Low rank compression in the numerical solution of the nonequilibrium Dyson equation

We propose a method to improve the computational and memory efficiency of numerical solvers for the nonequilibrium Dyson equation in the Keldysh formalism. It is based on the empirical observation that the nonequilibrium Green's functions and self energies arising in many problems of physical i...

Full description

Saved in:
Bibliographic Details
Published inSciPost physics Vol. 10; no. 4; p. 091
Main Authors Kaye, Jason, Golez, Denis
Format Journal Article
LanguageEnglish
Published SciPost 26.04.2021
Online AccessGet full text

Cover

Loading…
Abstract We propose a method to improve the computational and memory efficiency of numerical solvers for the nonequilibrium Dyson equation in the Keldysh formalism. It is based on the empirical observation that the nonequilibrium Green's functions and self energies arising in many problems of physical interest, discretized as matrices, have low rank off-diagonal blocks, and can therefore be compressed using a hierarchical low rank data structure. We describe an efficient algorithm to build this compressed representation on the fly during the course of time stepping, and use the representation to reduce the cost of computing history integrals, which is the main computational bottleneck. For systems with the hierarchical low rank property, our method reduces the computational complexity of solving the nonequilibrium Dyson equation from cubic to near quadratic, and the memory complexity from quadratic to near linear. We demonstrate the full solver for the Falicov-Kimball model exposed to a rapid ramp and Floquet driving of system parameters, and are able to increase feasible propagation times substantially. We present examples with 262 144 time steps, which would require approximately five months of computing time and 2.2 TB of memory using the direct time stepping method, but can be completed in just over a day on a laptop with less than 4 GB of memory using our method. We also confirm the hierarchical low rank property for the driven Hubbard model in the weak coupling regime within the GW approximation, and in the strong coupling regime within dynamical mean-field theory.
AbstractList We propose a method to improve the computational and memory efficiency of numerical solvers for the nonequilibrium Dyson equation in the Keldysh formalism. It is based on the empirical observation that the nonequilibrium Green's functions and self energies arising in many problems of physical interest, discretized as matrices, have low rank off-diagonal blocks, and can therefore be compressed using a hierarchical low rank data structure. We describe an efficient algorithm to build this compressed representation on the fly during the course of time stepping, and use the representation to reduce the cost of computing history integrals, which is the main computational bottleneck. For systems with the hierarchical low rank property, our method reduces the computational complexity of solving the nonequilibrium Dyson equation from cubic to near quadratic, and the memory complexity from quadratic to near linear. We demonstrate the full solver for the Falicov-Kimball model exposed to a rapid ramp and Floquet driving of system parameters, and are able to increase feasible propagation times substantially. We present examples with 262 144 time steps, which would require approximately five months of computing time and 2.2 TB of memory using the direct time stepping method, but can be completed in just over a day on a laptop with less than 4 GB of memory using our method. We also confirm the hierarchical low rank property for the driven Hubbard model in the weak coupling regime within the GW approximation, and in the strong coupling regime within dynamical mean-field theory.
We propose a method to improve the computational and memory efficiency of numerical solvers for the nonequilibrium Dyson equation in the Keldysh formalism. It is based on the empirical observation that the nonequilibrium Green's functions and self energies arising in many problems of physical interest, discretized as matrices, have low rank off-diagonal blocks, and can therefore be compressed using a hierarchical low rank data structure. We describe an efficient algorithm to build this compressed representation on the fly during the course of time stepping, and use the representation to reduce the cost of computing history integrals, which is the main computational bottleneck. For systems with the hierarchical low rank property, our method reduces the computational complexity of solving the nonequilibrium Dyson equation from cubic to near quadratic, and the memory complexity from quadratic to near linear. We demonstrate the full solver for the Falicov-Kimball model exposed to a rapid ramp and Floquet driving of system parameters, and are able to increase feasible propagation times substantially. We present examples with 262144 time steps, which would require approximately five months of computing time and 2.2 TB of memory using the direct time stepping method, but can be completed in just over a day on a laptop with less than 4 GB of memory using our method. We also confirm the hierarchical low rank property for the driven Hubbard model in the weak coupling regime within the GW approximation, and in the strong coupling regime within dynamical mean-field theory.
ArticleNumber 091
Author Kaye, Jason
Golez, Denis
Author_xml – sequence: 1
  givenname: Jason
  surname: Kaye
  fullname: Kaye, Jason
  organization: Flatiron Institute
– sequence: 2
  givenname: Denis
  surname: Golez
  fullname: Golez, Denis
  organization: Jožef Stefan Institute, University of Ljubljana, Flatiron Institute
BookMark eNpNkNtKAzEURYNUsNZ-gpAfmJr7pI9Sb4WChepzyGQSmzozqckM0r83tSJ9OmHtsDhnX4NRFzoLwC1GM4KZkHcb49ch9evtIc0yZDM0xxdgTDgjBROcjs7eV2Ca0g4hRDCeY8HHYLMK3zDq7hOa0O6jTcmHDvoO9lsLu6G10RvdwBSaoT8mwZ2SvMTX4BtfRT-08OGQcpaJPn66AZdON8lO_-YEvD89vi1eitXr83JxvyoMo6QvnKam5GVd0tpKjpjBRBMnRCmdrgU2pUGcVo4RZyyShHBT8UpaToTEOF9AJ2B58tZB79Q--lbHgwraq18Q4ofSsfemsSqbKNHSSJe7QFpIaoye15WwDAvGdXbxk8vEkFK07t-HkfotWp0VfYRM5aLpD7yldvA
CitedBy_id crossref_primary_10_1007_s10444_023_10067_7
crossref_primary_10_1103_PhysRevB_109_064310
crossref_primary_10_1103_PhysRevX_13_021015
crossref_primary_10_1103_PhysRevB_106_125153
crossref_primary_10_1103_PhysRevB_106_214318
crossref_primary_10_21468_SciPostPhysCore_5_2_030
crossref_primary_10_21468_SciPostPhys_16_3_073
crossref_primary_10_1103_PhysRevB_105_115146
crossref_primary_10_1088_1751_8121_acfd6a
crossref_primary_10_1103_PhysRevLett_130_246301
crossref_primary_10_1140_epjs_s11734_021_00109_w
crossref_primary_10_1103_PhysRevB_106_L241110
crossref_primary_10_1016_j_cpc_2022_108458
crossref_primary_10_1103_PhysRevResearch_3_033052
crossref_primary_10_1103_PhysRevB_109_165135
crossref_primary_10_1007_s10444_021_09902_6
crossref_primary_10_1103_PhysRevB_104_085108
crossref_primary_10_1002_pssb_202300504
crossref_primary_10_1016_j_jcp_2022_111723
Cites_doi 10.1038/nphys2205
10.1103/physrevlett.125.047702
10.1126/science.1241591
10.1109/jproc.2004.840301
10.1103/physrevlett.120.166401
10.1103/revmodphys.68.13
10.1103/physrevx.3.041033
10.1103/physrevlett.124.076601
10.1103/physrevb.2.3383
10.1007/978-3-540-73564-9
10.1103/physrevb.101.035203
10.1103/physrevlett.118.246402
10.1038/nature16522
10.1103/physrevx.8.041009
10.1103/physrevb.97.245129
10.1002/pssb.201800594
10.1103/physrevb.102.115157
10.1103/PhysRevB.102.165136
10.7566/jpsj.89.012001
10.1103/revmodphys.86.779
10.1103/physrevb.100.155130
10.1103/PhysRevB.102.235169
10.1103/physrevlett.65.1663
10.1103/physrevb.97.235125
10.1103/physrevb.96.035147
10.1103/physrevb.100.235117
10.1103/physrevb.77.075109
10.1016/j.laa.2005.07.021
10.1007/978-3-319-49887-4_3
10.1103/physrevb.87.125149
10.1016/j.cpc.2009.02.003
10.1007/978-3-642-35082-5
10.1103/physreva.81.022510
10.1126/science.1197294
10.1103/physrevb.34.6933
10.1021/acs.jpclett.8b00025
10.1103/physrevb.100.041111
10.1088/1361-648x/ab15d0
10.1103/physrevlett.22.997
10.1038/nmat5017
10.1063/1.1843591
10.1103/physrevb.94.201106
10.1103/physrevb.81.035108
10.1103/physrevlett.93.142002
10.1038/s41467-020-17925-8
10.1038/s42254-020-0170-z
10.1103/physrevx.10.011043
10.1103/physrevlett.120.197601
10.1063/1.1800733
10.1016/j.cpc.2011.12.006
10.1103/physrevb.99.045118
10.1103/revmodphys.40.677
10.1002/pssb.201800469
10.1017/cbo9781139023979
10.1103/physrevlett.115.256803
10.1103/physrevlett.121.057405
10.1103/physrevb.100.125129
10.1103/physrevb.95.195405
10.1063/5.0003145
10.1103/physrevb.93.144307
10.1080/00018732.2016.1194044
10.1103/physrevb.101.035144
10.1007/978-3-642-23518-4
10.1142/5196
10.1146/annurev-conmatphys-031218-013423
10.1103/physrevb.99.184303
10.1021/acs.nanolett.7b00175
10.1103/physrevlett.123.193602
10.1103/revmodphys.75.1333
10.1109/icpads.2012.97
10.1103/physrevb.84.085134
10.1103/physrevb.100.041101
10.1007/bf01321824
10.1103/physrevlett.115.266802
10.1201/9780429493218
10.1016/j.laa.2013.10.007
10.1103/physrevb.93.035107
10.1103/physreva.82.033427
10.1080/00018732.2015.1055918
10.1103/physrevb.66.085120
10.1103/physrevb.98.245110
10.1103/physrevb.82.115115
10.1016/j.aop.2010.09.012
10.1209/0295-5075/120/57001
10.1002/pssb.201800501
10.1103/physrevlett.100.120404
10.1103/physrevb.100.174515
10.1021/acs.jctc.5b00884
10.1103/physrevb.101.161101
10.1103/physrevb.98.075127
10.1103/physrevx.9.041008
10.1038/s41467-018-07051-x
10.1017/CBO9781139003667
10.1038/nature04693
10.1016/j.cpc.2020.107484
10.1088/1361-648x/aae675
10.1103/revmodphys.70.1039
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.21468/SciPostPhys.10.4.091
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2542-4653
ExternalDocumentID oai_doaj_org_article_05332a8c8f2540a683cca9db6e41645a
10_21468_SciPostPhys_10_4_091
GroupedDBID 5VS
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c432t-fa3c757d73de8504c12a2f6678fad61c7c053bf42fce08225cb5b8e5268110213
IEDL.DBID DOA
ISSN 2542-4653
IngestDate Tue Oct 22 15:15:50 EDT 2024
Fri Aug 23 04:02:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-fa3c757d73de8504c12a2f6678fad61c7c053bf42fce08225cb5b8e5268110213
OpenAccessLink https://doaj.org/article/05332a8c8f2540a683cca9db6e41645a
ParticipantIDs doaj_primary_oai_doaj_org_article_05332a8c8f2540a683cca9db6e41645a
crossref_primary_10_21468_SciPostPhys_10_4_091
PublicationCentury 2000
PublicationDate 2021-04-26
PublicationDateYYYYMMDD 2021-04-26
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-26
  day: 26
PublicationDecade 2020
PublicationTitle SciPost physics
PublicationYear 2021
Publisher SciPost
Publisher_xml – name: SciPost
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref10
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref78
ref75
ref74
ref77
ref76
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref10
  doi: 10.1038/nphys2205
– ident: ref38
  doi: 10.1103/physrevlett.125.047702
– ident: ref25
  doi: 10.1126/science.1241591
– ident: ref80
  doi: 10.1109/jproc.2004.840301
– ident: ref5
  doi: 10.1103/physrevlett.120.166401
– ident: ref83
  doi: 10.1103/revmodphys.68.13
– ident: ref31
  doi: 10.1103/physrevx.3.041033
– ident: ref53
  doi: 10.1103/physrevlett.124.076601
– ident: ref64
  doi: 10.1103/physrevb.2.3383
– ident: ref16
  doi: 10.1007/978-3-540-73564-9
– ident: ref54
  doi: 10.1103/physrevb.101.035203
– ident: ref29
  doi: 10.1103/physrevlett.118.246402
– ident: ref24
  doi: 10.1038/nature16522
– ident: ref42
  doi: 10.1103/physrevx.8.041009
– ident: ref49
  doi: 10.1103/physrevb.97.245129
– ident: ref52
  doi: 10.1002/pssb.201800594
– ident: ref56
  doi: 10.1103/physrevb.102.115157
– ident: ref92
  doi: 10.1103/PhysRevB.102.165136
– ident: ref97
  doi: 10.7566/jpsj.89.012001
– ident: ref17
  doi: 10.1103/revmodphys.86.779
– ident: ref93
  doi: 10.1103/physrevb.100.155130
– ident: ref46
  doi: 10.1103/PhysRevB.102.235169
– ident: ref67
  doi: 10.1103/physrevlett.65.1663
– ident: ref47
  doi: 10.1103/physrevb.97.235125
– ident: ref94
  doi: 10.1103/physrevb.96.035147
– ident: ref43
  doi: 10.1103/physrevb.100.235117
– ident: ref69
  doi: 10.1103/physrevb.77.075109
– ident: ref61
  doi: 10.1016/j.laa.2005.07.021
– ident: ref60
  doi: 10.1007/978-3-319-49887-4_3
– ident: ref88
  doi: 10.1103/physrevb.87.125149
– ident: ref35
  doi: 10.1016/j.cpc.2009.02.003
– ident: ref50
  doi: 10.1007/978-3-642-35082-5
– ident: ref2
  doi: 10.1103/physreva.81.022510
– ident: ref23
  doi: 10.1126/science.1197294
– ident: ref51
  doi: 10.1103/physrevb.34.6933
– ident: ref32
  doi: 10.1021/acs.jpclett.8b00025
– ident: ref90
  doi: 10.1103/physrevb.100.041111
– ident: ref34
  doi: 10.1088/1361-648x/ab15d0
– ident: ref63
  doi: 10.1103/physrevlett.22.997
– ident: ref3
  doi: 10.1038/nmat5017
– ident: ref7
  doi: 10.1063/1.1843591
– ident: ref89
  doi: 10.1103/physrevb.94.201106
– ident: ref18
  doi: 10.1103/physrevb.81.035108
– ident: ref6
  doi: 10.1103/physrevlett.93.142002
– ident: ref27
  doi: 10.1038/s41467-020-17925-8
– ident: ref73
  doi: 10.1038/s42254-020-0170-z
– ident: ref76
  doi: 10.1103/physrevx.10.011043
– ident: ref44
  doi: 10.1103/physrevlett.120.197601
– ident: ref84
  doi: 10.1063/1.1800733
– ident: ref85
  doi: 10.1016/j.cpc.2011.12.006
– ident: ref86
  doi: 10.1103/physrevb.99.045118
– ident: ref81
  doi: 10.1103/revmodphys.40.677
– ident: ref57
  doi: 10.1002/pssb.201800469
– ident: ref15
  doi: 10.1017/cbo9781139023979
– ident: ref75
  doi: 10.1103/physrevlett.115.256803
– ident: ref77
  doi: 10.1103/physrevlett.121.057405
– ident: ref37
  doi: 10.1103/physrevb.100.125129
– ident: ref91
  doi: 10.1103/physrevb.95.195405
– ident: ref58
  doi: 10.1063/5.0003145
– ident: ref72
  doi: 10.1103/physrevb.93.144307
– ident: ref4
  doi: 10.1080/00018732.2016.1194044
– ident: ref95
  doi: 10.1103/physrevb.101.035144
– ident: ref12
  doi: 10.1007/978-3-642-23518-4
– ident: ref8
  doi: 10.1142/5196
– ident: ref70
  doi: 10.1146/annurev-conmatphys-031218-013423
– ident: ref78
  doi: 10.1103/physrevb.99.184303
– ident: ref33
  doi: 10.1021/acs.nanolett.7b00175
– ident: ref11
  doi: 10.1103/physrevlett.123.193602
– ident: ref65
  doi: 10.1103/revmodphys.75.1333
– ident: ref79
  doi: 10.1109/icpads.2012.97
– ident: ref20
  doi: 10.1103/physrevb.84.085134
– ident: ref55
  doi: 10.1103/physrevb.100.041101
– ident: ref66
  doi: 10.1007/bf01321824
– ident: ref19
  doi: 10.1103/physrevlett.115.266802
– ident: ref21
  doi: 10.1201/9780429493218
– ident: ref62
  doi: 10.1016/j.laa.2013.10.007
– ident: ref26
  doi: 10.1103/physrevb.93.035107
– ident: ref1
  doi: 10.1103/physreva.82.033427
– ident: ref71
  doi: 10.1080/00018732.2015.1055918
– ident: ref87
  doi: 10.1103/physrevb.66.085120
– ident: ref41
  doi: 10.1103/physrevb.98.245110
– ident: ref40
  doi: 10.1103/physrevb.82.115115
– ident: ref13
  doi: 10.1016/j.aop.2010.09.012
– ident: ref74
  doi: 10.1209/0295-5075/120/57001
– ident: ref48
  doi: 10.1002/pssb.201800501
– ident: ref68
  doi: 10.1103/physrevlett.100.120404
– ident: ref30
  doi: 10.1103/physrevb.100.174515
– ident: ref96
  doi: 10.1021/acs.jctc.5b00884
– ident: ref45
  doi: 10.1103/physrevb.101.161101
– ident: ref59
  doi: 10.1103/physrevb.98.075127
– ident: ref39
  doi: 10.1103/physrevx.9.041008
– ident: ref28
  doi: 10.1038/s41467-018-07051-x
– ident: ref14
  doi: 10.1017/CBO9781139003667
– ident: ref9
  doi: 10.1038/nature04693
– ident: ref22
  doi: 10.1016/j.cpc.2020.107484
– ident: ref36
  doi: 10.1088/1361-648x/aae675
– ident: ref82
  doi: 10.1103/revmodphys.70.1039
SSID ssj0002119165
Score 2.3452213
Snippet We propose a method to improve the computational and memory efficiency of numerical solvers for the nonequilibrium Dyson equation in the Keldysh formalism. It...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 091
Title Low rank compression in the numerical solution of the nonequilibrium Dyson equation
URI https://doaj.org/article/05332a8c8f2540a683cca9db6e41645a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn7i-yMFrdts0SdOjr2UR9aILeytNmsCCdtXdIv57Z5JdqScvXqclKd-knRn6zTeEXFQqs955wxIjDBMQ0phxSjNtZVFzbTn32Jz88KjGE3E3ldPOqC_khEV54AjcEHtFeaWt9lDKJJXSGexZ1EY5SCWEjKlRUnSKKfwGB90yJWPLDs6u1kN4V3D-LRIroWQdoLxp-isYdTT7Q3AZ7ZDtVVZIL-PT7JIN1-yRzcDOtIt98nQ__6Q4XZ0iAzwyVxs6ayhkb7Rp40-XF7o-RnTu45V5497bWWD1t6_05gtyawqW4IwDMhndPl-P2WoaArMi40vmq8zmMq_zrHZaJsKmvOJeQbDxVa1Sm1uAyngB4DqUcZfWSKMdyrmkOL87OyQ93PeIUG1knfvaCVspCOiqKLh33HrlXaq9lH0yWMNSvkXRixKKhYBj2cERjaIEHPvkCsH7uRk1q4MBPFmuPFn-5cnj_1jkhGxxZJ0kgnF1SnrLj9adQdqwNOfhhHwDOE_Cig
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+rank+compression+in+the+numerical+solution+of+the+nonequilibrium+Dyson+equation&rft.jtitle=SciPost+physics&rft.au=Kaye%2C+Jason&rft.au=Golez%2C+Denis&rft.date=2021-04-26&rft.issn=2542-4653&rft.eissn=2542-4653&rft.volume=10&rft.issue=4&rft_id=info:doi/10.21468%2FSciPostPhys.10.4.091&rft.externalDBID=n%2Fa&rft.externalDocID=10_21468_SciPostPhys_10_4_091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon