Low rank compression in the numerical solution of the nonequilibrium Dyson equation
We propose a method to improve the computational and memory efficiency of numerical solvers for the nonequilibrium Dyson equation in the Keldysh formalism. It is based on the empirical observation that the nonequilibrium Green's functions and self energies arising in many problems of physical i...
Saved in:
Published in | SciPost physics Vol. 10; no. 4; p. 091 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
SciPost
26.04.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a method to improve the computational and memory efficiency of numerical solvers for the nonequilibrium Dyson equation in the Keldysh formalism. It is based on the empirical observation that the nonequilibrium Green's functions and self energies arising in many problems of physical interest, discretized as matrices, have low rank off-diagonal blocks, and can therefore be compressed using a hierarchical low rank data structure. We describe an efficient algorithm to build this compressed representation on the fly during the course of time stepping, and use the representation to reduce the
cost of computing history integrals, which is the main computational
bottleneck. For systems with the hierarchical low rank property, our
method reduces the computational complexity of solving the
nonequilibrium Dyson equation from cubic to near quadratic, and the
memory complexity from quadratic to near linear. We demonstrate the full
solver for the Falicov-Kimball model exposed to a rapid ramp and
Floquet driving of system parameters, and are able to
increase feasible propagation times substantially. We present examples with
262 144 time steps, which would require approximately five months
of computing time and 2.2 TB of memory using the direct time stepping method,
but can be completed in just over a day on a laptop with
less than 4 GB of memory using our method.
We also confirm the hierarchical low
rank property for the driven Hubbard model in the weak coupling regime
within the GW approximation, and in the strong coupling regime
within dynamical mean-field theory. |
---|---|
AbstractList | We propose a method to improve the computational and memory efficiency of numerical solvers for the nonequilibrium Dyson equation in the Keldysh formalism. It is based on the empirical observation that the nonequilibrium Green's functions and self energies arising in many problems of physical interest, discretized as matrices, have low rank off-diagonal blocks, and can therefore be compressed using a hierarchical low rank data structure. We describe an efficient algorithm to build this compressed representation on the fly during the course of time stepping, and use the representation to reduce the
cost of computing history integrals, which is the main computational
bottleneck. For systems with the hierarchical low rank property, our
method reduces the computational complexity of solving the
nonequilibrium Dyson equation from cubic to near quadratic, and the
memory complexity from quadratic to near linear. We demonstrate the full
solver for the Falicov-Kimball model exposed to a rapid ramp and
Floquet driving of system parameters, and are able to
increase feasible propagation times substantially. We present examples with
262 144 time steps, which would require approximately five months
of computing time and 2.2 TB of memory using the direct time stepping method,
but can be completed in just over a day on a laptop with
less than 4 GB of memory using our method.
We also confirm the hierarchical low
rank property for the driven Hubbard model in the weak coupling regime
within the GW approximation, and in the strong coupling regime
within dynamical mean-field theory. We propose a method to improve the computational and memory efficiency of numerical solvers for the nonequilibrium Dyson equation in the Keldysh formalism. It is based on the empirical observation that the nonequilibrium Green's functions and self energies arising in many problems of physical interest, discretized as matrices, have low rank off-diagonal blocks, and can therefore be compressed using a hierarchical low rank data structure. We describe an efficient algorithm to build this compressed representation on the fly during the course of time stepping, and use the representation to reduce the cost of computing history integrals, which is the main computational bottleneck. For systems with the hierarchical low rank property, our method reduces the computational complexity of solving the nonequilibrium Dyson equation from cubic to near quadratic, and the memory complexity from quadratic to near linear. We demonstrate the full solver for the Falicov-Kimball model exposed to a rapid ramp and Floquet driving of system parameters, and are able to increase feasible propagation times substantially. We present examples with 262144 time steps, which would require approximately five months of computing time and 2.2 TB of memory using the direct time stepping method, but can be completed in just over a day on a laptop with less than 4 GB of memory using our method. We also confirm the hierarchical low rank property for the driven Hubbard model in the weak coupling regime within the GW approximation, and in the strong coupling regime within dynamical mean-field theory. |
ArticleNumber | 091 |
Author | Kaye, Jason Golez, Denis |
Author_xml | – sequence: 1 givenname: Jason surname: Kaye fullname: Kaye, Jason organization: Flatiron Institute – sequence: 2 givenname: Denis surname: Golez fullname: Golez, Denis organization: Jožef Stefan Institute, University of Ljubljana, Flatiron Institute |
BookMark | eNpNkNtKAzEURYNUsNZ-gpAfmJr7pI9Sb4WChepzyGQSmzozqckM0r83tSJ9OmHtsDhnX4NRFzoLwC1GM4KZkHcb49ch9evtIc0yZDM0xxdgTDgjBROcjs7eV2Ca0g4hRDCeY8HHYLMK3zDq7hOa0O6jTcmHDvoO9lsLu6G10RvdwBSaoT8mwZ2SvMTX4BtfRT-08OGQcpaJPn66AZdON8lO_-YEvD89vi1eitXr83JxvyoMo6QvnKam5GVd0tpKjpjBRBMnRCmdrgU2pUGcVo4RZyyShHBT8UpaToTEOF9AJ2B58tZB79Q--lbHgwraq18Q4ofSsfemsSqbKNHSSJe7QFpIaoye15WwDAvGdXbxk8vEkFK07t-HkfotWp0VfYRM5aLpD7yldvA |
CitedBy_id | crossref_primary_10_1007_s10444_023_10067_7 crossref_primary_10_1103_PhysRevB_109_064310 crossref_primary_10_1103_PhysRevX_13_021015 crossref_primary_10_1103_PhysRevB_106_125153 crossref_primary_10_1103_PhysRevB_106_214318 crossref_primary_10_21468_SciPostPhysCore_5_2_030 crossref_primary_10_21468_SciPostPhys_16_3_073 crossref_primary_10_1103_PhysRevB_105_115146 crossref_primary_10_1088_1751_8121_acfd6a crossref_primary_10_1103_PhysRevLett_130_246301 crossref_primary_10_1140_epjs_s11734_021_00109_w crossref_primary_10_1103_PhysRevB_106_L241110 crossref_primary_10_1016_j_cpc_2022_108458 crossref_primary_10_1103_PhysRevResearch_3_033052 crossref_primary_10_1103_PhysRevB_109_165135 crossref_primary_10_1007_s10444_021_09902_6 crossref_primary_10_1103_PhysRevB_104_085108 crossref_primary_10_1002_pssb_202300504 crossref_primary_10_1016_j_jcp_2022_111723 |
Cites_doi | 10.1038/nphys2205 10.1103/physrevlett.125.047702 10.1126/science.1241591 10.1109/jproc.2004.840301 10.1103/physrevlett.120.166401 10.1103/revmodphys.68.13 10.1103/physrevx.3.041033 10.1103/physrevlett.124.076601 10.1103/physrevb.2.3383 10.1007/978-3-540-73564-9 10.1103/physrevb.101.035203 10.1103/physrevlett.118.246402 10.1038/nature16522 10.1103/physrevx.8.041009 10.1103/physrevb.97.245129 10.1002/pssb.201800594 10.1103/physrevb.102.115157 10.1103/PhysRevB.102.165136 10.7566/jpsj.89.012001 10.1103/revmodphys.86.779 10.1103/physrevb.100.155130 10.1103/PhysRevB.102.235169 10.1103/physrevlett.65.1663 10.1103/physrevb.97.235125 10.1103/physrevb.96.035147 10.1103/physrevb.100.235117 10.1103/physrevb.77.075109 10.1016/j.laa.2005.07.021 10.1007/978-3-319-49887-4_3 10.1103/physrevb.87.125149 10.1016/j.cpc.2009.02.003 10.1007/978-3-642-35082-5 10.1103/physreva.81.022510 10.1126/science.1197294 10.1103/physrevb.34.6933 10.1021/acs.jpclett.8b00025 10.1103/physrevb.100.041111 10.1088/1361-648x/ab15d0 10.1103/physrevlett.22.997 10.1038/nmat5017 10.1063/1.1843591 10.1103/physrevb.94.201106 10.1103/physrevb.81.035108 10.1103/physrevlett.93.142002 10.1038/s41467-020-17925-8 10.1038/s42254-020-0170-z 10.1103/physrevx.10.011043 10.1103/physrevlett.120.197601 10.1063/1.1800733 10.1016/j.cpc.2011.12.006 10.1103/physrevb.99.045118 10.1103/revmodphys.40.677 10.1002/pssb.201800469 10.1017/cbo9781139023979 10.1103/physrevlett.115.256803 10.1103/physrevlett.121.057405 10.1103/physrevb.100.125129 10.1103/physrevb.95.195405 10.1063/5.0003145 10.1103/physrevb.93.144307 10.1080/00018732.2016.1194044 10.1103/physrevb.101.035144 10.1007/978-3-642-23518-4 10.1142/5196 10.1146/annurev-conmatphys-031218-013423 10.1103/physrevb.99.184303 10.1021/acs.nanolett.7b00175 10.1103/physrevlett.123.193602 10.1103/revmodphys.75.1333 10.1109/icpads.2012.97 10.1103/physrevb.84.085134 10.1103/physrevb.100.041101 10.1007/bf01321824 10.1103/physrevlett.115.266802 10.1201/9780429493218 10.1016/j.laa.2013.10.007 10.1103/physrevb.93.035107 10.1103/physreva.82.033427 10.1080/00018732.2015.1055918 10.1103/physrevb.66.085120 10.1103/physrevb.98.245110 10.1103/physrevb.82.115115 10.1016/j.aop.2010.09.012 10.1209/0295-5075/120/57001 10.1002/pssb.201800501 10.1103/physrevlett.100.120404 10.1103/physrevb.100.174515 10.1021/acs.jctc.5b00884 10.1103/physrevb.101.161101 10.1103/physrevb.98.075127 10.1103/physrevx.9.041008 10.1038/s41467-018-07051-x 10.1017/CBO9781139003667 10.1038/nature04693 10.1016/j.cpc.2020.107484 10.1088/1361-648x/aae675 10.1103/revmodphys.70.1039 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.21468/SciPostPhys.10.4.091 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2542-4653 |
ExternalDocumentID | oai_doaj_org_article_05332a8c8f2540a683cca9db6e41645a 10_21468_SciPostPhys_10_4_091 |
GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 |
ID | FETCH-LOGICAL-c432t-fa3c757d73de8504c12a2f6678fad61c7c053bf42fce08225cb5b8e5268110213 |
IEDL.DBID | DOA |
ISSN | 2542-4653 |
IngestDate | Tue Oct 22 15:15:50 EDT 2024 Fri Aug 23 04:02:28 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-fa3c757d73de8504c12a2f6678fad61c7c053bf42fce08225cb5b8e5268110213 |
OpenAccessLink | https://doaj.org/article/05332a8c8f2540a683cca9db6e41645a |
ParticipantIDs | doaj_primary_oai_doaj_org_article_05332a8c8f2540a683cca9db6e41645a crossref_primary_10_21468_SciPostPhys_10_4_091 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-26 |
PublicationDateYYYYMMDD | 2021-04-26 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | SciPost physics |
PublicationYear | 2021 |
Publisher | SciPost |
Publisher_xml | – name: SciPost |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref10 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref78 ref75 ref74 ref77 ref76 ref2 ref1 ref71 ref70 ref73 ref72 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
References_xml | – ident: ref10 doi: 10.1038/nphys2205 – ident: ref38 doi: 10.1103/physrevlett.125.047702 – ident: ref25 doi: 10.1126/science.1241591 – ident: ref80 doi: 10.1109/jproc.2004.840301 – ident: ref5 doi: 10.1103/physrevlett.120.166401 – ident: ref83 doi: 10.1103/revmodphys.68.13 – ident: ref31 doi: 10.1103/physrevx.3.041033 – ident: ref53 doi: 10.1103/physrevlett.124.076601 – ident: ref64 doi: 10.1103/physrevb.2.3383 – ident: ref16 doi: 10.1007/978-3-540-73564-9 – ident: ref54 doi: 10.1103/physrevb.101.035203 – ident: ref29 doi: 10.1103/physrevlett.118.246402 – ident: ref24 doi: 10.1038/nature16522 – ident: ref42 doi: 10.1103/physrevx.8.041009 – ident: ref49 doi: 10.1103/physrevb.97.245129 – ident: ref52 doi: 10.1002/pssb.201800594 – ident: ref56 doi: 10.1103/physrevb.102.115157 – ident: ref92 doi: 10.1103/PhysRevB.102.165136 – ident: ref97 doi: 10.7566/jpsj.89.012001 – ident: ref17 doi: 10.1103/revmodphys.86.779 – ident: ref93 doi: 10.1103/physrevb.100.155130 – ident: ref46 doi: 10.1103/PhysRevB.102.235169 – ident: ref67 doi: 10.1103/physrevlett.65.1663 – ident: ref47 doi: 10.1103/physrevb.97.235125 – ident: ref94 doi: 10.1103/physrevb.96.035147 – ident: ref43 doi: 10.1103/physrevb.100.235117 – ident: ref69 doi: 10.1103/physrevb.77.075109 – ident: ref61 doi: 10.1016/j.laa.2005.07.021 – ident: ref60 doi: 10.1007/978-3-319-49887-4_3 – ident: ref88 doi: 10.1103/physrevb.87.125149 – ident: ref35 doi: 10.1016/j.cpc.2009.02.003 – ident: ref50 doi: 10.1007/978-3-642-35082-5 – ident: ref2 doi: 10.1103/physreva.81.022510 – ident: ref23 doi: 10.1126/science.1197294 – ident: ref51 doi: 10.1103/physrevb.34.6933 – ident: ref32 doi: 10.1021/acs.jpclett.8b00025 – ident: ref90 doi: 10.1103/physrevb.100.041111 – ident: ref34 doi: 10.1088/1361-648x/ab15d0 – ident: ref63 doi: 10.1103/physrevlett.22.997 – ident: ref3 doi: 10.1038/nmat5017 – ident: ref7 doi: 10.1063/1.1843591 – ident: ref89 doi: 10.1103/physrevb.94.201106 – ident: ref18 doi: 10.1103/physrevb.81.035108 – ident: ref6 doi: 10.1103/physrevlett.93.142002 – ident: ref27 doi: 10.1038/s41467-020-17925-8 – ident: ref73 doi: 10.1038/s42254-020-0170-z – ident: ref76 doi: 10.1103/physrevx.10.011043 – ident: ref44 doi: 10.1103/physrevlett.120.197601 – ident: ref84 doi: 10.1063/1.1800733 – ident: ref85 doi: 10.1016/j.cpc.2011.12.006 – ident: ref86 doi: 10.1103/physrevb.99.045118 – ident: ref81 doi: 10.1103/revmodphys.40.677 – ident: ref57 doi: 10.1002/pssb.201800469 – ident: ref15 doi: 10.1017/cbo9781139023979 – ident: ref75 doi: 10.1103/physrevlett.115.256803 – ident: ref77 doi: 10.1103/physrevlett.121.057405 – ident: ref37 doi: 10.1103/physrevb.100.125129 – ident: ref91 doi: 10.1103/physrevb.95.195405 – ident: ref58 doi: 10.1063/5.0003145 – ident: ref72 doi: 10.1103/physrevb.93.144307 – ident: ref4 doi: 10.1080/00018732.2016.1194044 – ident: ref95 doi: 10.1103/physrevb.101.035144 – ident: ref12 doi: 10.1007/978-3-642-23518-4 – ident: ref8 doi: 10.1142/5196 – ident: ref70 doi: 10.1146/annurev-conmatphys-031218-013423 – ident: ref78 doi: 10.1103/physrevb.99.184303 – ident: ref33 doi: 10.1021/acs.nanolett.7b00175 – ident: ref11 doi: 10.1103/physrevlett.123.193602 – ident: ref65 doi: 10.1103/revmodphys.75.1333 – ident: ref79 doi: 10.1109/icpads.2012.97 – ident: ref20 doi: 10.1103/physrevb.84.085134 – ident: ref55 doi: 10.1103/physrevb.100.041101 – ident: ref66 doi: 10.1007/bf01321824 – ident: ref19 doi: 10.1103/physrevlett.115.266802 – ident: ref21 doi: 10.1201/9780429493218 – ident: ref62 doi: 10.1016/j.laa.2013.10.007 – ident: ref26 doi: 10.1103/physrevb.93.035107 – ident: ref1 doi: 10.1103/physreva.82.033427 – ident: ref71 doi: 10.1080/00018732.2015.1055918 – ident: ref87 doi: 10.1103/physrevb.66.085120 – ident: ref41 doi: 10.1103/physrevb.98.245110 – ident: ref40 doi: 10.1103/physrevb.82.115115 – ident: ref13 doi: 10.1016/j.aop.2010.09.012 – ident: ref74 doi: 10.1209/0295-5075/120/57001 – ident: ref48 doi: 10.1002/pssb.201800501 – ident: ref68 doi: 10.1103/physrevlett.100.120404 – ident: ref30 doi: 10.1103/physrevb.100.174515 – ident: ref96 doi: 10.1021/acs.jctc.5b00884 – ident: ref45 doi: 10.1103/physrevb.101.161101 – ident: ref59 doi: 10.1103/physrevb.98.075127 – ident: ref39 doi: 10.1103/physrevx.9.041008 – ident: ref28 doi: 10.1038/s41467-018-07051-x – ident: ref14 doi: 10.1017/CBO9781139003667 – ident: ref9 doi: 10.1038/nature04693 – ident: ref22 doi: 10.1016/j.cpc.2020.107484 – ident: ref36 doi: 10.1088/1361-648x/aae675 – ident: ref82 doi: 10.1103/revmodphys.70.1039 |
SSID | ssj0002119165 |
Score | 2.3452213 |
Snippet | We propose a method to improve the computational and memory efficiency of numerical solvers for the nonequilibrium Dyson equation in the Keldysh formalism. It... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 091 |
Title | Low rank compression in the numerical solution of the nonequilibrium Dyson equation |
URI | https://doaj.org/article/05332a8c8f2540a683cca9db6e41645a |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn7i-yMFrdts0SdOjr2UR9aILeytNmsCCdtXdIv57Z5JdqScvXqclKd-knRn6zTeEXFQqs955wxIjDBMQ0phxSjNtZVFzbTn32Jz88KjGE3E3ldPOqC_khEV54AjcEHtFeaWt9lDKJJXSGexZ1EY5SCWEjKlRUnSKKfwGB90yJWPLDs6u1kN4V3D-LRIroWQdoLxp-isYdTT7Q3AZ7ZDtVVZIL-PT7JIN1-yRzcDOtIt98nQ__6Q4XZ0iAzwyVxs6ayhkb7Rp40-XF7o-RnTu45V5497bWWD1t6_05gtyawqW4IwDMhndPl-P2WoaArMi40vmq8zmMq_zrHZaJsKmvOJeQbDxVa1Sm1uAyngB4DqUcZfWSKMdyrmkOL87OyQ93PeIUG1knfvaCVspCOiqKLh33HrlXaq9lH0yWMNSvkXRixKKhYBj2cERjaIEHPvkCsH7uRk1q4MBPFmuPFn-5cnj_1jkhGxxZJ0kgnF1SnrLj9adQdqwNOfhhHwDOE_Cig |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+rank+compression+in+the+numerical+solution+of+the+nonequilibrium+Dyson+equation&rft.jtitle=SciPost+physics&rft.au=Kaye%2C+Jason&rft.au=Golez%2C+Denis&rft.date=2021-04-26&rft.issn=2542-4653&rft.eissn=2542-4653&rft.volume=10&rft.issue=4&rft_id=info:doi/10.21468%2FSciPostPhys.10.4.091&rft.externalDBID=n%2Fa&rft.externalDocID=10_21468_SciPostPhys_10_4_091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon |