In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution
[Display omitted] Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy conversion for solving energy crisis. Hence, a novel hierarchical Ti3C2 MXene@TiO2/ZnIn2S4 photocatalyst with rapid charge...
Saved in:
Published in | Journal of colloid and interface science Vol. 580; pp. 669 - 680 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9797 1095-7103 1095-7103 |
DOI | 10.1016/j.jcis.2020.07.044 |
Cover
Loading…
Abstract | [Display omitted]
Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy conversion for solving energy crisis. Hence, a novel hierarchical Ti3C2 MXene@TiO2/ZnIn2S4 photocatalyst with rapid charge transfer channels was constructed by two-step hydrothermal for efficient hydrogen production, adopting hydrothermal oxidation to in-situ synthesize Ti3C2 MXene embedded with TiO2 nanosheets (M@TiO2), which was applied to load ZnIn2S4 (ZIS). The hybridized photocatalyst with optimized ZIS amount had a hydrogen generation rate of 1185.8 μmol/g/h, which was higher than that of M@TiO2 and pure ZIS. That was originated from the outstanding light harvesting of ZIS and Ti3C2, sufficient active sites of Ti3C2, intimate interfacial contact, and efficient separation and transfer of photogenerated charges via heterojunction. The favorable and rapid charge transfer routes included type-II heterojunction between ZIS and TiO2 nanosheets, Schottky junction of Ti3C2/semiconductor, and metallic Ti3C2 with high conductivity. This work revealed the Schottky junction forming between ZIS and Ti3C2, and hierarchical M@TiO2 could be served as advantageous platform and efficient cocatalyst to construct MXene-based photocatalyst. |
---|---|
AbstractList | Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy conversion for solving energy crisis. Hence, a novel hierarchical Ti₃C₂ MXene@TiO₂/ZnIn₂S₄ photocatalyst with rapid charge transfer channels was constructed by two-step hydrothermal for efficient hydrogen production, adopting hydrothermal oxidation to in-situ synthesize Ti₃C₂ MXene embedded with TiO₂ nanosheets (M@TiO₂), which was applied to load ZnIn₂S₄ (ZIS). The hybridized photocatalyst with optimized ZIS amount had a hydrogen generation rate of 1185.8 μmol/g/h, which was higher than that of M@TiO₂ and pure ZIS. That was originated from the outstanding light harvesting of ZIS and Ti₃C₂, sufficient active sites of Ti₃C₂, intimate interfacial contact, and efficient separation and transfer of photogenerated charges via heterojunction. The favorable and rapid charge transfer routes included type-II heterojunction between ZIS and TiO₂ nanosheets, Schottky junction of Ti₃C₂/semiconductor, and metallic Ti₃C₂ with high conductivity. This work revealed the Schottky junction forming between ZIS and Ti₃C₂, and hierarchical M@TiO₂ could be served as advantageous platform and efficient cocatalyst to construct MXene-based photocatalyst. Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy conversion for solving energy crisis. Hence, a novel hierarchical Ti3C2 MXene@TiO2/ZnIn2S4 photocatalyst with rapid charge transfer channels was constructed by two-step hydrothermal for efficient hydrogen production, adopting hydrothermal oxidation to in-situ synthesize Ti3C2 MXene embedded with TiO2 nanosheets (M@TiO2), which was applied to load ZnIn2S4 (ZIS). The hybridized photocatalyst with optimized ZIS amount had a hydrogen generation rate of 1185.8 μmol/g/h, which was higher than that of M@TiO2 and pure ZIS. That was originated from the outstanding light harvesting of ZIS and Ti3C2, sufficient active sites of Ti3C2, intimate interfacial contact, and efficient separation and transfer of photogenerated charges via heterojunction. The favorable and rapid charge transfer routes included type-II heterojunction between ZIS and TiO2 nanosheets, Schottky junction of Ti3C2/semiconductor, and metallic Ti3C2 with high conductivity. This work revealed the Schottky junction forming between ZIS and Ti3C2, and hierarchical M@TiO2 could be served as advantageous platform and efficient cocatalyst to construct MXene-based photocatalyst.Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy conversion for solving energy crisis. Hence, a novel hierarchical Ti3C2 MXene@TiO2/ZnIn2S4 photocatalyst with rapid charge transfer channels was constructed by two-step hydrothermal for efficient hydrogen production, adopting hydrothermal oxidation to in-situ synthesize Ti3C2 MXene embedded with TiO2 nanosheets (M@TiO2), which was applied to load ZnIn2S4 (ZIS). The hybridized photocatalyst with optimized ZIS amount had a hydrogen generation rate of 1185.8 μmol/g/h, which was higher than that of M@TiO2 and pure ZIS. That was originated from the outstanding light harvesting of ZIS and Ti3C2, sufficient active sites of Ti3C2, intimate interfacial contact, and efficient separation and transfer of photogenerated charges via heterojunction. The favorable and rapid charge transfer routes included type-II heterojunction between ZIS and TiO2 nanosheets, Schottky junction of Ti3C2/semiconductor, and metallic Ti3C2 with high conductivity. This work revealed the Schottky junction forming between ZIS and Ti3C2, and hierarchical M@TiO2 could be served as advantageous platform and efficient cocatalyst to construct MXene-based photocatalyst. [Display omitted] Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy conversion for solving energy crisis. Hence, a novel hierarchical Ti3C2 MXene@TiO2/ZnIn2S4 photocatalyst with rapid charge transfer channels was constructed by two-step hydrothermal for efficient hydrogen production, adopting hydrothermal oxidation to in-situ synthesize Ti3C2 MXene embedded with TiO2 nanosheets (M@TiO2), which was applied to load ZnIn2S4 (ZIS). The hybridized photocatalyst with optimized ZIS amount had a hydrogen generation rate of 1185.8 μmol/g/h, which was higher than that of M@TiO2 and pure ZIS. That was originated from the outstanding light harvesting of ZIS and Ti3C2, sufficient active sites of Ti3C2, intimate interfacial contact, and efficient separation and transfer of photogenerated charges via heterojunction. The favorable and rapid charge transfer routes included type-II heterojunction between ZIS and TiO2 nanosheets, Schottky junction of Ti3C2/semiconductor, and metallic Ti3C2 with high conductivity. This work revealed the Schottky junction forming between ZIS and Ti3C2, and hierarchical M@TiO2 could be served as advantageous platform and efficient cocatalyst to construct MXene-based photocatalyst. |
Author | Meng, Xiangchao Li, Chunhu Huang, Kelei |
Author_xml | – sequence: 1 givenname: Kelei surname: Huang fullname: Huang, Kelei – sequence: 2 givenname: Chunhu orcidid: 0000-0001-7374-3719 surname: Li fullname: Li, Chunhu email: lichunhu@ouc.edu.cn – sequence: 3 givenname: Xiangchao orcidid: 0000-0001-9896-8690 surname: Meng fullname: Meng, Xiangchao email: mengxiangchao@ouc.edu.cn |
BookMark | eNqFkUFv0zAYhi00JLrBH-DkI5dktmPHscQBVDGoNLQDRUJcLPfLl9VVahfbmVR-PYnKicM4-fI-n6XnuSZXIQYk5C1nNWe8vT3UB_C5FkywmumaSfmCrDgzqtKcNVdkxZjgldFGvyLXOR8Y41wpsyK_N6HKvkwUYsglTVB8DDQOtGAKLp3p1jdrQb_-wIAftv5B3P4MmyC-yRk4nuKMYqZDTHTvH_fjmeIwePAYCj3tY4ngihvPxQPdn_sUHzFQfIrjtPzymrwc3Jjxzd_3hny_-7Rdf6nuHz5v1h_vK5CNKNUggDPYYed0y5teta7jg2aGt10PgMBFu9u1RhmOuJMDSA2NFBKw64zQrm1uyLvL3VOKvybMxR59BhxHFzBO2QrTqbZR2sj_T6XQSohWq3kqLlNIMeeEgz0lf5yNWc7s0sQe7NLELk0s03ZuMkPdPxD44hYZJTk_Po--v6A4q3rymGxePAP2PiEU20f_HP4Hit-rOQ |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_156795 crossref_primary_10_1016_j_inoche_2023_111880 crossref_primary_10_1002_smtd_202100887 crossref_primary_10_1016_j_cej_2021_131493 crossref_primary_10_1063_5_0121818 crossref_primary_10_1016_j_matre_2022_100081 crossref_primary_10_1002_sstr_202200017 crossref_primary_10_1016_j_ijhydene_2023_12_111 crossref_primary_10_1016_j_inoche_2021_108585 crossref_primary_10_1039_D3CS01040F crossref_primary_10_1016_j_seppur_2023_125393 crossref_primary_10_1016_j_jece_2021_105244 crossref_primary_10_1021_acs_energyfuels_1c00204 crossref_primary_10_1002_smm2_1238 crossref_primary_10_1016_j_jcis_2021_08_008 crossref_primary_10_1016_j_apsusc_2021_149341 crossref_primary_10_1016_j_jcis_2024_06_139 crossref_primary_10_1021_acsnano_2c04750 crossref_primary_10_1016_j_jhazmat_2021_127711 crossref_primary_10_1021_acsanm_2c04182 crossref_primary_10_1016_j_ccr_2024_216226 crossref_primary_10_1021_acs_inorgchem_3c01138 crossref_primary_10_1039_D1TA09030E crossref_primary_10_1039_D2TA05712C crossref_primary_10_1016_j_inoche_2022_109704 crossref_primary_10_1016_j_jssc_2023_124298 crossref_primary_10_1016_j_cplett_2023_140470 crossref_primary_10_1016_j_jcis_2022_04_071 crossref_primary_10_1039_D4QI02912G crossref_primary_10_1016_j_ultsonch_2023_106623 crossref_primary_10_1016_S1872_2067_21_63875_5 crossref_primary_10_2139_ssrn_4104080 crossref_primary_10_1016_j_jcis_2022_02_126 crossref_primary_10_1016_j_cej_2022_135910 crossref_primary_10_1016_j_ijhydene_2025_03_264 crossref_primary_10_1016_j_jcis_2023_09_075 crossref_primary_10_1002_adma_202305835 crossref_primary_10_1016_j_matchemphys_2023_127410 crossref_primary_10_1002_smll_202205767 crossref_primary_10_1016_j_apsusc_2023_157865 crossref_primary_10_1016_j_apcatb_2024_124184 crossref_primary_10_1002_smll_202300717 crossref_primary_10_1016_j_jece_2023_111224 crossref_primary_10_1021_acsaem_1c02241 crossref_primary_10_1007_s00604_024_06847_7 crossref_primary_10_1021_acs_langmuir_3c03754 crossref_primary_10_1016_j_surfin_2021_101323 crossref_primary_10_1016_j_jallcom_2021_161945 crossref_primary_10_1016_j_est_2022_105207 crossref_primary_10_1016_j_susmat_2022_e00439 crossref_primary_10_1016_j_mtchem_2022_101238 crossref_primary_10_1063_5_0055711 crossref_primary_10_1016_j_jwpe_2024_106202 crossref_primary_10_1021_acsomega_2c05030 crossref_primary_10_1002_adma_202107554 crossref_primary_10_1016_j_mtener_2022_100956 crossref_primary_10_1039_D1QI01614H crossref_primary_10_1039_D4TA08155B crossref_primary_10_1021_acsaem_2c04144 crossref_primary_10_1016_j_chemosphere_2021_132119 crossref_primary_10_1016_j_colsurfa_2022_129229 crossref_primary_10_1016_j_ijhydene_2024_07_058 crossref_primary_10_4028_p_WEf1i1 crossref_primary_10_1016_j_jece_2022_108284 crossref_primary_10_1039_D0TC02979C crossref_primary_10_1016_j_molstruc_2023_136904 crossref_primary_10_1021_acsanm_3c02891 crossref_primary_10_1016_j_jmat_2023_04_013 crossref_primary_10_1016_j_apsusc_2025_162602 crossref_primary_10_1038_s41699_021_00239_8 crossref_primary_10_1016_j_jcis_2025_01_053 crossref_primary_10_1016_j_mssp_2024_109074 crossref_primary_10_1016_j_materresbull_2023_112570 crossref_primary_10_1002_admt_202200151 crossref_primary_10_1002_solr_202101061 crossref_primary_10_1016_j_ijhydene_2024_07_445 crossref_primary_10_1016_j_jcis_2021_05_155 crossref_primary_10_1016_j_cej_2023_146680 crossref_primary_10_1039_D1NR02224E crossref_primary_10_1016_j_desal_2024_117312 crossref_primary_10_1016_j_jcis_2021_05_151 crossref_primary_10_1016_j_colsurfa_2022_129991 crossref_primary_10_1016_j_ijhydene_2024_06_250 crossref_primary_10_1016_j_mtchem_2022_101108 crossref_primary_10_1016_j_colsurfa_2023_132935 crossref_primary_10_1016_j_jcis_2024_11_124 crossref_primary_10_1016_j_jphotochem_2022_113772 crossref_primary_10_1016_j_mssp_2024_108632 crossref_primary_10_1007_s11237_022_09733_6 crossref_primary_10_1039_D3NJ03059H crossref_primary_10_1002_smll_202404622 crossref_primary_10_1016_j_ccr_2022_214898 crossref_primary_10_1021_acs_energyfuels_1c01340 crossref_primary_10_1016_j_matpr_2021_12_229 crossref_primary_10_1016_j_cej_2022_134573 crossref_primary_10_1039_D1QI00001B crossref_primary_10_3390_nano13162315 crossref_primary_10_1016_j_mset_2023_10_002 crossref_primary_10_1021_acsanm_2c00572 crossref_primary_10_1007_s12517_022_09456_x crossref_primary_10_1016_j_cej_2024_153416 crossref_primary_10_1016_j_jpcs_2021_110339 crossref_primary_10_1002_chem_202400255 crossref_primary_10_1016_j_colsurfa_2022_129881 crossref_primary_10_1016_j_jallcom_2025_178498 crossref_primary_10_1021_acsanm_1c03112 crossref_primary_10_1002_cctc_202300316 crossref_primary_10_1021_acsaenm_3c00013 crossref_primary_10_1016_j_seppur_2022_121267 crossref_primary_10_1088_2053_1583_ac9e66 crossref_primary_10_1016_j_fuel_2023_128460 crossref_primary_10_1002_slct_202303437 crossref_primary_10_1016_j_ccr_2024_216022 crossref_primary_10_1021_acsanm_3c02434 crossref_primary_10_1039_D2NJ05007B crossref_primary_10_1039_D4NJ02315C crossref_primary_10_1016_j_cej_2023_146947 crossref_primary_10_1016_j_seppur_2024_128581 crossref_primary_10_1002_bkcs_12783 crossref_primary_10_1016_j_cattod_2021_07_004 crossref_primary_10_1016_j_apsusc_2024_161317 crossref_primary_10_1016_j_cej_2021_132381 crossref_primary_10_1002_cssc_202401362 crossref_primary_10_1016_j_ceramint_2021_04_192 crossref_primary_10_1016_j_ceramint_2021_05_302 crossref_primary_10_1007_s11164_023_05051_1 crossref_primary_10_1016_j_jece_2022_107211 crossref_primary_10_1016_j_apcatb_2022_121647 crossref_primary_10_1016_j_mtener_2021_100881 crossref_primary_10_1016_j_jcis_2024_07_144 crossref_primary_10_1016_j_flatc_2024_100620 crossref_primary_10_1016_j_jcis_2022_11_096 crossref_primary_10_1002_adfm_202110848 crossref_primary_10_1016_j_mtcata_2024_100054 crossref_primary_10_1016_j_enconman_2023_117021 crossref_primary_10_1007_s10853_022_06970_x crossref_primary_10_1039_D4NJ03277B crossref_primary_10_1016_j_nanoen_2023_109180 crossref_primary_10_1002_smll_202409142 crossref_primary_10_1016_j_ccr_2024_216176 crossref_primary_10_1016_j_jmst_2022_08_030 crossref_primary_10_1007_s10562_024_04663_5 crossref_primary_10_1021_acsanm_3c05455 crossref_primary_10_1021_acs_jpcc_3c00092 crossref_primary_10_1016_j_apcatb_2024_124266 crossref_primary_10_1016_j_jcis_2021_04_027 crossref_primary_10_1016_j_fuel_2022_125905 crossref_primary_10_1016_j_jiec_2023_01_006 crossref_primary_10_1039_D2MA00191H crossref_primary_10_1002_admi_202201842 crossref_primary_10_1016_j_flatc_2024_100711 crossref_primary_10_1016_j_ijhydene_2020_12_212 crossref_primary_10_1016_j_seppur_2022_121854 crossref_primary_10_1021_acs_jpcc_1c00017 crossref_primary_10_1088_2053_1583_ada042 crossref_primary_10_1039_D2TA08983A crossref_primary_10_1016_j_apsusc_2023_156343 crossref_primary_10_1002_eom2_12204 crossref_primary_10_1016_j_ccr_2024_215870 crossref_primary_10_1021_acsanm_0c02481 crossref_primary_10_1039_D1RA01140E crossref_primary_10_1016_j_jece_2021_105351 crossref_primary_10_1016_j_jmst_2024_02_026 crossref_primary_10_1039_D2TA02255A crossref_primary_10_1002_adfm_202418733 crossref_primary_10_1002_cctc_202101439 crossref_primary_10_1016_S1872_2067_23_64633_9 crossref_primary_10_1002_cnma_202100155 crossref_primary_10_1016_j_jallcom_2024_175951 crossref_primary_10_1021_acs_langmuir_2c02227 crossref_primary_10_1016_j_ijhydene_2022_10_131 crossref_primary_10_1039_D2TA09255G crossref_primary_10_20517_microstructures_2024_06 crossref_primary_10_1016_j_chemosphere_2023_139550 crossref_primary_10_1021_acs_energyfuels_1c00958 |
Cites_doi | 10.1039/C6TA04414J 10.1039/C3CS60425J 10.1021/acsami.6b11494 10.1016/j.catcom.2014.01.026 10.1016/j.cej.2018.05.148 10.1038/ncomms13907 10.1016/j.apcatb.2016.03.026 10.1002/anie.201602543 10.1002/anie.201708748 10.1016/j.seppur.2019.116450 10.1016/j.apcatb.2019.05.037 10.1021/acs.chemmater.5b01623 10.1039/C8QI01359D 10.1103/PhysRevB.68.035434 10.1021/acsami.9b14985 10.1021/jacs.6b10834 10.1039/C9NR07242J 10.1016/j.jcis.2019.03.014 10.3390/surfaces1010007 10.1021/acscatal.5b02098 10.1016/j.nanoen.2018.08.040 10.1002/adma.201803220 10.1016/j.apcatb.2018.12.051 10.1002/aenm.201600452 10.1002/adfm.201800136 10.1016/j.apcatb.2018.04.012 10.1039/C9EN00567F 10.1016/j.apsusc.2016.10.171 10.1021/nn204153h 10.1039/C9SE01003C 10.1039/C8CC05866K 10.1002/advs.201600152 10.1016/j.jcat.2018.03.009 10.1039/C9TA10682K 10.1016/j.apcatb.2019.03.066 10.1016/j.jcis.2020.02.054 10.1016/j.apcatb.2018.08.053 10.1016/j.rser.2005.01.009 10.1016/S0039-6028(02)01388-2 10.1021/jp100786x 10.1016/j.apcatb.2019.117956 10.1016/j.cej.2019.123178 10.1021/ja8092373 10.1021/acsami.8b22339 10.1002/adma.201802173 10.1016/j.ijhydene.2020.03.169 10.1016/j.apcatb.2015.12.001 10.1016/0009-2509(90)80055-J 10.1016/j.jes.2019.05.032 10.1016/j.apcatb.2014.10.063 10.1016/j.seppur.2019.115896 10.1016/j.apcatb.2019.01.051 10.1021/acscatal.6b02754 10.1021/jacs.8b07721 10.1016/j.jcis.2018.12.101 10.1021/ja302846n 10.1016/j.apcatb.2013.10.027 10.1016/j.ceramint.2020.01.070 10.1103/PhysRevB.92.075411 10.1016/j.ijhydene.2016.12.052 10.1039/C9CC07108C 10.1002/adma.201604847 10.1016/j.jpcs.2019.109326 10.1016/j.apsusc.2015.11.089 10.1002/cssc.201600165 10.1016/j.apsusc.2016.12.006 10.1021/acsami.8b02804 10.1021/acsami.5b11973 10.1016/j.cej.2018.05.094 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2020.07.044 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 680 |
ExternalDocumentID | 10_1016_j_jcis_2020_07_044 S002197972030922X |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c432t-f2c10cbe8a7613d56a81f709168dccec126bb69591eeb4fc47c3424ce88927a63 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 11:59:23 EDT 2025 Fri Jul 11 01:23:48 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Tue Jul 01 01:18:55 EDT 2025 Fri Feb 23 02:47:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Schottky junction Ti3C2 MXene Hydrogen evolution ZnIn2S4 TiO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-f2c10cbe8a7613d56a81f709168dccec126bb69591eeb4fc47c3424ce88927a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9896-8690 0000-0001-7374-3719 |
PQID | 2427522675 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2985635794 proquest_miscellaneous_2427522675 crossref_primary_10_1016_j_jcis_2020_07_044 crossref_citationtrail_10_1016_j_jcis_2020_07_044 elsevier_sciencedirect_doi_10_1016_j_jcis_2020_07_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-15 |
PublicationDateYYYYMMDD | 2020-11-15 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Peng, Wei, Li, Liu, Cao, Wang, Yu, Peng, Zhang, Zhang, Lv (b0275) 2018; 53 Li, Ding, Liang, Xue, Cui, Tian (b0170) 2020; 383 Han, Luo, Xie, Zhu, Wei, Chen, Liu, Chen, Zhao, Dong (b0245) 2019; 11 Tang, Zhang, Ma, Wang, Su, Zhang, Pu, Geng (b0260) 2020; 230 Low, Zhang, Tong, Shen, Yu (b0150) 2018; 361 Liu, Jiang, Zhao, Chen, Cheng, Yang, Li (b0210) 2016; 6 Wang, Wu, Xiao, Yuan, Zeng, Tu, Wu, Lee, Tan, Chew (b0330) 2018; 233 Yang, Ye, Cao, Gao, Qiu, Liu, Yang (b0335) 2018; 10 Zeng, Zhe, Wang, Zhang, Zhao, Hu, Wu, He (b0270) 2019; 539 Wang, Guan, Wang, Lou (b0175) 2018; 140 Wu, Liu, Lian, Tian, Janiak, Zhang, Lu, Yu, Hu, Wei, Zhao, Chang, Van Tendeloo, Wang, Yang, Su (b0065) 2018; 30 Liu, Tan, Wang, Ma, Znad, Shen, Liu, Liu (b0100) 2019; 6 Tie, Yang, Yu, Chen, Liu, Dong, Sun, Sun (b0105) 2019; 545 Yang, Zeng, Zeng, Huang, Xiao, Zhang, Zhou, Xiong, Wang, Cheng, Xue, Guo, Tang, He (b0130) 2019; 258 Sabate, Cerveramarch, Simarro, Gimenez (b0340) 1990; 45 Zhang, Su, Li, Pu, Geng (b0025) 2020; 139 Xue, Zhang, Zhu, Pei, Li, Wang, Huang, Huang, Deng, Zhou, Du, Huang, Zhi (b0215) 2017; 29 Zhang, Zhao, Chen, Cheng, Chang, Sheng, Hu, Cao (b0070) 2015; 165 Liang, Zhang, Yao, Han, Zhang, Jin, Pu, Geng (b0005) 2020; 238 Li, Zhao, Gao, Wang, Qiu (b0250) 2014; 147 Han, Kuang, Jin, Xie, Zheng (b0085) 2009; 131 Rakhi, Ahmed, Hedhili, Anjum, Alshareef (b0220) 2015; 27 Cai, Wang, Liu, Zhang, Dong, Chen, Yi, Yuan, Xia, Liu, Luo (b0125) 2018; 239 Mahadik, Shinde, Cho, Jang (b0190) 2016; 184 Ge, Li, Cao, Huang, Li, Zhang, Chen, Zhang, Al-Deyab, Lai (b0055) 2017; 4 He, Dai, Ma, Chen, Feng, Xing, Yu, Wu (b0040) 2020; 46 Yang, Zhang, Xie, Zhang, Liu, Yao, Wei, Zhang, Xie (b0180) 2016; 55 Ge, Cai, Iocozzia, Cao, Huang, Zhang, Shen, Wang, Zhang, Zhang, Lai, Lin (b0060) 2017; 42 Halim, Cook, Naguib, Eklund, Gogotsi, Rosen, Barsoum (b0240) 2016; 362 Chen, Chen, Ge, Zhang, Wu, Xing, Rotamond, Lin, Wu, He (b0010) 2020; 45 Naguib, Mashtalir, Carle, Presser, Lu, Hultman, Gogotsi, Barsoum (b0090) 2012; 6 Zhuang, Li, Li, Lv, Lang, Zhao, Zhou, Moskaleva, Guo, Mai (b0255) 2018; 57 Guo, Zhou, Zhu, Sun (b0350) 2016; 4 Wang, Peng, Hood, Naguib, Adhikari, Wu (b0325) 2016; 9 Li, Yin, Ji, Liang, Xue, Guo, Tian, Wang, Cui (b0160) 2019; 246 Ni, Leung, Leung, Sumathy (b0045) 2007; 11 Xiang, Yu, Jaroniec (b0050) 2012; 134 Ran, Gao, Li, Ma, Du, Qiao (b0110) 2017; 8 Yan, Wu, Chen, Zhang, Zhang, Liu (b0075) 2016; 191 Peng, Yang, Li, Yu, Wang, Peng (b0145) 2016; 8 Zhao, Zuo, Wang, Teo, Xie, Guo, Dai, Zhou, Jana, Xian (b0195) 2020; 59 Hong, Kumar, Reddy, Choi, Kim (b0200) 2017; 396 Li, Wu (b0120) 2019; 15 Yang, Zhang, Xiang (b0355) 2019; 11 Tanner, Liang, Altman (b0225) 2002; 506 Feng, Zeng, Zhang, Ge, Zhao, Lin, He (b0035) 2020; 87 Lian, Wang, Li, Tian, Schanze, Li (b0080) 2017; 9 Huang, Song, Li, Chen, Xu, Li, He, Lu (b0235) 2019; 251 Gao, O’Mullane, Du (b0115) 2016; 7 Liu, Zhu, Wang, Yuan, Lin, Huang (b0230) 2016; 6 Li, Ding, Guo, Liang, Cui, Tian (b0095) 2019; 11 Cui, Guo, Liu, Hu, Rana, Liang (b0345) 2014; 48 Khazaei, Arai, Sasaki, Ranjbar, Liang, Yunoki (b0315) 2015; 92 Wang, Sun, Wu, Tu, Wu, Yuan, Zeng, Xu, Li, Chew (b0320) 2019; 245 Xia, Li, Lv, Li (b0290) 2017; 398 Shahzad, Rasool, Nawaz, Miran, Jang, Moztahida, Mahmoud, Lee (b0155) 2018; 349 Li, Xia, Yang, Lv, Lei, Li (b0185) 2018; 349 Cao, Shen, Tong, Fu, Yu (b0280) 2018; 28 Okazaki, Nakato, Murakoshi (b0300) 2003; 68 Liu, Zeng, Chai, Yuan, Liu (b0135) 2019; 55 Qiao, Zhu, Zeng, Dong, Tan, Ding, Gao, Wang, Pan (b0020) 2020; 8 Kashiwaya, Morasch, Streibel, Toupance, Jaegermann, Klein (b0310) 2018; 1 Li, Zhuang, Lv, Zhu, Zhou, Luo, Zhu, Lang, Feng, Chen (b0305) 2018; 30 Ran, Zhang, Yu, Jaroniec, Qiao (b0015) 2014; 43 Tan, Zhu, Qiao, Zeng, Ma, Dong, Xie, Pan (b0205) 2019; 6 Zhu, Qiao, Tan, Ma, Zeng, Dong, Ma, Pan (b0265) 2019; 254 Cao, He, Chen, Cao (b0295) 2010; 114 Liu, Xiao, Goddard (b0140) 2016; 138 Cheng, Zu, Jiang, Shi, Cai, Ni, Lin, Qin (b0165) 2018; 54 Zhang, Chen, Chen, Wu, Dai, Xing, Lin, Zhao, He (b0030) 2020; 568 Xing, Zhang, Chen, Dai, Zhang, Zhao, He (b0285) 2020; 4 Yang (10.1016/j.jcis.2020.07.044_b0180) 2016; 55 Cui (10.1016/j.jcis.2020.07.044_b0345) 2014; 48 Xia (10.1016/j.jcis.2020.07.044_b0290) 2017; 398 Wang (10.1016/j.jcis.2020.07.044_b0175) 2018; 140 Xing (10.1016/j.jcis.2020.07.044_b0285) 2020; 4 Ni (10.1016/j.jcis.2020.07.044_b0045) 2007; 11 Mahadik (10.1016/j.jcis.2020.07.044_b0190) 2016; 184 Halim (10.1016/j.jcis.2020.07.044_b0240) 2016; 362 Han (10.1016/j.jcis.2020.07.044_b0245) 2019; 11 Xiang (10.1016/j.jcis.2020.07.044_b0050) 2012; 134 Li (10.1016/j.jcis.2020.07.044_b0305) 2018; 30 Rakhi (10.1016/j.jcis.2020.07.044_b0220) 2015; 27 Zhu (10.1016/j.jcis.2020.07.044_b0265) 2019; 254 Lian (10.1016/j.jcis.2020.07.044_b0080) 2017; 9 Low (10.1016/j.jcis.2020.07.044_b0150) 2018; 361 Li (10.1016/j.jcis.2020.07.044_b0250) 2014; 147 Cai (10.1016/j.jcis.2020.07.044_b0125) 2018; 239 Wu (10.1016/j.jcis.2020.07.044_b0065) 2018; 30 Han (10.1016/j.jcis.2020.07.044_b0085) 2009; 131 Ge (10.1016/j.jcis.2020.07.044_b0055) 2017; 4 Shahzad (10.1016/j.jcis.2020.07.044_b0155) 2018; 349 Naguib (10.1016/j.jcis.2020.07.044_b0090) 2012; 6 Huang (10.1016/j.jcis.2020.07.044_b0235) 2019; 251 Qiao (10.1016/j.jcis.2020.07.044_b0020) 2020; 8 Liu (10.1016/j.jcis.2020.07.044_b0230) 2016; 6 Cheng (10.1016/j.jcis.2020.07.044_b0165) 2018; 54 Yang (10.1016/j.jcis.2020.07.044_b0355) 2019; 11 Cao (10.1016/j.jcis.2020.07.044_b0280) 2018; 28 Peng (10.1016/j.jcis.2020.07.044_b0275) 2018; 53 Ran (10.1016/j.jcis.2020.07.044_b0015) 2014; 43 Yang (10.1016/j.jcis.2020.07.044_b0130) 2019; 258 Xue (10.1016/j.jcis.2020.07.044_b0215) 2017; 29 Li (10.1016/j.jcis.2020.07.044_b0095) 2019; 11 Sabate (10.1016/j.jcis.2020.07.044_b0340) 1990; 45 Liang (10.1016/j.jcis.2020.07.044_b0005) 2020; 238 Liu (10.1016/j.jcis.2020.07.044_b0100) 2019; 6 Okazaki (10.1016/j.jcis.2020.07.044_b0300) 2003; 68 Tie (10.1016/j.jcis.2020.07.044_b0105) 2019; 545 Zhao (10.1016/j.jcis.2020.07.044_b0195) 2020; 59 Liu (10.1016/j.jcis.2020.07.044_b0140) 2016; 138 Gao (10.1016/j.jcis.2020.07.044_b0115) 2016; 7 Khazaei (10.1016/j.jcis.2020.07.044_b0315) 2015; 92 Wang (10.1016/j.jcis.2020.07.044_b0325) 2016; 9 Li (10.1016/j.jcis.2020.07.044_b0185) 2018; 349 Hong (10.1016/j.jcis.2020.07.044_b0200) 2017; 396 Liu (10.1016/j.jcis.2020.07.044_b0210) 2016; 6 Ge (10.1016/j.jcis.2020.07.044_b0060) 2017; 42 Tanner (10.1016/j.jcis.2020.07.044_b0225) 2002; 506 Cao (10.1016/j.jcis.2020.07.044_b0295) 2010; 114 Kashiwaya (10.1016/j.jcis.2020.07.044_b0310) 2018; 1 Guo (10.1016/j.jcis.2020.07.044_b0350) 2016; 4 Li (10.1016/j.jcis.2020.07.044_b0120) 2019; 15 Wang (10.1016/j.jcis.2020.07.044_b0320) 2019; 245 Liu (10.1016/j.jcis.2020.07.044_b0135) 2019; 55 Zhang (10.1016/j.jcis.2020.07.044_b0070) 2015; 165 Ran (10.1016/j.jcis.2020.07.044_b0110) 2017; 8 Wang (10.1016/j.jcis.2020.07.044_b0330) 2018; 233 Yan (10.1016/j.jcis.2020.07.044_b0075) 2016; 191 Li (10.1016/j.jcis.2020.07.044_b0160) 2019; 246 Tan (10.1016/j.jcis.2020.07.044_b0205) 2019; 6 Zhang (10.1016/j.jcis.2020.07.044_b0025) 2020; 139 Tang (10.1016/j.jcis.2020.07.044_b0260) 2020; 230 Zeng (10.1016/j.jcis.2020.07.044_b0270) 2019; 539 Chen (10.1016/j.jcis.2020.07.044_b0010) 2020; 45 Zhang (10.1016/j.jcis.2020.07.044_b0030) 2020; 568 Yang (10.1016/j.jcis.2020.07.044_b0335) 2018; 10 Peng (10.1016/j.jcis.2020.07.044_b0145) 2016; 8 Feng (10.1016/j.jcis.2020.07.044_b0035) 2020; 87 Li (10.1016/j.jcis.2020.07.044_b0170) 2020; 383 Zhuang (10.1016/j.jcis.2020.07.044_b0255) 2018; 57 He (10.1016/j.jcis.2020.07.044_b0040) 2020; 46 |
References_xml | – volume: 42 start-page: 8418 year: 2017 end-page: 8449 ident: b0060 article-title: A review of TiO publication-title: Int. J. Hydrogen Energy – volume: 230 year: 2020 ident: b0260 article-title: One-dimensional core-shell Zn publication-title: Sep. Purif. Technol. – volume: 4 start-page: 1112 year: 2020 end-page: 1117 ident: b0285 article-title: Preparation of a NiO/KNbO publication-title: Sustainable Energy Fuels – volume: 10 start-page: 19633 year: 2018 end-page: 19638 ident: b0335 article-title: Efficient charge separation from F-selective etching and doping of anatase-TiO publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 13907 year: 2017 ident: b0110 article-title: Ti publication-title: Nat. Commum. – volume: 258 year: 2019 ident: b0130 article-title: Ti publication-title: Appl. Catal. B-Environ. – volume: 165 start-page: 715 year: 2015 end-page: 722 ident: b0070 article-title: C-doped hollow TiO publication-title: Appl. Catal. B-Environ. – volume: 131 start-page: 3152 year: 2009 end-page: 3153 ident: b0085 article-title: Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 6051 year: 2016 end-page: 6060 ident: b0145 article-title: Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity publication-title: ACS Appl. Mater. Interfaces – volume: 254 start-page: 601 year: 2019 end-page: 611 ident: b0265 article-title: Iron-nitrogen-carbon species for oxygen electro-reduction and Zn-air battery: surface engineering and experimental probe into active sites publication-title: Appl. Catal. B-Environ. – volume: 545 start-page: 63 year: 2019 end-page: 70 ident: b0105 article-title: In situ decoration of ZnS nanoparticles with Ti publication-title: J. Colloid Interface Sci. – volume: 30 start-page: 1803220 year: 2018 ident: b0305 article-title: The marriage of the FeN publication-title: Adv. Mater. – volume: 362 start-page: 406 year: 2016 end-page: 417 ident: b0240 article-title: X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) publication-title: Appl. Surf. Sci. – volume: 245 start-page: 290 year: 2019 end-page: 301 ident: b0320 article-title: Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn publication-title: Appl. Catal. B-Environ. – volume: 8 start-page: 2453 year: 2020 end-page: 2462 ident: b0020 article-title: Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting publication-title: J. Mater. Chem. A – volume: 45 start-page: 3089 year: 1990 end-page: 3096 ident: b0340 article-title: Photocatalytic production of hydrogen from sulfide and sulfite waste streams: a kinetic model for reactions occurring in illuminating suspensions of CdS publication-title: Chem. Eng. Sci. – volume: 92 year: 2015 ident: b0315 article-title: OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials publication-title: Phys. Rev. B – volume: 383 year: 2020 ident: b0170 article-title: Synergetic effect of defects rich MoS publication-title: Chem. Eng. J. – volume: 396 start-page: 421 year: 2017 end-page: 429 ident: b0200 article-title: Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu publication-title: Appl. Surf. Sci. – volume: 53 start-page: 97 year: 2018 end-page: 107 ident: b0275 article-title: High efficiency photocatalytic hydrogen production over ternary Cu/TiO publication-title: Nano Energy – volume: 539 start-page: 563 year: 2019 end-page: 574 ident: b0270 article-title: Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation publication-title: J. Colloid Interface Sci. – volume: 68 year: 2003 ident: b0300 article-title: Absolute potential of the Fermi level of isolated single-walled carbon nanotubes publication-title: Phys. Rev. B – volume: 4 start-page: 11446 year: 2016 end-page: 11452 ident: b0350 article-title: MXene: a promising photocatalyst for water splitting publication-title: J. Mater. Chem. A – volume: 55 start-page: 13729 year: 2019 end-page: 13732 ident: b0135 article-title: Ti publication-title: Chem. Commun. – volume: 239 start-page: 545 year: 2018 end-page: 554 ident: b0125 article-title: Ag publication-title: Appl. Catal. B-Environ. – volume: 27 start-page: 5314 year: 2015 end-page: 5323 ident: b0220 article-title: Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti publication-title: Chem. Mater. – volume: 568 start-page: 117 year: 2020 end-page: 129 ident: b0030 article-title: Facile fabrication of novel Ag publication-title: J. Colloid Interface Sci. – volume: 9 start-page: 1490 year: 2016 end-page: 1497 ident: b0325 article-title: Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation publication-title: ChemSusChem – volume: 46 start-page: 11421 year: 2020 end-page: 11426 ident: b0040 article-title: Hydrothermal preparation of carbon modified KNb publication-title: Ceram. Int. – volume: 184 start-page: 337 year: 2016 end-page: 346 ident: b0190 article-title: Metal oxide top layer as an interfacial promoter on a ZnIn publication-title: Appl. Catal. B-Environ. – volume: 6 start-page: 1322 year: 2012 end-page: 1331 ident: b0090 article-title: Two-dimensional transition metal carbides publication-title: ACS Nano – volume: 1 start-page: 73 year: 2018 end-page: 89 ident: b0310 article-title: The work function of TiO publication-title: Surfaces – volume: 251 start-page: 154 year: 2019 end-page: 161 ident: b0235 article-title: One-step in-situ preparation of N-doped TiO publication-title: Appl. Catal. B-Environ. – volume: 147 start-page: 958 year: 2014 end-page: 964 ident: b0250 article-title: Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed 001 facets for improved visible light photocatalytic activity publication-title: Appl. Catal. B-Environ. – volume: 9 start-page: 16960 year: 2017 end-page: 16967 ident: b0080 article-title: Pt-enhanced mesoporous Ti publication-title: ACS Appl. Mater. Inter. – volume: 349 start-page: 748 year: 2018 end-page: 755 ident: b0155 article-title: Heterostructural TiO publication-title: Chem. Eng. J. – volume: 238 year: 2020 ident: b0005 article-title: Deposition-precipitation synthesis of Yb publication-title: Sep. Purif. Technol. – volume: 114 start-page: 3627 year: 2010 end-page: 3633 ident: b0295 article-title: Fabrication of rutile TiO publication-title: J. Phys. Chem. C – volume: 87 start-page: 149 year: 2020 end-page: 162 ident: b0035 article-title: In situ preparation of g-C publication-title: J. Environ. Sci. – volume: 11 start-page: 41440 year: 2019 end-page: 41447 ident: b0095 article-title: Boosting the photocatalytic ability of g-C publication-title: ACS Appl. Mater. Interfaces – volume: 506 start-page: 251 year: 2002 end-page: 271 ident: b0225 article-title: Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO publication-title: Surf. Sci. – volume: 398 start-page: 81 year: 2017 end-page: 88 ident: b0290 article-title: Heterojunction construction between TiO publication-title: Appl. Surf. Sci. – volume: 30 start-page: 1802173 year: 2018 ident: b0065 article-title: Homojunction of oxygen and titanium vacancies and its interfacial n-p effect publication-title: Adv. Mater. – volume: 6 start-page: 1600452 year: 2016 ident: b0230 article-title: Progress in black titania: a new material for advanced photocatalysis publication-title: Adv. Energy Mater. – volume: 11 start-page: 18797 year: 2019 end-page: 18805 ident: b0355 article-title: Plasma-modified Ti publication-title: Nanoscale – volume: 140 start-page: 15145 year: 2018 end-page: 15148 ident: b0175 article-title: Formation of hierarchical Co publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 929 year: 2019 end-page: 939 ident: b0205 article-title: Constructing a direct Z- scheme photocatalytic system based on 2D/2D WO publication-title: Inorg. Chem. Front. – volume: 246 start-page: 12 year: 2019 end-page: 20 ident: b0160 article-title: 2D/2D/2D heterojunction of Ti publication-title: Appl. Catal. B-Environ. – volume: 29 start-page: 1604847 year: 2017 ident: b0215 article-title: Photoluminescent Ti publication-title: Adv. Mater. – volume: 11 start-page: 8443 year: 2019 end-page: 8452 ident: b0245 article-title: Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 1600152 year: 2017 ident: b0055 article-title: One-dimensional TiO publication-title: Adv. Sci. – volume: 11 start-page: 401 year: 2007 end-page: 425 ident: b0045 article-title: A review and recent developments in photocatalytic water-splitting using TiO publication-title: Renewable Sustainable Energy Rev. – volume: 134 start-page: 6575 year: 2012 end-page: 6578 ident: b0050 article-title: Synergetic effect of MoS publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 1804376 year: 2019 ident: b0120 article-title: 2D early transition metal carbides (MXenes) for catalysis publication-title: Small – volume: 59 year: 2020 ident: b0195 article-title: Ultrathin ZnIn publication-title: Angew. Chem. Int. Ed. – volume: 54 start-page: 11622 year: 2018 end-page: 11625 ident: b0165 article-title: A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO publication-title: Chem. Commun. – volume: 139 year: 2020 ident: b0025 article-title: Synthesis and enhanced piezophotocatalytic activity of Ag publication-title: J. Phys. Chem. Solids – volume: 48 start-page: 55 year: 2014 end-page: 59 ident: b0345 article-title: Preparation of ZnIn publication-title: Catal. Commun. – volume: 233 start-page: 213 year: 2018 end-page: 225 ident: b0330 article-title: Formation of quasi-core-shell In publication-title: Appl. Catal. B-Environ. – volume: 6 start-page: 3158 year: 2019 end-page: 3169 ident: b0100 article-title: MXene as a non-metal charge mediator in 2D layered CdS@Ti publication-title: Environ. Sci.-Nano – volume: 6 start-page: 1097 year: 2016 end-page: 1108 ident: b0210 article-title: Engineering coexposed 001 and 101 facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light publication-title: ACS Catal. – volume: 45 start-page: 14354 year: 2020 end-page: 14367 ident: b0010 article-title: Microwave heating preparation of phosphorus doped g-C publication-title: Int. J. Hydrogen Energ. – volume: 7 start-page: 494 year: 2016 end-page: 500 ident: b0115 article-title: 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction publication-title: ACS Catal. – volume: 349 start-page: 287 year: 2018 end-page: 296 ident: b0185 article-title: Building a direct Z-scheme heterojunction photocatalyst by ZnIn publication-title: Chem. Eng. J. – volume: 43 start-page: 7787 year: 2014 end-page: 7812 ident: b0015 article-title: Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting publication-title: Chem. Soc. Rev. – volume: 55 start-page: 6716 year: 2016 end-page: 6720 ident: b0180 article-title: Enhanced photoexcited carrier separation in oxygen-doped ZnIn publication-title: Angew. Chem. Int. Ed. – volume: 28 start-page: 1800136 year: 2018 ident: b0280 article-title: 2D/2D heterojunction of ultrathin MXene/Bi publication-title: Adv. Funct. Mater. – volume: 138 start-page: 15853 year: 2016 end-page: 15856 ident: b0140 article-title: Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 496 year: 2018 end-page: 500 ident: b0255 article-title: MoB/g-C publication-title: Angew. Chem. Int. Ed. – volume: 361 start-page: 255 year: 2018 end-page: 266 ident: b0150 article-title: TiO publication-title: J. Catal. – volume: 191 start-page: 130 year: 2016 end-page: 137 ident: b0075 article-title: Fabrication of TiO publication-title: Appl. Catal. B-Environ. – volume: 4 start-page: 11446 year: 2016 ident: 10.1016/j.jcis.2020.07.044_b0350 article-title: MXene: a promising photocatalyst for water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04414J – volume: 43 start-page: 7787 year: 2014 ident: 10.1016/j.jcis.2020.07.044_b0015 article-title: Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60425J – volume: 9 start-page: 16960 year: 2017 ident: 10.1016/j.jcis.2020.07.044_b0080 article-title: Pt-enhanced mesoporous Ti3+/TiO2 with rapid bulk to surface electron transfer for photocatalytic hydrogen evolution publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.6b11494 – volume: 48 start-page: 55 year: 2014 ident: 10.1016/j.jcis.2020.07.044_b0345 article-title: Preparation of ZnIn2S4/K2La2Ti3O10 composites and their photocatalytic H2 evolution from aqueous Na2S/Na2SO3 under visible light irradiation publication-title: Catal. Commun. doi: 10.1016/j.catcom.2014.01.026 – volume: 349 start-page: 748 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0155 article-title: Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.148 – volume: 8 start-page: 13907 year: 2017 ident: 10.1016/j.jcis.2020.07.044_b0110 article-title: Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production publication-title: Nat. Commum. doi: 10.1038/ncomms13907 – volume: 191 start-page: 130 year: 2016 ident: 10.1016/j.jcis.2020.07.044_b0075 article-title: Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.03.026 – volume: 55 start-page: 6716 year: 2016 ident: 10.1016/j.jcis.2020.07.044_b0180 article-title: Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602543 – volume: 57 start-page: 496 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0255 article-title: MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708748 – volume: 238 year: 2020 ident: 10.1016/j.jcis.2020.07.044_b0005 article-title: Deposition-precipitation synthesis of Yb3+/Er3+ co-doped BiOBr/AgBr heterojunction photocatalysts with enhanced photocatalytic activity under Vis/NIR light irradiation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116450 – volume: 254 start-page: 601 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0265 article-title: Iron-nitrogen-carbon species for oxygen electro-reduction and Zn-air battery: surface engineering and experimental probe into active sites publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.05.037 – volume: 27 start-page: 5314 year: 2015 ident: 10.1016/j.jcis.2020.07.044_b0220 article-title: Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b01623 – volume: 6 start-page: 929 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0205 article-title: Constructing a direct Z- scheme photocatalytic system based on 2D/2D WO3/ZnIn2S4 nanocomposite for efficient hydrogen evolution under visible light publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI01359D – volume: 68 year: 2003 ident: 10.1016/j.jcis.2020.07.044_b0300 article-title: Absolute potential of the Fermi level of isolated single-walled carbon nanotubes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.035434 – volume: 11 start-page: 41440 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0095 article-title: Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14985 – volume: 138 start-page: 15853 year: 2016 ident: 10.1016/j.jcis.2020.07.044_b0140 article-title: Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10834 – volume: 11 start-page: 18797 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0355 article-title: Plasma-modified Ti3C2Tx/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production publication-title: Nanoscale doi: 10.1039/C9NR07242J – volume: 545 start-page: 63 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0105 article-title: In situ decoration of ZnS nanoparticles with Ti3C2 MXene nanosheets for efficient photocatalytic hydrogen evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.03.014 – volume: 15 start-page: 1804376 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0120 article-title: 2D early transition metal carbides (MXenes) for catalysis publication-title: Small – volume: 1 start-page: 73 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0310 article-title: The work function of TiO2 publication-title: Surfaces doi: 10.3390/surfaces1010007 – volume: 6 start-page: 1097 year: 2016 ident: 10.1016/j.jcis.2020.07.044_b0210 article-title: Engineering coexposed 001 and 101 facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light publication-title: ACS Catal. doi: 10.1021/acscatal.5b02098 – volume: 53 start-page: 97 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0275 article-title: High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.040 – volume: 30 start-page: 1803220 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0305 article-title: The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters publication-title: Adv. Mater. doi: 10.1002/adma.201803220 – volume: 245 start-page: 290 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0320 article-title: Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.12.051 – volume: 6 start-page: 1600452 year: 2016 ident: 10.1016/j.jcis.2020.07.044_b0230 article-title: Progress in black titania: a new material for advanced photocatalysis publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600452 – volume: 28 start-page: 1800136 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0280 article-title: 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800136 – volume: 233 start-page: 213 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0330 article-title: Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.04.012 – volume: 6 start-page: 3158 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0100 article-title: MXene as a non-metal charge mediator in 2D layered CdS@Ti3C2@TiO2 composites with superior Z-scheme visible light-driven photocatalytic activity publication-title: Environ. Sci.-Nano doi: 10.1039/C9EN00567F – volume: 396 start-page: 421 year: 2017 ident: 10.1016/j.jcis.2020.07.044_b0200 article-title: Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.10.171 – volume: 6 start-page: 1322 year: 2012 ident: 10.1016/j.jcis.2020.07.044_b0090 article-title: Two-dimensional transition metal carbides publication-title: ACS Nano doi: 10.1021/nn204153h – volume: 59 year: 2020 ident: 10.1016/j.jcis.2020.07.044_b0195 article-title: Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2TX MXene for photocatalytic H2 evolution publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 1112 year: 2020 ident: 10.1016/j.jcis.2020.07.044_b0285 article-title: Preparation of a NiO/KNbO3 nanocomposite via a photodeposition method and its superior performance in photocatalytic N2 fixation publication-title: Sustainable Energy Fuels doi: 10.1039/C9SE01003C – volume: 54 start-page: 11622 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0165 article-title: A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO2-x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes publication-title: Chem. Commun. doi: 10.1039/C8CC05866K – volume: 4 start-page: 1600152 year: 2017 ident: 10.1016/j.jcis.2020.07.044_b0055 article-title: One-dimensional TiO2 nanotube photocatalysts for solar water splitting publication-title: Adv. Sci. doi: 10.1002/advs.201600152 – volume: 361 start-page: 255 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0150 article-title: TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity publication-title: J. Catal. doi: 10.1016/j.jcat.2018.03.009 – volume: 8 start-page: 2453 year: 2020 ident: 10.1016/j.jcis.2020.07.044_b0020 article-title: Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10682K – volume: 251 start-page: 154 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0235 article-title: One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.03.066 – volume: 568 start-page: 117 year: 2020 ident: 10.1016/j.jcis.2020.07.044_b0030 article-title: Facile fabrication of novel Ag2S/K-g-C3N4 composite and its enhanced performance in photocatalytic H2 evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.02.054 – volume: 239 start-page: 545 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0125 article-title: Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.08.053 – volume: 11 start-page: 401 year: 2007 ident: 10.1016/j.jcis.2020.07.044_b0045 article-title: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2005.01.009 – volume: 506 start-page: 251 year: 2002 ident: 10.1016/j.jcis.2020.07.044_b0225 article-title: Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2 (001) publication-title: Surf. Sci. doi: 10.1016/S0039-6028(02)01388-2 – volume: 114 start-page: 3627 year: 2010 ident: 10.1016/j.jcis.2020.07.044_b0295 article-title: Fabrication of rutile TiO2−Sn/anatase TiO2−N heterostructure and its application in visible-light photocatalysis publication-title: J. Phys. Chem. C doi: 10.1021/jp100786x – volume: 258 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0130 article-title: Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.117956 – volume: 383 year: 2020 ident: 10.1016/j.jcis.2020.07.044_b0170 article-title: Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123178 – volume: 131 start-page: 3152 year: 2009 ident: 10.1016/j.jcis.2020.07.044_b0085 article-title: Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8092373 – volume: 11 start-page: 8443 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0245 article-title: Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22339 – volume: 30 start-page: 1802173 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0065 article-title: Homojunction of oxygen and titanium vacancies and its interfacial n-p effect publication-title: Adv. Mater. doi: 10.1002/adma.201802173 – volume: 45 start-page: 14354 year: 2020 ident: 10.1016/j.jcis.2020.07.044_b0010 article-title: Microwave heating preparation of phosphorus doped g-C3N4 and its enhanced performance for photocatalytic H2 evolution in the help of Ag3PO4 nanoparticles publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2020.03.169 – volume: 184 start-page: 337 year: 2016 ident: 10.1016/j.jcis.2020.07.044_b0190 article-title: Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2015.12.001 – volume: 45 start-page: 3089 year: 1990 ident: 10.1016/j.jcis.2020.07.044_b0340 article-title: Photocatalytic production of hydrogen from sulfide and sulfite waste streams: a kinetic model for reactions occurring in illuminating suspensions of CdS publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(90)80055-J – volume: 87 start-page: 149 year: 2020 ident: 10.1016/j.jcis.2020.07.044_b0035 article-title: In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2019.05.032 – volume: 165 start-page: 715 year: 2015 ident: 10.1016/j.jcis.2020.07.044_b0070 article-title: C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2014.10.063 – volume: 230 year: 2020 ident: 10.1016/j.jcis.2020.07.044_b0260 article-title: One-dimensional core-shell Zn0.1Cd0.9S/Snln4S8 heterojunction for enhanced visible light photocatalytic degradation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115896 – volume: 246 start-page: 12 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0160 article-title: 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.01.051 – volume: 7 start-page: 494 year: 2016 ident: 10.1016/j.jcis.2020.07.044_b0115 article-title: 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.6b02754 – volume: 140 start-page: 15145 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0175 article-title: Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07721 – volume: 539 start-page: 563 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0270 article-title: Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.12.101 – volume: 134 start-page: 6575 year: 2012 ident: 10.1016/j.jcis.2020.07.044_b0050 article-title: Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja302846n – volume: 147 start-page: 958 year: 2014 ident: 10.1016/j.jcis.2020.07.044_b0250 article-title: Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed 001 facets for improved visible light photocatalytic activity publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2013.10.027 – volume: 46 start-page: 11421 year: 2020 ident: 10.1016/j.jcis.2020.07.044_b0040 article-title: Hydrothermal preparation of carbon modified KNb3O8 nanosheets for efficient photocatalytic H2 evolution publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.01.070 – volume: 92 year: 2015 ident: 10.1016/j.jcis.2020.07.044_b0315 article-title: OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.075411 – volume: 42 start-page: 8418 year: 2017 ident: 10.1016/j.jcis.2020.07.044_b0060 article-title: A review of TiO2 nanostructured catalysts for sustainable H2 generation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.12.052 – volume: 55 start-page: 13729 year: 2019 ident: 10.1016/j.jcis.2020.07.044_b0135 article-title: Ti3C2/BiVO4 Schottky junction as a signal indicator for ultrasensitive photoelectrochemical detection of VEGF(165) publication-title: Chem. Commun. doi: 10.1039/C9CC07108C – volume: 29 start-page: 1604847 year: 2017 ident: 10.1016/j.jcis.2020.07.044_b0215 article-title: Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging publication-title: Adv. Mater. doi: 10.1002/adma.201604847 – volume: 139 year: 2020 ident: 10.1016/j.jcis.2020.07.044_b0025 article-title: Synthesis and enhanced piezophotocatalytic activity of Ag2O/K0.5Na0.5NbO3 composites publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2019.109326 – volume: 362 start-page: 406 year: 2016 ident: 10.1016/j.jcis.2020.07.044_b0240 article-title: X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.11.089 – volume: 9 start-page: 1490 year: 2016 ident: 10.1016/j.jcis.2020.07.044_b0325 article-title: Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation publication-title: ChemSusChem doi: 10.1002/cssc.201600165 – volume: 398 start-page: 81 year: 2017 ident: 10.1016/j.jcis.2020.07.044_b0290 article-title: Heterojunction construction between TiO2 hollowsphere and ZnIn2S4 flower for photocatalysis application publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.12.006 – volume: 10 start-page: 19633 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0335 article-title: Efficient charge separation from F-selective etching and doping of anatase-TiO2{001} for enhanced photocatalytic hydrogen production publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02804 – volume: 8 start-page: 6051 year: 2016 ident: 10.1016/j.jcis.2020.07.044_b0145 article-title: Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11973 – volume: 349 start-page: 287 year: 2018 ident: 10.1016/j.jcis.2020.07.044_b0185 article-title: Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.094 |
SSID | ssj0011559 |
Score | 2.6547651 |
Snippet | [Display omitted]
Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize... Facing the demand of cleaning energy, the development of efficient photocatalysts for hydrogen evolution is a promising way to realize solar-to-chemical energy... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 669 |
SubjectTerms | active sites carbides energy conversion Hydrogen evolution hydrogen production indium nanosheets oxidation photocatalysis photocatalysts Schottky junction semiconductors sulfides Ti3C2 MXene TiO2 titanium titanium dioxide zinc ZnIn2S4 |
Title | In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution |
URI | https://dx.doi.org/10.1016/j.jcis.2020.07.044 https://www.proquest.com/docview/2427522675 https://www.proquest.com/docview/2985635794 |
Volume | 580 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQPdAeKgqtSkuRkbihdGPH8cetaAXaLYIeukgrLtbacUQQSlawVFoO_PbOOAmUSt1Dj4nGiuWZzDzZb54JOWA-OKd1lqSmkAkq0iVQFWPHcgGAI2QsyhefncvRhfg-zadrZNj3wiCtssv9bU6P2bp7M-hWczCvKuzxhb9NGTxHTA3nU-xgFwppfV8fn2geDI_dWpoHS9C6a5xpOV7XvkLJbp5GAU8h_lWc_krTsfacbJK3HWikR-283pG1UG-RjWF_V9sWefOHrOA2eRjXyV21uKe-edaHpU1J4-bf7ZJOqmzI6dkU8ty3SfWDDy7rcc1_CooEc2RxhTsKYJailvHNkoYoMwHVic6vmkUTd3yWMBV6tSxuG4hAGn51EfyeXJwcT4ajpLtjIfEi44uk5J6l3gU9U1DYi1zONCsVgAipC--DZ1w6J01uWAhOlF4onwkufNDacDWT2QeyXjd1-EgoAAvvAT04lIApfOFKybSRygSJHcBqh7B-ca3vBMjxHowb2zPNri06xKJDbKosOGSHHD6NmbfyGyut895n9kUQWagPK8ft9w624Dg8MpnVobkHI8EVIlSVr7AxOkdVPyM-_ef3P5PX-IQtjizfJesQGeELYJ2F24vBvEdeHY1PR-e_Acdm_go |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG9zB4QGOAGB_DSLyhqLHj-OONqWJq2Voe6KSKF6t2HC3TlFRbh1T-eu4SZzCk9YHXxKdYvsvdT7673xHykfngnNZZkppCJshIl0BUbDuWCwAcIWMtffF0Jsfn4usiX-yQUd8Lg2WV0fd3Pr311vHJMJ7mcFVV2OMLf5symEdMDeeLR2QX2anEgOweT07Hs7tkAmbeukoPlqBA7J3pyrwufYWs3TxtOTyFeCg-_eOp2_Bzsk-eRtxIj7utPSM7oT4ge6N-XNsBefIXs-Bz8mtSJzfV-pb65g9FLG1K2t7_XW_ovMpGnE4X4Oo-z6tvfPijntT8u6BYY46FXOGGAp6lSGd8taGhZZqAAEVXF826aS99NrAVerEprhswQhp-RiN-Qc5PvsxH4ySOWUi8yPg6KblnqXdBLxXE9iKXS81KBThC6sL74BmXzkmTGxaCE6UXymeCCx-0NlwtZfaSDOqmDq8IBWzhPQAIhywwhS9cKZk2UpkgsQlYHRLWH671kYMcR2Fc2b7Y7NKiQiwqxKbKgkIOyac7mVXHwLF1dd7rzN6zIwshYqvch17BFhSHWZNlHZpbWCS4QpCq8i1rjM6R2M-I1__5_fdkbzyfntmzyez0DXmMb7DjkeVvyQCsJLwD6LN2R9G0fwN10wDK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+construction+of+ternary+Ti3C2+MXene%40TiO2%2FZnIn2S4+composites+for+highly+efficient+photocatalytic+hydrogen+evolution&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Huang%2C+Kelei&rft.au=Li%2C+Chunhu&rft.au=Meng%2C+Xiangchao&rft.date=2020-11-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=580&rft.spage=669&rft_id=info:doi/10.1016%2Fj.jcis.2020.07.044&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |