A corneal elastic dynamic model derived from Scheimpflug imaging technology
Purpose To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data. Methods A spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass‐spring‐damper model. This research derived the dynamic model o...
Saved in:
Published in | Ophthalmic & physiological optics Vol. 35; no. 6; pp. 663 - 672 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0275-5408 1475-1313 1475-1313 |
DOI | 10.1111/opo.12240 |
Cover
Loading…
Abstract | Purpose
To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data.
Methods
A spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass‐spring‐damper model. This research derived the dynamic model of a water‐filled spherical diaphragm based on the hydrodynamics and wave propagation theories. By applying modal analysis on the model, one can decouple the cornea vibration into individual modes and reconstruct the air puff vibration from the decoupled responses. By matching this response with the Scheimpflug imaging data from the Corvis® ST, it was then possible to extract multiple physiological properties as desired.
Results
The dynamic modal analysis was employed to extract the corneal physiological properties of 25 Taiwanese normal subjects. Specifically, the corneal Young's moduli and damping ratios were estimated. In fact the model is dependent on the physiological parameters such as cornea thickness, densities, and intraocular pressure. It is thus also possible to extract these parameters through multi‐goal minimisation processes.
Conclusions
The spherical diaphragm model was able to better describe the dynamic response of the eyeball. The model analysis also provides additional corneal physiological properties that were not available through other means. |
---|---|
AbstractList | Purpose
To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data.
Methods
A spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass‐spring‐damper model. This research derived the dynamic model of a water‐filled spherical diaphragm based on the hydrodynamics and wave propagation theories. By applying modal analysis on the model, one can decouple the cornea vibration into individual modes and reconstruct the air puff vibration from the decoupled responses. By matching this response with the Scheimpflug imaging data from the Corvis® ST, it was then possible to extract multiple physiological properties as desired.
Results
The dynamic modal analysis was employed to extract the corneal physiological properties of 25 Taiwanese normal subjects. Specifically, the corneal Young's moduli and damping ratios were estimated. In fact the model is dependent on the physiological parameters such as cornea thickness, densities, and intraocular pressure. It is thus also possible to extract these parameters through multi‐goal minimisation processes.
Conclusions
The spherical diaphragm model was able to better describe the dynamic response of the eyeball. The model analysis also provides additional corneal physiological properties that were not available through other means. To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data. A spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass-spring-damper model. This research derived the dynamic model of a water-filled spherical diaphragm based on the hydrodynamics and wave propagation theories. By applying modal analysis on the model, one can decouple the cornea vibration into individual modes and reconstruct the air puff vibration from the decoupled responses. By matching this response with the Scheimpflug imaging data from the Corvis(®) ST, it was then possible to extract multiple physiological properties as desired. The dynamic modal analysis was employed to extract the corneal physiological properties of 25 Taiwanese normal subjects. Specifically, the corneal Young's moduli and damping ratios were estimated. In fact the model is dependent on the physiological parameters such as cornea thickness, densities, and intraocular pressure. It is thus also possible to extract these parameters through multi-goal minimisation processes. The spherical diaphragm model was able to better describe the dynamic response of the eyeball. The model analysis also provides additional corneal physiological properties that were not available through other means. To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data.PURPOSETo simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data.A spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass-spring-damper model. This research derived the dynamic model of a water-filled spherical diaphragm based on the hydrodynamics and wave propagation theories. By applying modal analysis on the model, one can decouple the cornea vibration into individual modes and reconstruct the air puff vibration from the decoupled responses. By matching this response with the Scheimpflug imaging data from the Corvis(®) ST, it was then possible to extract multiple physiological properties as desired.METHODSA spherical diaphragm model can better represent the geometry and physics of an eyeball than the popular mass-spring-damper model. This research derived the dynamic model of a water-filled spherical diaphragm based on the hydrodynamics and wave propagation theories. By applying modal analysis on the model, one can decouple the cornea vibration into individual modes and reconstruct the air puff vibration from the decoupled responses. By matching this response with the Scheimpflug imaging data from the Corvis(®) ST, it was then possible to extract multiple physiological properties as desired.The dynamic modal analysis was employed to extract the corneal physiological properties of 25 Taiwanese normal subjects. Specifically, the corneal Young's moduli and damping ratios were estimated. In fact the model is dependent on the physiological parameters such as cornea thickness, densities, and intraocular pressure. It is thus also possible to extract these parameters through multi-goal minimisation processes.RESULTSThe dynamic modal analysis was employed to extract the corneal physiological properties of 25 Taiwanese normal subjects. Specifically, the corneal Young's moduli and damping ratios were estimated. In fact the model is dependent on the physiological parameters such as cornea thickness, densities, and intraocular pressure. It is thus also possible to extract these parameters through multi-goal minimisation processes.The spherical diaphragm model was able to better describe the dynamic response of the eyeball. The model analysis also provides additional corneal physiological properties that were not available through other means.CONCLUSIONSThe spherical diaphragm model was able to better describe the dynamic response of the eyeball. The model analysis also provides additional corneal physiological properties that were not available through other means. |
Author | Huang, Chun-Ju Wang, I-Jong Cao, Huei-Jyun Shih, Po-Jen Shih, Wen-Pin Yen, Jia-Yush |
Author_xml | – sequence: 1 givenname: Po-Jen surname: Shih fullname: Shih, Po-Jen organization: Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, Taiwan – sequence: 2 givenname: Huei-Jyun surname: Cao fullname: Cao, Huei-Jyun organization: Department of Mechanic Engineering, National Taiwan University, Taipei, Taiwan – sequence: 3 givenname: Chun-Ju surname: Huang fullname: Huang, Chun-Ju organization: Department of Mechanic Engineering, National Taiwan University, Taipei, Taiwan – sequence: 4 givenname: I-Jong surname: Wang fullname: Wang, I-Jong organization: Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan – sequence: 5 givenname: Wen-Pin surname: Shih fullname: Shih, Wen-Pin organization: Department of Mechanic Engineering, National Taiwan University, Taipei, Taiwan – sequence: 6 givenname: Jia-Yush surname: Yen fullname: Yen, Jia-Yush email: jyen@ntu.edu.tw organization: Department of Mechanic Engineering, National Taiwan University, Taipei, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26353939$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1P3DAQhq2Kqiy0B_5AlWN7CPgrcXKkW74EYlEBUXGxHHuyuHXixc4C--8x3V0OqMxl5vA8r0bvFtrofQ8I7RC8S9Ls-ZnfJZRy_AGNCBdFThhhG2iEaboLjqtNtBXjH4yxEKL6hDZpyQpWs3qETvcz7UMPymXgVByszsyiV13anTfgMgPBPoDJ2uC77FLfge1mrZtPM9upqe2n2QD6rvfOTxef0cdWuQhfVnsbXR8eXI2P87PJ0cl4_yzXnDGcl5SSpiFVURZMUMKwoBWUBmrMqOJgRNOIkmtespYyYypOy6oiRQu8ETUxmG2jb8vcWfD3c4iD7GzU4Jzqwc-jJIKKuk4-TejXFTpvOjByFtLbYSHXBSRgbwno4GMM0EptBzVY3w9BWScJli8Vy1Sx_FdxMr6_Mdah_2NX6Y_WweJ9UE4uJmsjXxo2DvD0aqjwV5aCiULenB_JHzeXt4c_b3_J3-wZZHSYiw |
CitedBy_id | crossref_primary_10_1186_s12938_019_0662_1 crossref_primary_10_1371_journal_pone_0224824 crossref_primary_10_3390_s24123997 crossref_primary_10_1038_s41598_020_80321_1 crossref_primary_10_1007_s10792_021_02003_9 crossref_primary_10_1109_TBME_2023_3338086 crossref_primary_10_1049_cth2_70003 crossref_primary_10_1016_j_exer_2017_07_003 crossref_primary_10_1111_cxo_12861 crossref_primary_10_1016_j_jmbbm_2024_106454 crossref_primary_10_12677_ACM_2021_116406 crossref_primary_10_1016_j_actbio_2023_12_019 crossref_primary_10_1111_opo_12345 crossref_primary_10_1186_s12938_019_0636_3 crossref_primary_10_22141_2309_8147_11_3_2023_342 crossref_primary_10_1016_j_compbiomed_2023_107804 crossref_primary_10_1177_03000605221108100 crossref_primary_10_1007_s13246_024_01403_2 crossref_primary_10_3928_1081597X_20160512_02 crossref_primary_10_1155_2021_5592195 crossref_primary_10_1167_iovs_61_5_34 |
Cites_doi | 10.1115/1.3167135 10.1167/iovs.07-1321 10.1097/IJG.0b013e3181845661 10.1115/1.3408584 10.1136/bjo.83.10.1106 10.1371/journal.pone.0104904 10.5005/jp-journals-10008-1043 10.1016/0014-4835(72)90139-X 10.1109/ROBOT.2005.1570549 10.1167/iovs.12-10984 10.1016/0021-9290(92)90067-B 10.1097/OPX.0b013e3181783a70 10.1016/S0021-9290(96)80017-0 10.3928/1081-597X-20071001-11 10.1016/j.exer.2010.09.014 10.1016/j.exer.2008.02.006 10.1167/iovs.09-4798 10.1111/j.1467-9590.2011.00523.x 10.1115/1.3161953 10.1016/0021-9290(86)90135-1 10.1586/17469899.2.2.255 |
ContentType | Journal Article |
Copyright | 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists. |
Copyright_xml | – notice: 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists – notice: 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/opo.12240 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1475-1313 |
EndPage | 672 |
ExternalDocumentID | 26353939 10_1111_opo_12240 OPO12240 ark_67375_WNG_BWSZFDZR_X |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: 103‐2228‐E‐002‐ 001 |
GroupedDBID | --- --K .3N .GA .Y3 05W 0R~ 10A 123 1B1 1OB 1OC 1~5 29N 31~ 33P 36B 3SF 4.4 4G. 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AAHQN AAIPD AALRI AAMNL AANHP AANLZ AAONW AAQFI AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABMAC ABPVW ABQWH ABWVN ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACNCT ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADMUD ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHEFC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EAD EAP EBC EBD EBS EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FDB FEDTE FGOYB FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NQ- O66 O9- OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K R2- RIWAO RJQFR ROL RPZ RX1 SAMSI SEW SSZ SUPJJ SV3 TEORI TUS UB1 UHS V8K W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR XG1 YFH YUY ZZTAW ~IA ~WT AEUQT AFPWT WRC WUP AAMMB AAYXX ACVFH ADCNI AEFGJ AEUPX AEYWJ AFPUW AGXDD AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4330-6221bb18565372130728e6de9032a4ed7bb764c463f23dd84268815fe4b791d03 |
IEDL.DBID | DR2 |
ISSN | 0275-5408 1475-1313 |
IngestDate | Thu Jul 10 23:08:50 EDT 2025 Mon Jul 21 05:51:17 EDT 2025 Thu Jul 03 08:27:30 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Wed Jan 22 16:57:51 EST 2025 Thu Apr 24 03:19:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Cornea forced vibration Corvis® ST tonometer |
Language | English |
License | 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4330-6221bb18565372130728e6de9032a4ed7bb764c463f23dd84268815fe4b791d03 |
Notes | ArticleID:OPO12240 istex:2CF3C5CFC3394682F054549A92311BC4EFE48BCF ark:/67375/WNG-BWSZFDZR-X Video S1. Response fitting process.Data S1. Cornea dynamic response data for patients. Ministry of Science and Technology, Taiwan - No. 103-2228-E-002- 001 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26353939 |
PQID | 1727994632 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1727994632 pubmed_primary_26353939 crossref_citationtrail_10_1111_opo_12240 crossref_primary_10_1111_opo_12240 wiley_primary_10_1111_opo_12240_OPO12240 istex_primary_ark_67375_WNG_BWSZFDZR_X |
PublicationCentury | 2000 |
PublicationDate | November 2015 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Ophthalmic & physiological optics |
PublicationTitleAlternate | Ophthalmic Physiol Opt |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Moses RA. Theory of the Schiotz tonometer and its empirical calibration. Trans Am Ophthalmol Soc 1971; 69: 494-562. Cartwright NEK, Tyrer JR & Marshall J. Age-related differences in the elasticity of the human cornea. Invest Ophthalmol Vis Sci 2011; 52: 4324-4329. Wang HC, Prendiville PL, McDonnell PJ & Chang WV. An ultrasonic technique for the measurement of the elastic moduli of human cornea. J Biomech 1996; 29: 1633-1636. Elsheikh A, Alhasso D & Rama P. Biomechanical properties of human and porcine corneas. Exp Eye Res 2008; 86: 783-790. von Freyberg A, Sorg M & Fuhrmann M et al. Acoustic tonometry feasibility study of a new principle of intraocular pressure measurement. J Glaucoma 2009; 18: 316-320. Kling S, Bekesi N, Dorronsoro C et al. Corneal viscoelastic properties from finite element analysis of in vivo air puff deformation. PLoS ONE Aug.2014; 9: e104904. Grinfeld P. Small oscillations of a soap bubble. Stud Appl Math 2012; 128: 30-39. Steele CR. Slope discontinuities in pressure vessels. J Appl Mech 1970; 37: 587-595. Elsheikh A, Wang DF & Pye D. Determination of the modulus of elasticity of the human cornea. J Refract Surg 2007; 808-818. Hong J, Xu J, Wei A et al. A new tonometer-the Corvis st tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest Ophthalmol Vis Sci 2013; 54: 659-665. Hamilton KE & Pye DC. Young's modulus in normal corners and the effect on applanation tonometry. Optom Vis Sci 2008; 85: 445-450. Taber LA. Large deflection of a fluid-filled spherical-shell under a point load. J Appl Mech 1982; 49: 121-128. Norman RE, Flanagan JG, Sigal IA et al. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res 2011; 93: 1-9. Woo SLY, Kobayashi AS, Schlegel WA & Lawrence C. Nonlinear material properties of intact cornea and sclera. Exp Eye Res 1972; 14: 29-39. Kaushik S & Pandav SS. Measuring intraocular pressure: how important is the central corneal thickness? J Curr Glaucoma Pr 2007; 1: 21-24. Śródka W. Effect of kinematic boundary conditions on optical and biomechanical behaviour of eyeball model. Acta Bioeng Biomech 2006; 8: 69-77. Rayleigh JWS. The Theory of Sound. Macmillan: London, 1926; p. 1. Swindle KE & Ravi N. Recent advances in polymeric vitreous substitutes. Expert Rev Ophthalmol 2007; 2: 255-265. Glass DH, Roberts CJ, Litsky AS & Weber PA. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci Sept. 2008; 49: 3919-3926. Jue B & Maurice DM. The mechanical-properties of the rabbit and human cornea. J Biomech 1986; 19: 847-853. Uchio E, Ohno S, Kudoh J, Aoki K & Kisielewicz LT. Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol 1999; 83: 1106-1111. Taber LA. Compression of fluid-filled spherical shells by rigid indenters. J Appl Mech 1983; 50: 717-722. Coquart L, Depeursinge C, Curnier A & Ohayon R. A fluid-structure interaction problem in biomechanics - prestressed vibrations of the eye by the finite-element method. J Biomech 1992; 25: 1105-1118. 1982; 49 1996; 29 2013; 54 2011; 93 2008; 49 1971; 69 2006; 8 2011; 52 2007 1986; 19 2005 1983; 50 1992; 25 2007; 2 2008; 85 1999; 83 2008; 86 2014; 9 1972; 14 2007; 1 2012; 128 1926 1970; 37 2009; 18 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_21_1 e_1_2_5_22_1 Śródka W (e_1_2_5_15_1) 2006; 8 e_1_2_5_20_1 Rayleigh JWS (e_1_2_5_18_1) 1926 e_1_2_5_14_1 e_1_2_5_17_1 Freyberg A (e_1_2_5_8_1) 2009; 18 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_19_1 Moses RA (e_1_2_5_3_1) 1971; 69 Elsheikh A (e_1_2_5_24_1) 2007 |
References_xml | – reference: von Freyberg A, Sorg M & Fuhrmann M et al. Acoustic tonometry feasibility study of a new principle of intraocular pressure measurement. J Glaucoma 2009; 18: 316-320. – reference: Grinfeld P. Small oscillations of a soap bubble. Stud Appl Math 2012; 128: 30-39. – reference: Rayleigh JWS. The Theory of Sound. Macmillan: London, 1926; p. 1. – reference: Elsheikh A, Alhasso D & Rama P. Biomechanical properties of human and porcine corneas. Exp Eye Res 2008; 86: 783-790. – reference: Cartwright NEK, Tyrer JR & Marshall J. Age-related differences in the elasticity of the human cornea. Invest Ophthalmol Vis Sci 2011; 52: 4324-4329. – reference: Jue B & Maurice DM. The mechanical-properties of the rabbit and human cornea. J Biomech 1986; 19: 847-853. – reference: Taber LA. Compression of fluid-filled spherical shells by rigid indenters. J Appl Mech 1983; 50: 717-722. – reference: Moses RA. Theory of the Schiotz tonometer and its empirical calibration. Trans Am Ophthalmol Soc 1971; 69: 494-562. – reference: Kaushik S & Pandav SS. Measuring intraocular pressure: how important is the central corneal thickness? J Curr Glaucoma Pr 2007; 1: 21-24. – reference: Norman RE, Flanagan JG, Sigal IA et al. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res 2011; 93: 1-9. – reference: Wang HC, Prendiville PL, McDonnell PJ & Chang WV. An ultrasonic technique for the measurement of the elastic moduli of human cornea. J Biomech 1996; 29: 1633-1636. – reference: Śródka W. Effect of kinematic boundary conditions on optical and biomechanical behaviour of eyeball model. Acta Bioeng Biomech 2006; 8: 69-77. – reference: Taber LA. Large deflection of a fluid-filled spherical-shell under a point load. J Appl Mech 1982; 49: 121-128. – reference: Kling S, Bekesi N, Dorronsoro C et al. Corneal viscoelastic properties from finite element analysis of in vivo air puff deformation. PLoS ONE Aug.2014; 9: e104904. – reference: Hong J, Xu J, Wei A et al. A new tonometer-the Corvis st tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest Ophthalmol Vis Sci 2013; 54: 659-665. – reference: Elsheikh A, Wang DF & Pye D. Determination of the modulus of elasticity of the human cornea. J Refract Surg 2007; 808-818. – reference: Woo SLY, Kobayashi AS, Schlegel WA & Lawrence C. Nonlinear material properties of intact cornea and sclera. Exp Eye Res 1972; 14: 29-39. – reference: Hamilton KE & Pye DC. Young's modulus in normal corners and the effect on applanation tonometry. Optom Vis Sci 2008; 85: 445-450. – reference: Uchio E, Ohno S, Kudoh J, Aoki K & Kisielewicz LT. Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol 1999; 83: 1106-1111. – reference: Coquart L, Depeursinge C, Curnier A & Ohayon R. A fluid-structure interaction problem in biomechanics - prestressed vibrations of the eye by the finite-element method. J Biomech 1992; 25: 1105-1118. – reference: Swindle KE & Ravi N. Recent advances in polymeric vitreous substitutes. Expert Rev Ophthalmol 2007; 2: 255-265. – reference: Steele CR. Slope discontinuities in pressure vessels. J Appl Mech 1970; 37: 587-595. – reference: Glass DH, Roberts CJ, Litsky AS & Weber PA. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci Sept. 2008; 49: 3919-3926. – volume: 25 start-page: 1105 year: 1992 end-page: 1118 article-title: A fluid‐structure interaction problem in biomechanics ‐ prestressed vibrations of the eye by the finite‐element method publication-title: J Biomech – volume: 8 start-page: 69 year: 2006 end-page: 77 article-title: Effect of kinematic boundary conditions on optical and biomechanical behaviour of eyeball model publication-title: Acta Bioeng Biomech – volume: 49 start-page: 121 year: 1982 end-page: 128 article-title: Large deflection of a fluid‐filled spherical‐shell under a point load publication-title: J Appl Mech – volume: 69 start-page: 494 year: 1971 end-page: 562 article-title: Theory of the Schiotz tonometer and its empirical calibration publication-title: Trans Am Ophthalmol Soc – volume: 18 start-page: 316 year: 2009 end-page: 320 article-title: Acoustic tonometry feasibility study of a new principle of intraocular pressure measurement publication-title: J Glaucoma – volume: 93 start-page: 1 year: 2011 end-page: 9 article-title: Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma publication-title: Exp Eye Res – volume: 19 start-page: 847 year: 1986 end-page: 853 article-title: The mechanical‐properties of the rabbit and human cornea publication-title: J Biomech – volume: 9 start-page: e104904 year: 2014 article-title: Corneal viscoelastic properties from finite element analysis of air puff deformation publication-title: PLoS ONE – volume: 86 start-page: 783 year: 2008 end-page: 790 article-title: Biomechanical properties of human and porcine corneas publication-title: Exp Eye Res – volume: 1 start-page: 21 year: 2007 end-page: 24 article-title: Measuring intraocular pressure: how important is the central corneal thickness? publication-title: J Curr Glaucoma Pr – volume: 85 start-page: 445 year: 2008 end-page: 450 article-title: Young's modulus in normal corners and the effect on applanation tonometry publication-title: Optom Vis Sci – volume: 29 start-page: 1633 year: 1996 end-page: 1636 article-title: An ultrasonic technique for the measurement of the elastic moduli of human cornea publication-title: J Biomech – volume: 50 start-page: 717 year: 1983 end-page: 722 article-title: Compression of fluid‐filled spherical shells by rigid indenters publication-title: J Appl Mech – volume: 128 start-page: 30 year: 2012 end-page: 39 article-title: Small oscillations of a soap bubble publication-title: Stud Appl Math – volume: 37 start-page: 587 year: 1970 end-page: 595 article-title: Slope discontinuities in pressure vessels publication-title: J Appl Mech – volume: 14 start-page: 29 year: 1972 end-page: 39 article-title: Nonlinear material properties of intact cornea and sclera publication-title: Exp Eye Res – start-page: 1 year: 1926 – volume: 54 start-page: 659 year: 2013 end-page: 665 article-title: A new tonometer‐the Corvis st tonometer: clinical comparison with noncontact and Goldmann applanation tonometers publication-title: Invest Ophthalmol Vis Sci – volume: 49 start-page: 3919 year: 2008 end-page: 3926 article-title: A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis publication-title: Invest Ophthalmol Vis Sci – start-page: 808 year: 2007 end-page: 818 article-title: Determination of the modulus of elasticity of the human cornea publication-title: J Refract Surg – volume: 52 start-page: 4324 year: 2011 end-page: 4329 article-title: Age‐related differences in the elasticity of the human cornea publication-title: Invest Ophthalmol Vis Sci – start-page: 2871 year: 2005 end-page: 2876 – volume: 83 start-page: 1106 year: 1999 end-page: 1111 article-title: Simulation model of an eyeball based on finite element analysis on a supercomputer publication-title: Br J Ophthalmol – volume: 2 start-page: 255 year: 2007 end-page: 265 article-title: Recent advances in polymeric vitreous substitutes publication-title: Expert Rev Ophthalmol – ident: e_1_2_5_5_1 doi: 10.1115/1.3167135 – ident: e_1_2_5_10_1 doi: 10.1167/iovs.07-1321 – volume: 18 start-page: 316 year: 2009 ident: e_1_2_5_8_1 article-title: Acoustic tonometry feasibility study of a new principle of intraocular pressure measurement publication-title: J Glaucoma doi: 10.1097/IJG.0b013e3181845661 – ident: e_1_2_5_4_1 doi: 10.1115/1.3408584 – ident: e_1_2_5_21_1 doi: 10.1136/bjo.83.10.1106 – volume: 8 start-page: 69 year: 2006 ident: e_1_2_5_15_1 article-title: Effect of kinematic boundary conditions on optical and biomechanical behaviour of eyeball model publication-title: Acta Bioeng Biomech – ident: e_1_2_5_11_1 doi: 10.1371/journal.pone.0104904 – ident: e_1_2_5_7_1 doi: 10.5005/jp-journals-10008-1043 – ident: e_1_2_5_14_1 doi: 10.1016/0014-4835(72)90139-X – ident: e_1_2_5_9_1 doi: 10.1109/ROBOT.2005.1570549 – ident: e_1_2_5_2_1 doi: 10.1167/iovs.12-10984 – ident: e_1_2_5_22_1 – ident: e_1_2_5_16_1 doi: 10.1016/0021-9290(92)90067-B – start-page: 1 volume-title: The Theory of Sound year: 1926 ident: e_1_2_5_18_1 – ident: e_1_2_5_25_1 doi: 10.1097/OPX.0b013e3181783a70 – ident: e_1_2_5_20_1 doi: 10.1016/S0021-9290(96)80017-0 – start-page: 808 year: 2007 ident: e_1_2_5_24_1 article-title: Determination of the modulus of elasticity of the human cornea publication-title: J Refract Surg doi: 10.3928/1081-597X-20071001-11 – ident: e_1_2_5_12_1 doi: 10.1016/j.exer.2010.09.014 – ident: e_1_2_5_23_1 doi: 10.1016/j.exer.2008.02.006 – ident: e_1_2_5_26_1 doi: 10.1167/iovs.09-4798 – ident: e_1_2_5_17_1 doi: 10.1111/j.1467-9590.2011.00523.x – ident: e_1_2_5_6_1 doi: 10.1115/1.3161953 – ident: e_1_2_5_19_1 doi: 10.1016/0021-9290(86)90135-1 – volume: 69 start-page: 494 year: 1971 ident: e_1_2_5_3_1 article-title: Theory of the Schiotz tonometer and its empirical calibration publication-title: Trans Am Ophthalmol Soc – ident: e_1_2_5_13_1 doi: 10.1586/17469899.2.2.255 |
SSID | ssj0007778 |
Score | 2.197293 |
Snippet | Purpose
To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data.
Methods
A spherical diaphragm model can... To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data. A spherical diaphragm model can better represent the... To simultaneously extract the corneal Young's modulus and the damping ratio from Scheimpflug imaging data.PURPOSETo simultaneously extract the corneal Young's... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 663 |
SubjectTerms | Adult Aged Biomechanical Phenomena Cornea Cornea - physiology Corvis® ST Elastic Modulus - physiology Female forced vibration Humans Intraocular Pressure - physiology Male Middle Aged Models, Theoretical Ocular Physiological Phenomena tonometer Tonometry, Ocular - methods Young Adult |
Title | A corneal elastic dynamic model derived from Scheimpflug imaging technology |
URI | https://api.istex.fr/ark:/67375/WNG-BWSZFDZR-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fopo.12240 https://www.ncbi.nlm.nih.gov/pubmed/26353939 https://www.proquest.com/docview/1727994632 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEC5CguKLR7zWGGlFxJdZMtM90934FKNrUJJIYsgSAs30MRKSzC7ZXRF_vVU9h0YiiG_zUDN0dx391dQF8NJ7V4oypElW8SoRVrpEC3RWEBojeFDSW0cFzju7xfah-DjOx0vwpquFafpD9D_cSDOivSYFL-3sNyWfTCdDCguRv065WgSI9n-1jpKyscKZzCn4r9quQpTF07955S5aoWP9fh3QvIpb48UzugMn3ZKbfJOz4WJuh-7HH90c_3NPd-F2C0jZZiNB92Ap1Ktwc6cNua_CjZgj6mb34dMmQ1e1RmTJAmJupGe-mWfP4jwd5lGavwXPqGSFHaA0nF5Mq_PFV3Z6EWchsXn_H_8BHI7ef9naTtpZDIkTnKOHmWWptXi5FzlHpxEtQ6ZC4YPe4FkpgpfWykI4UfAq494rvPiVSvMqIPt16jf4Q1iuJ3V4DEzl3kovU--orlULqg1WWqF1qGQuSzuA1x1XjGsbldO8jHPTOSx4TCYe0wBe9KTTpjvHdUSvImt7ivLyjNLZZG6Odj-Yt0cHx6N3x_tmPIDnHe8NKhlFTso6TBYzQyhPa9xcNoBHjVD0X6NuPlxzjcuOrP37Qsze57348OTfSdfgFkK0vKl-fArL88tFWEcYNLfPorz_BM0zAD0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5VrQq80ANaltMghHjJqomd2JZ4Kcey0O4W9VBXlSorPoKqttlVu1shfj1j54CiIlW85WESOZ7rG3sOgNfWmpzlLo6SghYR09xEkmGwgtAYwYPgVhtf4DwYZv0D9nWUjubgXVMLU_WHaA_cvGYEe-0V3B9I_6Hl48m46--FMGBf8BO9Q0C1-7t5FOeVHU546q__Rd1XyOfxtK9e80YLfmN_3AQ1ryPX4Hp6S3DcLLrKODntzqa6a37-1c_xf_9qGe7XmJRsVkK0AnOuXIU7g_rWfRUWQ5qouXwAW5sEo9USwSVxCLuRnthqpD0JI3WIRYG-cpb4qhWyhwJxcj4pzmbfycl5GIdEpu1R_kM46H3a_9CP6nEMkWGUYpCZJLHW6N-zlGLciMYhES6zTm7QJGfOcq15xgzLaJFQawX6fiHitHAoATK2G3QN5stx6R4BEanV3PLYGl_aKpkvDxZSoIEoeMpz3YG3DVuUqXuV-5EZZ6qJWXCbVNimDrxqSSdVg46biN4E3rYU-cWpz2jjqTocflbvD_eOeh-PdtWoAy8b5ivUM395kpduPLtUHuhJiT-XdGC9kor2a76hD5VU4rIDb_-9ELXzbSc8PL496Qu4298fbKvtL8OtJ3APEVtaFUM-hfnpxcw9Q1Q01c-D8P8Cz_wEWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bTxQxFD4hEIgvKqiwilqNMb7MZmfambbhCV1XEFkISNgQkmZ6GUOA2Q3sGuOv97RzQQwmxrd5ODNpey79zpwbwBtrTc5yF0dJQYuIaW4iydBZQWiM4EFwq40vcN4dZltH7PMoHc3BRlMLU_WHaH-4ec0I9tor-MQWvyn5eDLu-rAQ-usLLOsJL9L9g5veUZxXZjjhqY_-i7qtkE_jaV-9dRkt-HP9cRfSvA1cw80zeACnzZqrhJPz7myqu-bnH-0c_3NTD-F-jUjJZiVCyzDnyhVY2q1j7iuwGJJEzfUj2Nkk6KuWCC2JQ9CN9MRWA-1JGKhDLIrzd2eJr1khhygOZ5eT4mL2jZxdhmFIZNr-yH8MR4OPXz9sRfUwhsgwStHFTJJYa7zds5Si14imIREus072aJIzZ7nWPGOGZbRIqLUCb34h4rRwyH8Z2x59AvPluHRrQERqNbc8tsYXtkrmi4OFFGgeCp7yXHfgXcMVZepO5X5gxoVqPBY8JhWOqQOvW9JJ1Z7jLqK3gbUtRX517vPZeKqOh5_U--PDk0H_5ECNOvCq4b1CLfOhk7x049m18jBPStxc0oHVSijar_l2PlRSicsOrP37QtTe_l54ePrvpC9hab8_UF-2hzvP4B7CtbSqhFyH-enVzD1HSDTVL4Lo_wLYNQMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+corneal+elastic+dynamic+model+derived+from+Scheimpflug+imaging+technology&rft.jtitle=Ophthalmic+%26+physiological+optics&rft.au=Shih%2C+Po-Jen&rft.au=Cao%2C+Huei-Jyun&rft.au=Huang%2C+Chun-Ju&rft.au=Wang%2C+I-Jong&rft.date=2015-11-01&rft.eissn=1475-1313&rft.volume=35&rft.issue=6&rft.spage=663&rft_id=info:doi/10.1111%2Fopo.12240&rft_id=info%3Apmid%2F26353939&rft.externalDocID=26353939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0275-5408&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0275-5408&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0275-5408&client=summon |