Contingency and determinism in evolution: Replaying life’s tape

The evolutionary biologist Stephen Jay Gould once dreamed about replaying the tape of life in order to identify whether evolution is more subject to deterministic or contingent forces. Greater influence of determinism would mean that outcomes are more repeatable and less subject to variations of his...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 362; no. 6415
Main Authors Blount, Zachary D., Lenski, Richard E., Losos, Jonathan B.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 09.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The evolutionary biologist Stephen Jay Gould once dreamed about replaying the tape of life in order to identify whether evolution is more subject to deterministic or contingent forces. Greater influence of determinism would mean that outcomes are more repeatable and less subject to variations of history. Contingency, on the other hand, suggests that outcomes are contingent on specific events, making them less repeatable. Blount et al. review the numerous studies that have been done since Gould put forward this question, both experimental and observational, and find that many patterns of adaptation are convergent. Nevertheless, there is still much variation with regard to the mechanisms and forms that converge. Science , this issue p. eaam5979 Historical processes display some degree of “contingency,” meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary “replay” experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage’s history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process.
AbstractList The evolutionary biologist Stephen Jay Gould once dreamed about replaying the tape of life in order to identify whether evolution is more subject to deterministic or contingent forces. Greater influence of determinism would mean that outcomes are more repeatable and less subject to variations of history. Contingency, on the other hand, suggests that outcomes are contingent on specific events, making them less repeatable. Blount et al. review the numerous studies that have been done since Gould put forward this question, both experimental and observational, and find that many patterns of adaptation are convergent. Nevertheless, there is still much variation with regard to the mechanisms and forms that converge. Science , this issue p. eaam5979 Historical processes display some degree of “contingency,” meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary “replay” experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage’s history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process.
Historical processes display some degree of "contingency," meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary "replay" experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage's history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process.
Historical processes display some degree of "contingency," meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary "replay" experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage's history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process.Historical processes display some degree of "contingency," meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary "replay" experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage's history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process.
Replaying the tape of lifeThe evolutionary biologist Stephen Jay Gould once dreamed about replaying the tape of life in order to identify whether evolution is more subject to deterministic or contingent forces. Greater influence of determinism would mean that outcomes are more repeatable and less subject to variations of history. Contingency, on the other hand, suggests that outcomes are contingent on specific events, making them less repeatable. Blount et al. review the numerous studies that have been done since Gould put forward this question, both experimental and observational, and find that many patterns of adaptation are convergent. Nevertheless, there is still much variation with regard to the mechanisms and forms that converge.Science, this issue p. eaam5979BACKGROUNDEvolution is a strongly historical process, and evolutionary biology is a field that combines history and science. How the historical nature of evolution affects the predictability of evolutionary outcomes has long been a major question in the field. The power of natural selection to find the limited set of high-fitness solutions to the challenges imposed by environments could, in principle, make those outcomes deterministic. However, the outcomes also may depend on idiosyncratic events that an evolving lineage experiences—such as the order of appearance of random mutations or rare environmental perturbations—making evolutionary outcomes unrepeatable. This sensitivity of outcomes to the details of history is called “historical contingency,” which Stephen Jay Gould argued was an essential feature of evolution. Gould illustrated this view by proposing the thought experiment of replaying life’s tape to see if the living world that we know would re-evolve. But, Gould wrote, “The bad news is that we can’t possibly perform the experiment.”Gould’s pessimistic assessment notwithstanding, experimental evolutionary biologists have now performed many replay experiments, albeit on a small scale, while comparative biologists are analyzing evolutionary outcomes in nature as though they were natural replay experiments. These studies provide new examples and insights into the interplay of historical contingency and natural selection that sits at the heart of evolution.ADVANCESBiologists have devised a variety of approaches to study the effects of history on the repeatability of evolutionary outcomes. On the experimental side, several designs have been employed, mostly using microbes, including “parallel replay experiments,” in which initially identical populations are followed as they evolve in identical environments, and “historical difference experiments,” in which previously diverged populations evolve under identical conditions (see the figure). Our review of many such experiments indicates that responses across replicate populations are often repeatable to some degree, although divergence increases as analyses move from overall fitness to underlying phenotypes and genetic changes. It is common for replicates with similar fitness under the conditions in which they evolved to vary more in their performance in other environments. Idiosyncratic outcomes also occur. For example, aerobic growth on citrate has evolved only once among 12 populations in an experiment with Escherichia coli, even after more than 65,000 generations. In that case, additional replays showed that the trait’s evolution was dependent on the prior occurrence of particular mutations.Meanwhile, comparative biologists have cataloged many notable examples of convergent evolution among species living in similar environments, illustrating the power of natural selection to produce similar phenotypic outcomes despite different evolutionary histories. Nonetheless, convergence is not inevitable—in many cases, lineages adapt phenotypically in different ways to the same environmental conditions. For example, the aye-aye (a lemur) and woodpeckers have evolved different morphological adaptations to similar ecological niches (see the figure). An emerging theme from comparative studies, tentatively supported by replay experiments, is that repeatability is common when the founding populations are closely related, perhaps resulting from shared genetics and developmental pathways, whereas different outcomes become more likely as historical divergences become greater.OUTLOOKGould would be pleased that his thought experiment of replaying life’s tape has been transformed into an empirical research program that explores the roles of historical contingency and natural selection at multiple levels. However, his view of historical influences as the central feature of evolution remains debatable. Laboratory replay experiments show that repeatable outcomes are common, at least when defined broadly (e.g., at the level of genes, not mutations). Moreover, convergence in nature is more common than many biologists would have wagered not long ago. On the other hand, as evolving lineages accumulate more differences, both experimental and comparative approaches suggest that the power of selection to drive convergence is reduced, and the contingent effects of history are amplified. Recognizing the joint contributions of contingency and natural selection raises interesting questions for further study, such as how the extent of prior genetic divergence affects the propensity for later convergence. Theory and experiments indicate that the “adaptive landscape”—that is, how specific phenotypes, and ultimately fitness, map onto the high dimensionality of genotypic space—plays a key role in these outcomes. Thus, a better understanding of these mappings will be important for a deeper appreciation of how fate and chance intertwine in the evolutionary pageant.Historical processes display some degree of “contingency,” meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary “replay” experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage’s history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process.
Author Lenski, Richard E.
Losos, Jonathan B.
Blount, Zachary D.
Author_xml – sequence: 1
  givenname: Zachary D.
  orcidid: 0000-0001-5153-0034
  surname: Blount
  fullname: Blount, Zachary D.
  organization: Department of Microbiology and Molecular Genetics and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA., Department of Biology, Kenyon College, Gambier, OH 43022, USA
– sequence: 2
  givenname: Richard E.
  orcidid: 0000-0002-1064-8375
  surname: Lenski
  fullname: Lenski, Richard E.
  organization: Department of Microbiology and Molecular Genetics and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
– sequence: 3
  givenname: Jonathan B.
  orcidid: 0000-0003-4712-8258
  surname: Losos
  fullname: Losos, Jonathan B.
  organization: Department of Biology, Washington University, St. Louis, MO 63130, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30409860$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1LAzEQhoNU7IeevcmCFy_bJtnPeJPiFxQE6T2kyayk7CbrJiv05t_w7_lLTOn2UvAyc5jnfWeYd4pGxhpA6JrgOSE0XzipwUiYC9FkrGBnaEIwy2JGcTJCE4yTPC5xkY3R1LktxmHGkgs0TnCKWZnjCXpYWuO1-Qguu0gYFSnw0DXaaNdE2kTwZevea2vuo3doa7ELbFTrCn6_f1zkRQuX6LwStYOroc_Q-ulxvXyJV2_Pr8uHVSzThPoYoKxUzhipGAt3lYApIQpKyDOlWL5hBYRhKlNRSUZwKUpS0VCrDVaUyGSG7g62bWc_e3CeN9pJqGthwPaOU5JQWpQ0TwN6e4Jubd-ZcNyeIjSsoUWgbgaq3zSgeNvpRnQ7fvxNALIDIDvrXAcVl9qL_S98J3TNCeb7DPiQAR8yCLrFie5o_Z_iDzvIjGU
CitedBy_id crossref_primary_10_1371_journal_pone_0272878
crossref_primary_10_1093_molbev_msab077
crossref_primary_10_1093_isd_ixac027
crossref_primary_10_1016_j_cub_2023_02_038
crossref_primary_10_15252_embj_2021108542
crossref_primary_10_1128_mBio_00569_20
crossref_primary_10_3390_life13030708
crossref_primary_10_7554_eLife_67336
crossref_primary_10_1111_1755_0998_13649
crossref_primary_10_5937_BPA2235031J
crossref_primary_10_1073_pnas_2016886118
crossref_primary_10_1096_fj_202201172
crossref_primary_10_1126_sciadv_adl3149
crossref_primary_10_1002_evl3_266
crossref_primary_10_1098_rspb_2019_2615
crossref_primary_10_1371_journal_pbio_3002191
crossref_primary_10_3389_fpsyg_2023_1209619
crossref_primary_10_1111_1365_2435_13527
crossref_primary_10_1111_1462_2920_15854
crossref_primary_10_1093_evlett_qrae053
crossref_primary_10_1080_15592324_2021_1927562
crossref_primary_10_1111_pala_12734
crossref_primary_10_1111_mec_15583
crossref_primary_10_1038_s41579_025_01159_w
crossref_primary_10_1111_mec_15347
crossref_primary_10_1021_jacs_0c05635
crossref_primary_10_1093_gbe_evae016
crossref_primary_10_1093_biolinnean_blad014
crossref_primary_10_1371_journal_pgen_1009566
crossref_primary_10_1002_advs_202306935
crossref_primary_10_1111_ele_14061
crossref_primary_10_1186_s12915_021_01216_9
crossref_primary_10_3389_fgene_2021_733184
crossref_primary_10_1111_evo_14413
crossref_primary_10_1016_j_ympev_2022_107557
crossref_primary_10_1111_geb_13420
crossref_primary_10_1016_j_palwor_2023_12_006
crossref_primary_10_1186_s12862_020_01711_7
crossref_primary_10_1038_s41698_023_00375_y
crossref_primary_10_3389_fpls_2021_662425
crossref_primary_10_1098_rsbl_2021_0638
crossref_primary_10_1136_postgradmedj_2022_141612
crossref_primary_10_1038_s42003_024_06485_y
crossref_primary_10_1007_s11692_022_09579_9
crossref_primary_10_1264_jsme2_ME23105
crossref_primary_10_1016_j_tree_2023_11_007
crossref_primary_10_1007_s13752_022_00424_y
crossref_primary_10_3390_life14091069
crossref_primary_10_1021_acschemneuro_0c00410
crossref_primary_10_1002_ajb2_16002
crossref_primary_10_1016_j_jgg_2021_06_010
crossref_primary_10_1038_s41467_024_46757_z
crossref_primary_10_1186_s12862_020_01707_3
crossref_primary_10_1016_j_cub_2022_12_034
crossref_primary_10_1038_s41467_020_19437_x
crossref_primary_10_1038_s41576_019_0107_5
crossref_primary_10_1111_nyas_14177
crossref_primary_10_1111_jeb_13892
crossref_primary_10_1016_j_shpsc_2019_101246
crossref_primary_10_1093_icb_icab068
crossref_primary_10_1111_mec_16899
crossref_primary_10_1093_biolinnean_blac021
crossref_primary_10_1126_science_adg2689
crossref_primary_10_1098_rstb_2020_0503
crossref_primary_10_1038_s41467_021_23104_0
crossref_primary_10_3389_feduc_2023_1278279
crossref_primary_10_1111_geb_13763
crossref_primary_10_1146_annurev_animal_051021_080709
crossref_primary_10_3390_md20110723
crossref_primary_10_1093_molbev_msab096
crossref_primary_10_1093_molbev_msac185
crossref_primary_10_1002_evl3_115
crossref_primary_10_1016_j_xplc_2025_101258
crossref_primary_10_1002_ece3_6172
crossref_primary_10_1002_cbic_202000060
crossref_primary_10_1093_jhered_esz056
crossref_primary_10_1093_jhered_esz055
crossref_primary_10_1002_ece3_9440
crossref_primary_10_1088_1478_3975_abde8d
crossref_primary_10_1113_JP284421
crossref_primary_10_1186_s12862_020_01604_9
crossref_primary_10_1103_PhysRevE_106_054307
crossref_primary_10_1111_ele_13395
crossref_primary_10_1017_S0140525X23000560
crossref_primary_10_1038_s41525_020_0128_1
crossref_primary_10_1016_j_mib_2022_102171
crossref_primary_10_1098_rspb_2023_1055
crossref_primary_10_1371_journal_pcbi_1008425
crossref_primary_10_1093_sysbio_syad051
crossref_primary_10_1086_729420
crossref_primary_10_1371_journal_pgen_1011333
crossref_primary_10_1146_annurev_ecolsys_110218_025023
crossref_primary_10_1098_rspb_2024_2312
crossref_primary_10_7554_eLife_70676
crossref_primary_10_1038_s41467_024_48784_2
crossref_primary_10_1111_brv_12642
crossref_primary_10_5091_plecevo_91487
crossref_primary_10_1111_brv_12643
crossref_primary_10_1016_j_cub_2021_01_022
crossref_primary_10_1038_s41467_021_23247_0
crossref_primary_10_1016_j_tibs_2023_05_009
crossref_primary_10_1093_icb_icz056
crossref_primary_10_1093_icb_icae142
crossref_primary_10_1109_ACCESS_2019_2935911
crossref_primary_10_1002_ece3_11068
crossref_primary_10_1093_icb_icae023
crossref_primary_10_1016_j_semcdb_2019_06_005
crossref_primary_10_1371_journal_pgen_1010474
crossref_primary_10_1111_evo_14178
crossref_primary_10_1073_pnas_2015565118
crossref_primary_10_1093_gbe_evac031
crossref_primary_10_1038_s42003_024_06580_0
crossref_primary_10_3390_microorganisms10101946
crossref_primary_10_1038_s41559_022_01909_6
crossref_primary_10_1016_j_cub_2022_12_019
crossref_primary_10_7554_eLife_55414
crossref_primary_10_1021_acs_jpca_3c01896
crossref_primary_10_1111_evo_14628
crossref_primary_10_1093_molbev_msaf014
crossref_primary_10_1073_pnas_2006511117
crossref_primary_10_1111_jse_12636
crossref_primary_10_1080_1040841X_2020_1854172
crossref_primary_10_1534_genetics_120_303611
crossref_primary_10_1093_jeb_voae103
crossref_primary_10_1038_s41559_019_1070_4
crossref_primary_10_1093_gbe_evab273
crossref_primary_10_1111_mec_17276
crossref_primary_10_1128_JVI_01039_19
crossref_primary_10_1016_j_geogeo_2023_100242
crossref_primary_10_1186_s12052_019_0103_4
crossref_primary_10_3390_su132413848
crossref_primary_10_7554_eLife_69016
crossref_primary_10_1371_journal_ppat_1011603
crossref_primary_10_1098_rstb_2022_0045
crossref_primary_10_1126_science_ade0004
crossref_primary_10_3389_frobt_2024_1278983
crossref_primary_10_1016_j_yhbeh_2023_105340
crossref_primary_10_1038_s41598_023_41090_9
crossref_primary_10_1073_pnas_2017774118
crossref_primary_10_1073_pnas_2022713118
crossref_primary_10_1098_rstb_2022_0047
crossref_primary_10_1038_s41467_024_45813_y
crossref_primary_10_1111_evo_14503
crossref_primary_10_1098_rspb_2022_1292
crossref_primary_10_1016_j_scitotenv_2022_153467
crossref_primary_10_1093_molbev_msab207
crossref_primary_10_1128_mSystems_00493_21
crossref_primary_10_1002_ece3_6640
crossref_primary_10_1128_spectrum_02981_24
crossref_primary_10_1007_s12064_023_00387_z
crossref_primary_10_1093_icb_icz151
crossref_primary_10_1534_g3_119_400897
crossref_primary_10_1016_j_tim_2023_12_002
crossref_primary_10_1371_journal_pcbi_1008433
crossref_primary_10_1038_s41467_021_23943_x
crossref_primary_10_1111_mec_15085
crossref_primary_10_3389_fsybi_2023_1345634
crossref_primary_10_1111_1365_2656_13617
crossref_primary_10_1038_s41559_023_02116_7
crossref_primary_10_1186_s13227_023_00208_w
crossref_primary_10_1002_aps3_11576
crossref_primary_10_1016_j_cub_2024_01_029
crossref_primary_10_1098_rstb_2022_0055
crossref_primary_10_1016_j_micres_2024_127969
crossref_primary_10_1038_s41559_024_02514_5
crossref_primary_10_1038_s41559_022_01923_8
crossref_primary_10_1093_evolut_qpad031
crossref_primary_10_1111_mec_16848
crossref_primary_10_1002_ece3_8036
crossref_primary_10_1093_zoolinnean_zlaa155
crossref_primary_10_1093_evlett_qrad010
crossref_primary_10_1038_s41592_021_01348_4
crossref_primary_10_1016_j_cub_2024_09_027
crossref_primary_10_3390_en17071633
crossref_primary_10_1111_mec_16844
crossref_primary_10_3390_e25121624
crossref_primary_10_1111_mec_15634
crossref_primary_10_1016_j_cub_2019_10_010
crossref_primary_10_1016_j_yhbeh_2022_105246
crossref_primary_10_1128_CMR_00050_19
crossref_primary_10_1111_2041_210X_13952
crossref_primary_10_1111_evo_13710
crossref_primary_10_1073_pnas_2004223117
crossref_primary_10_1158_1541_7786_MCR_19_1158
crossref_primary_10_1128_mBio_02043_20
crossref_primary_10_3389_fevo_2024_1335452
crossref_primary_10_1016_j_cub_2024_06_056
crossref_primary_10_1016_j_celrep_2024_114444
crossref_primary_10_1038_s41467_021_25440_7
crossref_primary_10_1098_rspb_2021_1522
crossref_primary_10_1126_science_adh3860
crossref_primary_10_1146_annurev_arplant_071221_090809
crossref_primary_10_1111_mec_15067
crossref_primary_10_1016_j_tibs_2022_01_001
crossref_primary_10_1371_journal_pbio_3001920
crossref_primary_10_1371_journal_pbio_3000397
crossref_primary_10_1016_j_scitotenv_2023_165429
crossref_primary_10_1016_j_tree_2019_03_007
crossref_primary_10_1093_gbe_evac114
crossref_primary_10_1111_jeb_13952
crossref_primary_10_1007_s00239_023_10119_y
crossref_primary_10_1093_evolut_qpae067
crossref_primary_10_3390_life11050435
crossref_primary_10_1016_j_anbehav_2023_02_003
crossref_primary_10_3389_fevo_2021_619232
crossref_primary_10_7717_peerj_15854
crossref_primary_10_1111_ele_13337
crossref_primary_10_1016_j_mbs_2022_108926
crossref_primary_10_2181_036_050_0103
crossref_primary_10_1073_pnas_2211134119
crossref_primary_10_1111_jbi_13715
crossref_primary_10_1111_evo_14387
crossref_primary_10_1111_mec_16142
crossref_primary_10_1017_pab_2021_19
crossref_primary_10_1038_s41579_023_00902_5
crossref_primary_10_1093_jhered_esad023
crossref_primary_10_1146_annurev_genom_111720_081402
crossref_primary_10_1152_ajpregu_00210_2022
crossref_primary_10_1016_j_isci_2024_109055
crossref_primary_10_1086_731277
crossref_primary_10_1098_rspb_2021_2072
crossref_primary_10_1093_molbev_msz144
crossref_primary_10_1016_j_celrep_2024_114786
crossref_primary_10_1038_s41586_024_07690_9
crossref_primary_10_1126_science_aba6134
crossref_primary_10_1371_journal_pone_0295106
crossref_primary_10_1038_d41586_023_03123_1
crossref_primary_10_1093_iob_obaa040
crossref_primary_10_1093_icb_icz077
crossref_primary_10_1111_mec_17101
crossref_primary_10_3389_fevo_2022_1048752
crossref_primary_10_1111_1365_2656_13132
crossref_primary_10_1670_19_002
crossref_primary_10_1038_s43588_020_00004_9
crossref_primary_10_1093_femsre_fuae015
crossref_primary_10_1111_mec_16018
crossref_primary_10_1038_s41559_020_01363_2
crossref_primary_10_1002_ar_25402
crossref_primary_10_1111_evo_14030
crossref_primary_10_1017_pab_2020_33
crossref_primary_10_1016_j_cub_2022_05_008
crossref_primary_10_1093_g3journal_jkae018
crossref_primary_10_1007_s10533_023_01015_0
crossref_primary_10_3390_biom9110748
crossref_primary_10_3389_fpls_2022_1048656
crossref_primary_10_1073_pnas_1921881117
crossref_primary_10_1080_2153599X_2023_2197986
crossref_primary_10_1016_j_tree_2024_09_010
crossref_primary_10_1038_s41559_021_01413_3
crossref_primary_10_1146_annurev_ecolsys_012121_091753
crossref_primary_10_1007_s00239_020_09932_6
crossref_primary_10_1038_s41467_024_51133_y
crossref_primary_10_1093_gbe_evaa237
crossref_primary_10_1111_mec_17336
crossref_primary_10_1089_ast_2021_0116
crossref_primary_10_1093_bioinformatics_btz332
crossref_primary_10_1111_ede_12454
crossref_primary_10_1016_j_isci_2020_101736
crossref_primary_10_1111_jeb_14152
crossref_primary_10_1002_yea_3848
crossref_primary_10_1098_rstb_2019_0534
crossref_primary_10_7554_eLife_61271
crossref_primary_10_1098_rspb_2020_1267
crossref_primary_10_1371_journal_pbio_3000094
crossref_primary_10_3389_fevo_2020_00080
crossref_primary_10_1111_evo_14326
crossref_primary_10_1093_g3journal_jkab177
crossref_primary_10_1111_nph_20268
crossref_primary_10_1038_s41467_024_54723_y
crossref_primary_10_1038_s41586_024_07636_1
crossref_primary_10_1089_ast_2021_0129
crossref_primary_10_1186_s12915_021_01191_1
crossref_primary_10_1073_pnas_2018731118
crossref_primary_10_1016_j_cub_2024_09_054
crossref_primary_10_1016_j_cub_2024_11_059
crossref_primary_10_1038_s41564_022_01126_8
crossref_primary_10_1093_beheco_arac026
crossref_primary_10_1111_eva_13063
crossref_primary_10_7554_eLife_81979
crossref_primary_10_1242_jeb_239798
crossref_primary_10_1016_j_tree_2024_03_008
crossref_primary_10_1002_ece3_70673
crossref_primary_10_1073_pnas_2402925121
crossref_primary_10_1126_science_abe8625
crossref_primary_10_1098_rsfs_2024_0010
crossref_primary_10_1073_pnas_1910471116
crossref_primary_10_1038_s41396_021_00919_9
crossref_primary_10_1029_2024CN000240
crossref_primary_10_1111_jeb_13517
crossref_primary_10_1016_j_cels_2024_09_007
crossref_primary_10_1017_pab_2019_34
crossref_primary_10_1111_evo_13921
crossref_primary_10_1126_sciadv_abg5391
crossref_primary_10_3390_genes12020223
crossref_primary_10_1186_s13059_019_1655_x
crossref_primary_10_1093_jeb_voae065
crossref_primary_10_1016_j_ijinfomgt_2022_102513
crossref_primary_10_1111_mec_16466
crossref_primary_10_1073_pnas_2011811118
crossref_primary_10_1086_730261
crossref_primary_10_1093_plankt_fbaa038
crossref_primary_10_1111_jeb_13964
crossref_primary_10_1128_AEM_02792_18
crossref_primary_10_1146_annurev_ecolsys_012021_021402
crossref_primary_10_3389_fcell_2024_1453566
crossref_primary_10_1126_science_ade0529
crossref_primary_10_1093_gbe_evad176
crossref_primary_10_1002_ece3_5828
crossref_primary_10_1093_femsec_fiaa096
crossref_primary_10_1111_evo_14347
crossref_primary_10_1128_AEM_01444_19
crossref_primary_10_3389_fpls_2020_578739
crossref_primary_10_1126_sciadv_abg5285
crossref_primary_10_1016_j_cub_2024_04_063
crossref_primary_10_1093_biosci_biab008
crossref_primary_10_1086_731477
crossref_primary_10_1093_evolut_qpae074
crossref_primary_10_1111_1365_2435_14557
crossref_primary_10_1126_science_abn6895
crossref_primary_10_1093_molbev_msaa077
crossref_primary_10_1016_j_tim_2019_02_003
crossref_primary_10_1038_s41586_025_08597_9
crossref_primary_10_1093_evolinnean_kzae023
crossref_primary_10_1038_s41437_024_00704_2
crossref_primary_10_1103_PhysRevE_109_034307
crossref_primary_10_1111_tpj_15105
crossref_primary_10_1038_s41598_021_90775_6
crossref_primary_10_1126_science_adn0753
crossref_primary_10_1093_jxb_erz408
crossref_primary_10_1093_molbev_msad108
crossref_primary_10_1093_biolinnean_blab010
crossref_primary_10_7554_eLife_76162
crossref_primary_10_1093_gbe_evaf008
crossref_primary_10_1146_annurev_animal_022114_110847
crossref_primary_10_1073_pnas_2319485121
crossref_primary_10_1093_gbe_evaf002
crossref_primary_10_1371_journal_pgen_1008658
crossref_primary_10_1002_ajpa_24865
crossref_primary_10_1371_journal_pone_0265129
crossref_primary_10_3389_fmicb_2021_796228
crossref_primary_10_1093_bib_bbae206
crossref_primary_10_1038_s41437_021_00487_w
crossref_primary_10_3390_g12040072
crossref_primary_10_1002_ecs2_70180
Cites_doi 10.7554/eLife.09696
10.1093/genetics/107.1.1
10.1086/342816
10.1098/rstb.2009.0154
10.1128/jb.151.1.269-273.1982
10.1038/nature13410
10.1111/j.1095-8312.2001.tb01352.x
10.1093/oso/9780198546412.001.0001
10.1126/science.1188545
10.4159/9780674417922
10.1515/9781400851300
10.1534/genetics.107.085837
10.1016/j.cell.2012.03.040
10.1086/285289
10.1111/mec.12312
10.1073/pnas.0803151105
10.1111/evo.13198
10.1126/science.1250939
10.1073/pnas.1422278112
10.1038/ncomms15707
10.1126/science.1180660
10.1186/s12862-015-0424-z
10.1073/pnas.1616132114
10.1038/nature08504
10.1111/j.1558-5646.2011.01569.x
10.1038/ncomms3742
10.1111/j.1558-5646.2011.01333.x
10.1017/CBO9780511535499
10.1126/science.285.5426.422
10.1126/science.7809610
10.1086/692111
10.1128/mSystems.00192-16
10.1111/j.1461-0248.2007.01128.x
10.1016/j.shpsa.2017.03.001
10.1038/nrg3744
10.1111/j.1365-2745.2006.01145.x
10.5840/jphil2006103716
10.1111/j.1558-5646.2011.01289.x
10.1093/oso/9780195160437.003.0018
10.1038/s41467-017-01491-7
10.1111/nph.14879
10.1101/gr.3832305
10.1128/JB.00831-15
10.1046/j.1462-2920.1999.00002.x
10.1038/msb.2012.76
10.1038/s41598-017-00968-1
10.7554/eLife.27167
10.1093/genetics/147.4.1497
10.1093/molbev/msv033
10.1073/pnas.91.19.9037
10.1093/jxb/err048
10.1126/science.1214449
10.1126/science.1142819
10.1163/187226311X599916
10.1371/journal.pbio.1001789
10.1038/nature11879
10.1038/nature23902
10.1038/nature07891
10.1016/j.tree.2012.06.001
10.1073/pnas.1314561111
10.1038/nature05856
10.1126/science.1198914
10.1111/j.1420-9101.2008.01564.x
10.1126/science.1248688
10.1038/ismej.2017.69
10.1371/journal.pcbi.1002302
10.1093/oxfordjournals.molbev.a025984
10.1098/rspb.1990.0025
10.1002/ece3.198
10.1007/s10539-010-9228-0
10.1371/journal.pone.0142050
10.1186/1471-2148-10-11
10.1111/evo.12302
10.1163/187226312X625573
10.1073/pnas.1410631112
10.1016/j.cub.2010.06.022
10.1111/j.1420-9101.2011.02249.x
10.1086/285234
10.1038/nrg3483
10.1073/pnas.76.5.2359
10.1371/journal.pgen.1007348
10.1086/652433
10.1371/journal.pone.0014184
10.1093/icb/45.2.256
10.1038/nature02945
10.1111/1467-9329.00032
10.1098/rsos.170497
10.1038/27900
10.1038/ng.289
10.1093/oso/9780195135213.001.0001
10.1038/35020564
10.1098/rstb.2011.0007
10.1111/j.1095-8312.2006.00629.x
10.1098/rsfs.2015.0040
10.1007/s10539-011-9256-4
10.1126/science.1107239
10.1186/1471-2148-13-46
10.1038/nature24287
10.1016/j.shpsc.2015.12.006
10.1186/s12862-017-1060-6
10.1126/science.1123539
10.1073/pnas.0702117104
10.1073/pnas.95.21.12376
10.7551/mitpress/9780262016421.001.0001
10.1038/ncomms13002
10.1073/pnas.0508724103
10.1086/303299
10.2307/2410410
10.7551/mitpress/1432.003.0029
10.1007/s12052-012-0418-x
10.1073/pnas.91.15.6808
10.1086/672157
10.1666/10036.1
10.1016/j.tree.2007.09.011
10.1016/j.celrep.2013.07.026
10.1186/s12862-016-0662-8
10.1038/nature11514
10.1002/9781444304916.ch9
10.1086/691209
10.1890/0012-9658(1999)080[1168:ETOUCO]2.0.CO;2
ContentType Journal Article
Copyright Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aam5979
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID 30409860
10_1126_science_aam5979
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
C51
CITATION
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
GX1
NPM
OK1
UIG
YCJ
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c432t-ee8fd6991f990038e0211de8e65dd96b97e9914c4afc9108a81f28a8fb0d21c3
ISSN 0036-8075
1095-9203
IngestDate Sun Aug 24 04:17:10 EDT 2025
Mon Aug 25 14:15:14 EDT 2025
Thu Apr 03 06:58:51 EDT 2025
Thu Apr 24 22:59:07 EDT 2025
Tue Jul 01 01:51:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6415
Language English
License Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c432t-ee8fd6991f990038e0211de8e65dd96b97e9914c4afc9108a81f28a8fb0d21c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4712-8258
0000-0001-5153-0034
0000-0002-1064-8375
OpenAccessLink https://science.sciencemag.org/content/sci/362/6415/eaam5979.full.pdf
PMID 30409860
PQID 2131291427
PQPubID 1256
ParticipantIDs proquest_miscellaneous_2132278264
proquest_journals_2131291427
pubmed_primary_30409860
crossref_citationtrail_10_1126_science_aam5979
crossref_primary_10_1126_science_aam5979
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-09
20181109
PublicationDateYYYYMMDD 2018-11-09
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2018
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References Inkpen R. (e_1_3_2_13_2) 2012; 6
Deatherage D. E. (e_1_3_2_58_2) 2017; 114
e_1_3_2_28_2
Harms M. J. (e_1_3_2_29_2) 2014; 512
van Ditmarsch D. (e_1_3_2_57_2) 2013; 4
Turner C. B. (e_1_3_2_76_2) 2015
Mani G. S. (e_1_3_2_21_2) 1990; 240
e_1_3_2_20_2
e_1_3_2_24_2
Treves D. S. (e_1_3_2_149_2) 1998; 15
Ratcliff W. C. (e_1_3_2_61_2) 2013; 4
e_1_3_2_123_2
Quandt E. M. (e_1_3_2_79_2) 2015; 4
Agrawal A. A. (e_1_3_2_107_2) 2017; 190
Favé M.-J. (e_1_3_2_36_2) 2016
Thorogood C. J. (e_1_3_2_111_2) 2018; 217
Simões P. (e_1_3_2_89_2) 2017; 7
Granato E. T. (e_1_3_2_143_2) 2017; 17
e_1_3_2_81_2
Hillesland K. L. (e_1_3_2_60_2) 2009; 276
Plucain J. (e_1_3_2_65_2) 2016; 16
Jerison E. R. (e_1_3_2_93_2) 2017; 6
Stern D. L. (e_1_3_2_127_2) 2013; 14
Starr T. N. (e_1_3_2_30_2) 2017; 549
Lobkovsky A. E. (e_1_3_2_131_2) 2011; 7
Hall B. K. (e_1_3_2_35_2) 2012; 5
Bailey S. F. (e_1_3_2_62_2) 2015; 32
Reznick D. N. (e_1_3_2_101_2) 1987; 41
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_112_2
Van Hofwegen D. J. (e_1_3_2_74_2) 2016; 198
e_1_3_2_50_2
Dettman J. R. (e_1_3_2_139_2) 2007; 447
Velicer G. J. (e_1_3_2_63_2) 1998; 95
e_1_3_2_116_2
Teotónio H. (e_1_3_2_85_2) 2009; 41
Kawecki T. J. (e_1_3_2_39_2) 2012; 27
Yang X. (e_1_3_2_109_2) 2017; 8
Tyerman J. (e_1_3_2_150_2) 2005; 272
Turner C. B. (e_1_3_2_77_2) 2017; 4
Ben–Menahem Y. (e_1_3_2_10_2) 1997; 10
Flores-Moya A. (e_1_3_2_91_2) 2012; 2
Cooper T. F. (e_1_3_2_138_2) 2010; 10
Melnyk A. H. (e_1_3_2_72_2) 2011; 65
e_1_3_2_44_2
Kolbe J. J. (e_1_3_2_102_2) 2014; 87
Le Gac M. (e_1_3_2_64_2) 2013; 22
e_1_3_2_145_2
Moore F. B.-G. (e_1_3_2_92_2) 2006; 88
Ord T. J. (e_1_3_2_125_2) 2015; 15
e_1_3_2_126_2
Wake D. B. (e_1_3_2_104_2) 1991; 138
e_1_3_2_82_2
e_1_3_2_122_2
Vermeij G. J. (e_1_3_2_27_2) 2006; 103
Rozen D. E. (e_1_3_2_49_2) 2000; 155
Hall B. K. (e_1_3_2_34_2) 2003; 47
e_1_3_2_17_2
Silvertown J. (e_1_3_2_99_2) 2006; 94
Bennett A. F. (e_1_3_2_137_2) 2007; 104
Hekstra D. R. (e_1_3_2_144_2) 2012; 149
Fong S. S. (e_1_3_2_55_2) 2005; 15
Driscoll W. W. (e_1_3_2_142_2) 2017; 8
e_1_3_2_32_2
Dragosits M. (e_1_3_2_141_2) 2013; 9
e_1_3_2_97_2
e_1_3_2_2_2
Collins S. (e_1_3_2_67_2) 2004; 431
e_1_3_2_130_2
Losos J. B. (e_1_3_2_114_2) 2010; 175
Friesen M. L. (e_1_3_2_68_2) 2004; 58
Arendt J. (e_1_3_2_135_2) 2008; 23
e_1_3_2_119_2
Turner C. B. (e_1_3_2_43_2) 2015; 10
e_1_3_2_41_2
Lenski R. E. (e_1_3_2_46_2) 2017; 190
e_1_3_2_87_2
e_1_3_2_22_2
Emerson S. B. (e_1_3_2_23_2) 2001; 73
Anderson J. B. (e_1_3_2_136_2) 2010; 20
Lenski R. E. (e_1_3_2_40_2) 1994; 91
Lenski R. E. (e_1_3_2_45_2) 1991; 138
e_1_3_2_83_2
Rainey P. B. (e_1_3_2_70_2) 1998; 394
e_1_3_2_106_2
Wainwright P. C. (e_1_3_2_117_2) 2005; 45
e_1_3_2_129_2
Korona R. (e_1_3_2_69_2) 1994; 91
Kram K. E. (e_1_3_2_146_2) 2017; 2
e_1_3_2_5_2
Givnish T. J. (e_1_3_2_110_2) 2015; 112
e_1_3_2_14_2
e_1_3_2_98_2
Beaumont H. J. E. (e_1_3_2_59_2) 2009; 462
Lindsey H. A. (e_1_3_2_71_2) 2013; 494
e_1_3_2_94_2
Turner D. D. (e_1_3_2_12_2) 2011; 26
Brakefield P. M. (e_1_3_2_38_2) 2011; 366
Conte G. L. (e_1_3_2_128_2) 2012; 279
Leiby N. (e_1_3_2_48_2) 2014; 12
Lenski R. E. (e_1_3_2_84_2) 1984; 107
Hall B. G. (e_1_3_2_73_2) 1982; 151
Meachen-Samuels J. A. (e_1_3_2_118_2) 2012; 38
Blount Z. D. (e_1_3_2_42_2) 2008; 105
Betancourt A. J. (e_1_3_2_56_2) 2009; 181
Bedhomme S. (e_1_3_2_86_2) 2013; 13
Notley-McRobb L. (e_1_3_2_53_2) 1999; 1
Dick M. H. (e_1_3_2_26_2) 2009; 276
Beatty J. (e_1_3_2_16_2) 2017; 62
Lachapelle J. (e_1_3_2_147_2) 2017; 71
Kryazhimskiy S. (e_1_3_2_133_2) 2012; 66
McGhee G. R. (e_1_3_2_115_2) 2016; 58
e_1_3_2_124_2
Spor A. (e_1_3_2_88_2) 2014; 68
Grant B. R. (e_1_3_2_95_2) 1979; 76
Burch C. L. (e_1_3_2_90_2) 2000; 406
e_1_3_2_105_2
Bull J. J. (e_1_3_2_52_2) 1997; 147
Shubin N. (e_1_3_2_37_2) 2009; 457
Good B. H. (e_1_3_2_51_2) 2017; 551
Yedid G. (e_1_3_2_33_2) 2008; 21
MacLean R. C. (e_1_3_2_66_2) 2002; 160
e_1_3_2_19_2
Lenski R. E. (e_1_3_2_47_2) 2017; 11
Leon D. (e_1_3_2_78_2) 2018; 14
de Visser J. A. G. M. (e_1_3_2_132_2) 2014; 15
Desjardins E. C. (e_1_3_2_18_2) 2011; 26
Beatty J. H. (e_1_3_2_6_2) 2006; 103
Sage R. F. (e_1_3_2_108_2) 2011; 62
Velicer G. J. (e_1_3_2_151_2) 1999; 80
Beatty J. H. (e_1_3_2_15_2) 2011; 5
e_1_3_2_11_2
Powell R. (e_1_3_2_120_2) 2015; 5
e_1_3_2_4_2
Shubin N. (e_1_3_2_121_2) 1995; 49
e_1_3_2_113_2
Nahum J. R. (e_1_3_2_134_2) 2015; 112
Losos J. B. (e_1_3_2_103_2) 2011; 65
Quandt E. M. (e_1_3_2_80_2) 2014; 111
Blount Z. D. (e_1_3_2_75_2) 2012; 489
Morris S. C. (e_1_3_2_25_2) 2010; 365
Strauss S. Y. (e_1_3_2_100_2) 2008; 11
Dhar R. (e_1_3_2_140_2) 2011; 24
Saxer G. (e_1_3_2_148_2) 2010; 5
References_xml – volume: 4
  start-page: e09696
  year: 2015
  ident: e_1_3_2_79_2
  article-title: Fine-tuning citrate synthase flux potentiates and refines metabolic innovation in the Lenski evolution experiment
  publication-title: eLife
  doi: 10.7554/eLife.09696
– ident: e_1_3_2_112_2
– volume: 107
  start-page: 1
  year: 1984
  ident: e_1_3_2_84_2
  article-title: Two-step resistance by Escherichia coli B to bacteriophage T2
  publication-title: Genetics
  doi: 10.1093/genetics/107.1.1
– volume: 160
  start-page: 569
  year: 2002
  ident: e_1_3_2_66_2
  article-title: Experimental adaptive radiation in Pseudomonas
  publication-title: Am. Nat.
  doi: 10.1086/342816
– volume: 365
  start-page: 133
  year: 2010
  ident: e_1_3_2_25_2
  article-title: Evolution: Like any other science it is predictable
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2009.0154
– volume: 151
  start-page: 269
  year: 1982
  ident: e_1_3_2_73_2
  article-title: Chromosomal mutation for citrate utilization by Escherichia coli K-12
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.151.1.269-273.1982
– volume: 512
  start-page: 203
  year: 2014
  ident: e_1_3_2_29_2
  article-title: Historical contingency and its biophysical basis in glucocorticoid receptor evolution
  publication-title: Nature
  doi: 10.1038/nature13410
– ident: e_1_3_2_20_2
– volume: 73
  start-page: 139
  year: 2001
  ident: e_1_3_2_23_2
  article-title: A macroevolutionary study of historical contingency in the fanged frogs of Southeast Asia
  publication-title: Biol. J. Linn. Soc. Lond.
  doi: 10.1111/j.1095-8312.2001.tb01352.x
– ident: e_1_3_2_106_2
  doi: 10.1093/oso/9780198546412.001.0001
– ident: e_1_3_2_105_2
  doi: 10.1126/science.1188545
– ident: e_1_3_2_129_2
  doi: 10.4159/9780674417922
– ident: e_1_3_2_96_2
  doi: 10.1515/9781400851300
– volume: 181
  start-page: 1535
  year: 2009
  ident: e_1_3_2_56_2
  article-title: Genomewide patterns of substitution in adaptively evolving populations of the RNA bacteriophage MS2
  publication-title: Genetics
  doi: 10.1534/genetics.107.085837
– volume: 149
  start-page: 1164
  year: 2012
  ident: e_1_3_2_144_2
  article-title: Contingency and statistical laws in replicate microbial closed ecosystems
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.040
– volume: 138
  start-page: 1315
  year: 1991
  ident: e_1_3_2_45_2
  article-title: Long–term experimental evolution in Escherichia coli. I. adaptation and divergence during 2,000 generations
  publication-title: Am. Nat.
  doi: 10.1086/285289
– volume: 22
  start-page: 3292
  year: 2013
  ident: e_1_3_2_64_2
  article-title: Evolutionary history and genetic parallelism affect correlated responses to evolution
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.12312
– volume: 105
  start-page: 7899
  year: 2008
  ident: e_1_3_2_42_2
  article-title: Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0803151105
– volume: 71
  start-page: 1075
  year: 2017
  ident: e_1_3_2_147_2
  article-title: The effect of sex on the repeatability of evolution in different environments
  publication-title: Evolution
  doi: 10.1111/evo.13198
– ident: e_1_3_2_87_2
  doi: 10.1126/science.1250939
– volume: 112
  start-page: 10
  year: 2015
  ident: e_1_3_2_110_2
  article-title: New evidence on the origin of carnivorous plants
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1422278112
– volume: 8
  start-page: 15707
  year: 2017
  ident: e_1_3_2_142_2
  article-title: Synergistic cooperation promotes multicellular performance and unicellular free-rider persistence
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15707
– ident: e_1_3_2_4_2
  doi: 10.1126/science.1180660
– volume: 15
  start-page: 137
  year: 2015
  ident: e_1_3_2_125_2
  article-title: Repeated evolution and the impact of evolutionary history on adaptation
  publication-title: BMC Evol. Biol.
  doi: 10.1186/s12862-015-0424-z
– volume: 114
  start-page: E1904
  year: 2017
  ident: e_1_3_2_58_2
  article-title: Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1616132114
– volume: 462
  start-page: 90
  year: 2009
  ident: e_1_3_2_59_2
  article-title: Experimental evolution of bet hedging
  publication-title: Nature
  doi: 10.1038/nature08504
– volume: 66
  start-page: 1931
  year: 2012
  ident: e_1_3_2_133_2
  article-title: Population subdivision and adaptation in asexual populations of Saccharomyces cerevisiae
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2011.01569.x
– volume: 276
  start-page: 459
  year: 2009
  ident: e_1_3_2_60_2
  article-title: Experimental evolution of a microbial predator’s ability to find prey
  publication-title: Proc. Biol. Sci.
– volume: 4
  start-page: 2742
  year: 2013
  ident: e_1_3_2_61_2
  article-title: Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3742
– volume: 65
  start-page: 3048
  year: 2011
  ident: e_1_3_2_72_2
  article-title: Adaptive landscapes in evolving populations of Pseudomonas fluorescens
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2011.01333.x
– ident: e_1_3_2_24_2
  doi: 10.1017/CBO9780511535499
– ident: e_1_3_2_22_2
– ident: e_1_3_2_54_2
  doi: 10.1126/science.285.5426.422
– ident: e_1_3_2_44_2
  doi: 10.1126/science.7809610
– volume: 190
  start-page: S1
  year: 2017
  ident: e_1_3_2_107_2
  article-title: Toward a predictive framework for convergent evolution: Integrating natural history, genetic mechanisms, and consequences for the diversity of life
  publication-title: Am. Nat.
  doi: 10.1086/692111
– ident: e_1_3_2_17_2
– volume: 2
  start-page: e00192-16
  year: 2017
  ident: e_1_3_2_146_2
  article-title: Adaptation of Escherichia coli to long–term serial passage in complex medium: Evidence of parallel evolution
  publication-title: mSystems
  doi: 10.1128/mSystems.00192-16
– volume: 11
  start-page: 199
  year: 2008
  ident: e_1_3_2_100_2
  article-title: Evolution in ecological field experiments: Implications for effect size
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01128.x
– ident: e_1_3_2_124_2
– volume: 62
  start-page: 31
  year: 2017
  ident: e_1_3_2_16_2
  article-title: Narrative possibility and narrative explanation
  publication-title: Stud. Hist. Philos. Sci. A
  doi: 10.1016/j.shpsa.2017.03.001
– volume: 15
  start-page: 480
  year: 2014
  ident: e_1_3_2_132_2
  article-title: Empirical fitness landscapes and the predictability of evolution
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3744
– volume: 279
  start-page: 5039
  year: 2012
  ident: e_1_3_2_128_2
  article-title: The probability of genetic parallelism and convergence in natural populations
  publication-title: Proc. Biol. Sci.
– volume: 94
  start-page: 801
  year: 2006
  ident: e_1_3_2_99_2
  article-title: The Park Grass Experiment 1856–2006: Its contribution to ecology
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2006.01145.x
– ident: e_1_3_2_2_2
– volume: 103
  start-page: 336
  year: 2006
  ident: e_1_3_2_6_2
  article-title: Replaying life’s tape
  publication-title: J. Philos.
  doi: 10.5840/jphil2006103716
– volume: 65
  start-page: 1827
  year: 2011
  ident: e_1_3_2_103_2
  article-title: Convergence, adaptation, and constraint
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2011.01289.x
– ident: e_1_3_2_119_2
  doi: 10.1093/oso/9780195160437.003.0018
– volume: 8
  start-page: 1899
  year: 2017
  ident: e_1_3_2_109_2
  article-title: The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01491-7
– volume: 217
  start-page: 1035
  year: 2018
  ident: e_1_3_2_111_2
  article-title: Convergent and divergent evolution in carnivorous pitcher plant traps
  publication-title: New Phytol.
  doi: 10.1111/nph.14879
– volume: 15
  start-page: 1365
  year: 2005
  ident: e_1_3_2_55_2
  article-title: Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states
  publication-title: Genome Res.
  doi: 10.1101/gr.3832305
– volume: 198
  start-page: 1022
  year: 2016
  ident: e_1_3_2_74_2
  article-title: Rapid evolution of citrate utilization by Escherichia coli by direct selection requires citT and dctA
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00831-15
– ident: e_1_3_2_31_2
– volume: 1
  start-page: 33
  year: 1999
  ident: e_1_3_2_53_2
  article-title: Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations
  publication-title: Environ. Microbiol.
  doi: 10.1046/j.1462-2920.1999.00002.x
– volume: 9
  start-page: 643
  year: 2013
  ident: e_1_3_2_141_2
  article-title: Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2012.76
– volume: 7
  start-page: 913
  year: 2017
  ident: e_1_3_2_89_2
  article-title: Predictable phenotypic, but not karyotypic, evolution of populations with contrasting initial history
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00968-1
– ident: e_1_3_2_123_2
– volume: 6
  start-page: e27167
  year: 2017
  ident: e_1_3_2_93_2
  article-title: Genetic variation in adaptability and pleiotropy in budding yeast
  publication-title: eLife
  doi: 10.7554/eLife.27167
– volume: 147
  start-page: 1497
  year: 1997
  ident: e_1_3_2_52_2
  article-title: Exceptional convergent evolution in a virus
  publication-title: Genetics
  doi: 10.1093/genetics/147.4.1497
– volume: 32
  start-page: 1436
  year: 2015
  ident: e_1_3_2_62_2
  article-title: The effect of selection environment on the probability of parallel evolution
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msv033
– volume: 91
  start-page: 9037
  year: 1994
  ident: e_1_3_2_69_2
  article-title: Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.91.19.9037
– volume: 62
  start-page: 3155
  year: 2011
  ident: e_1_3_2_108_2
  article-title: The C4 plant lineages of planet Earth
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err048
– ident: e_1_3_2_82_2
  doi: 10.1126/science.1214449
– ident: e_1_3_2_28_2
  doi: 10.1126/science.1142819
– volume: 41
  start-page: 1370
  year: 1987
  ident: e_1_3_2_101_2
  article-title: Life–history evolution in guppies (Poecilia reticulate) I. Phenotypic and genetic changes in an introduction experiment
  publication-title: Evolution
– volume: 5
  start-page: 471
  year: 2011
  ident: e_1_3_2_15_2
  article-title: When what had to happen was not bound to happen: History, chance, narrative, evolution
  publication-title: J. Philos. Hist.
  doi: 10.1163/187226311X599916
– volume: 12
  start-page: e1001789
  year: 2014
  ident: e_1_3_2_48_2
  article-title: Metabolic erosion primarily through mutation accumulation, and not tradeoffs, drives limited evolution of substrate specificity in Escherichia coli
  publication-title: PLOS Biol.
  doi: 10.1371/journal.pbio.1001789
– volume: 494
  start-page: 463
  year: 2013
  ident: e_1_3_2_71_2
  article-title: Evolutionary rescue from extinction is contingent on a lower rate of environmental change
  publication-title: Nature
  doi: 10.1038/nature11879
– ident: e_1_3_2_94_2
– volume: 549
  start-page: 409
  year: 2017
  ident: e_1_3_2_30_2
  article-title: Alternative evolutionary histories in the sequence space of an ancient protein
  publication-title: Nature
  doi: 10.1038/nature23902
– volume: 457
  start-page: 818
  year: 2009
  ident: e_1_3_2_37_2
  article-title: Deep homology and the origins of evolutionary novelty
  publication-title: Nature
  doi: 10.1038/nature07891
– volume: 27
  start-page: 547
  year: 2012
  ident: e_1_3_2_39_2
  article-title: Experimental evolution
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2012.06.001
– volume: 111
  start-page: 2217
  year: 2014
  ident: e_1_3_2_80_2
  article-title: Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1314561111
– ident: e_1_3_2_97_2
– volume: 447
  start-page: 585
  year: 2007
  ident: e_1_3_2_139_2
  article-title: Incipient speciation by divergent adaptation and antagonistic epistasis in yeast
  publication-title: Nature
  doi: 10.1038/nature05856
– ident: e_1_3_2_81_2
  doi: 10.1126/science.1198914
– volume: 21
  start-page: 1335
  year: 2008
  ident: e_1_3_2_33_2
  article-title: Historical and contingent factors affect re-evolution of a complex feature lost during mass extinction in communities of digital organisms
  publication-title: J. Evol. Biol.
  doi: 10.1111/j.1420-9101.2008.01564.x
– ident: e_1_3_2_50_2
  doi: 10.1126/science.1248688
– start-page: 020958
  year: 2015
  ident: e_1_3_2_76_2
  article-title: Evolution and coexistence in response to a key innovation in a long–term evolution experiment with Escherichia coli
  publication-title: bioRxiv
– volume: 11
  start-page: 2181
  year: 2017
  ident: e_1_3_2_47_2
  article-title: Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations
  publication-title: ISME J.
  doi: 10.1038/ismej.2017.69
– volume: 7
  start-page: e1002302
  year: 2011
  ident: e_1_3_2_131_2
  article-title: Predictability of evolutionary trajectories in fitness landscapes
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002302
– volume: 15
  start-page: 789
  year: 1998
  ident: e_1_3_2_149_2
  article-title: Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a025984
– volume: 272
  start-page: 1393
  year: 2005
  ident: e_1_3_2_150_2
  article-title: Unparallel diversification in bacterial microcosms
  publication-title: Proc. Biol. Sci.
– volume: 240
  start-page: 29
  year: 1990
  ident: e_1_3_2_21_2
  article-title: Mutational order: A major stochastic process in evolution
  publication-title: Proc. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rspb.1990.0025
– volume: 2
  start-page: 1251
  year: 2012
  ident: e_1_3_2_91_2
  article-title: Effects of adaptation, chance, and history on the evolution of the toxic dinoflagellate Alexandrium minutum under selection of increased temperature and acidification
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.198
– volume: 26
  start-page: 65
  year: 2011
  ident: e_1_3_2_12_2
  article-title: Gould’s replay revisited
  publication-title: Biol. Philos.
  doi: 10.1007/s10539-010-9228-0
– volume: 10
  start-page: e0142050
  year: 2015
  ident: e_1_3_2_43_2
  article-title: Replaying evolution to test the cause of extinction of one ecotype in an experimentally evolved population
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0142050
– volume: 10
  start-page: 11
  year: 2010
  ident: e_1_3_2_138_2
  article-title: Experimental evolution with E. coli in diverse resource environments. I. Fluctuating environments promote divergence of replicate populations
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-10-11
– volume: 47
  start-page: 491
  year: 2003
  ident: e_1_3_2_34_2
  article-title: Evo-Devo: Evolutionary developmental mechanisms
  publication-title: Int. J. Dev. Biol.
– volume: 68
  start-page: 772
  year: 2014
  ident: e_1_3_2_88_2
  article-title: Phenotypic and genotypic convergences are influenced by historical contingency and environment in yeast
  publication-title: Evolution
  doi: 10.1111/evo.12302
– volume: 6
  start-page: 1
  year: 2012
  ident: e_1_3_2_13_2
  article-title: The topography of historical contingency
  publication-title: J. Philos. Hist.
  doi: 10.1163/187226312X625573
– volume: 112
  start-page: 7530
  year: 2015
  ident: e_1_3_2_134_2
  article-title: A tortoise-hare pattern seen in adapting structured and unstructured populations suggests a rugged fitness landscape in bacteria
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1410631112
– ident: e_1_3_2_5_2
– volume: 20
  start-page: 1383
  year: 2010
  ident: e_1_3_2_136_2
  article-title: Determinants of divergent adaptation and Dobzhansky-Muller interaction in experimental yeast populations
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.06.022
– volume: 24
  start-page: 1135
  year: 2011
  ident: e_1_3_2_140_2
  article-title: Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution
  publication-title: J. Evol. Biol.
  doi: 10.1111/j.1420-9101.2011.02249.x
– volume: 138
  start-page: 543
  year: 1991
  ident: e_1_3_2_104_2
  article-title: Homoplasy – the result of natural selection, or evidence of design limitations
  publication-title: Am. Nat.
  doi: 10.1086/285234
– volume: 14
  start-page: 751
  year: 2013
  ident: e_1_3_2_127_2
  article-title: The genetic causes of convergent evolution
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3483
– volume: 76
  start-page: 2359
  year: 1979
  ident: e_1_3_2_95_2
  article-title: Darwin’s finches: Population variation and sympatric speciation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.76.5.2359
– ident: e_1_3_2_116_2
– ident: e_1_3_2_14_2
– volume: 14
  start-page: e1007348
  year: 2018
  ident: e_1_3_2_78_2
  article-title: Innovation in an E. coli evolution experiment is contingent on maintaining adaptive potential until competition subsides
  publication-title: PLOS Genet.
  doi: 10.1371/journal.pgen.1007348
– volume: 58
  start-page: 245
  year: 2004
  ident: e_1_3_2_68_2
  article-title: Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in Escherichia coli
  publication-title: Evolution
– volume: 175
  start-page: 623
  year: 2010
  ident: e_1_3_2_114_2
  article-title: Adaptive radiation, ecological opportunity, and evolutionary determinism. American Society of Naturalists E. O. Wilson award address
  publication-title: Am. Nat.
  doi: 10.1086/652433
– volume: 5
  start-page: e14184
  year: 2010
  ident: e_1_3_2_148_2
  article-title: The repeatability of adaptive radiation during long-term experimental evolution of Escherichia coli in a multiple nutrient environment
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0014184
– ident: e_1_3_2_41_2
– volume: 45
  start-page: 256
  year: 2005
  ident: e_1_3_2_117_2
  article-title: Many–to–one mapping of form to function: A general principle in organismal design?
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/45.2.256
– volume: 431
  start-page: 566
  year: 2004
  ident: e_1_3_2_67_2
  article-title: Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga
  publication-title: Nature
  doi: 10.1038/nature02945
– volume: 10
  start-page: 99
  year: 1997
  ident: e_1_3_2_10_2
  article-title: Historical contingency
  publication-title: Ratio
  doi: 10.1111/1467-9329.00032
– volume: 4
  start-page: 170497
  year: 2017
  ident: e_1_3_2_77_2
  article-title: Evolution of organismal stoichiometry in a long-term experiment with Escherichia coli
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.170497
– volume: 394
  start-page: 69
  year: 1998
  ident: e_1_3_2_70_2
  article-title: Adaptive radiation in a heterogeneous environment
  publication-title: Nature
  doi: 10.1038/27900
– volume: 41
  start-page: 251
  year: 2009
  ident: e_1_3_2_85_2
  article-title: Experimental evolution reveals natural selection on standing genetic variation
  publication-title: Nat. Genet.
  doi: 10.1038/ng.289
– ident: e_1_3_2_3_2
  doi: 10.1093/oso/9780195135213.001.0001
– volume: 406
  start-page: 625
  year: 2000
  ident: e_1_3_2_90_2
  article-title: Evolvability of an RNA virus is determined by its mutational neighbourhood
  publication-title: Nature
  doi: 10.1038/35020564
– volume: 366
  start-page: 2069
  year: 2011
  ident: e_1_3_2_38_2
  article-title: Evo-devo and accounting for Darwin’s endless forms
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2011.0007
– volume: 88
  start-page: 403
  year: 2006
  ident: e_1_3_2_92_2
  article-title: Tempo and constraint of adaptive evolution in Escherichia coli (Enterobacteriaceae, Enterobacteriales)
  publication-title: Biol. J. Linn. Soc. Lond.
  doi: 10.1111/j.1095-8312.2006.00629.x
– volume: 5
  start-page: 20150040
  year: 2015
  ident: e_1_3_2_120_2
  article-title: Convergent evolution as natural experiment: The tape of life reconsidered
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2015.0040
– volume: 26
  start-page: 339
  year: 2011
  ident: e_1_3_2_18_2
  article-title: Historicity and experimental evolution
  publication-title: Biol. Philos.
  doi: 10.1007/s10539-011-9256-4
– ident: e_1_3_2_126_2
  doi: 10.1126/science.1107239
– volume: 13
  start-page: 46
  year: 2013
  ident: e_1_3_2_86_2
  article-title: Genotypic but not phenotypic historical contingency revealed by viral experimental evolution
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-13-46
– year: 2016
  ident: e_1_3_2_36_2
  article-title: Integrating ecological genomics and eco-evo-devo reveals multiple adaptive peaks in ant populations of the Arizona Sky Islands
  publication-title: bioRxiv
– volume: 551
  start-page: 45
  year: 2017
  ident: e_1_3_2_51_2
  article-title: The dynamics of molecular evolution over 60,000 generations
  publication-title: Nature
  doi: 10.1038/nature24287
– volume: 58
  start-page: 93
  year: 2016
  ident: e_1_3_2_115_2
  article-title: Can evolution be directional without being teleological?
  publication-title: Stud. Hist. Philos. Biol. Biomed. Sci.
  doi: 10.1016/j.shpsc.2015.12.006
– volume: 17
  start-page: 214
  year: 2017
  ident: e_1_3_2_143_2
  article-title: The path to re-evolve cooperation is constrained in Pseudomonas aeruginosa
  publication-title: BMC Evol. Biol.
  doi: 10.1186/s12862-017-1060-6
– ident: e_1_3_2_130_2
  doi: 10.1126/science.1123539
– volume: 104
  start-page: 8649
  year: 2007
  ident: e_1_3_2_137_2
  article-title: An experimental test of evolutionary trade-offs during temperature adaptation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0702117104
– volume: 95
  start-page: 12376
  year: 1998
  ident: e_1_3_2_63_2
  article-title: Loss of social behaviors by myxococcus xanthus during evolution in an unstructured habitat
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.95.21.12376
– ident: e_1_3_2_113_2
  doi: 10.7551/mitpress/9780262016421.001.0001
– ident: e_1_3_2_145_2
  doi: 10.1038/ncomms13002
– ident: e_1_3_2_98_2
– volume: 103
  start-page: 1804
  year: 2006
  ident: e_1_3_2_27_2
  article-title: Historical contingency and the purported uniqueness of evolutionary innovations
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0508724103
– volume: 155
  start-page: 24
  year: 2000
  ident: e_1_3_2_49_2
  article-title: Long–term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism
  publication-title: Am. Nat.
  doi: 10.1086/303299
– ident: e_1_3_2_122_2
– volume: 49
  start-page: 874
  year: 1995
  ident: e_1_3_2_121_2
  article-title: Morphological variation in the limbs of Taricha granulosa (Caudata: Salamandridae): Evolutionary and phylogenetic implications
  publication-title: Evolution
  doi: 10.2307/2410410
– ident: e_1_3_2_83_2
– ident: e_1_3_2_32_2
  doi: 10.7551/mitpress/1432.003.0029
– volume: 5
  start-page: 184
  year: 2012
  ident: e_1_3_2_35_2
  article-title: Evolutionary developmental biology (evo-devo): Past, present, and future
  publication-title: Evol. Ed. Outreach
  doi: 10.1007/s12052-012-0418-x
– volume: 91
  start-page: 6808
  year: 1994
  ident: e_1_3_2_40_2
  article-title: Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.91.15.6808
– volume: 87
  start-page: 92
  year: 2014
  ident: e_1_3_2_102_2
  article-title: Physiological variation among invasive populations of the brown anole (Anolis sagrei)
  publication-title: Physiol. Biochem. Zool.
  doi: 10.1086/672157
– volume: 38
  start-page: 1
  year: 2012
  ident: e_1_3_2_118_2
  article-title: Morphological convergence of the prey–killing arsenal of sabertooth predators
  publication-title: Paleobiology
  doi: 10.1666/10036.1
– volume: 23
  start-page: 26
  year: 2008
  ident: e_1_3_2_135_2
  article-title: Convergence and parallelism reconsidered: What have we learned about the genetics of adaptation?
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2007.09.011
– volume: 276
  start-page: 3141
  year: 2009
  ident: e_1_3_2_26_2
  article-title: The origin of ascophoran bryozoans was historically contingent but likely
  publication-title: Proc. Biol. Sci.
– volume: 4
  start-page: 697
  year: 2013
  ident: e_1_3_2_57_2
  article-title: Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.07.026
– volume: 16
  start-page: 86
  year: 2016
  ident: e_1_3_2_65_2
  article-title: Contrasting effects of historical contingency on phenotypic and genomic trajectories during a two-step evolution experiment with bacteria
  publication-title: BMC Evol. Biol.
  doi: 10.1186/s12862-016-0662-8
– volume: 489
  start-page: 513
  year: 2012
  ident: e_1_3_2_75_2
  article-title: Genomic analysis of a key innovation in an experimental Escherichia coli population
  publication-title: Nature
  doi: 10.1038/nature11514
– ident: e_1_3_2_19_2
– ident: e_1_3_2_11_2
  doi: 10.1002/9781444304916.ch9
– volume: 190
  start-page: S57
  year: 2017
  ident: e_1_3_2_46_2
  article-title: Convergence and divergence in a long–term experiment with bacteria
  publication-title: Am. Nat.
  doi: 10.1086/691209
– volume: 80
  start-page: 1168
  year: 1999
  ident: e_1_3_2_151_2
  article-title: Evolutionary trade–offs under conditions of resource abundance and scarcity: Experiments with bacteria
  publication-title: Ecology
  doi: 10.1890/0012-9658(1999)080[1168:ETOUCO]2.0.CO;2
RelatedPersons Gould, Stephen Jay
RelatedPersons_xml – fullname: Gould, Stephen Jay
SSID ssj0009593
Score 2.678791
SecondaryResourceType review_article
Snippet The evolutionary biologist Stephen Jay Gould once dreamed about replaying the tape of life in order to identify whether evolution is more subject to...
Historical processes display some degree of "contingency," meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally...
Replaying the tape of lifeThe evolutionary biologist Stephen Jay Gould once dreamed about replaying the tape of life in order to identify whether evolution is...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
SubjectTerms Adaptation
Adaptation, Biological - genetics
Animals
Biological Evolution
Biologists
Biology
Citric acid
Comparative studies
Contingency
Convergence
Determinism
Divergence
E coli
Ecological monitoring
Ecological niches
Empirical analysis
Environmental conditions
Evolution
Evolutionary biology
Experiments
Fitness
Genetic divergence
Genetic drift
Genetics
Gould, Stephen Jay
Humans
Laboratories
Laboratory Experiments
Mutation
Natural selection
Niches
Phenotypes
Planetary environments
Planetary evolution
Population studies
Populations
Reproducibility
Reproductive fitness
Selection, Genetic
Title Contingency and determinism in evolution: Replaying life’s tape
URI https://www.ncbi.nlm.nih.gov/pubmed/30409860
https://www.proquest.com/docview/2131291427
https://www.proquest.com/docview/2132278264
Volume 362
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBbbDYVeSpP-bZoWFXpIWWxsWStLve02CaHQnrYQejGSLUNgYy-1t5Cc-hp9vT5JR5bsVdoupL0IY9mS8YzmR5pvBqE3ioHZJmIR5JEuAirA3ZGU6UDrmeZSJ4QrA07--Imdf6YfLmYXo5EftbRpVZjf_BVX8j9UhXtAV4OS_QfKDoPCDbgG-kILFIb2TjQ2qaU6cFRusygVLrbFFL4wqUC-udlt1Nt6JTtM0-qy1H2Mg2imrVzfCgfqVzuYnsNxjkfEIS5xbqMH-mAC95q3s7BY1S6rwRdpwF3X05NwG__TF8x2yP7p6bavburG39mfLkJ_cyLmHUpP-ALX5Tu26sbK2MiUhyRR4gvhhBGP2xi1GM8_5btXkVKHUl6BPyS2qqw_vv9Nww1xh53HQ1jmBsjcAPfQHgEvg4zR3nxxsjjbmbXZ5YbyUFf9N9w2a3b4Kp3NsnyEHjpnA88t5-yjka4O0H1bfvT6AO07mjX42GUff_sYzT2mwsBU2GMqfFnhgane4YGlsGGpn99_NNgw0xO0PDtdvj8PXJ2NIKcJaWFd8rJg4CiUwuxrcw12X1xortmsKARTItXQSXMqyxysSy55XBJoSxUVJM6Tp2hc1ZV-jrCKaZlIBRo2VZQzBePyVBFVylRIQekEhf1fynKXg96UQlllOygzQcfDC2ubfmX3o0f9b8_cGm0yEidg0MaUpBP0eugGCWqOxWSl6033jMGDg2cwQc8suYa5EtBxgrPo8O7f8QI92K6EIzRuv270SzBcW_XKsdcvVw6cfw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contingency+and+determinism+in+evolution%3A+Replaying+life%E2%80%99s+tape&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Blount%2C+Zachary+D.&rft.au=Lenski%2C+Richard+E.&rft.au=Losos%2C+Jonathan+B.&rft.date=2018-11-09&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=362&rft.issue=6415&rft_id=info:doi/10.1126%2Fscience.aam5979&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aam5979
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon