJ9UE4uJmsjXxo2DvD0aqjwV5aCiULenB_JHzeXt4c_b3_J3-wZZHSYiw
CitedBy_id crossref_primary_10_1186_s12938_019_0662_1
crossref_primary_10_1371_journal_pone_0224824
crossref_primary_10_3390_s24123997
crossref_primary_10_1038_s41598_020_80321_1
crossref_primary_10_1007_s10792_021_02003_9
crossref_primary_10_1109_TBME_2023_3338086
crossref_primary_10_1049_cth2_70003
crossref_primary_10_1016_j_exer_2017_07_003
crossref_primary_10_1111_cxo_12861
crossref_primary_10_1016_j_jmbbm_2024_106454
crossref_primary_10_12677_ACM_2021_116406
crossref_primary_10_1016_j_actbio_2023_12_019
crossref_primary_10_1111_opo_12345
crossref_primary_10_1186_s12938_019_0636_3
crossref_primary_10_22141_2309_8147_11_3_2023_342
crossref_primary_10_1016_j_compbiomed_2023_107804
crossref_primary_10_1177_03000605221108100
crossref_primary_10_1007_s13246_024_01403_2
crossref_primary_10_3928_1081597X_20160512_02
crossref_primary_10_1155_2021_5592195
crossref_primary_10_1167_iovs_61_5_34
Cites_doi 10.1115/1.3167135
10.1167/iovs.07-1321
10.1097/IJG.0b013e3181845661
10.1115/1.3408584
10.1136/bjo.83.10.1106
10.1371/journal.pone.0104904
10.5005/jp-journals-10008-1043
10.1016/0014-4835(72)90139-X
10.1109/ROBOT.2005.1570549
10.1167/iovs.12-10984
10.1016/0021-9290(92)90067-B
10.1097/OPX.0b013e3181783a70
10.1016/S0021-9290(96)80017-0
10.3928/1081-597X-20071001-11
10.1016/j.exer.2010.09.014
10.1016/j.exer.2008.02.006
10.1167/iovs.09-4798
10.1111/j.1467-9590.2011.00523.x
10.1115/1.3161953
10.1016/0021-9290(86)90135-1
10.1586/17469899.2.2.255
ContentType Journal Article
Copyright 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists
2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.
Copyright_xml – notice: 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists
– notice: 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/opo.12240
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1475-1313
EndPage 672
ExternalDocumentID 26353939
10_1111_opo_12240
OPO12240
ark_67375_WNG_BWSZFDZR_X
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: 103‐2228‐E‐002‐ 001
GroupedDBID ---
--K
.3N
.GA
.Y3
05W
0R~
10A
123
1B1
1OB
1OC
1~5
29N
31~
33P
36B
3SF
4.4
4G.
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AALRI
AAMNL
AANHP
AANLZ
AAONW
AAQFI
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABMAC
ABPVW
ABQWH
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHEFC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NQ-
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
R2-
RIWAO
RJQFR
ROL
RPZ
RX1
SAMSI
SEW
SSZ
SUPJJ
SV3
TEORI
TUS
UB1
UHS
V8K
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
YUY
ZZTAW
~IA
~WT
AEUQT
AFPWT
WRC
WUP
AAMMB
AAYXX
ACVFH
ADCNI
AEFGJ
AEUPX
AEYWJ
AFPUW
AGXDD
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4330-6221bb18565372130728e6de9032a4ed7bb764c463f23dd84268815fe4b791d03
IEDL.DBID DR2
ISSN 0275-5408
1475-1313
IngestDate Thu Jul 10 23:08:50 EDT 2025
Mon Jul 21 05:51:17 EDT 2025
Thu Jul 03 08:27:30 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Wed Jan 22 16:57:51 EST 2025
Thu Apr 24 03:19:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Cornea
forced vibration
Corvis® ST
tonometer
Language English
License 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4330-6221bb18565372130728e6de9032a4ed7bb764c463f23dd84268815fe4b791d03
Notes ArticleID:OPO12240
istex:2CF3C5CFC3394682F054549A92311BC4EFE48BCF
ark:/67375/WNG-BWSZFDZR-X
Video S1. Response fitting process.Data S1. Cornea dynamic response data for patients.
Ministry of Science and Technology, Taiwan - No. 103-2228-E-002- 001
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26353939
PQID 1727994632
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1727994632
pubmed_primary_26353939
crossref_citationtrail_10_1111_opo_12240
crossref_primary_10_1111_opo_12240
wiley_primary_10_1111_opo_12240_OPO12240
istex_primary_ark_67375_WNG_BWSZFDZR_X
PublicationCentury 2000
PublicationDate November 2015
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Ophthalmic & physiological optics
PublicationTitleAlternate Ophthalmic Physiol Opt
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Moses RA. Theory of the Schiotz tonometer and its empirical calibration. Trans Am Ophthalmol Soc 1971; 69: 494-562.
Cartwright NEK, Tyrer JR & Marshall J. Age-related differences in the elasticity of the human cornea. Invest Ophthalmol Vis Sci 2011; 52: 4324-4329.
Wang HC, Prendiville PL, McDonnell PJ & Chang WV. An ultrasonic technique for the measurement of the elastic moduli of human cornea. J Biomech 1996; 29: 1633-1636.
Elsheikh A, Alhasso D & Rama P. Biomechanical properties of human and porcine corneas. Exp Eye Res 2008; 86: 783-790.
von Freyberg A, Sorg M & Fuhrmann M et al. Acoustic tonometry feasibility study of a new principle of intraocular pressure measurement. J Glaucoma 2009; 18: 316-320.
Kling S, Bekesi N, Dorronsoro C et al. Corneal viscoelastic properties from finite element analysis of in vivo air puff deformation. PLoS ONE Aug.2014; 9: e104904.
Grinfeld P. Small oscillations of a soap bubble. Stud Appl Math 2012; 128: 30-39.
Steele CR. Slope discontinuities in pressure vessels. J Appl Mech 1970; 37: 587-595.
Elsheikh A, Wang DF & Pye D. Determination of the modulus of elasticity of the human cornea. J Refract Surg 2007; 808-818.
Hong J, Xu J, Wei A et al. A new tonometer-the Corvis st tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest Ophthalmol Vis Sci 2013; 54: 659-665.
Hamilton KE & Pye DC. Young's modulus in normal corners and the effect on applanation tonometry. Optom Vis Sci 2008; 85: 445-450.
Taber LA. Large deflection of a fluid-filled spherical-shell under a point load. J Appl Mech 1982; 49: 121-128.
Norman RE, Flanagan JG, Sigal IA et al. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res 2011; 93: 1-9.
Woo SLY, Kobayashi AS, Schlegel WA & Lawrence C. Nonlinear material properties of intact cornea and sclera. Exp Eye Res 1972; 14: 29-39.
Kaushik S & Pandav SS. Measuring intraocular pressure: how important is the central corneal thickness? J Curr Glaucoma Pr 2007; 1: 21-24.
Śródka W. Effect of kinematic boundary conditions on optical and biomechanical behaviour of eyeball model. Acta Bioeng Biomech 2006; 8: 69-77.
Rayleigh JWS. The Theory of Sound. Macmillan: London, 1926; p. 1.
Swindle KE & Ravi N. Recent advances in polymeric vitreous substitutes. Expert Rev Ophthalmol 2007; 2: 255-265.
Glass DH, Roberts CJ, Litsky AS & Weber PA. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci Sept. 2008; 49: 3919-3926.
Jue B & Maurice DM. The mechanical-properties of the rabbit and human cornea. J Biomech 1986; 19: 847-853.
Uchio E, Ohno S, Kudoh J, Aoki K & Kisielewicz LT. Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol 1999; 83: 1106-1111.
Taber LA. Compression of fluid-filled spherical shells by rigid indenters. J Appl Mech 1983; 50: 717-722.
Coquart L, Depeursinge C, Curnier A & Ohayon R. A fluid-structure interaction problem in biomechanics - prestressed vibrations of the eye by the finite-element method. J Biomech 1992; 25: 1105-1118.
1982; 49
1996; 29
2013; 54
2011; 93
2008; 49
1971; 69
2006; 8
2011; 52
2007
1986; 19
2005
1983; 50
1992; 25
2007; 2
2008; 85
1999; 83
2008; 86
2014; 9
1972; 14
2007; 1
2012; 128
1926
1970; 37
2009; 18
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_21_1
e_1_2_5_22_1
Śródka W (e_1_2_5_15_1) 2006; 8
e_1_2_5_20_1
Rayleigh JWS (e_1_2_5_18_1) 1926
e_1_2_5_14_1
e_1_2_5_17_1
Freyberg A (e_1_2_5_8_1) 2009; 18
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_19_1
Moses RA (e_1_2_5_3_1) 1971; 69
Elsheikh A (e_1_2_5_24_1) 2007
References_xml – reference: von Freyberg A, Sorg M & Fuhrmann M et al. Acoustic tonometry feasibility study of a new principle of intraocular pressure measurement. J Glaucoma 2009; 18: 316-320.
– reference: Grinfeld P. Small oscillations of a soap bubble. Stud Appl Math 2012; 128: 30-39.
– reference: Rayleigh JWS. The Theory of Sound. Macmillan: London, 1926; p. 1.
– reference: Elsheikh A, Alhasso D & Rama P. Biomechanical properties of human and porcine corneas. Exp Eye Res 2008; 86: 783-790.
– reference: Cartwright NEK, Tyrer JR & Marshall J. Age-related differences in the elasticity of the human cornea. Invest Ophthalmol Vis Sci 2011; 52: 4324-4329.
– reference: Jue B & Maurice DM. The mechanical-properties of the rabbit and human cornea. J Biomech 1986; 19: 847-853.
– reference: Taber LA. Compression of fluid-filled spherical shells by rigid indenters. J Appl Mech 1983; 50: 717-722.
– reference: Moses RA. Theory of the Schiotz tonometer and its empirical calibration. Trans Am Ophthalmol Soc 1971; 69: 494-562.
– reference: Kaushik S & Pandav SS. Measuring intraocular pressure: how important is the central corneal thickness? J Curr Glaucoma Pr 2007; 1: 21-24.
– reference: Norman RE, Flanagan JG, Sigal IA et al. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res 2011; 93: 1-9.
– reference: Wang HC, Prendiville PL, McDonnell PJ & Chang WV. An ultrasonic technique for the measurement of the elastic moduli of human cornea. J Biomech 1996; 29: 1633-1636.
– reference: Śródka W. Effect of kinematic boundary conditions on optical and biomechanical behaviour of eyeball model. Acta Bioeng Biomech 2006; 8: 69-77.
– reference: Taber LA. Large deflection of a fluid-filled spherical-shell under a point load. J Appl Mech 1982; 49: 121-128.
– reference: Kling S, Bekesi N, Dorronsoro C et al. Corneal viscoelastic properties from finite element analysis of in vivo air puff deformation. PLoS ONE Aug.2014; 9: e104904.
– reference: Hong J, Xu J, Wei A et al. A new tonometer-the Corvis st tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest Ophthalmol Vis Sci 2013; 54: 659-665.
– reference: Elsheikh A, Wang DF & Pye D. Determination of the modulus of elasticity of the human cornea. J Refract Surg 2007; 808-818.
– reference: Woo SLY, Kobayashi AS, Schlegel WA & Lawrence C. Nonlinear material properties of intact cornea and sclera. Exp Eye Res 1972; 14: 29-39.
– reference: Hamilton KE & Pye DC. Young's modulus in normal corners and the effect on applanation tonometry. Optom Vis Sci 2008; 85: 445-450.
– reference: Uchio E, Ohno S, Kudoh J, Aoki K & Kisielewicz LT. Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol 1999; 83: 1106-1111.
– reference: Coquart L, Depeursinge C, Curnier A & Ohayon R. A fluid-structure interaction problem in biomechanics - prestressed vibrations of the eye by the finite-element method. J Biomech 1992; 25: 1105-1118.
– reference: Swindle KE & Ravi N. Recent advances in polymeric vitreous substitutes. Expert Rev Ophthalmol 2007; 2: 255-265.
– reference: Steele CR. Slope discontinuities in pressure vessels. J Appl Mech 1970; 37: 587-595.
– reference: Glass DH, Roberts CJ, Litsky AS & Weber PA. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci Sept. 2008; 49: 3919-3926.
– volume: 25
  start-page: 1105
  year: 1992
  end-page: 1118
  article-title: A fluid‐structure interaction problem in biomechanics ‐ prestressed vibrations of the eye by the finite‐element method
  publication-title: J Biomech
– volume: 8
  start-page: 69
  year: 2006
  end-page: 77
  article-title: Effect of kinematic boundary conditions on optical and biomechanical behaviour of eyeball model
  publication-title: Acta Bioeng Biomech
– volume: 49
  start-page: 121
  year: 1982
  end-page: 128
  article-title: Large deflection of a fluid‐filled spherical‐shell under a point load
  publication-title: J Appl Mech
– volume: 69
  start-page: 494
  year: 1971
  end-page: 562
  article-title: Theory of the Schiotz tonometer and its empirical calibration
  publication-title: Trans Am Ophthalmol Soc
– volume: 18
  start-page: 316
  year: 2009
  end-page: 320
  article-title: Acoustic tonometry feasibility study of a new principle of intraocular pressure measurement
  publication-title: J Glaucoma
– volume: 93
  start-page: 1
  year: 2011
  end-page: 9
  article-title: Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma
  publication-title: Exp Eye Res
– volume: 19
  start-page: 847
  year: 1986
  end-page: 853
  article-title: The mechanical‐properties of the rabbit and human cornea
  publication-title: J Biomech
– volume: 9
  start-page: e104904
  year: 2014
  article-title: Corneal viscoelastic properties from finite element analysis of air puff deformation
  publication-title: PLoS ONE
– volume: 86
  start-page: 783
  year: 2008
  end-page: 790
  article-title: Biomechanical properties of human and porcine corneas
  publication-title: Exp Eye Res
– volume: 1
  start-page: 21
  year: 2007
  end-page: 24
  article-title: Measuring intraocular pressure: how important is the central corneal thickness?
  publication-title: J Curr Glaucoma Pr
– volume: 85
  start-page: 445
  year: 2008
  end-page: 450
  article-title: Young's modulus in normal corners and the effect on applanation tonometry
  publication-title: Optom Vis Sci
– volume: 29
  start-page: 1633
  year: 1996
  end-page: 1636
  article-title: An ultrasonic technique for the measurement of the elastic moduli of human cornea
  publication-title: J Biomech
– volume: 50
  start-page: 717
  year: 1983
  end-page: 722
  article-title: Compression of fluid‐filled spherical shells by rigid indenters
  publication-title: J Appl Mech
– volume: 128
  start-page: 30
  year: 2012
  end-page: 39
  article-title: Small oscillations of a soap bubble
  publication-title: Stud Appl Math
– volume: 37
  start-page: 587
  year: 1970
  end-page: 595
  article-title: Slope discontinuities in pressure vessels
  publication-title: J Appl Mech
– volume: 14
  start-page: 29
  year: 1972
  end-page: 39
  article-title: Nonlinear material properties of intact cornea and sclera
  publication-title: Exp Eye Res
– start-page: 1
  year: 1926
– volume: 54
  start-page: 659
  year: 2013
  end-page: 665
  article-title: A new tonometer‐the Corvis st tonometer: clinical comparison with noncontact and Goldmann applanation tonometers
  publication-title: Invest Ophthalmol Vis Sci
– volume: 49
  start-page: 3919
  year: 2008
  end-page: 3926
  article-title: A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis
  publication-title: Invest Ophthalmol Vis Sci
– start-page: 808
  year: 2007
  end-page: 818
  article-title: Determination of the modulus of elasticity of the human cornea
  publication-title: J Refract Surg
– volume: 52
  start-page: 4324
  year: 2011
  end-page: 4329
  article-title: Age‐related differences in the elasticity of the human cornea
  publication-title: Invest Ophthalmol Vis Sci
– start-page: 2871
  year: 2005
  end-page: 2876
– volume: 83
  start-page: 1106
  year: 1999
  end-page: 1111
  article-title: Simulation model of an eyeball based on finite element analysis on a supercomputer
  publication-title: Br J Ophthalmol
– volume: 2
  start-page: 255
  year: 2007
  end-page: 265
  article-title: Recent advances in polymeric vitreous substitutes
  publication-title: Expert Rev Ophthalmol
– ident: e_1_2_5_5_1
  doi: 10.1115/1.3167135
– ident: e_1_2_5_10_1
  doi: 10.1167/iovs.07-1321
– volume: 18
  start-page: 316
  year: 2009
  ident: e_1_2_5_8_1
  article-title: Acoustic tonometry feasibility study of a new principle of intraocular pressure measurement
  publication-title: J Glaucoma
  doi: 10.1097/IJG.0b013e3181845661
– ident: e_1_2_5_4_1
  doi: 10.1115/1.3408584
– ident: e_1_2_5_21_1
  doi: 10.1136/bjo.83.10.1106
– volume: 8
  start-page: 69
  year: 2006
  ident: e_1_2_5_15_1
  article-title: Effect of kinematic boundary conditions on optical and biomechanical behaviour of eyeball model
  publication-title: Acta Bioeng Biomech
– ident: e_1_2_5_11_1
  doi: 10.1371/journal.pone.0104904
– ident: e_1_2_5_7_1
  doi: 10.5005/jp-journals-10008-1043
– ident: e_1_2_5_14_1
  doi: 10.1016/0014-4835(72)90139-X
– ident: e_1_2_5_9_1
  doi: 10.1109/ROBOT.2005.1570549
– ident: e_1_2_5_2_1
  doi: 10.1167/iovs.12-10984
– ident: e_1_2_5_22_1
– ident: e_1_2_5_16_1
  doi: 10.1016/0021-9290(92)90067-B
– start-page: 1
  volume-title: The Theory of Sound
  year: 1926
  ident: e_1_2_5_18_1
– ident: e_1_2_5_25_1
  doi: 10.1097/OPX.0b013e3181783a70
– ident: e_1_2_5_20_1
  doi: 10.1016/S0021-9290(96)80017-0
– start-page: 808
  year: 2007
  ident: e_1_2_5_24_1
  article-title: Determination of the modulus of elasticity of the human cornea
  publication-title: J Refract Surg
  doi: 10.3928/1081-597X-20071001-11
– ident: e_1_2_5_12_1
  doi: 10.1016/j.exer.2010.09.014
– ident: e_1_2_5_23_1
  doi: 10.1016/j.exer.2008.02.006
– ident: e_1_2_5_26_1
  doi: 10.1167/iovs.09-4798
– ident: e_1_2_5_17_1
  doi: 10.1111/j.1467-9590.2011.00523.x
– ident: e_1_2_5_6_1
  doi: 10.1115/1.3161953
– ident: e_1_2_5_19_1
  doi: 10.1016/0021-9290(86)90135-1
– volume: 69
  start-page: 494
  year: 1971
  ident: e_1_2_5_3_1
  article-title: Theory of the Schiotz tonometer and its empirical calibration
  publication-title: Trans Am Ophthalmol Soc
– ident: e_1_2_5_13_1
  doi: 10.1586/17469899.2.2.255
SSID ssj0007778
Score 2.197293
Snippet Purpose To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data. Methods A spherical diaphragm model can...
To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data. A spherical diaphragm model can better represent the...
To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data.PURPOSETo simultaneously extract the corneal Young's...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 663
SubjectTerms Adult
Aged
Biomechanical Phenomena
Cornea
Cornea - physiology
Corvis® ST
Elastic Modulus - physiology
Female
forced vibration
Humans
Intraocular Pressure - physiology
Male
Middle Aged
Models, Theoretical
Ocular Physiological Phenomena
tonometer
Tonometry, Ocular - methods
Young Adult
Title A corneal elastic dynamic model derived from Scheimpflug imaging technology
URI https://api.istex.fr/ark:/67375/WNG-BWSZFDZR-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fopo.12240
https://www.ncbi.nlm.nih.gov/pubmed/26353939
https://www.proquest.com/docview/1727994632
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEC5CguKLR7zWGGlFxJdZMtM90934FKNrUJJIYsgSAs30MRKSzC7ZXRF_vVU9h0YiiG_zUDN0dx391dQF8NJ7V4oypElW8SoRVrpEC3RWEBojeFDSW0cFzju7xfah-DjOx0vwpquFafpD9D_cSDOivSYFL-3sNyWfTCdDCguRv065WgSI9n-1jpKyscKZzCn4r9quQpTF07955S5aoWP9fh3QvIpb48UzugMn3ZKbfJOz4WJuh-7HH90c_3NPd-F2C0jZZiNB92Ap1Ktwc6cNua_CjZgj6mb34dMmQ1e1RmTJAmJupGe-mWfP4jwd5lGavwXPqGSFHaA0nF5Mq_PFV3Z6EWchsXn_H_8BHI7ef9naTtpZDIkTnKOHmWWptXi5FzlHpxEtQ6ZC4YPe4FkpgpfWykI4UfAq494rvPiVSvMqIPt16jf4Q1iuJ3V4DEzl3kovU--orlULqg1WWqF1qGQuSzuA1x1XjGsbldO8jHPTOSx4TCYe0wBe9KTTpjvHdUSvImt7ivLyjNLZZG6Odj-Yt0cHx6N3x_tmPIDnHe8NKhlFTso6TBYzQyhPa9xcNoBHjVD0X6NuPlxzjcuOrP37Qsze57348OTfSdfgFkK0vKl-fArL88tFWEcYNLfPorz_BM0zAD0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5VrQq80ANaltMghHjJqomd2JZ4Kcey0O4W9VBXlSorPoKqttlVu1shfj1j54CiIlW85WESOZ7rG3sOgNfWmpzlLo6SghYR09xEkmGwgtAYwYPgVhtf4DwYZv0D9nWUjubgXVMLU_WHaA_cvGYEe-0V3B9I_6Hl48m46--FMGBf8BO9Q0C1-7t5FOeVHU546q__Rd1XyOfxtK9e80YLfmN_3AQ1ryPX4Hp6S3DcLLrKODntzqa6a37-1c_xf_9qGe7XmJRsVkK0AnOuXIU7g_rWfRUWQ5qouXwAW5sEo9USwSVxCLuRnthqpD0JI3WIRYG-cpb4qhWyhwJxcj4pzmbfycl5GIdEpu1R_kM46H3a_9CP6nEMkWGUYpCZJLHW6N-zlGLciMYhES6zTm7QJGfOcq15xgzLaJFQawX6fiHitHAoATK2G3QN5stx6R4BEanV3PLYGl_aKpkvDxZSoIEoeMpz3YG3DVuUqXuV-5EZZ6qJWXCbVNimDrxqSSdVg46biN4E3rYU-cWpz2jjqTocflbvD_eOeh-PdtWoAy8b5ivUM395kpduPLtUHuhJiT-XdGC9kor2a76hD5VU4rIDb_-9ELXzbSc8PL496Qu4298fbKvtL8OtJ3APEVtaFUM-hfnpxcw9Q1Q01c-D8P8Cz_wEWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bTxQxFD4hEIgvKqiwilqNMb7MZmfambbhCV1XEFkISNgQkmZ6GUOA2Q3sGuOv97RzQQwmxrd5ODNpey79zpwbwBtrTc5yF0dJQYuIaW4iydBZQWiM4EFwq40vcN4dZltH7PMoHc3BRlMLU_WHaH-4ec0I9tor-MQWvyn5eDLu-rAQ-usLLOsJL9L9g5veUZxXZjjhqY_-i7qtkE_jaV-9dRkt-HP9cRfSvA1cw80zeACnzZqrhJPz7myqu-bnH-0c_3NTD-F-jUjJZiVCyzDnyhVY2q1j7iuwGJJEzfUj2Nkk6KuWCC2JQ9CN9MRWA-1JGKhDLIrzd2eJr1khhygOZ5eT4mL2jZxdhmFIZNr-yH8MR4OPXz9sRfUwhsgwStHFTJJYa7zds5Si14imIREus072aJIzZ7nWPGOGZbRIqLUCb34h4rRwyH8Z2x59AvPluHRrQERqNbc8tsYXtkrmi4OFFGgeCp7yXHfgXcMVZepO5X5gxoVqPBY8JhWOqQOvW9JJ1Z7jLqK3gbUtRX517vPZeKqOh5_U--PDk0H_5ECNOvCq4b1CLfOhk7x049m18jBPStxc0oHVSijar_l2PlRSicsOrP37QtTe_l54ePrvpC9hab8_UF-2hzvP4B7CtbSqhFyH-enVzD1HSDTVL4Lo_wLYNQMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+corneal+elastic+dynamic+model+derived+from+Scheimpflug+imaging+technology&rft.jtitle=Ophthalmic+%26+physiological+optics&rft.au=Shih%2C+Po-Jen&rft.au=Cao%2C+Huei-Jyun&rft.au=Huang%2C+Chun-Ju&rft.au=Wang%2C+I-Jong&rft.date=2015-11-01&rft.eissn=1475-1313&rft.volume=35&rft.issue=6&rft.spage=663&rft_id=info:doi/10.1111%2Fopo.12240&rft_id=info%3Apmid%2F26353939&rft.externalDocID=26353939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0275-5408&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0275-5408&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0275-5408&client=summon