In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution

[Display omitted] Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy conversion for solving energy crisis. Hence, a novel hierarchical Ti3C2 MXene@TiO2/ZnIn2S4 photocatalyst with rapid charge...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 580; pp. 669 - 680
Main Authors Huang, Kelei, Li, Chunhu, Meng, Xiangchao
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.11.2020
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2020.07.044

Cover

Loading…
Abstract [Display omitted] Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy conversion for solving energy crisis. Hence, a novel hierarchical Ti3C2 MXene@TiO2/ZnIn2S4 photocatalyst with rapid charge transfer channels was constructed by two-step hydrothermal for efficient hydrogen production, adopting hydrothermal oxidation to in-situ synthesize Ti3C2 MXene embedded with TiO2 nanosheets (M@TiO2), which was applied to load ZnIn2S4 (ZIS). The hybridized photocatalyst with optimized ZIS amount had a hydrogen generation rate of 1185.8 μmol/g/h, which was higher than that of M@TiO2 and pure ZIS. That was originated from the outstanding light harvesting of ZIS and Ti3C2, sufficient active sites of Ti3C2, intimate interfacial contact, and efficient separation and transfer of photogenerated charges via heterojunction. The favorable and rapid charge transfer routes included type-II heterojunction between ZIS and TiO2 nanosheets, Schottky junction of Ti3C2/semiconductor, and metallic Ti3C2 with high conductivity. This work revealed the Schottky junction forming between ZIS and Ti3C2, and hierarchical M@TiO2 could be served as advantageous platform and efficient cocatalyst to construct MXene-based photocatalyst.
AbstractList Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy conversion for solving energy crisis. Hence, a novel hierarchical Ti₃C₂ MXene@TiO₂/ZnIn₂S₄ photocatalyst with rapid charge transfer channels was constructed by two-step hydrothermal for efficient hydrogen production, adopting hydrothermal oxidation to in-situ synthesize Ti₃C₂ MXene embedded with TiO₂ nanosheets (M@TiO₂), which was applied to load ZnIn₂S₄ (ZIS). The hybridized photocatalyst with optimized ZIS amount had a hydrogen generation rate of 1185.8 μmol/g/h, which was higher than that of M@TiO₂ and pure ZIS. That was originated from the outstanding light harvesting of ZIS and Ti₃C₂, sufficient active sites of Ti₃C₂, intimate interfacial contact, and efficient separation and transfer of photogenerated charges via heterojunction. The favorable and rapid charge transfer routes included type-II heterojunction between ZIS and TiO₂ nanosheets, Schottky junction of Ti₃C₂/semiconductor, and metallic Ti₃C₂ with high conductivity. This work revealed the Schottky junction forming between ZIS and Ti₃C₂, and hierarchical M@TiO₂ could be served as advantageous platform and efficient cocatalyst to construct MXene-based photocatalyst.
Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy conversion for solving energy crisis. Hence, a novel hierarchical Ti3C2 MXene@TiO2/ZnIn2S4 photocatalyst with rapid charge transfer channels was constructed by two-step hydrothermal for efficient hydrogen production, adopting hydrothermal oxidation to in-situ synthesize Ti3C2 MXene embedded with TiO2 nanosheets (M@TiO2), which was applied to load ZnIn2S4 (ZIS). The hybridized photocatalyst with optimized ZIS amount had a hydrogen generation rate of 1185.8 μmol/g/h, which was higher than that of M@TiO2 and pure ZIS. That was originated from the outstanding light harvesting of ZIS and Ti3C2, sufficient active sites of Ti3C2, intimate interfacial contact, and efficient separation and transfer of photogenerated charges via heterojunction. The favorable and rapid charge transfer routes included type-II heterojunction between ZIS and TiO2 nanosheets, Schottky junction of Ti3C2/semiconductor, and metallic Ti3C2 with high conductivity. This work revealed the Schottky junction forming between ZIS and Ti3C2, and hierarchical M@TiO2 could be served as advantageous platform and efficient cocatalyst to construct MXene-based photocatalyst.Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy conversion for solving energy crisis. Hence, a novel hierarchical Ti3C2 MXene@TiO2/ZnIn2S4 photocatalyst with rapid charge transfer channels was constructed by two-step hydrothermal for efficient hydrogen production, adopting hydrothermal oxidation to in-situ synthesize Ti3C2 MXene embedded with TiO2 nanosheets (M@TiO2), which was applied to load ZnIn2S4 (ZIS). The hybridized photocatalyst with optimized ZIS amount had a hydrogen generation rate of 1185.8 μmol/g/h, which was higher than that of M@TiO2 and pure ZIS. That was originated from the outstanding light harvesting of ZIS and Ti3C2, sufficient active sites of Ti3C2, intimate interfacial contact, and efficient separation and transfer of photogenerated charges via heterojunction. The favorable and rapid charge transfer routes included type-II heterojunction between ZIS and TiO2 nanosheets, Schottky junction of Ti3C2/semiconductor, and metallic Ti3C2 with high conductivity. This work revealed the Schottky junction forming between ZIS and Ti3C2, and hierarchical M@TiO2 could be served as advantageous platform and efficient cocatalyst to construct MXene-based photocatalyst.
[Display omitted] Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy conversion for solving energy crisis. Hence, a novel hierarchical Ti3C2 MXene@TiO2/ZnIn2S4 photocatalyst with rapid charge transfer channels was constructed by two-step hydrothermal for efficient hydrogen production, adopting hydrothermal oxidation to in-situ synthesize Ti3C2 MXene embedded with TiO2 nanosheets (M@TiO2), which was applied to load ZnIn2S4 (ZIS). The hybridized photocatalyst with optimized ZIS amount had a hydrogen generation rate of 1185.8 μmol/g/h, which was higher than that of M@TiO2 and pure ZIS. That was originated from the outstanding light harvesting of ZIS and Ti3C2, sufficient active sites of Ti3C2, intimate interfacial contact, and efficient separation and transfer of photogenerated charges via heterojunction. The favorable and rapid charge transfer routes included type-II heterojunction between ZIS and TiO2 nanosheets, Schottky junction of Ti3C2/semiconductor, and metallic Ti3C2 with high conductivity. This work revealed the Schottky junction forming between ZIS and Ti3C2, and hierarchical M@TiO2 could be served as advantageous platform and efficient cocatalyst to construct MXene-based photocatalyst.
Author Meng, Xiangchao
Li, Chunhu
Huang, Kelei
Author_xml – sequence: 1
  givenname: Kelei
  surname: Huang
  fullname: Huang, Kelei
– sequence: 2
  givenname: Chunhu
  orcidid: 0000-0001-7374-3719
  surname: Li
  fullname: Li, Chunhu
  email: lichunhu@ouc.edu.cn
– sequence: 3
  givenname: Xiangchao
  orcidid: 0000-0001-9896-8690
  surname: Meng
  fullname: Meng, Xiangchao
  email: mengxiangchao@ouc.edu.cn
BookMark eNqFkUFv0zAYhi00JLrBH-DkI5dktmPHscQBVDGoNLQDRUJcLPfLl9VVahfbmVR-PYnKicM4-fI-n6XnuSZXIQYk5C1nNWe8vT3UB_C5FkywmumaSfmCrDgzqtKcNVdkxZjgldFGvyLXOR8Y41wpsyK_N6HKvkwUYsglTVB8DDQOtGAKLp3p1jdrQb_-wIAftv5B3P4MmyC-yRk4nuKMYqZDTHTvH_fjmeIwePAYCj3tY4ngihvPxQPdn_sUHzFQfIrjtPzymrwc3Jjxzd_3hny_-7Rdf6nuHz5v1h_vK5CNKNUggDPYYed0y5teta7jg2aGt10PgMBFu9u1RhmOuJMDSA2NFBKw64zQrm1uyLvL3VOKvybMxR59BhxHFzBO2QrTqbZR2sj_T6XQSohWq3kqLlNIMeeEgz0lf5yNWc7s0sQe7NLELk0s03ZuMkPdPxD44hYZJTk_Po--v6A4q3rymGxePAP2PiEU20f_HP4Hit-rOQ
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_156795
crossref_primary_10_1016_j_inoche_2023_111880
crossref_primary_10_1002_smtd_202100887
crossref_primary_10_1016_j_cej_2021_131493
crossref_primary_10_1063_5_0121818
crossref_primary_10_1016_j_matre_2022_100081
crossref_primary_10_1002_sstr_202200017
crossref_primary_10_1016_j_ijhydene_2023_12_111
crossref_primary_10_1016_j_inoche_2021_108585
crossref_primary_10_1039_D3CS01040F
crossref_primary_10_1016_j_seppur_2023_125393
crossref_primary_10_1016_j_jece_2021_105244
crossref_primary_10_1021_acs_energyfuels_1c00204
crossref_primary_10_1002_smm2_1238
crossref_primary_10_1016_j_jcis_2021_08_008
crossref_primary_10_1016_j_apsusc_2021_149341
crossref_primary_10_1016_j_jcis_2024_06_139
crossref_primary_10_1021_acsnano_2c04750
crossref_primary_10_1016_j_jhazmat_2021_127711
crossref_primary_10_1021_acsanm_2c04182
crossref_primary_10_1016_j_ccr_2024_216226
crossref_primary_10_1021_acs_inorgchem_3c01138
crossref_primary_10_1039_D1TA09030E
crossref_primary_10_1039_D2TA05712C
crossref_primary_10_1016_j_inoche_2022_109704
crossref_primary_10_1016_j_jssc_2023_124298
crossref_primary_10_1016_j_cplett_2023_140470
crossref_primary_10_1016_j_jcis_2022_04_071
crossref_primary_10_1039_D4QI02912G
crossref_primary_10_1016_j_ultsonch_2023_106623
crossref_primary_10_1016_S1872_2067_21_63875_5
crossref_primary_10_2139_ssrn_4104080
crossref_primary_10_1016_j_jcis_2022_02_126
crossref_primary_10_1016_j_cej_2022_135910
crossref_primary_10_1016_j_ijhydene_2025_03_264
crossref_primary_10_1016_j_jcis_2023_09_075
crossref_primary_10_1002_adma_202305835
crossref_primary_10_1016_j_matchemphys_2023_127410
crossref_primary_10_1002_smll_202205767
crossref_primary_10_1016_j_apsusc_2023_157865
crossref_primary_10_1016_j_apcatb_2024_124184
crossref_primary_10_1002_smll_202300717
crossref_primary_10_1016_j_jece_2023_111224
crossref_primary_10_1021_acsaem_1c02241
crossref_primary_10_1007_s00604_024_06847_7
crossref_primary_10_1021_acs_langmuir_3c03754
crossref_primary_10_1016_j_surfin_2021_101323
crossref_primary_10_1016_j_jallcom_2021_161945
crossref_primary_10_1016_j_est_2022_105207
crossref_primary_10_1016_j_susmat_2022_e00439
crossref_primary_10_1016_j_mtchem_2022_101238
crossref_primary_10_1063_5_0055711
crossref_primary_10_1016_j_jwpe_2024_106202
crossref_primary_10_1021_acsomega_2c05030
crossref_primary_10_1002_adma_202107554
crossref_primary_10_1016_j_mtener_2022_100956
crossref_primary_10_1039_D1QI01614H
crossref_primary_10_1039_D4TA08155B
crossref_primary_10_1021_acsaem_2c04144
crossref_primary_10_1016_j_chemosphere_2021_132119
crossref_primary_10_1016_j_colsurfa_2022_129229
crossref_primary_10_1016_j_ijhydene_2024_07_058
crossref_primary_10_4028_p_WEf1i1
crossref_primary_10_1016_j_jece_2022_108284
crossref_primary_10_1039_D0TC02979C
crossref_primary_10_1016_j_molstruc_2023_136904
crossref_primary_10_1021_acsanm_3c02891
crossref_primary_10_1016_j_jmat_2023_04_013
crossref_primary_10_1016_j_apsusc_2025_162602
crossref_primary_10_1038_s41699_021_00239_8
crossref_primary_10_1016_j_jcis_2025_01_053
crossref_primary_10_1016_j_mssp_2024_109074
crossref_primary_10_1016_j_materresbull_2023_112570
crossref_primary_10_1002_admt_202200151
crossref_primary_10_1002_solr_202101061
crossref_primary_10_1016_j_ijhydene_2024_07_445
crossref_primary_10_1016_j_jcis_2021_05_155
crossref_primary_10_1016_j_cej_2023_146680
crossref_primary_10_1039_D1NR02224E
crossref_primary_10_1016_j_desal_2024_117312
crossref_primary_10_1016_j_jcis_2021_05_151
crossref_primary_10_1016_j_colsurfa_2022_129991
crossref_primary_10_1016_j_ijhydene_2024_06_250
crossref_primary_10_1016_j_mtchem_2022_101108
crossref_primary_10_1016_j_colsurfa_2023_132935
crossref_primary_10_1016_j_jcis_2024_11_124
crossref_primary_10_1016_j_jphotochem_2022_113772
crossref_primary_10_1016_j_mssp_2024_108632
crossref_primary_10_1007_s11237_022_09733_6
crossref_primary_10_1039_D3NJ03059H
crossref_primary_10_1002_smll_202404622
crossref_primary_10_1016_j_ccr_2022_214898
crossref_primary_10_1021_acs_energyfuels_1c01340
crossref_primary_10_1016_j_matpr_2021_12_229
crossref_primary_10_1016_j_cej_2022_134573
crossref_primary_10_1039_D1QI00001B
crossref_primary_10_3390_nano13162315
crossref_primary_10_1016_j_mset_2023_10_002
crossref_primary_10_1021_acsanm_2c00572
crossref_primary_10_1007_s12517_022_09456_x
crossref_primary_10_1016_j_cej_2024_153416
crossref_primary_10_1016_j_jpcs_2021_110339
crossref_primary_10_1002_chem_202400255
crossref_primary_10_1016_j_colsurfa_2022_129881
crossref_primary_10_1016_j_jallcom_2025_178498
crossref_primary_10_1021_acsanm_1c03112
crossref_primary_10_1002_cctc_202300316
crossref_primary_10_1021_acsaenm_3c00013
crossref_primary_10_1016_j_seppur_2022_121267
crossref_primary_10_1088_2053_1583_ac9e66
crossref_primary_10_1016_j_fuel_2023_128460
crossref_primary_10_1002_slct_202303437
crossref_primary_10_1016_j_ccr_2024_216022
crossref_primary_10_1021_acsanm_3c02434
crossref_primary_10_1039_D2NJ05007B
crossref_primary_10_1039_D4NJ02315C
crossref_primary_10_1016_j_cej_2023_146947
crossref_primary_10_1016_j_seppur_2024_128581
crossref_primary_10_1002_bkcs_12783
crossref_primary_10_1016_j_cattod_2021_07_004
crossref_primary_10_1016_j_apsusc_2024_161317
crossref_primary_10_1016_j_cej_2021_132381
crossref_primary_10_1002_cssc_202401362
crossref_primary_10_1016_j_ceramint_2021_04_192
crossref_primary_10_1016_j_ceramint_2021_05_302
crossref_primary_10_1007_s11164_023_05051_1
crossref_primary_10_1016_j_jece_2022_107211
crossref_primary_10_1016_j_apcatb_2022_121647
crossref_primary_10_1016_j_mtener_2021_100881
crossref_primary_10_1016_j_jcis_2024_07_144
crossref_primary_10_1016_j_flatc_2024_100620
crossref_primary_10_1016_j_jcis_2022_11_096
crossref_primary_10_1002_adfm_202110848
crossref_primary_10_1016_j_mtcata_2024_100054
crossref_primary_10_1016_j_enconman_2023_117021
crossref_primary_10_1007_s10853_022_06970_x
crossref_primary_10_1039_D4NJ03277B
crossref_primary_10_1016_j_nanoen_2023_109180
crossref_primary_10_1002_smll_202409142
crossref_primary_10_1016_j_ccr_2024_216176
crossref_primary_10_1016_j_jmst_2022_08_030
crossref_primary_10_1007_s10562_024_04663_5
crossref_primary_10_1021_acsanm_3c05455
crossref_primary_10_1021_acs_jpcc_3c00092
crossref_primary_10_1016_j_apcatb_2024_124266
crossref_primary_10_1016_j_jcis_2021_04_027
crossref_primary_10_1016_j_fuel_2022_125905
crossref_primary_10_1016_j_jiec_2023_01_006
crossref_primary_10_1039_D2MA00191H
crossref_primary_10_1002_admi_202201842
crossref_primary_10_1016_j_flatc_2024_100711
crossref_primary_10_1016_j_ijhydene_2020_12_212
crossref_primary_10_1016_j_seppur_2022_121854
crossref_primary_10_1021_acs_jpcc_1c00017
crossref_primary_10_1088_2053_1583_ada042
crossref_primary_10_1039_D2TA08983A
crossref_primary_10_1016_j_apsusc_2023_156343
crossref_primary_10_1002_eom2_12204
crossref_primary_10_1016_j_ccr_2024_215870
crossref_primary_10_1021_acsanm_0c02481
crossref_primary_10_1039_D1RA01140E
crossref_primary_10_1016_j_jece_2021_105351
crossref_primary_10_1016_j_jmst_2024_02_026
crossref_primary_10_1039_D2TA02255A
crossref_primary_10_1002_adfm_202418733
crossref_primary_10_1002_cctc_202101439
crossref_primary_10_1016_S1872_2067_23_64633_9
crossref_primary_10_1002_cnma_202100155
crossref_primary_10_1016_j_jallcom_2024_175951
crossref_primary_10_1021_acs_langmuir_2c02227
crossref_primary_10_1016_j_ijhydene_2022_10_131
crossref_primary_10_1039_D2TA09255G
crossref_primary_10_20517_microstructures_2024_06
crossref_primary_10_1016_j_chemosphere_2023_139550
crossref_primary_10_1021_acs_energyfuels_1c00958
Cites_doi 10.1039/C6TA04414J
10.1039/C3CS60425J
10.1021/acsami.6b11494
10.1016/j.catcom.2014.01.026
10.1016/j.cej.2018.05.148
10.1038/ncomms13907
10.1016/j.apcatb.2016.03.026
10.1002/anie.201602543
10.1002/anie.201708748
10.1016/j.seppur.2019.116450
10.1016/j.apcatb.2019.05.037
10.1021/acs.chemmater.5b01623
10.1039/C8QI01359D
10.1103/PhysRevB.68.035434
10.1021/acsami.9b14985
10.1021/jacs.6b10834
10.1039/C9NR07242J
10.1016/j.jcis.2019.03.014
10.3390/surfaces1010007
10.1021/acscatal.5b02098
10.1016/j.nanoen.2018.08.040
10.1002/adma.201803220
10.1016/j.apcatb.2018.12.051
10.1002/aenm.201600452
10.1002/adfm.201800136
10.1016/j.apcatb.2018.04.012
10.1039/C9EN00567F
10.1016/j.apsusc.2016.10.171
10.1021/nn204153h
10.1039/C9SE01003C
10.1039/C8CC05866K
10.1002/advs.201600152
10.1016/j.jcat.2018.03.009
10.1039/C9TA10682K
10.1016/j.apcatb.2019.03.066
10.1016/j.jcis.2020.02.054
10.1016/j.apcatb.2018.08.053
10.1016/j.rser.2005.01.009
10.1016/S0039-6028(02)01388-2
10.1021/jp100786x
10.1016/j.apcatb.2019.117956
10.1016/j.cej.2019.123178
10.1021/ja8092373
10.1021/acsami.8b22339
10.1002/adma.201802173
10.1016/j.ijhydene.2020.03.169
10.1016/j.apcatb.2015.12.001
10.1016/0009-2509(90)80055-J
10.1016/j.jes.2019.05.032
10.1016/j.apcatb.2014.10.063
10.1016/j.seppur.2019.115896
10.1016/j.apcatb.2019.01.051
10.1021/acscatal.6b02754
10.1021/jacs.8b07721
10.1016/j.jcis.2018.12.101
10.1021/ja302846n
10.1016/j.apcatb.2013.10.027
10.1016/j.ceramint.2020.01.070
10.1103/PhysRevB.92.075411
10.1016/j.ijhydene.2016.12.052
10.1039/C9CC07108C
10.1002/adma.201604847
10.1016/j.jpcs.2019.109326
10.1016/j.apsusc.2015.11.089
10.1002/cssc.201600165
10.1016/j.apsusc.2016.12.006
10.1021/acsami.8b02804
10.1021/acsami.5b11973
10.1016/j.cej.2018.05.094
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2020.07.044
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 680
ExternalDocumentID 10_1016_j_jcis_2020_07_044
S002197972030922X
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
7X8
7S9
L.6
ID FETCH-LOGICAL-c432t-f2c10cbe8a7613d56a81f709168dccec126bb69591eeb4fc47c3424ce88927a63
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 11:59:23 EDT 2025
Fri Jul 11 01:23:48 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Tue Jul 01 01:18:55 EDT 2025
Fri Feb 23 02:47:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Schottky junction
Ti3C2 MXene
Hydrogen evolution
ZnIn2S4
TiO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-f2c10cbe8a7613d56a81f709168dccec126bb69591eeb4fc47c3424ce88927a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9896-8690
0000-0001-7374-3719
PQID 2427522675
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2985635794
proquest_miscellaneous_2427522675
crossref_primary_10_1016_j_jcis_2020_07_044
crossref_citationtrail_10_1016_j_jcis_2020_07_044
elsevier_sciencedirect_doi_10_1016_j_jcis_2020_07_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-15
PublicationDateYYYYMMDD 2020-11-15
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Peng, Wei, Li, Liu, Cao, Wang, Yu, Peng, Zhang, Zhang, Lv (b0275) 2018; 53
Li, Ding, Liang, Xue, Cui, Tian (b0170) 2020; 383
Han, Luo, Xie, Zhu, Wei, Chen, Liu, Chen, Zhao, Dong (b0245) 2019; 11
Tang, Zhang, Ma, Wang, Su, Zhang, Pu, Geng (b0260) 2020; 230
Low, Zhang, Tong, Shen, Yu (b0150) 2018; 361
Liu, Jiang, Zhao, Chen, Cheng, Yang, Li (b0210) 2016; 6
Wang, Wu, Xiao, Yuan, Zeng, Tu, Wu, Lee, Tan, Chew (b0330) 2018; 233
Yang, Ye, Cao, Gao, Qiu, Liu, Yang (b0335) 2018; 10
Zeng, Zhe, Wang, Zhang, Zhao, Hu, Wu, He (b0270) 2019; 539
Wang, Guan, Wang, Lou (b0175) 2018; 140
Wu, Liu, Lian, Tian, Janiak, Zhang, Lu, Yu, Hu, Wei, Zhao, Chang, Van Tendeloo, Wang, Yang, Su (b0065) 2018; 30
Liu, Tan, Wang, Ma, Znad, Shen, Liu, Liu (b0100) 2019; 6
Tie, Yang, Yu, Chen, Liu, Dong, Sun, Sun (b0105) 2019; 545
Yang, Zeng, Zeng, Huang, Xiao, Zhang, Zhou, Xiong, Wang, Cheng, Xue, Guo, Tang, He (b0130) 2019; 258
Sabate, Cerveramarch, Simarro, Gimenez (b0340) 1990; 45
Zhang, Su, Li, Pu, Geng (b0025) 2020; 139
Xue, Zhang, Zhu, Pei, Li, Wang, Huang, Huang, Deng, Zhou, Du, Huang, Zhi (b0215) 2017; 29
Zhang, Zhao, Chen, Cheng, Chang, Sheng, Hu, Cao (b0070) 2015; 165
Liang, Zhang, Yao, Han, Zhang, Jin, Pu, Geng (b0005) 2020; 238
Li, Zhao, Gao, Wang, Qiu (b0250) 2014; 147
Han, Kuang, Jin, Xie, Zheng (b0085) 2009; 131
Rakhi, Ahmed, Hedhili, Anjum, Alshareef (b0220) 2015; 27
Cai, Wang, Liu, Zhang, Dong, Chen, Yi, Yuan, Xia, Liu, Luo (b0125) 2018; 239
Mahadik, Shinde, Cho, Jang (b0190) 2016; 184
Ge, Li, Cao, Huang, Li, Zhang, Chen, Zhang, Al-Deyab, Lai (b0055) 2017; 4
He, Dai, Ma, Chen, Feng, Xing, Yu, Wu (b0040) 2020; 46
Yang, Zhang, Xie, Zhang, Liu, Yao, Wei, Zhang, Xie (b0180) 2016; 55
Ge, Cai, Iocozzia, Cao, Huang, Zhang, Shen, Wang, Zhang, Zhang, Lai, Lin (b0060) 2017; 42
Halim, Cook, Naguib, Eklund, Gogotsi, Rosen, Barsoum (b0240) 2016; 362
Chen, Chen, Ge, Zhang, Wu, Xing, Rotamond, Lin, Wu, He (b0010) 2020; 45
Naguib, Mashtalir, Carle, Presser, Lu, Hultman, Gogotsi, Barsoum (b0090) 2012; 6
Zhuang, Li, Li, Lv, Lang, Zhao, Zhou, Moskaleva, Guo, Mai (b0255) 2018; 57
Guo, Zhou, Zhu, Sun (b0350) 2016; 4
Wang, Peng, Hood, Naguib, Adhikari, Wu (b0325) 2016; 9
Li, Yin, Ji, Liang, Xue, Guo, Tian, Wang, Cui (b0160) 2019; 246
Ni, Leung, Leung, Sumathy (b0045) 2007; 11
Xiang, Yu, Jaroniec (b0050) 2012; 134
Ran, Gao, Li, Ma, Du, Qiao (b0110) 2017; 8
Yan, Wu, Chen, Zhang, Zhang, Liu (b0075) 2016; 191
Peng, Yang, Li, Yu, Wang, Peng (b0145) 2016; 8
Zhao, Zuo, Wang, Teo, Xie, Guo, Dai, Zhou, Jana, Xian (b0195) 2020; 59
Hong, Kumar, Reddy, Choi, Kim (b0200) 2017; 396
Li, Wu (b0120) 2019; 15
Yang, Zhang, Xiang (b0355) 2019; 11
Tanner, Liang, Altman (b0225) 2002; 506
Feng, Zeng, Zhang, Ge, Zhao, Lin, He (b0035) 2020; 87
Lian, Wang, Li, Tian, Schanze, Li (b0080) 2017; 9
Huang, Song, Li, Chen, Xu, Li, He, Lu (b0235) 2019; 251
Gao, O’Mullane, Du (b0115) 2016; 7
Liu, Zhu, Wang, Yuan, Lin, Huang (b0230) 2016; 6
Li, Ding, Guo, Liang, Cui, Tian (b0095) 2019; 11
Cui, Guo, Liu, Hu, Rana, Liang (b0345) 2014; 48
Khazaei, Arai, Sasaki, Ranjbar, Liang, Yunoki (b0315) 2015; 92
Wang, Sun, Wu, Tu, Wu, Yuan, Zeng, Xu, Li, Chew (b0320) 2019; 245
Xia, Li, Lv, Li (b0290) 2017; 398
Shahzad, Rasool, Nawaz, Miran, Jang, Moztahida, Mahmoud, Lee (b0155) 2018; 349
Li, Xia, Yang, Lv, Lei, Li (b0185) 2018; 349
Cao, Shen, Tong, Fu, Yu (b0280) 2018; 28
Okazaki, Nakato, Murakoshi (b0300) 2003; 68
Liu, Zeng, Chai, Yuan, Liu (b0135) 2019; 55
Qiao, Zhu, Zeng, Dong, Tan, Ding, Gao, Wang, Pan (b0020) 2020; 8
Kashiwaya, Morasch, Streibel, Toupance, Jaegermann, Klein (b0310) 2018; 1
Li, Zhuang, Lv, Zhu, Zhou, Luo, Zhu, Lang, Feng, Chen (b0305) 2018; 30
Ran, Zhang, Yu, Jaroniec, Qiao (b0015) 2014; 43
Tan, Zhu, Qiao, Zeng, Ma, Dong, Xie, Pan (b0205) 2019; 6
Zhu, Qiao, Tan, Ma, Zeng, Dong, Ma, Pan (b0265) 2019; 254
Cao, He, Chen, Cao (b0295) 2010; 114
Liu, Xiao, Goddard (b0140) 2016; 138
Cheng, Zu, Jiang, Shi, Cai, Ni, Lin, Qin (b0165) 2018; 54
Zhang, Chen, Chen, Wu, Dai, Xing, Lin, Zhao, He (b0030) 2020; 568
Xing, Zhang, Chen, Dai, Zhang, Zhao, He (b0285) 2020; 4
Yang (10.1016/j.jcis.2020.07.044_b0180) 2016; 55
Cui (10.1016/j.jcis.2020.07.044_b0345) 2014; 48
Xia (10.1016/j.jcis.2020.07.044_b0290) 2017; 398
Wang (10.1016/j.jcis.2020.07.044_b0175) 2018; 140
Xing (10.1016/j.jcis.2020.07.044_b0285) 2020; 4
Ni (10.1016/j.jcis.2020.07.044_b0045) 2007; 11
Mahadik (10.1016/j.jcis.2020.07.044_b0190) 2016; 184
Halim (10.1016/j.jcis.2020.07.044_b0240) 2016; 362
Han (10.1016/j.jcis.2020.07.044_b0245) 2019; 11
Xiang (10.1016/j.jcis.2020.07.044_b0050) 2012; 134
Li (10.1016/j.jcis.2020.07.044_b0305) 2018; 30
Rakhi (10.1016/j.jcis.2020.07.044_b0220) 2015; 27
Zhu (10.1016/j.jcis.2020.07.044_b0265) 2019; 254
Lian (10.1016/j.jcis.2020.07.044_b0080) 2017; 9
Low (10.1016/j.jcis.2020.07.044_b0150) 2018; 361
Li (10.1016/j.jcis.2020.07.044_b0250) 2014; 147
Cai (10.1016/j.jcis.2020.07.044_b0125) 2018; 239
Wu (10.1016/j.jcis.2020.07.044_b0065) 2018; 30
Han (10.1016/j.jcis.2020.07.044_b0085) 2009; 131
Ge (10.1016/j.jcis.2020.07.044_b0055) 2017; 4
Shahzad (10.1016/j.jcis.2020.07.044_b0155) 2018; 349
Naguib (10.1016/j.jcis.2020.07.044_b0090) 2012; 6
Huang (10.1016/j.jcis.2020.07.044_b0235) 2019; 251
Qiao (10.1016/j.jcis.2020.07.044_b0020) 2020; 8
Liu (10.1016/j.jcis.2020.07.044_b0230) 2016; 6
Cheng (10.1016/j.jcis.2020.07.044_b0165) 2018; 54
Yang (10.1016/j.jcis.2020.07.044_b0355) 2019; 11
Cao (10.1016/j.jcis.2020.07.044_b0280) 2018; 28
Peng (10.1016/j.jcis.2020.07.044_b0275) 2018; 53
Ran (10.1016/j.jcis.2020.07.044_b0015) 2014; 43
Yang (10.1016/j.jcis.2020.07.044_b0130) 2019; 258
Xue (10.1016/j.jcis.2020.07.044_b0215) 2017; 29
Li (10.1016/j.jcis.2020.07.044_b0095) 2019; 11
Sabate (10.1016/j.jcis.2020.07.044_b0340) 1990; 45
Liang (10.1016/j.jcis.2020.07.044_b0005) 2020; 238
Liu (10.1016/j.jcis.2020.07.044_b0100) 2019; 6
Okazaki (10.1016/j.jcis.2020.07.044_b0300) 2003; 68
Tie (10.1016/j.jcis.2020.07.044_b0105) 2019; 545
Zhao (10.1016/j.jcis.2020.07.044_b0195) 2020; 59
Liu (10.1016/j.jcis.2020.07.044_b0140) 2016; 138
Gao (10.1016/j.jcis.2020.07.044_b0115) 2016; 7
Khazaei (10.1016/j.jcis.2020.07.044_b0315) 2015; 92
Wang (10.1016/j.jcis.2020.07.044_b0325) 2016; 9
Li (10.1016/j.jcis.2020.07.044_b0185) 2018; 349
Hong (10.1016/j.jcis.2020.07.044_b0200) 2017; 396
Liu (10.1016/j.jcis.2020.07.044_b0210) 2016; 6
Ge (10.1016/j.jcis.2020.07.044_b0060) 2017; 42
Tanner (10.1016/j.jcis.2020.07.044_b0225) 2002; 506
Cao (10.1016/j.jcis.2020.07.044_b0295) 2010; 114
Kashiwaya (10.1016/j.jcis.2020.07.044_b0310) 2018; 1
Guo (10.1016/j.jcis.2020.07.044_b0350) 2016; 4
Li (10.1016/j.jcis.2020.07.044_b0120) 2019; 15
Wang (10.1016/j.jcis.2020.07.044_b0320) 2019; 245
Liu (10.1016/j.jcis.2020.07.044_b0135) 2019; 55
Zhang (10.1016/j.jcis.2020.07.044_b0070) 2015; 165
Ran (10.1016/j.jcis.2020.07.044_b0110) 2017; 8
Wang (10.1016/j.jcis.2020.07.044_b0330) 2018; 233
Yan (10.1016/j.jcis.2020.07.044_b0075) 2016; 191
Li (10.1016/j.jcis.2020.07.044_b0160) 2019; 246
Tan (10.1016/j.jcis.2020.07.044_b0205) 2019; 6
Zhang (10.1016/j.jcis.2020.07.044_b0025) 2020; 139
Tang (10.1016/j.jcis.2020.07.044_b0260) 2020; 230
Zeng (10.1016/j.jcis.2020.07.044_b0270) 2019; 539
Chen (10.1016/j.jcis.2020.07.044_b0010) 2020; 45
Zhang (10.1016/j.jcis.2020.07.044_b0030) 2020; 568
Yang (10.1016/j.jcis.2020.07.044_b0335) 2018; 10
Peng (10.1016/j.jcis.2020.07.044_b0145) 2016; 8
Feng (10.1016/j.jcis.2020.07.044_b0035) 2020; 87
Li (10.1016/j.jcis.2020.07.044_b0170) 2020; 383
Zhuang (10.1016/j.jcis.2020.07.044_b0255) 2018; 57
He (10.1016/j.jcis.2020.07.044_b0040) 2020; 46
References_xml – volume: 42
  start-page: 8418
  year: 2017
  end-page: 8449
  ident: b0060
  article-title: A review of TiO
  publication-title: Int. J. Hydrogen Energy
– volume: 230
  year: 2020
  ident: b0260
  article-title: One-dimensional core-shell Zn
  publication-title: Sep. Purif. Technol.
– volume: 4
  start-page: 1112
  year: 2020
  end-page: 1117
  ident: b0285
  article-title: Preparation of a NiO/KNbO
  publication-title: Sustainable Energy Fuels
– volume: 10
  start-page: 19633
  year: 2018
  end-page: 19638
  ident: b0335
  article-title: Efficient charge separation from F-selective etching and doping of anatase-TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 13907
  year: 2017
  ident: b0110
  article-title: Ti
  publication-title: Nat. Commum.
– volume: 258
  year: 2019
  ident: b0130
  article-title: Ti
  publication-title: Appl. Catal. B-Environ.
– volume: 165
  start-page: 715
  year: 2015
  end-page: 722
  ident: b0070
  article-title: C-doped hollow TiO
  publication-title: Appl. Catal. B-Environ.
– volume: 131
  start-page: 3152
  year: 2009
  end-page: 3153
  ident: b0085
  article-title: Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 6051
  year: 2016
  end-page: 6060
  ident: b0145
  article-title: Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity
  publication-title: ACS Appl. Mater. Interfaces
– volume: 254
  start-page: 601
  year: 2019
  end-page: 611
  ident: b0265
  article-title: Iron-nitrogen-carbon species for oxygen electro-reduction and Zn-air battery: surface engineering and experimental probe into active sites
  publication-title: Appl. Catal. B-Environ.
– volume: 545
  start-page: 63
  year: 2019
  end-page: 70
  ident: b0105
  article-title: In situ decoration of ZnS nanoparticles with Ti
  publication-title: J. Colloid Interface Sci.
– volume: 30
  start-page: 1803220
  year: 2018
  ident: b0305
  article-title: The marriage of the FeN
  publication-title: Adv. Mater.
– volume: 362
  start-page: 406
  year: 2016
  end-page: 417
  ident: b0240
  article-title: X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)
  publication-title: Appl. Surf. Sci.
– volume: 245
  start-page: 290
  year: 2019
  end-page: 301
  ident: b0320
  article-title: Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn
  publication-title: Appl. Catal. B-Environ.
– volume: 8
  start-page: 2453
  year: 2020
  end-page: 2462
  ident: b0020
  article-title: Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 3089
  year: 1990
  end-page: 3096
  ident: b0340
  article-title: Photocatalytic production of hydrogen from sulfide and sulfite waste streams: a kinetic model for reactions occurring in illuminating suspensions of CdS
  publication-title: Chem. Eng. Sci.
– volume: 92
  year: 2015
  ident: b0315
  article-title: OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials
  publication-title: Phys. Rev. B
– volume: 383
  year: 2020
  ident: b0170
  article-title: Synergetic effect of defects rich MoS
  publication-title: Chem. Eng. J.
– volume: 396
  start-page: 421
  year: 2017
  end-page: 429
  ident: b0200
  article-title: Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu
  publication-title: Appl. Surf. Sci.
– volume: 53
  start-page: 97
  year: 2018
  end-page: 107
  ident: b0275
  article-title: High efficiency photocatalytic hydrogen production over ternary Cu/TiO
  publication-title: Nano Energy
– volume: 539
  start-page: 563
  year: 2019
  end-page: 574
  ident: b0270
  article-title: Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation
  publication-title: J. Colloid Interface Sci.
– volume: 68
  year: 2003
  ident: b0300
  article-title: Absolute potential of the Fermi level of isolated single-walled carbon nanotubes
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 11446
  year: 2016
  end-page: 11452
  ident: b0350
  article-title: MXene: a promising photocatalyst for water splitting
  publication-title: J. Mater. Chem. A
– volume: 55
  start-page: 13729
  year: 2019
  end-page: 13732
  ident: b0135
  article-title: Ti
  publication-title: Chem. Commun.
– volume: 239
  start-page: 545
  year: 2018
  end-page: 554
  ident: b0125
  article-title: Ag
  publication-title: Appl. Catal. B-Environ.
– volume: 27
  start-page: 5314
  year: 2015
  end-page: 5323
  ident: b0220
  article-title: Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti
  publication-title: Chem. Mater.
– volume: 568
  start-page: 117
  year: 2020
  end-page: 129
  ident: b0030
  article-title: Facile fabrication of novel Ag
  publication-title: J. Colloid Interface Sci.
– volume: 9
  start-page: 1490
  year: 2016
  end-page: 1497
  ident: b0325
  article-title: Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation
  publication-title: ChemSusChem
– volume: 46
  start-page: 11421
  year: 2020
  end-page: 11426
  ident: b0040
  article-title: Hydrothermal preparation of carbon modified KNb
  publication-title: Ceram. Int.
– volume: 184
  start-page: 337
  year: 2016
  end-page: 346
  ident: b0190
  article-title: Metal oxide top layer as an interfacial promoter on a ZnIn
  publication-title: Appl. Catal. B-Environ.
– volume: 6
  start-page: 1322
  year: 2012
  end-page: 1331
  ident: b0090
  article-title: Two-dimensional transition metal carbides
  publication-title: ACS Nano
– volume: 1
  start-page: 73
  year: 2018
  end-page: 89
  ident: b0310
  article-title: The work function of TiO
  publication-title: Surfaces
– volume: 251
  start-page: 154
  year: 2019
  end-page: 161
  ident: b0235
  article-title: One-step in-situ preparation of N-doped TiO
  publication-title: Appl. Catal. B-Environ.
– volume: 147
  start-page: 958
  year: 2014
  end-page: 964
  ident: b0250
  article-title: Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed 001 facets for improved visible light photocatalytic activity
  publication-title: Appl. Catal. B-Environ.
– volume: 9
  start-page: 16960
  year: 2017
  end-page: 16967
  ident: b0080
  article-title: Pt-enhanced mesoporous Ti
  publication-title: ACS Appl. Mater. Inter.
– volume: 349
  start-page: 748
  year: 2018
  end-page: 755
  ident: b0155
  article-title: Heterostructural TiO
  publication-title: Chem. Eng. J.
– volume: 238
  year: 2020
  ident: b0005
  article-title: Deposition-precipitation synthesis of Yb
  publication-title: Sep. Purif. Technol.
– volume: 114
  start-page: 3627
  year: 2010
  end-page: 3633
  ident: b0295
  article-title: Fabrication of rutile TiO
  publication-title: J. Phys. Chem. C
– volume: 87
  start-page: 149
  year: 2020
  end-page: 162
  ident: b0035
  article-title: In situ preparation of g-C
  publication-title: J. Environ. Sci.
– volume: 11
  start-page: 41440
  year: 2019
  end-page: 41447
  ident: b0095
  article-title: Boosting the photocatalytic ability of g-C
  publication-title: ACS Appl. Mater. Interfaces
– volume: 506
  start-page: 251
  year: 2002
  end-page: 271
  ident: b0225
  article-title: Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO
  publication-title: Surf. Sci.
– volume: 398
  start-page: 81
  year: 2017
  end-page: 88
  ident: b0290
  article-title: Heterojunction construction between TiO
  publication-title: Appl. Surf. Sci.
– volume: 30
  start-page: 1802173
  year: 2018
  ident: b0065
  article-title: Homojunction of oxygen and titanium vacancies and its interfacial n-p effect
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1600452
  year: 2016
  ident: b0230
  article-title: Progress in black titania: a new material for advanced photocatalysis
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 18797
  year: 2019
  end-page: 18805
  ident: b0355
  article-title: Plasma-modified Ti
  publication-title: Nanoscale
– volume: 140
  start-page: 15145
  year: 2018
  end-page: 15148
  ident: b0175
  article-title: Formation of hierarchical Co
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 929
  year: 2019
  end-page: 939
  ident: b0205
  article-title: Constructing a direct Z- scheme photocatalytic system based on 2D/2D WO
  publication-title: Inorg. Chem. Front.
– volume: 246
  start-page: 12
  year: 2019
  end-page: 20
  ident: b0160
  article-title: 2D/2D/2D heterojunction of Ti
  publication-title: Appl. Catal. B-Environ.
– volume: 29
  start-page: 1604847
  year: 2017
  ident: b0215
  article-title: Photoluminescent Ti
  publication-title: Adv. Mater.
– volume: 11
  start-page: 8443
  year: 2019
  end-page: 8452
  ident: b0245
  article-title: Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 1600152
  year: 2017
  ident: b0055
  article-title: One-dimensional TiO
  publication-title: Adv. Sci.
– volume: 11
  start-page: 401
  year: 2007
  end-page: 425
  ident: b0045
  article-title: A review and recent developments in photocatalytic water-splitting using TiO
  publication-title: Renewable Sustainable Energy Rev.
– volume: 134
  start-page: 6575
  year: 2012
  end-page: 6578
  ident: b0050
  article-title: Synergetic effect of MoS
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 1804376
  year: 2019
  ident: b0120
  article-title: 2D early transition metal carbides (MXenes) for catalysis
  publication-title: Small
– volume: 59
  year: 2020
  ident: b0195
  article-title: Ultrathin ZnIn
  publication-title: Angew. Chem. Int. Ed.
– volume: 54
  start-page: 11622
  year: 2018
  end-page: 11625
  ident: b0165
  article-title: A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO
  publication-title: Chem. Commun.
– volume: 139
  year: 2020
  ident: b0025
  article-title: Synthesis and enhanced piezophotocatalytic activity of Ag
  publication-title: J. Phys. Chem. Solids
– volume: 48
  start-page: 55
  year: 2014
  end-page: 59
  ident: b0345
  article-title: Preparation of ZnIn
  publication-title: Catal. Commun.
– volume: 233
  start-page: 213
  year: 2018
  end-page: 225
  ident: b0330
  article-title: Formation of quasi-core-shell In
  publication-title: Appl. Catal. B-Environ.
– volume: 6
  start-page: 3158
  year: 2019
  end-page: 3169
  ident: b0100
  article-title: MXene as a non-metal charge mediator in 2D layered CdS@Ti
  publication-title: Environ. Sci.-Nano
– volume: 6
  start-page: 1097
  year: 2016
  end-page: 1108
  ident: b0210
  article-title: Engineering coexposed 001 and 101 facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light
  publication-title: ACS Catal.
– volume: 45
  start-page: 14354
  year: 2020
  end-page: 14367
  ident: b0010
  article-title: Microwave heating preparation of phosphorus doped g-C
  publication-title: Int. J. Hydrogen Energ.
– volume: 7
  start-page: 494
  year: 2016
  end-page: 500
  ident: b0115
  article-title: 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction
  publication-title: ACS Catal.
– volume: 349
  start-page: 287
  year: 2018
  end-page: 296
  ident: b0185
  article-title: Building a direct Z-scheme heterojunction photocatalyst by ZnIn
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 7787
  year: 2014
  end-page: 7812
  ident: b0015
  article-title: Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 6716
  year: 2016
  end-page: 6720
  ident: b0180
  article-title: Enhanced photoexcited carrier separation in oxygen-doped ZnIn
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  start-page: 1800136
  year: 2018
  ident: b0280
  article-title: 2D/2D heterojunction of ultrathin MXene/Bi
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 15853
  year: 2016
  end-page: 15856
  ident: b0140
  article-title: Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 496
  year: 2018
  end-page: 500
  ident: b0255
  article-title: MoB/g-C
  publication-title: Angew. Chem. Int. Ed.
– volume: 361
  start-page: 255
  year: 2018
  end-page: 266
  ident: b0150
  article-title: TiO
  publication-title: J. Catal.
– volume: 191
  start-page: 130
  year: 2016
  end-page: 137
  ident: b0075
  article-title: Fabrication of TiO
  publication-title: Appl. Catal. B-Environ.
– volume: 4
  start-page: 11446
  year: 2016
  ident: 10.1016/j.jcis.2020.07.044_b0350
  article-title: MXene: a promising photocatalyst for water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04414J
– volume: 43
  start-page: 7787
  year: 2014
  ident: 10.1016/j.jcis.2020.07.044_b0015
  article-title: Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60425J
– volume: 9
  start-page: 16960
  year: 2017
  ident: 10.1016/j.jcis.2020.07.044_b0080
  article-title: Pt-enhanced mesoporous Ti3+/TiO2 with rapid bulk to surface electron transfer for photocatalytic hydrogen evolution
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.6b11494
– volume: 48
  start-page: 55
  year: 2014
  ident: 10.1016/j.jcis.2020.07.044_b0345
  article-title: Preparation of ZnIn2S4/K2La2Ti3O10 composites and their photocatalytic H2 evolution from aqueous Na2S/Na2SO3 under visible light irradiation
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2014.01.026
– volume: 349
  start-page: 748
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0155
  article-title: Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.148
– volume: 8
  start-page: 13907
  year: 2017
  ident: 10.1016/j.jcis.2020.07.044_b0110
  article-title: Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production
  publication-title: Nat. Commum.
  doi: 10.1038/ncomms13907
– volume: 191
  start-page: 130
  year: 2016
  ident: 10.1016/j.jcis.2020.07.044_b0075
  article-title: Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.03.026
– volume: 55
  start-page: 6716
  year: 2016
  ident: 10.1016/j.jcis.2020.07.044_b0180
  article-title: Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602543
– volume: 57
  start-page: 496
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0255
  article-title: MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708748
– volume: 238
  year: 2020
  ident: 10.1016/j.jcis.2020.07.044_b0005
  article-title: Deposition-precipitation synthesis of Yb3+/Er3+ co-doped BiOBr/AgBr heterojunction photocatalysts with enhanced photocatalytic activity under Vis/NIR light irradiation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116450
– volume: 254
  start-page: 601
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0265
  article-title: Iron-nitrogen-carbon species for oxygen electro-reduction and Zn-air battery: surface engineering and experimental probe into active sites
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.05.037
– volume: 27
  start-page: 5314
  year: 2015
  ident: 10.1016/j.jcis.2020.07.044_b0220
  article-title: Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b01623
– volume: 6
  start-page: 929
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0205
  article-title: Constructing a direct Z- scheme photocatalytic system based on 2D/2D WO3/ZnIn2S4 nanocomposite for efficient hydrogen evolution under visible light
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI01359D
– volume: 68
  year: 2003
  ident: 10.1016/j.jcis.2020.07.044_b0300
  article-title: Absolute potential of the Fermi level of isolated single-walled carbon nanotubes
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.035434
– volume: 11
  start-page: 41440
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0095
  article-title: Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14985
– volume: 138
  start-page: 15853
  year: 2016
  ident: 10.1016/j.jcis.2020.07.044_b0140
  article-title: Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10834
– volume: 11
  start-page: 18797
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0355
  article-title: Plasma-modified Ti3C2Tx/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production
  publication-title: Nanoscale
  doi: 10.1039/C9NR07242J
– volume: 545
  start-page: 63
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0105
  article-title: In situ decoration of ZnS nanoparticles with Ti3C2 MXene nanosheets for efficient photocatalytic hydrogen evolution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.03.014
– volume: 15
  start-page: 1804376
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0120
  article-title: 2D early transition metal carbides (MXenes) for catalysis
  publication-title: Small
– volume: 1
  start-page: 73
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0310
  article-title: The work function of TiO2
  publication-title: Surfaces
  doi: 10.3390/surfaces1010007
– volume: 6
  start-page: 1097
  year: 2016
  ident: 10.1016/j.jcis.2020.07.044_b0210
  article-title: Engineering coexposed 001 and 101 facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02098
– volume: 53
  start-page: 97
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0275
  article-title: High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.040
– volume: 30
  start-page: 1803220
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0305
  article-title: The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803220
– volume: 245
  start-page: 290
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0320
  article-title: Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.12.051
– volume: 6
  start-page: 1600452
  year: 2016
  ident: 10.1016/j.jcis.2020.07.044_b0230
  article-title: Progress in black titania: a new material for advanced photocatalysis
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600452
– volume: 28
  start-page: 1800136
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0280
  article-title: 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800136
– volume: 233
  start-page: 213
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0330
  article-title: Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.04.012
– volume: 6
  start-page: 3158
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0100
  article-title: MXene as a non-metal charge mediator in 2D layered CdS@Ti3C2@TiO2 composites with superior Z-scheme visible light-driven photocatalytic activity
  publication-title: Environ. Sci.-Nano
  doi: 10.1039/C9EN00567F
– volume: 396
  start-page: 421
  year: 2017
  ident: 10.1016/j.jcis.2020.07.044_b0200
  article-title: Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.10.171
– volume: 6
  start-page: 1322
  year: 2012
  ident: 10.1016/j.jcis.2020.07.044_b0090
  article-title: Two-dimensional transition metal carbides
  publication-title: ACS Nano
  doi: 10.1021/nn204153h
– volume: 59
  year: 2020
  ident: 10.1016/j.jcis.2020.07.044_b0195
  article-title: Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2TX MXene for photocatalytic H2 evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 1112
  year: 2020
  ident: 10.1016/j.jcis.2020.07.044_b0285
  article-title: Preparation of a NiO/KNbO3 nanocomposite via a photodeposition method and its superior performance in photocatalytic N2 fixation
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C9SE01003C
– volume: 54
  start-page: 11622
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0165
  article-title: A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO2-x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC05866K
– volume: 4
  start-page: 1600152
  year: 2017
  ident: 10.1016/j.jcis.2020.07.044_b0055
  article-title: One-dimensional TiO2 nanotube photocatalysts for solar water splitting
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600152
– volume: 361
  start-page: 255
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0150
  article-title: TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.03.009
– volume: 8
  start-page: 2453
  year: 2020
  ident: 10.1016/j.jcis.2020.07.044_b0020
  article-title: Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10682K
– volume: 251
  start-page: 154
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0235
  article-title: One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.03.066
– volume: 568
  start-page: 117
  year: 2020
  ident: 10.1016/j.jcis.2020.07.044_b0030
  article-title: Facile fabrication of novel Ag2S/K-g-C3N4 composite and its enhanced performance in photocatalytic H2 evolution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.02.054
– volume: 239
  start-page: 545
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0125
  article-title: Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.08.053
– volume: 11
  start-page: 401
  year: 2007
  ident: 10.1016/j.jcis.2020.07.044_b0045
  article-title: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2005.01.009
– volume: 506
  start-page: 251
  year: 2002
  ident: 10.1016/j.jcis.2020.07.044_b0225
  article-title: Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2 (001)
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(02)01388-2
– volume: 114
  start-page: 3627
  year: 2010
  ident: 10.1016/j.jcis.2020.07.044_b0295
  article-title: Fabrication of rutile TiO2−Sn/anatase TiO2−N heterostructure and its application in visible-light photocatalysis
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp100786x
– volume: 258
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0130
  article-title: Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.117956
– volume: 383
  year: 2020
  ident: 10.1016/j.jcis.2020.07.044_b0170
  article-title: Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123178
– volume: 131
  start-page: 3152
  year: 2009
  ident: 10.1016/j.jcis.2020.07.044_b0085
  article-title: Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8092373
– volume: 11
  start-page: 8443
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0245
  article-title: Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22339
– volume: 30
  start-page: 1802173
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0065
  article-title: Homojunction of oxygen and titanium vacancies and its interfacial n-p effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802173
– volume: 45
  start-page: 14354
  year: 2020
  ident: 10.1016/j.jcis.2020.07.044_b0010
  article-title: Microwave heating preparation of phosphorus doped g-C3N4 and its enhanced performance for photocatalytic H2 evolution in the help of Ag3PO4 nanoparticles
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2020.03.169
– volume: 184
  start-page: 337
  year: 2016
  ident: 10.1016/j.jcis.2020.07.044_b0190
  article-title: Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2015.12.001
– volume: 45
  start-page: 3089
  year: 1990
  ident: 10.1016/j.jcis.2020.07.044_b0340
  article-title: Photocatalytic production of hydrogen from sulfide and sulfite waste streams: a kinetic model for reactions occurring in illuminating suspensions of CdS
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(90)80055-J
– volume: 87
  start-page: 149
  year: 2020
  ident: 10.1016/j.jcis.2020.07.044_b0035
  article-title: In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2019.05.032
– volume: 165
  start-page: 715
  year: 2015
  ident: 10.1016/j.jcis.2020.07.044_b0070
  article-title: C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2014.10.063
– volume: 230
  year: 2020
  ident: 10.1016/j.jcis.2020.07.044_b0260
  article-title: One-dimensional core-shell Zn0.1Cd0.9S/Snln4S8 heterojunction for enhanced visible light photocatalytic degradation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115896
– volume: 246
  start-page: 12
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0160
  article-title: 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.01.051
– volume: 7
  start-page: 494
  year: 2016
  ident: 10.1016/j.jcis.2020.07.044_b0115
  article-title: 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02754
– volume: 140
  start-page: 15145
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0175
  article-title: Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07721
– volume: 539
  start-page: 563
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0270
  article-title: Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.12.101
– volume: 134
  start-page: 6575
  year: 2012
  ident: 10.1016/j.jcis.2020.07.044_b0050
  article-title: Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302846n
– volume: 147
  start-page: 958
  year: 2014
  ident: 10.1016/j.jcis.2020.07.044_b0250
  article-title: Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed 001 facets for improved visible light photocatalytic activity
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2013.10.027
– volume: 46
  start-page: 11421
  year: 2020
  ident: 10.1016/j.jcis.2020.07.044_b0040
  article-title: Hydrothermal preparation of carbon modified KNb3O8 nanosheets for efficient photocatalytic H2 evolution
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.01.070
– volume: 92
  year: 2015
  ident: 10.1016/j.jcis.2020.07.044_b0315
  article-title: OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.075411
– volume: 42
  start-page: 8418
  year: 2017
  ident: 10.1016/j.jcis.2020.07.044_b0060
  article-title: A review of TiO2 nanostructured catalysts for sustainable H2 generation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.12.052
– volume: 55
  start-page: 13729
  year: 2019
  ident: 10.1016/j.jcis.2020.07.044_b0135
  article-title: Ti3C2/BiVO4 Schottky junction as a signal indicator for ultrasensitive photoelectrochemical detection of VEGF(165)
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC07108C
– volume: 29
  start-page: 1604847
  year: 2017
  ident: 10.1016/j.jcis.2020.07.044_b0215
  article-title: Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604847
– volume: 139
  year: 2020
  ident: 10.1016/j.jcis.2020.07.044_b0025
  article-title: Synthesis and enhanced piezophotocatalytic activity of Ag2O/K0.5Na0.5NbO3 composites
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2019.109326
– volume: 362
  start-page: 406
  year: 2016
  ident: 10.1016/j.jcis.2020.07.044_b0240
  article-title: X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.11.089
– volume: 9
  start-page: 1490
  year: 2016
  ident: 10.1016/j.jcis.2020.07.044_b0325
  article-title: Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600165
– volume: 398
  start-page: 81
  year: 2017
  ident: 10.1016/j.jcis.2020.07.044_b0290
  article-title: Heterojunction construction between TiO2 hollowsphere and ZnIn2S4 flower for photocatalysis application
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.12.006
– volume: 10
  start-page: 19633
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0335
  article-title: Efficient charge separation from F-selective etching and doping of anatase-TiO2{001} for enhanced photocatalytic hydrogen production
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02804
– volume: 8
  start-page: 6051
  year: 2016
  ident: 10.1016/j.jcis.2020.07.044_b0145
  article-title: Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11973
– volume: 349
  start-page: 287
  year: 2018
  ident: 10.1016/j.jcis.2020.07.044_b0185
  article-title: Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.094
SSID ssj0011559
Score 2.6547651
Snippet [Display omitted] Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize...
Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 669
SubjectTerms active sites
carbides
energy conversion
Hydrogen evolution
hydrogen production
indium
nanosheets
oxidation
photocatalysis
photocatalysts
Schottky junction
semiconductors
sulfides
Ti3C2 MXene
TiO2
titanium
titanium dioxide
zinc
ZnIn2S4
Title In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution
URI https://dx.doi.org/10.1016/j.jcis.2020.07.044
https://www.proquest.com/docview/2427522675
https://www.proquest.com/docview/2985635794
Volume 580
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQPdAeKgqtSkuRkbihdGPH8cetaAXaLYIeukgrLtbacUQQSlawVFoO_PbOOAmUSt1Dj4nGiuWZzDzZb54JOWA-OKd1lqSmkAkq0iVQFWPHcgGAI2QsyhefncvRhfg-zadrZNj3wiCtssv9bU6P2bp7M-hWczCvKuzxhb9NGTxHTA3nU-xgFwppfV8fn2geDI_dWpoHS9C6a5xpOV7XvkLJbp5GAU8h_lWc_krTsfacbJK3HWikR-283pG1UG-RjWF_V9sWefOHrOA2eRjXyV21uKe-edaHpU1J4-bf7ZJOqmzI6dkU8ty3SfWDDy7rcc1_CooEc2RxhTsKYJailvHNkoYoMwHVic6vmkUTd3yWMBV6tSxuG4hAGn51EfyeXJwcT4ajpLtjIfEi44uk5J6l3gU9U1DYi1zONCsVgAipC--DZ1w6J01uWAhOlF4onwkufNDacDWT2QeyXjd1-EgoAAvvAT04lIApfOFKybSRygSJHcBqh7B-ca3vBMjxHowb2zPNri06xKJDbKosOGSHHD6NmbfyGyut895n9kUQWagPK8ft9w624Dg8MpnVobkHI8EVIlSVr7AxOkdVPyM-_ef3P5PX-IQtjizfJesQGeELYJ2F24vBvEdeHY1PR-e_Acdm_go
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG9zB4QGOAGB_DSLyhqLHj-OONqWJq2Voe6KSKF6t2HC3TlFRbh1T-eu4SZzCk9YHXxKdYvsvdT7673xHykfngnNZZkppCJshIl0BUbDuWCwAcIWMtffF0Jsfn4usiX-yQUd8Lg2WV0fd3Pr311vHJMJ7mcFVV2OMLf5symEdMDeeLR2QX2anEgOweT07Hs7tkAmbeukoPlqBA7J3pyrwufYWs3TxtOTyFeCg-_eOp2_Bzsk-eRtxIj7utPSM7oT4ge6N-XNsBefIXs-Bz8mtSJzfV-pb65g9FLG1K2t7_XW_ovMpGnE4X4Oo-z6tvfPijntT8u6BYY46FXOGGAp6lSGd8taGhZZqAAEVXF826aS99NrAVerEprhswQhp-RiN-Qc5PvsxH4ySOWUi8yPg6KblnqXdBLxXE9iKXS81KBThC6sL74BmXzkmTGxaCE6UXymeCCx-0NlwtZfaSDOqmDq8IBWzhPQAIhywwhS9cKZk2UpkgsQlYHRLWH671kYMcR2Fc2b7Y7NKiQiwqxKbKgkIOyac7mVXHwLF1dd7rzN6zIwshYqvch17BFhSHWZNlHZpbWCS4QpCq8i1rjM6R2M-I1__5_fdkbzyfntmzyez0DXmMb7DjkeVvyQCsJLwD6LN2R9G0fwN10wDK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+construction+of+ternary+Ti3C2+MXene%40TiO2%2FZnIn2S4+composites+for+highly+efficient+photocatalytic+hydrogen+evolution&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Huang%2C+Kelei&rft.au=Li%2C+Chunhu&rft.au=Meng%2C+Xiangchao&rft.date=2020-11-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=580&rft.spage=669&rft_id=info:doi/10.1016%2Fj.jcis.2020.07.044&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon