Contingency and determinism in evolution: Replaying life’s tape
The evolutionary biologist Stephen Jay Gould once dreamed about replaying the tape of life in order to identify whether evolution is more subject to deterministic or contingent forces. Greater influence of determinism would mean that outcomes are more repeatable and less subject to variations of his...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 362; no. 6415 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
09.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The evolutionary biologist Stephen Jay Gould once dreamed about replaying the tape of life in order to identify whether evolution is more subject to deterministic or contingent forces. Greater influence of determinism would mean that outcomes are more repeatable and less subject to variations of history. Contingency, on the other hand, suggests that outcomes are contingent on specific events, making them less repeatable. Blount
et al.
review the numerous studies that have been done since Gould put forward this question, both experimental and observational, and find that many patterns of adaptation are convergent. Nevertheless, there is still much variation with regard to the mechanisms and forms that converge.
Science
, this issue p.
eaam5979
Historical processes display some degree of “contingency,” meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary “replay” experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage’s history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process. |
---|---|
AbstractList | The evolutionary biologist Stephen Jay Gould once dreamed about replaying the tape of life in order to identify whether evolution is more subject to deterministic or contingent forces. Greater influence of determinism would mean that outcomes are more repeatable and less subject to variations of history. Contingency, on the other hand, suggests that outcomes are contingent on specific events, making them less repeatable. Blount
et al.
review the numerous studies that have been done since Gould put forward this question, both experimental and observational, and find that many patterns of adaptation are convergent. Nevertheless, there is still much variation with regard to the mechanisms and forms that converge.
Science
, this issue p.
eaam5979
Historical processes display some degree of “contingency,” meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary “replay” experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage’s history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process. Historical processes display some degree of "contingency," meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary "replay" experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage's history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process. Historical processes display some degree of "contingency," meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary "replay" experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage's history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process.Historical processes display some degree of "contingency," meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary "replay" experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage's history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process. Replaying the tape of lifeThe evolutionary biologist Stephen Jay Gould once dreamed about replaying the tape of life in order to identify whether evolution is more subject to deterministic or contingent forces. Greater influence of determinism would mean that outcomes are more repeatable and less subject to variations of history. Contingency, on the other hand, suggests that outcomes are contingent on specific events, making them less repeatable. Blount et al. review the numerous studies that have been done since Gould put forward this question, both experimental and observational, and find that many patterns of adaptation are convergent. Nevertheless, there is still much variation with regard to the mechanisms and forms that converge.Science, this issue p. eaam5979BACKGROUNDEvolution is a strongly historical process, and evolutionary biology is a field that combines history and science. How the historical nature of evolution affects the predictability of evolutionary outcomes has long been a major question in the field. The power of natural selection to find the limited set of high-fitness solutions to the challenges imposed by environments could, in principle, make those outcomes deterministic. However, the outcomes also may depend on idiosyncratic events that an evolving lineage experiences—such as the order of appearance of random mutations or rare environmental perturbations—making evolutionary outcomes unrepeatable. This sensitivity of outcomes to the details of history is called “historical contingency,” which Stephen Jay Gould argued was an essential feature of evolution. Gould illustrated this view by proposing the thought experiment of replaying life’s tape to see if the living world that we know would re-evolve. But, Gould wrote, “The bad news is that we can’t possibly perform the experiment.”Gould’s pessimistic assessment notwithstanding, experimental evolutionary biologists have now performed many replay experiments, albeit on a small scale, while comparative biologists are analyzing evolutionary outcomes in nature as though they were natural replay experiments. These studies provide new examples and insights into the interplay of historical contingency and natural selection that sits at the heart of evolution.ADVANCESBiologists have devised a variety of approaches to study the effects of history on the repeatability of evolutionary outcomes. On the experimental side, several designs have been employed, mostly using microbes, including “parallel replay experiments,” in which initially identical populations are followed as they evolve in identical environments, and “historical difference experiments,” in which previously diverged populations evolve under identical conditions (see the figure). Our review of many such experiments indicates that responses across replicate populations are often repeatable to some degree, although divergence increases as analyses move from overall fitness to underlying phenotypes and genetic changes. It is common for replicates with similar fitness under the conditions in which they evolved to vary more in their performance in other environments. Idiosyncratic outcomes also occur. For example, aerobic growth on citrate has evolved only once among 12 populations in an experiment with Escherichia coli, even after more than 65,000 generations. In that case, additional replays showed that the trait’s evolution was dependent on the prior occurrence of particular mutations.Meanwhile, comparative biologists have cataloged many notable examples of convergent evolution among species living in similar environments, illustrating the power of natural selection to produce similar phenotypic outcomes despite different evolutionary histories. Nonetheless, convergence is not inevitable—in many cases, lineages adapt phenotypically in different ways to the same environmental conditions. For example, the aye-aye (a lemur) and woodpeckers have evolved different morphological adaptations to similar ecological niches (see the figure). An emerging theme from comparative studies, tentatively supported by replay experiments, is that repeatability is common when the founding populations are closely related, perhaps resulting from shared genetics and developmental pathways, whereas different outcomes become more likely as historical divergences become greater.OUTLOOKGould would be pleased that his thought experiment of replaying life’s tape has been transformed into an empirical research program that explores the roles of historical contingency and natural selection at multiple levels. However, his view of historical influences as the central feature of evolution remains debatable. Laboratory replay experiments show that repeatable outcomes are common, at least when defined broadly (e.g., at the level of genes, not mutations). Moreover, convergence in nature is more common than many biologists would have wagered not long ago. On the other hand, as evolving lineages accumulate more differences, both experimental and comparative approaches suggest that the power of selection to drive convergence is reduced, and the contingent effects of history are amplified. Recognizing the joint contributions of contingency and natural selection raises interesting questions for further study, such as how the extent of prior genetic divergence affects the propensity for later convergence. Theory and experiments indicate that the “adaptive landscape”—that is, how specific phenotypes, and ultimately fitness, map onto the high dimensionality of genotypic space—plays a key role in these outcomes. Thus, a better understanding of these mappings will be important for a deeper appreciation of how fate and chance intertwine in the evolutionary pageant.Historical processes display some degree of “contingency,” meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary “replay” experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage’s history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process. |
Author | Lenski, Richard E. Losos, Jonathan B. Blount, Zachary D. |
Author_xml | – sequence: 1 givenname: Zachary D. orcidid: 0000-0001-5153-0034 surname: Blount fullname: Blount, Zachary D. organization: Department of Microbiology and Molecular Genetics and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA., Department of Biology, Kenyon College, Gambier, OH 43022, USA – sequence: 2 givenname: Richard E. orcidid: 0000-0002-1064-8375 surname: Lenski fullname: Lenski, Richard E. organization: Department of Microbiology and Molecular Genetics and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA – sequence: 3 givenname: Jonathan B. orcidid: 0000-0003-4712-8258 surname: Losos fullname: Losos, Jonathan B. organization: Department of Biology, Washington University, St. Louis, MO 63130, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30409860$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1LAzEQhoNU7IeevcmCFy_bJtnPeJPiFxQE6T2kyayk7CbrJiv05t_w7_lLTOn2UvAyc5jnfWeYd4pGxhpA6JrgOSE0XzipwUiYC9FkrGBnaEIwy2JGcTJCE4yTPC5xkY3R1LktxmHGkgs0TnCKWZnjCXpYWuO1-Qguu0gYFSnw0DXaaNdE2kTwZevea2vuo3doa7ELbFTrCn6_f1zkRQuX6LwStYOroc_Q-ulxvXyJV2_Pr8uHVSzThPoYoKxUzhipGAt3lYApIQpKyDOlWL5hBYRhKlNRSUZwKUpS0VCrDVaUyGSG7g62bWc_e3CeN9pJqGthwPaOU5JQWpQ0TwN6e4Jubd-ZcNyeIjSsoUWgbgaq3zSgeNvpRnQ7fvxNALIDIDvrXAcVl9qL_S98J3TNCeb7DPiQAR8yCLrFie5o_Z_iDzvIjGU |
CitedBy_id | crossref_primary_10_1371_journal_pone_0272878 crossref_primary_10_1093_molbev_msab077 crossref_primary_10_1093_isd_ixac027 crossref_primary_10_1016_j_cub_2023_02_038 crossref_primary_10_15252_embj_2021108542 crossref_primary_10_1128_mBio_00569_20 crossref_primary_10_3390_life13030708 crossref_primary_10_7554_eLife_67336 crossref_primary_10_1111_1755_0998_13649 crossref_primary_10_5937_BPA2235031J crossref_primary_10_1073_pnas_2016886118 crossref_primary_10_1096_fj_202201172 crossref_primary_10_1126_sciadv_adl3149 crossref_primary_10_1002_evl3_266 crossref_primary_10_1098_rspb_2019_2615 crossref_primary_10_1371_journal_pbio_3002191 crossref_primary_10_3389_fpsyg_2023_1209619 crossref_primary_10_1111_1365_2435_13527 crossref_primary_10_1111_1462_2920_15854 crossref_primary_10_1093_evlett_qrae053 crossref_primary_10_1080_15592324_2021_1927562 crossref_primary_10_1111_pala_12734 crossref_primary_10_1111_mec_15583 crossref_primary_10_1038_s41579_025_01159_w crossref_primary_10_1111_mec_15347 crossref_primary_10_1021_jacs_0c05635 crossref_primary_10_1093_gbe_evae016 crossref_primary_10_1093_biolinnean_blad014 crossref_primary_10_1371_journal_pgen_1009566 crossref_primary_10_1002_advs_202306935 crossref_primary_10_1111_ele_14061 crossref_primary_10_1186_s12915_021_01216_9 crossref_primary_10_3389_fgene_2021_733184 crossref_primary_10_1111_evo_14413 crossref_primary_10_1016_j_ympev_2022_107557 crossref_primary_10_1111_geb_13420 crossref_primary_10_1016_j_palwor_2023_12_006 crossref_primary_10_1186_s12862_020_01711_7 crossref_primary_10_1038_s41698_023_00375_y crossref_primary_10_3389_fpls_2021_662425 crossref_primary_10_1098_rsbl_2021_0638 crossref_primary_10_1136_postgradmedj_2022_141612 crossref_primary_10_1038_s42003_024_06485_y crossref_primary_10_1007_s11692_022_09579_9 crossref_primary_10_1264_jsme2_ME23105 crossref_primary_10_1016_j_tree_2023_11_007 crossref_primary_10_1007_s13752_022_00424_y crossref_primary_10_3390_life14091069 crossref_primary_10_1021_acschemneuro_0c00410 crossref_primary_10_1002_ajb2_16002 crossref_primary_10_1016_j_jgg_2021_06_010 crossref_primary_10_1038_s41467_024_46757_z crossref_primary_10_1186_s12862_020_01707_3 crossref_primary_10_1016_j_cub_2022_12_034 crossref_primary_10_1038_s41467_020_19437_x crossref_primary_10_1038_s41576_019_0107_5 crossref_primary_10_1111_nyas_14177 crossref_primary_10_1111_jeb_13892 crossref_primary_10_1016_j_shpsc_2019_101246 crossref_primary_10_1093_icb_icab068 crossref_primary_10_1111_mec_16899 crossref_primary_10_1093_biolinnean_blac021 crossref_primary_10_1126_science_adg2689 crossref_primary_10_1098_rstb_2020_0503 crossref_primary_10_1038_s41467_021_23104_0 crossref_primary_10_3389_feduc_2023_1278279 crossref_primary_10_1111_geb_13763 crossref_primary_10_1146_annurev_animal_051021_080709 crossref_primary_10_3390_md20110723 crossref_primary_10_1093_molbev_msab096 crossref_primary_10_1093_molbev_msac185 crossref_primary_10_1002_evl3_115 crossref_primary_10_1016_j_xplc_2025_101258 crossref_primary_10_1002_ece3_6172 crossref_primary_10_1002_cbic_202000060 crossref_primary_10_1093_jhered_esz056 crossref_primary_10_1093_jhered_esz055 crossref_primary_10_1002_ece3_9440 crossref_primary_10_1088_1478_3975_abde8d crossref_primary_10_1113_JP284421 crossref_primary_10_1186_s12862_020_01604_9 crossref_primary_10_1103_PhysRevE_106_054307 crossref_primary_10_1111_ele_13395 crossref_primary_10_1017_S0140525X23000560 crossref_primary_10_1038_s41525_020_0128_1 crossref_primary_10_1016_j_mib_2022_102171 crossref_primary_10_1098_rspb_2023_1055 crossref_primary_10_1371_journal_pcbi_1008425 crossref_primary_10_1093_sysbio_syad051 crossref_primary_10_1086_729420 crossref_primary_10_1371_journal_pgen_1011333 crossref_primary_10_1146_annurev_ecolsys_110218_025023 crossref_primary_10_1098_rspb_2024_2312 crossref_primary_10_7554_eLife_70676 crossref_primary_10_1038_s41467_024_48784_2 crossref_primary_10_1111_brv_12642 crossref_primary_10_5091_plecevo_91487 crossref_primary_10_1111_brv_12643 crossref_primary_10_1016_j_cub_2021_01_022 crossref_primary_10_1038_s41467_021_23247_0 crossref_primary_10_1016_j_tibs_2023_05_009 crossref_primary_10_1093_icb_icz056 crossref_primary_10_1093_icb_icae142 crossref_primary_10_1109_ACCESS_2019_2935911 crossref_primary_10_1002_ece3_11068 crossref_primary_10_1093_icb_icae023 crossref_primary_10_1016_j_semcdb_2019_06_005 crossref_primary_10_1371_journal_pgen_1010474 crossref_primary_10_1111_evo_14178 crossref_primary_10_1073_pnas_2015565118 crossref_primary_10_1093_gbe_evac031 crossref_primary_10_1038_s42003_024_06580_0 crossref_primary_10_3390_microorganisms10101946 crossref_primary_10_1038_s41559_022_01909_6 crossref_primary_10_1016_j_cub_2022_12_019 crossref_primary_10_7554_eLife_55414 crossref_primary_10_1021_acs_jpca_3c01896 crossref_primary_10_1111_evo_14628 crossref_primary_10_1093_molbev_msaf014 crossref_primary_10_1073_pnas_2006511117 crossref_primary_10_1111_jse_12636 crossref_primary_10_1080_1040841X_2020_1854172 crossref_primary_10_1534_genetics_120_303611 crossref_primary_10_1093_jeb_voae103 crossref_primary_10_1038_s41559_019_1070_4 crossref_primary_10_1093_gbe_evab273 crossref_primary_10_1111_mec_17276 crossref_primary_10_1128_JVI_01039_19 crossref_primary_10_1016_j_geogeo_2023_100242 crossref_primary_10_1186_s12052_019_0103_4 crossref_primary_10_3390_su132413848 crossref_primary_10_7554_eLife_69016 crossref_primary_10_1371_journal_ppat_1011603 crossref_primary_10_1098_rstb_2022_0045 crossref_primary_10_1126_science_ade0004 crossref_primary_10_3389_frobt_2024_1278983 crossref_primary_10_1016_j_yhbeh_2023_105340 crossref_primary_10_1038_s41598_023_41090_9 crossref_primary_10_1073_pnas_2017774118 crossref_primary_10_1073_pnas_2022713118 crossref_primary_10_1098_rstb_2022_0047 crossref_primary_10_1038_s41467_024_45813_y crossref_primary_10_1111_evo_14503 crossref_primary_10_1098_rspb_2022_1292 crossref_primary_10_1016_j_scitotenv_2022_153467 crossref_primary_10_1093_molbev_msab207 crossref_primary_10_1128_mSystems_00493_21 crossref_primary_10_1002_ece3_6640 crossref_primary_10_1128_spectrum_02981_24 crossref_primary_10_1007_s12064_023_00387_z crossref_primary_10_1093_icb_icz151 crossref_primary_10_1534_g3_119_400897 crossref_primary_10_1016_j_tim_2023_12_002 crossref_primary_10_1371_journal_pcbi_1008433 crossref_primary_10_1038_s41467_021_23943_x crossref_primary_10_1111_mec_15085 crossref_primary_10_3389_fsybi_2023_1345634 crossref_primary_10_1111_1365_2656_13617 crossref_primary_10_1038_s41559_023_02116_7 crossref_primary_10_1186_s13227_023_00208_w crossref_primary_10_1002_aps3_11576 crossref_primary_10_1016_j_cub_2024_01_029 crossref_primary_10_1098_rstb_2022_0055 crossref_primary_10_1016_j_micres_2024_127969 crossref_primary_10_1038_s41559_024_02514_5 crossref_primary_10_1038_s41559_022_01923_8 crossref_primary_10_1093_evolut_qpad031 crossref_primary_10_1111_mec_16848 crossref_primary_10_1002_ece3_8036 crossref_primary_10_1093_zoolinnean_zlaa155 crossref_primary_10_1093_evlett_qrad010 crossref_primary_10_1038_s41592_021_01348_4 crossref_primary_10_1016_j_cub_2024_09_027 crossref_primary_10_3390_en17071633 crossref_primary_10_1111_mec_16844 crossref_primary_10_3390_e25121624 crossref_primary_10_1111_mec_15634 crossref_primary_10_1016_j_cub_2019_10_010 crossref_primary_10_1016_j_yhbeh_2022_105246 crossref_primary_10_1128_CMR_00050_19 crossref_primary_10_1111_2041_210X_13952 crossref_primary_10_1111_evo_13710 crossref_primary_10_1073_pnas_2004223117 crossref_primary_10_1158_1541_7786_MCR_19_1158 crossref_primary_10_1128_mBio_02043_20 crossref_primary_10_3389_fevo_2024_1335452 crossref_primary_10_1016_j_cub_2024_06_056 crossref_primary_10_1016_j_celrep_2024_114444 crossref_primary_10_1038_s41467_021_25440_7 crossref_primary_10_1098_rspb_2021_1522 crossref_primary_10_1126_science_adh3860 crossref_primary_10_1146_annurev_arplant_071221_090809 crossref_primary_10_1111_mec_15067 crossref_primary_10_1016_j_tibs_2022_01_001 crossref_primary_10_1371_journal_pbio_3001920 crossref_primary_10_1371_journal_pbio_3000397 crossref_primary_10_1016_j_scitotenv_2023_165429 crossref_primary_10_1016_j_tree_2019_03_007 crossref_primary_10_1093_gbe_evac114 crossref_primary_10_1111_jeb_13952 crossref_primary_10_1007_s00239_023_10119_y crossref_primary_10_1093_evolut_qpae067 crossref_primary_10_3390_life11050435 crossref_primary_10_1016_j_anbehav_2023_02_003 crossref_primary_10_3389_fevo_2021_619232 crossref_primary_10_7717_peerj_15854 crossref_primary_10_1111_ele_13337 crossref_primary_10_1016_j_mbs_2022_108926 crossref_primary_10_2181_036_050_0103 crossref_primary_10_1073_pnas_2211134119 crossref_primary_10_1111_jbi_13715 crossref_primary_10_1111_evo_14387 crossref_primary_10_1111_mec_16142 crossref_primary_10_1017_pab_2021_19 crossref_primary_10_1038_s41579_023_00902_5 crossref_primary_10_1093_jhered_esad023 crossref_primary_10_1146_annurev_genom_111720_081402 crossref_primary_10_1152_ajpregu_00210_2022 crossref_primary_10_1016_j_isci_2024_109055 crossref_primary_10_1086_731277 crossref_primary_10_1098_rspb_2021_2072 crossref_primary_10_1093_molbev_msz144 crossref_primary_10_1016_j_celrep_2024_114786 crossref_primary_10_1038_s41586_024_07690_9 crossref_primary_10_1126_science_aba6134 crossref_primary_10_1371_journal_pone_0295106 crossref_primary_10_1038_d41586_023_03123_1 crossref_primary_10_1093_iob_obaa040 crossref_primary_10_1093_icb_icz077 crossref_primary_10_1111_mec_17101 crossref_primary_10_3389_fevo_2022_1048752 crossref_primary_10_1111_1365_2656_13132 crossref_primary_10_1670_19_002 crossref_primary_10_1038_s43588_020_00004_9 crossref_primary_10_1093_femsre_fuae015 crossref_primary_10_1111_mec_16018 crossref_primary_10_1038_s41559_020_01363_2 crossref_primary_10_1002_ar_25402 crossref_primary_10_1111_evo_14030 crossref_primary_10_1017_pab_2020_33 crossref_primary_10_1016_j_cub_2022_05_008 crossref_primary_10_1093_g3journal_jkae018 crossref_primary_10_1007_s10533_023_01015_0 crossref_primary_10_3390_biom9110748 crossref_primary_10_3389_fpls_2022_1048656 crossref_primary_10_1073_pnas_1921881117 crossref_primary_10_1080_2153599X_2023_2197986 crossref_primary_10_1016_j_tree_2024_09_010 crossref_primary_10_1038_s41559_021_01413_3 crossref_primary_10_1146_annurev_ecolsys_012121_091753 crossref_primary_10_1007_s00239_020_09932_6 crossref_primary_10_1038_s41467_024_51133_y crossref_primary_10_1093_gbe_evaa237 crossref_primary_10_1111_mec_17336 crossref_primary_10_1089_ast_2021_0116 crossref_primary_10_1093_bioinformatics_btz332 crossref_primary_10_1111_ede_12454 crossref_primary_10_1016_j_isci_2020_101736 crossref_primary_10_1111_jeb_14152 crossref_primary_10_1002_yea_3848 crossref_primary_10_1098_rstb_2019_0534 crossref_primary_10_7554_eLife_61271 crossref_primary_10_1098_rspb_2020_1267 crossref_primary_10_1371_journal_pbio_3000094 crossref_primary_10_3389_fevo_2020_00080 crossref_primary_10_1111_evo_14326 crossref_primary_10_1093_g3journal_jkab177 crossref_primary_10_1111_nph_20268 crossref_primary_10_1038_s41467_024_54723_y crossref_primary_10_1038_s41586_024_07636_1 crossref_primary_10_1089_ast_2021_0129 crossref_primary_10_1186_s12915_021_01191_1 crossref_primary_10_1073_pnas_2018731118 crossref_primary_10_1016_j_cub_2024_09_054 crossref_primary_10_1016_j_cub_2024_11_059 crossref_primary_10_1038_s41564_022_01126_8 crossref_primary_10_1093_beheco_arac026 crossref_primary_10_1111_eva_13063 crossref_primary_10_7554_eLife_81979 crossref_primary_10_1242_jeb_239798 crossref_primary_10_1016_j_tree_2024_03_008 crossref_primary_10_1002_ece3_70673 crossref_primary_10_1073_pnas_2402925121 crossref_primary_10_1126_science_abe8625 crossref_primary_10_1098_rsfs_2024_0010 crossref_primary_10_1073_pnas_1910471116 crossref_primary_10_1038_s41396_021_00919_9 crossref_primary_10_1029_2024CN000240 crossref_primary_10_1111_jeb_13517 crossref_primary_10_1016_j_cels_2024_09_007 crossref_primary_10_1017_pab_2019_34 crossref_primary_10_1111_evo_13921 crossref_primary_10_1126_sciadv_abg5391 crossref_primary_10_3390_genes12020223 crossref_primary_10_1186_s13059_019_1655_x crossref_primary_10_1093_jeb_voae065 crossref_primary_10_1016_j_ijinfomgt_2022_102513 crossref_primary_10_1111_mec_16466 crossref_primary_10_1073_pnas_2011811118 crossref_primary_10_1086_730261 crossref_primary_10_1093_plankt_fbaa038 crossref_primary_10_1111_jeb_13964 crossref_primary_10_1128_AEM_02792_18 crossref_primary_10_1146_annurev_ecolsys_012021_021402 crossref_primary_10_3389_fcell_2024_1453566 crossref_primary_10_1126_science_ade0529 crossref_primary_10_1093_gbe_evad176 crossref_primary_10_1002_ece3_5828 crossref_primary_10_1093_femsec_fiaa096 crossref_primary_10_1111_evo_14347 crossref_primary_10_1128_AEM_01444_19 crossref_primary_10_3389_fpls_2020_578739 crossref_primary_10_1126_sciadv_abg5285 crossref_primary_10_1016_j_cub_2024_04_063 crossref_primary_10_1093_biosci_biab008 crossref_primary_10_1086_731477 crossref_primary_10_1093_evolut_qpae074 crossref_primary_10_1111_1365_2435_14557 crossref_primary_10_1126_science_abn6895 crossref_primary_10_1093_molbev_msaa077 crossref_primary_10_1016_j_tim_2019_02_003 crossref_primary_10_1038_s41586_025_08597_9 crossref_primary_10_1093_evolinnean_kzae023 crossref_primary_10_1038_s41437_024_00704_2 crossref_primary_10_1103_PhysRevE_109_034307 crossref_primary_10_1111_tpj_15105 crossref_primary_10_1038_s41598_021_90775_6 crossref_primary_10_1126_science_adn0753 crossref_primary_10_1093_jxb_erz408 crossref_primary_10_1093_molbev_msad108 crossref_primary_10_1093_biolinnean_blab010 crossref_primary_10_7554_eLife_76162 crossref_primary_10_1093_gbe_evaf008 crossref_primary_10_1146_annurev_animal_022114_110847 crossref_primary_10_1073_pnas_2319485121 crossref_primary_10_1093_gbe_evaf002 crossref_primary_10_1371_journal_pgen_1008658 crossref_primary_10_1002_ajpa_24865 crossref_primary_10_1371_journal_pone_0265129 crossref_primary_10_3389_fmicb_2021_796228 crossref_primary_10_1093_bib_bbae206 crossref_primary_10_1038_s41437_021_00487_w crossref_primary_10_3390_g12040072 crossref_primary_10_1002_ecs2_70180 |
Cites_doi | 10.7554/eLife.09696 10.1093/genetics/107.1.1 10.1086/342816 10.1098/rstb.2009.0154 10.1128/jb.151.1.269-273.1982 10.1038/nature13410 10.1111/j.1095-8312.2001.tb01352.x 10.1093/oso/9780198546412.001.0001 10.1126/science.1188545 10.4159/9780674417922 10.1515/9781400851300 10.1534/genetics.107.085837 10.1016/j.cell.2012.03.040 10.1086/285289 10.1111/mec.12312 10.1073/pnas.0803151105 10.1111/evo.13198 10.1126/science.1250939 10.1073/pnas.1422278112 10.1038/ncomms15707 10.1126/science.1180660 10.1186/s12862-015-0424-z 10.1073/pnas.1616132114 10.1038/nature08504 10.1111/j.1558-5646.2011.01569.x 10.1038/ncomms3742 10.1111/j.1558-5646.2011.01333.x 10.1017/CBO9780511535499 10.1126/science.285.5426.422 10.1126/science.7809610 10.1086/692111 10.1128/mSystems.00192-16 10.1111/j.1461-0248.2007.01128.x 10.1016/j.shpsa.2017.03.001 10.1038/nrg3744 10.1111/j.1365-2745.2006.01145.x 10.5840/jphil2006103716 10.1111/j.1558-5646.2011.01289.x 10.1093/oso/9780195160437.003.0018 10.1038/s41467-017-01491-7 10.1111/nph.14879 10.1101/gr.3832305 10.1128/JB.00831-15 10.1046/j.1462-2920.1999.00002.x 10.1038/msb.2012.76 10.1038/s41598-017-00968-1 10.7554/eLife.27167 10.1093/genetics/147.4.1497 10.1093/molbev/msv033 10.1073/pnas.91.19.9037 10.1093/jxb/err048 10.1126/science.1214449 10.1126/science.1142819 10.1163/187226311X599916 10.1371/journal.pbio.1001789 10.1038/nature11879 10.1038/nature23902 10.1038/nature07891 10.1016/j.tree.2012.06.001 10.1073/pnas.1314561111 10.1038/nature05856 10.1126/science.1198914 10.1111/j.1420-9101.2008.01564.x 10.1126/science.1248688 10.1038/ismej.2017.69 10.1371/journal.pcbi.1002302 10.1093/oxfordjournals.molbev.a025984 10.1098/rspb.1990.0025 10.1002/ece3.198 10.1007/s10539-010-9228-0 10.1371/journal.pone.0142050 10.1186/1471-2148-10-11 10.1111/evo.12302 10.1163/187226312X625573 10.1073/pnas.1410631112 10.1016/j.cub.2010.06.022 10.1111/j.1420-9101.2011.02249.x 10.1086/285234 10.1038/nrg3483 10.1073/pnas.76.5.2359 10.1371/journal.pgen.1007348 10.1086/652433 10.1371/journal.pone.0014184 10.1093/icb/45.2.256 10.1038/nature02945 10.1111/1467-9329.00032 10.1098/rsos.170497 10.1038/27900 10.1038/ng.289 10.1093/oso/9780195135213.001.0001 10.1038/35020564 10.1098/rstb.2011.0007 10.1111/j.1095-8312.2006.00629.x 10.1098/rsfs.2015.0040 10.1007/s10539-011-9256-4 10.1126/science.1107239 10.1186/1471-2148-13-46 10.1038/nature24287 10.1016/j.shpsc.2015.12.006 10.1186/s12862-017-1060-6 10.1126/science.1123539 10.1073/pnas.0702117104 10.1073/pnas.95.21.12376 10.7551/mitpress/9780262016421.001.0001 10.1038/ncomms13002 10.1073/pnas.0508724103 10.1086/303299 10.2307/2410410 10.7551/mitpress/1432.003.0029 10.1007/s12052-012-0418-x 10.1073/pnas.91.15.6808 10.1086/672157 10.1666/10036.1 10.1016/j.tree.2007.09.011 10.1016/j.celrep.2013.07.026 10.1186/s12862-016-0662-8 10.1038/nature11514 10.1002/9781444304916.ch9 10.1086/691209 10.1890/0012-9658(1999)080[1168:ETOUCO]2.0.CO;2 |
ContentType | Journal Article |
Copyright | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aam5979 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
ExternalDocumentID | 30409860 10_1126_science_aam5979 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 C51 CITATION CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF GX1 NPM OK1 UIG YCJ ZKG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c432t-ee8fd6991f990038e0211de8e65dd96b97e9914c4afc9108a81f28a8fb0d21c3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Sun Aug 24 04:17:10 EDT 2025 Mon Aug 25 14:15:14 EDT 2025 Thu Apr 03 06:58:51 EDT 2025 Thu Apr 24 22:59:07 EDT 2025 Tue Jul 01 01:51:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6415 |
Language | English |
License | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c432t-ee8fd6991f990038e0211de8e65dd96b97e9914c4afc9108a81f28a8fb0d21c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4712-8258 0000-0001-5153-0034 0000-0002-1064-8375 |
OpenAccessLink | https://science.sciencemag.org/content/sci/362/6415/eaam5979.full.pdf |
PMID | 30409860 |
PQID | 2131291427 |
PQPubID | 1256 |
ParticipantIDs | proquest_miscellaneous_2132278264 proquest_journals_2131291427 pubmed_primary_30409860 crossref_citationtrail_10_1126_science_aam5979 crossref_primary_10_1126_science_aam5979 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-09 20181109 |
PublicationDateYYYYMMDD | 2018-11-09 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2018 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | Inkpen R. (e_1_3_2_13_2) 2012; 6 Deatherage D. E. (e_1_3_2_58_2) 2017; 114 e_1_3_2_28_2 Harms M. J. (e_1_3_2_29_2) 2014; 512 van Ditmarsch D. (e_1_3_2_57_2) 2013; 4 Turner C. B. (e_1_3_2_76_2) 2015 Mani G. S. (e_1_3_2_21_2) 1990; 240 e_1_3_2_20_2 e_1_3_2_24_2 Treves D. S. (e_1_3_2_149_2) 1998; 15 Ratcliff W. C. (e_1_3_2_61_2) 2013; 4 e_1_3_2_123_2 Quandt E. M. (e_1_3_2_79_2) 2015; 4 Agrawal A. A. (e_1_3_2_107_2) 2017; 190 Favé M.-J. (e_1_3_2_36_2) 2016 Thorogood C. J. (e_1_3_2_111_2) 2018; 217 Simões P. (e_1_3_2_89_2) 2017; 7 Granato E. T. (e_1_3_2_143_2) 2017; 17 e_1_3_2_81_2 Hillesland K. L. (e_1_3_2_60_2) 2009; 276 Plucain J. (e_1_3_2_65_2) 2016; 16 Jerison E. R. (e_1_3_2_93_2) 2017; 6 Stern D. L. (e_1_3_2_127_2) 2013; 14 Starr T. N. (e_1_3_2_30_2) 2017; 549 Lobkovsky A. E. (e_1_3_2_131_2) 2011; 7 Hall B. K. (e_1_3_2_35_2) 2012; 5 Bailey S. F. (e_1_3_2_62_2) 2015; 32 Reznick D. N. (e_1_3_2_101_2) 1987; 41 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_112_2 Van Hofwegen D. J. (e_1_3_2_74_2) 2016; 198 e_1_3_2_50_2 Dettman J. R. (e_1_3_2_139_2) 2007; 447 Velicer G. J. (e_1_3_2_63_2) 1998; 95 e_1_3_2_116_2 Teotónio H. (e_1_3_2_85_2) 2009; 41 Kawecki T. J. (e_1_3_2_39_2) 2012; 27 Yang X. (e_1_3_2_109_2) 2017; 8 Tyerman J. (e_1_3_2_150_2) 2005; 272 Turner C. B. (e_1_3_2_77_2) 2017; 4 Ben–Menahem Y. (e_1_3_2_10_2) 1997; 10 Flores-Moya A. (e_1_3_2_91_2) 2012; 2 Cooper T. F. (e_1_3_2_138_2) 2010; 10 Melnyk A. H. (e_1_3_2_72_2) 2011; 65 e_1_3_2_44_2 Kolbe J. J. (e_1_3_2_102_2) 2014; 87 Le Gac M. (e_1_3_2_64_2) 2013; 22 e_1_3_2_145_2 Moore F. B.-G. (e_1_3_2_92_2) 2006; 88 Ord T. J. (e_1_3_2_125_2) 2015; 15 e_1_3_2_126_2 Wake D. B. (e_1_3_2_104_2) 1991; 138 e_1_3_2_82_2 e_1_3_2_122_2 Vermeij G. J. (e_1_3_2_27_2) 2006; 103 Rozen D. E. (e_1_3_2_49_2) 2000; 155 Hall B. K. (e_1_3_2_34_2) 2003; 47 e_1_3_2_17_2 Silvertown J. (e_1_3_2_99_2) 2006; 94 Bennett A. F. (e_1_3_2_137_2) 2007; 104 Hekstra D. R. (e_1_3_2_144_2) 2012; 149 Fong S. S. (e_1_3_2_55_2) 2005; 15 Driscoll W. W. (e_1_3_2_142_2) 2017; 8 e_1_3_2_32_2 Dragosits M. (e_1_3_2_141_2) 2013; 9 e_1_3_2_97_2 e_1_3_2_2_2 Collins S. (e_1_3_2_67_2) 2004; 431 e_1_3_2_130_2 Losos J. B. (e_1_3_2_114_2) 2010; 175 Friesen M. L. (e_1_3_2_68_2) 2004; 58 Arendt J. (e_1_3_2_135_2) 2008; 23 e_1_3_2_119_2 Turner C. B. (e_1_3_2_43_2) 2015; 10 e_1_3_2_41_2 Lenski R. E. (e_1_3_2_46_2) 2017; 190 e_1_3_2_87_2 e_1_3_2_22_2 Emerson S. B. (e_1_3_2_23_2) 2001; 73 Anderson J. B. (e_1_3_2_136_2) 2010; 20 Lenski R. E. (e_1_3_2_40_2) 1994; 91 Lenski R. E. (e_1_3_2_45_2) 1991; 138 e_1_3_2_83_2 Rainey P. B. (e_1_3_2_70_2) 1998; 394 e_1_3_2_106_2 Wainwright P. C. (e_1_3_2_117_2) 2005; 45 e_1_3_2_129_2 Korona R. (e_1_3_2_69_2) 1994; 91 Kram K. E. (e_1_3_2_146_2) 2017; 2 e_1_3_2_5_2 Givnish T. J. (e_1_3_2_110_2) 2015; 112 e_1_3_2_14_2 e_1_3_2_98_2 Beaumont H. J. E. (e_1_3_2_59_2) 2009; 462 Lindsey H. A. (e_1_3_2_71_2) 2013; 494 e_1_3_2_94_2 Turner D. D. (e_1_3_2_12_2) 2011; 26 Brakefield P. M. (e_1_3_2_38_2) 2011; 366 Conte G. L. (e_1_3_2_128_2) 2012; 279 Leiby N. (e_1_3_2_48_2) 2014; 12 Lenski R. E. (e_1_3_2_84_2) 1984; 107 Hall B. G. (e_1_3_2_73_2) 1982; 151 Meachen-Samuels J. A. (e_1_3_2_118_2) 2012; 38 Blount Z. D. (e_1_3_2_42_2) 2008; 105 Betancourt A. J. (e_1_3_2_56_2) 2009; 181 Bedhomme S. (e_1_3_2_86_2) 2013; 13 Notley-McRobb L. (e_1_3_2_53_2) 1999; 1 Dick M. H. (e_1_3_2_26_2) 2009; 276 Beatty J. (e_1_3_2_16_2) 2017; 62 Lachapelle J. (e_1_3_2_147_2) 2017; 71 Kryazhimskiy S. (e_1_3_2_133_2) 2012; 66 McGhee G. R. (e_1_3_2_115_2) 2016; 58 e_1_3_2_124_2 Spor A. (e_1_3_2_88_2) 2014; 68 Grant B. R. (e_1_3_2_95_2) 1979; 76 Burch C. L. (e_1_3_2_90_2) 2000; 406 e_1_3_2_105_2 Bull J. J. (e_1_3_2_52_2) 1997; 147 Shubin N. (e_1_3_2_37_2) 2009; 457 Good B. H. (e_1_3_2_51_2) 2017; 551 Yedid G. (e_1_3_2_33_2) 2008; 21 MacLean R. C. (e_1_3_2_66_2) 2002; 160 e_1_3_2_19_2 Lenski R. E. (e_1_3_2_47_2) 2017; 11 Leon D. (e_1_3_2_78_2) 2018; 14 de Visser J. A. G. M. (e_1_3_2_132_2) 2014; 15 Desjardins E. C. (e_1_3_2_18_2) 2011; 26 Beatty J. H. (e_1_3_2_6_2) 2006; 103 Sage R. F. (e_1_3_2_108_2) 2011; 62 Velicer G. J. (e_1_3_2_151_2) 1999; 80 Beatty J. H. (e_1_3_2_15_2) 2011; 5 e_1_3_2_11_2 Powell R. (e_1_3_2_120_2) 2015; 5 e_1_3_2_4_2 Shubin N. (e_1_3_2_121_2) 1995; 49 e_1_3_2_113_2 Nahum J. R. (e_1_3_2_134_2) 2015; 112 Losos J. B. (e_1_3_2_103_2) 2011; 65 Quandt E. M. (e_1_3_2_80_2) 2014; 111 Blount Z. D. (e_1_3_2_75_2) 2012; 489 Morris S. C. (e_1_3_2_25_2) 2010; 365 Strauss S. Y. (e_1_3_2_100_2) 2008; 11 Dhar R. (e_1_3_2_140_2) 2011; 24 Saxer G. (e_1_3_2_148_2) 2010; 5 |
References_xml | – volume: 4 start-page: e09696 year: 2015 ident: e_1_3_2_79_2 article-title: Fine-tuning citrate synthase flux potentiates and refines metabolic innovation in the Lenski evolution experiment publication-title: eLife doi: 10.7554/eLife.09696 – ident: e_1_3_2_112_2 – volume: 107 start-page: 1 year: 1984 ident: e_1_3_2_84_2 article-title: Two-step resistance by Escherichia coli B to bacteriophage T2 publication-title: Genetics doi: 10.1093/genetics/107.1.1 – volume: 160 start-page: 569 year: 2002 ident: e_1_3_2_66_2 article-title: Experimental adaptive radiation in Pseudomonas publication-title: Am. Nat. doi: 10.1086/342816 – volume: 365 start-page: 133 year: 2010 ident: e_1_3_2_25_2 article-title: Evolution: Like any other science it is predictable publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2009.0154 – volume: 151 start-page: 269 year: 1982 ident: e_1_3_2_73_2 article-title: Chromosomal mutation for citrate utilization by Escherichia coli K-12 publication-title: J. Bacteriol. doi: 10.1128/jb.151.1.269-273.1982 – volume: 512 start-page: 203 year: 2014 ident: e_1_3_2_29_2 article-title: Historical contingency and its biophysical basis in glucocorticoid receptor evolution publication-title: Nature doi: 10.1038/nature13410 – ident: e_1_3_2_20_2 – volume: 73 start-page: 139 year: 2001 ident: e_1_3_2_23_2 article-title: A macroevolutionary study of historical contingency in the fanged frogs of Southeast Asia publication-title: Biol. J. Linn. Soc. Lond. doi: 10.1111/j.1095-8312.2001.tb01352.x – ident: e_1_3_2_106_2 doi: 10.1093/oso/9780198546412.001.0001 – ident: e_1_3_2_105_2 doi: 10.1126/science.1188545 – ident: e_1_3_2_129_2 doi: 10.4159/9780674417922 – ident: e_1_3_2_96_2 doi: 10.1515/9781400851300 – volume: 181 start-page: 1535 year: 2009 ident: e_1_3_2_56_2 article-title: Genomewide patterns of substitution in adaptively evolving populations of the RNA bacteriophage MS2 publication-title: Genetics doi: 10.1534/genetics.107.085837 – volume: 149 start-page: 1164 year: 2012 ident: e_1_3_2_144_2 article-title: Contingency and statistical laws in replicate microbial closed ecosystems publication-title: Cell doi: 10.1016/j.cell.2012.03.040 – volume: 138 start-page: 1315 year: 1991 ident: e_1_3_2_45_2 article-title: Long–term experimental evolution in Escherichia coli. I. adaptation and divergence during 2,000 generations publication-title: Am. Nat. doi: 10.1086/285289 – volume: 22 start-page: 3292 year: 2013 ident: e_1_3_2_64_2 article-title: Evolutionary history and genetic parallelism affect correlated responses to evolution publication-title: Mol. Ecol. doi: 10.1111/mec.12312 – volume: 105 start-page: 7899 year: 2008 ident: e_1_3_2_42_2 article-title: Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0803151105 – volume: 71 start-page: 1075 year: 2017 ident: e_1_3_2_147_2 article-title: The effect of sex on the repeatability of evolution in different environments publication-title: Evolution doi: 10.1111/evo.13198 – ident: e_1_3_2_87_2 doi: 10.1126/science.1250939 – volume: 112 start-page: 10 year: 2015 ident: e_1_3_2_110_2 article-title: New evidence on the origin of carnivorous plants publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1422278112 – volume: 8 start-page: 15707 year: 2017 ident: e_1_3_2_142_2 article-title: Synergistic cooperation promotes multicellular performance and unicellular free-rider persistence publication-title: Nat. Commun. doi: 10.1038/ncomms15707 – ident: e_1_3_2_4_2 doi: 10.1126/science.1180660 – volume: 15 start-page: 137 year: 2015 ident: e_1_3_2_125_2 article-title: Repeated evolution and the impact of evolutionary history on adaptation publication-title: BMC Evol. Biol. doi: 10.1186/s12862-015-0424-z – volume: 114 start-page: E1904 year: 2017 ident: e_1_3_2_58_2 article-title: Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1616132114 – volume: 462 start-page: 90 year: 2009 ident: e_1_3_2_59_2 article-title: Experimental evolution of bet hedging publication-title: Nature doi: 10.1038/nature08504 – volume: 66 start-page: 1931 year: 2012 ident: e_1_3_2_133_2 article-title: Population subdivision and adaptation in asexual populations of Saccharomyces cerevisiae publication-title: Evolution doi: 10.1111/j.1558-5646.2011.01569.x – volume: 276 start-page: 459 year: 2009 ident: e_1_3_2_60_2 article-title: Experimental evolution of a microbial predator’s ability to find prey publication-title: Proc. Biol. Sci. – volume: 4 start-page: 2742 year: 2013 ident: e_1_3_2_61_2 article-title: Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii publication-title: Nat. Commun. doi: 10.1038/ncomms3742 – volume: 65 start-page: 3048 year: 2011 ident: e_1_3_2_72_2 article-title: Adaptive landscapes in evolving populations of Pseudomonas fluorescens publication-title: Evolution doi: 10.1111/j.1558-5646.2011.01333.x – ident: e_1_3_2_24_2 doi: 10.1017/CBO9780511535499 – ident: e_1_3_2_22_2 – ident: e_1_3_2_54_2 doi: 10.1126/science.285.5426.422 – ident: e_1_3_2_44_2 doi: 10.1126/science.7809610 – volume: 190 start-page: S1 year: 2017 ident: e_1_3_2_107_2 article-title: Toward a predictive framework for convergent evolution: Integrating natural history, genetic mechanisms, and consequences for the diversity of life publication-title: Am. Nat. doi: 10.1086/692111 – ident: e_1_3_2_17_2 – volume: 2 start-page: e00192-16 year: 2017 ident: e_1_3_2_146_2 article-title: Adaptation of Escherichia coli to long–term serial passage in complex medium: Evidence of parallel evolution publication-title: mSystems doi: 10.1128/mSystems.00192-16 – volume: 11 start-page: 199 year: 2008 ident: e_1_3_2_100_2 article-title: Evolution in ecological field experiments: Implications for effect size publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01128.x – ident: e_1_3_2_124_2 – volume: 62 start-page: 31 year: 2017 ident: e_1_3_2_16_2 article-title: Narrative possibility and narrative explanation publication-title: Stud. Hist. Philos. Sci. A doi: 10.1016/j.shpsa.2017.03.001 – volume: 15 start-page: 480 year: 2014 ident: e_1_3_2_132_2 article-title: Empirical fitness landscapes and the predictability of evolution publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3744 – volume: 279 start-page: 5039 year: 2012 ident: e_1_3_2_128_2 article-title: The probability of genetic parallelism and convergence in natural populations publication-title: Proc. Biol. Sci. – volume: 94 start-page: 801 year: 2006 ident: e_1_3_2_99_2 article-title: The Park Grass Experiment 1856–2006: Its contribution to ecology publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2006.01145.x – ident: e_1_3_2_2_2 – volume: 103 start-page: 336 year: 2006 ident: e_1_3_2_6_2 article-title: Replaying life’s tape publication-title: J. Philos. doi: 10.5840/jphil2006103716 – volume: 65 start-page: 1827 year: 2011 ident: e_1_3_2_103_2 article-title: Convergence, adaptation, and constraint publication-title: Evolution doi: 10.1111/j.1558-5646.2011.01289.x – ident: e_1_3_2_119_2 doi: 10.1093/oso/9780195160437.003.0018 – volume: 8 start-page: 1899 year: 2017 ident: e_1_3_2_109_2 article-title: The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism publication-title: Nat. Commun. doi: 10.1038/s41467-017-01491-7 – volume: 217 start-page: 1035 year: 2018 ident: e_1_3_2_111_2 article-title: Convergent and divergent evolution in carnivorous pitcher plant traps publication-title: New Phytol. doi: 10.1111/nph.14879 – volume: 15 start-page: 1365 year: 2005 ident: e_1_3_2_55_2 article-title: Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states publication-title: Genome Res. doi: 10.1101/gr.3832305 – volume: 198 start-page: 1022 year: 2016 ident: e_1_3_2_74_2 article-title: Rapid evolution of citrate utilization by Escherichia coli by direct selection requires citT and dctA publication-title: J. Bacteriol. doi: 10.1128/JB.00831-15 – ident: e_1_3_2_31_2 – volume: 1 start-page: 33 year: 1999 ident: e_1_3_2_53_2 article-title: Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations publication-title: Environ. Microbiol. doi: 10.1046/j.1462-2920.1999.00002.x – volume: 9 start-page: 643 year: 2013 ident: e_1_3_2_141_2 article-title: Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2012.76 – volume: 7 start-page: 913 year: 2017 ident: e_1_3_2_89_2 article-title: Predictable phenotypic, but not karyotypic, evolution of populations with contrasting initial history publication-title: Sci. Rep. doi: 10.1038/s41598-017-00968-1 – ident: e_1_3_2_123_2 – volume: 6 start-page: e27167 year: 2017 ident: e_1_3_2_93_2 article-title: Genetic variation in adaptability and pleiotropy in budding yeast publication-title: eLife doi: 10.7554/eLife.27167 – volume: 147 start-page: 1497 year: 1997 ident: e_1_3_2_52_2 article-title: Exceptional convergent evolution in a virus publication-title: Genetics doi: 10.1093/genetics/147.4.1497 – volume: 32 start-page: 1436 year: 2015 ident: e_1_3_2_62_2 article-title: The effect of selection environment on the probability of parallel evolution publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msv033 – volume: 91 start-page: 9037 year: 1994 ident: e_1_3_2_69_2 article-title: Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.91.19.9037 – volume: 62 start-page: 3155 year: 2011 ident: e_1_3_2_108_2 article-title: The C4 plant lineages of planet Earth publication-title: J. Exp. Bot. doi: 10.1093/jxb/err048 – ident: e_1_3_2_82_2 doi: 10.1126/science.1214449 – ident: e_1_3_2_28_2 doi: 10.1126/science.1142819 – volume: 41 start-page: 1370 year: 1987 ident: e_1_3_2_101_2 article-title: Life–history evolution in guppies (Poecilia reticulate) I. Phenotypic and genetic changes in an introduction experiment publication-title: Evolution – volume: 5 start-page: 471 year: 2011 ident: e_1_3_2_15_2 article-title: When what had to happen was not bound to happen: History, chance, narrative, evolution publication-title: J. Philos. Hist. doi: 10.1163/187226311X599916 – volume: 12 start-page: e1001789 year: 2014 ident: e_1_3_2_48_2 article-title: Metabolic erosion primarily through mutation accumulation, and not tradeoffs, drives limited evolution of substrate specificity in Escherichia coli publication-title: PLOS Biol. doi: 10.1371/journal.pbio.1001789 – volume: 494 start-page: 463 year: 2013 ident: e_1_3_2_71_2 article-title: Evolutionary rescue from extinction is contingent on a lower rate of environmental change publication-title: Nature doi: 10.1038/nature11879 – ident: e_1_3_2_94_2 – volume: 549 start-page: 409 year: 2017 ident: e_1_3_2_30_2 article-title: Alternative evolutionary histories in the sequence space of an ancient protein publication-title: Nature doi: 10.1038/nature23902 – volume: 457 start-page: 818 year: 2009 ident: e_1_3_2_37_2 article-title: Deep homology and the origins of evolutionary novelty publication-title: Nature doi: 10.1038/nature07891 – volume: 27 start-page: 547 year: 2012 ident: e_1_3_2_39_2 article-title: Experimental evolution publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2012.06.001 – volume: 111 start-page: 2217 year: 2014 ident: e_1_3_2_80_2 article-title: Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1314561111 – ident: e_1_3_2_97_2 – volume: 447 start-page: 585 year: 2007 ident: e_1_3_2_139_2 article-title: Incipient speciation by divergent adaptation and antagonistic epistasis in yeast publication-title: Nature doi: 10.1038/nature05856 – ident: e_1_3_2_81_2 doi: 10.1126/science.1198914 – volume: 21 start-page: 1335 year: 2008 ident: e_1_3_2_33_2 article-title: Historical and contingent factors affect re-evolution of a complex feature lost during mass extinction in communities of digital organisms publication-title: J. Evol. Biol. doi: 10.1111/j.1420-9101.2008.01564.x – ident: e_1_3_2_50_2 doi: 10.1126/science.1248688 – start-page: 020958 year: 2015 ident: e_1_3_2_76_2 article-title: Evolution and coexistence in response to a key innovation in a long–term evolution experiment with Escherichia coli publication-title: bioRxiv – volume: 11 start-page: 2181 year: 2017 ident: e_1_3_2_47_2 article-title: Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations publication-title: ISME J. doi: 10.1038/ismej.2017.69 – volume: 7 start-page: e1002302 year: 2011 ident: e_1_3_2_131_2 article-title: Predictability of evolutionary trajectories in fitness landscapes publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1002302 – volume: 15 start-page: 789 year: 1998 ident: e_1_3_2_149_2 article-title: Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a025984 – volume: 272 start-page: 1393 year: 2005 ident: e_1_3_2_150_2 article-title: Unparallel diversification in bacterial microcosms publication-title: Proc. Biol. Sci. – volume: 240 start-page: 29 year: 1990 ident: e_1_3_2_21_2 article-title: Mutational order: A major stochastic process in evolution publication-title: Proc. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rspb.1990.0025 – volume: 2 start-page: 1251 year: 2012 ident: e_1_3_2_91_2 article-title: Effects of adaptation, chance, and history on the evolution of the toxic dinoflagellate Alexandrium minutum under selection of increased temperature and acidification publication-title: Ecol. Evol. doi: 10.1002/ece3.198 – volume: 26 start-page: 65 year: 2011 ident: e_1_3_2_12_2 article-title: Gould’s replay revisited publication-title: Biol. Philos. doi: 10.1007/s10539-010-9228-0 – volume: 10 start-page: e0142050 year: 2015 ident: e_1_3_2_43_2 article-title: Replaying evolution to test the cause of extinction of one ecotype in an experimentally evolved population publication-title: PLOS ONE doi: 10.1371/journal.pone.0142050 – volume: 10 start-page: 11 year: 2010 ident: e_1_3_2_138_2 article-title: Experimental evolution with E. coli in diverse resource environments. I. Fluctuating environments promote divergence of replicate populations publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-10-11 – volume: 47 start-page: 491 year: 2003 ident: e_1_3_2_34_2 article-title: Evo-Devo: Evolutionary developmental mechanisms publication-title: Int. J. Dev. Biol. – volume: 68 start-page: 772 year: 2014 ident: e_1_3_2_88_2 article-title: Phenotypic and genotypic convergences are influenced by historical contingency and environment in yeast publication-title: Evolution doi: 10.1111/evo.12302 – volume: 6 start-page: 1 year: 2012 ident: e_1_3_2_13_2 article-title: The topography of historical contingency publication-title: J. Philos. Hist. doi: 10.1163/187226312X625573 – volume: 112 start-page: 7530 year: 2015 ident: e_1_3_2_134_2 article-title: A tortoise-hare pattern seen in adapting structured and unstructured populations suggests a rugged fitness landscape in bacteria publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1410631112 – ident: e_1_3_2_5_2 – volume: 20 start-page: 1383 year: 2010 ident: e_1_3_2_136_2 article-title: Determinants of divergent adaptation and Dobzhansky-Muller interaction in experimental yeast populations publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.06.022 – volume: 24 start-page: 1135 year: 2011 ident: e_1_3_2_140_2 article-title: Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution publication-title: J. Evol. Biol. doi: 10.1111/j.1420-9101.2011.02249.x – volume: 138 start-page: 543 year: 1991 ident: e_1_3_2_104_2 article-title: Homoplasy – the result of natural selection, or evidence of design limitations publication-title: Am. Nat. doi: 10.1086/285234 – volume: 14 start-page: 751 year: 2013 ident: e_1_3_2_127_2 article-title: The genetic causes of convergent evolution publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3483 – volume: 76 start-page: 2359 year: 1979 ident: e_1_3_2_95_2 article-title: Darwin’s finches: Population variation and sympatric speciation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.76.5.2359 – ident: e_1_3_2_116_2 – ident: e_1_3_2_14_2 – volume: 14 start-page: e1007348 year: 2018 ident: e_1_3_2_78_2 article-title: Innovation in an E. coli evolution experiment is contingent on maintaining adaptive potential until competition subsides publication-title: PLOS Genet. doi: 10.1371/journal.pgen.1007348 – volume: 58 start-page: 245 year: 2004 ident: e_1_3_2_68_2 article-title: Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in Escherichia coli publication-title: Evolution – volume: 175 start-page: 623 year: 2010 ident: e_1_3_2_114_2 article-title: Adaptive radiation, ecological opportunity, and evolutionary determinism. American Society of Naturalists E. O. Wilson award address publication-title: Am. Nat. doi: 10.1086/652433 – volume: 5 start-page: e14184 year: 2010 ident: e_1_3_2_148_2 article-title: The repeatability of adaptive radiation during long-term experimental evolution of Escherichia coli in a multiple nutrient environment publication-title: PLOS ONE doi: 10.1371/journal.pone.0014184 – ident: e_1_3_2_41_2 – volume: 45 start-page: 256 year: 2005 ident: e_1_3_2_117_2 article-title: Many–to–one mapping of form to function: A general principle in organismal design? publication-title: Integr. Comp. Biol. doi: 10.1093/icb/45.2.256 – volume: 431 start-page: 566 year: 2004 ident: e_1_3_2_67_2 article-title: Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga publication-title: Nature doi: 10.1038/nature02945 – volume: 10 start-page: 99 year: 1997 ident: e_1_3_2_10_2 article-title: Historical contingency publication-title: Ratio doi: 10.1111/1467-9329.00032 – volume: 4 start-page: 170497 year: 2017 ident: e_1_3_2_77_2 article-title: Evolution of organismal stoichiometry in a long-term experiment with Escherichia coli publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.170497 – volume: 394 start-page: 69 year: 1998 ident: e_1_3_2_70_2 article-title: Adaptive radiation in a heterogeneous environment publication-title: Nature doi: 10.1038/27900 – volume: 41 start-page: 251 year: 2009 ident: e_1_3_2_85_2 article-title: Experimental evolution reveals natural selection on standing genetic variation publication-title: Nat. Genet. doi: 10.1038/ng.289 – ident: e_1_3_2_3_2 doi: 10.1093/oso/9780195135213.001.0001 – volume: 406 start-page: 625 year: 2000 ident: e_1_3_2_90_2 article-title: Evolvability of an RNA virus is determined by its mutational neighbourhood publication-title: Nature doi: 10.1038/35020564 – volume: 366 start-page: 2069 year: 2011 ident: e_1_3_2_38_2 article-title: Evo-devo and accounting for Darwin’s endless forms publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2011.0007 – volume: 88 start-page: 403 year: 2006 ident: e_1_3_2_92_2 article-title: Tempo and constraint of adaptive evolution in Escherichia coli (Enterobacteriaceae, Enterobacteriales) publication-title: Biol. J. Linn. Soc. Lond. doi: 10.1111/j.1095-8312.2006.00629.x – volume: 5 start-page: 20150040 year: 2015 ident: e_1_3_2_120_2 article-title: Convergent evolution as natural experiment: The tape of life reconsidered publication-title: Interface Focus doi: 10.1098/rsfs.2015.0040 – volume: 26 start-page: 339 year: 2011 ident: e_1_3_2_18_2 article-title: Historicity and experimental evolution publication-title: Biol. Philos. doi: 10.1007/s10539-011-9256-4 – ident: e_1_3_2_126_2 doi: 10.1126/science.1107239 – volume: 13 start-page: 46 year: 2013 ident: e_1_3_2_86_2 article-title: Genotypic but not phenotypic historical contingency revealed by viral experimental evolution publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-13-46 – year: 2016 ident: e_1_3_2_36_2 article-title: Integrating ecological genomics and eco-evo-devo reveals multiple adaptive peaks in ant populations of the Arizona Sky Islands publication-title: bioRxiv – volume: 551 start-page: 45 year: 2017 ident: e_1_3_2_51_2 article-title: The dynamics of molecular evolution over 60,000 generations publication-title: Nature doi: 10.1038/nature24287 – volume: 58 start-page: 93 year: 2016 ident: e_1_3_2_115_2 article-title: Can evolution be directional without being teleological? publication-title: Stud. Hist. Philos. Biol. Biomed. Sci. doi: 10.1016/j.shpsc.2015.12.006 – volume: 17 start-page: 214 year: 2017 ident: e_1_3_2_143_2 article-title: The path to re-evolve cooperation is constrained in Pseudomonas aeruginosa publication-title: BMC Evol. Biol. doi: 10.1186/s12862-017-1060-6 – ident: e_1_3_2_130_2 doi: 10.1126/science.1123539 – volume: 104 start-page: 8649 year: 2007 ident: e_1_3_2_137_2 article-title: An experimental test of evolutionary trade-offs during temperature adaptation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0702117104 – volume: 95 start-page: 12376 year: 1998 ident: e_1_3_2_63_2 article-title: Loss of social behaviors by myxococcus xanthus during evolution in an unstructured habitat publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.95.21.12376 – ident: e_1_3_2_113_2 doi: 10.7551/mitpress/9780262016421.001.0001 – ident: e_1_3_2_145_2 doi: 10.1038/ncomms13002 – ident: e_1_3_2_98_2 – volume: 103 start-page: 1804 year: 2006 ident: e_1_3_2_27_2 article-title: Historical contingency and the purported uniqueness of evolutionary innovations publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0508724103 – volume: 155 start-page: 24 year: 2000 ident: e_1_3_2_49_2 article-title: Long–term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism publication-title: Am. Nat. doi: 10.1086/303299 – ident: e_1_3_2_122_2 – volume: 49 start-page: 874 year: 1995 ident: e_1_3_2_121_2 article-title: Morphological variation in the limbs of Taricha granulosa (Caudata: Salamandridae): Evolutionary and phylogenetic implications publication-title: Evolution doi: 10.2307/2410410 – ident: e_1_3_2_83_2 – ident: e_1_3_2_32_2 doi: 10.7551/mitpress/1432.003.0029 – volume: 5 start-page: 184 year: 2012 ident: e_1_3_2_35_2 article-title: Evolutionary developmental biology (evo-devo): Past, present, and future publication-title: Evol. Ed. Outreach doi: 10.1007/s12052-012-0418-x – volume: 91 start-page: 6808 year: 1994 ident: e_1_3_2_40_2 article-title: Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.91.15.6808 – volume: 87 start-page: 92 year: 2014 ident: e_1_3_2_102_2 article-title: Physiological variation among invasive populations of the brown anole (Anolis sagrei) publication-title: Physiol. Biochem. Zool. doi: 10.1086/672157 – volume: 38 start-page: 1 year: 2012 ident: e_1_3_2_118_2 article-title: Morphological convergence of the prey–killing arsenal of sabertooth predators publication-title: Paleobiology doi: 10.1666/10036.1 – volume: 23 start-page: 26 year: 2008 ident: e_1_3_2_135_2 article-title: Convergence and parallelism reconsidered: What have we learned about the genetics of adaptation? publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2007.09.011 – volume: 276 start-page: 3141 year: 2009 ident: e_1_3_2_26_2 article-title: The origin of ascophoran bryozoans was historically contingent but likely publication-title: Proc. Biol. Sci. – volume: 4 start-page: 697 year: 2013 ident: e_1_3_2_57_2 article-title: Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.07.026 – volume: 16 start-page: 86 year: 2016 ident: e_1_3_2_65_2 article-title: Contrasting effects of historical contingency on phenotypic and genomic trajectories during a two-step evolution experiment with bacteria publication-title: BMC Evol. Biol. doi: 10.1186/s12862-016-0662-8 – volume: 489 start-page: 513 year: 2012 ident: e_1_3_2_75_2 article-title: Genomic analysis of a key innovation in an experimental Escherichia coli population publication-title: Nature doi: 10.1038/nature11514 – ident: e_1_3_2_19_2 – ident: e_1_3_2_11_2 doi: 10.1002/9781444304916.ch9 – volume: 190 start-page: S57 year: 2017 ident: e_1_3_2_46_2 article-title: Convergence and divergence in a long–term experiment with bacteria publication-title: Am. Nat. doi: 10.1086/691209 – volume: 80 start-page: 1168 year: 1999 ident: e_1_3_2_151_2 article-title: Evolutionary trade–offs under conditions of resource abundance and scarcity: Experiments with bacteria publication-title: Ecology doi: 10.1890/0012-9658(1999)080[1168:ETOUCO]2.0.CO;2 |
RelatedPersons | Gould, Stephen Jay |
RelatedPersons_xml | – fullname: Gould, Stephen Jay |
SSID | ssj0009593 |
Score | 2.678791 |
SecondaryResourceType | review_article |
Snippet | The evolutionary biologist Stephen Jay Gould once dreamed about replaying the tape of life in order to identify whether evolution is more subject to... Historical processes display some degree of "contingency," meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally... Replaying the tape of lifeThe evolutionary biologist Stephen Jay Gould once dreamed about replaying the tape of life in order to identify whether evolution is... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
SubjectTerms | Adaptation Adaptation, Biological - genetics Animals Biological Evolution Biologists Biology Citric acid Comparative studies Contingency Convergence Determinism Divergence E coli Ecological monitoring Ecological niches Empirical analysis Environmental conditions Evolution Evolutionary biology Experiments Fitness Genetic divergence Genetic drift Genetics Gould, Stephen Jay Humans Laboratories Laboratory Experiments Mutation Natural selection Niches Phenotypes Planetary environments Planetary evolution Population studies Populations Reproducibility Reproductive fitness Selection, Genetic |
Title | Contingency and determinism in evolution: Replaying life’s tape |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30409860 https://www.proquest.com/docview/2131291427 https://www.proquest.com/docview/2132278264 |
Volume | 362 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBbbDYVeSpP-bZoWFXpIWWxsWStLve02CaHQnrYQejGSLUNgYy-1t5Cc-hp9vT5JR5bsVdoupL0IY9mS8YzmR5pvBqE3ioHZJmIR5JEuAirA3ZGU6UDrmeZSJ4QrA07--Imdf6YfLmYXo5EftbRpVZjf_BVX8j9UhXtAV4OS_QfKDoPCDbgG-kILFIb2TjQ2qaU6cFRusygVLrbFFL4wqUC-udlt1Nt6JTtM0-qy1H2Mg2imrVzfCgfqVzuYnsNxjkfEIS5xbqMH-mAC95q3s7BY1S6rwRdpwF3X05NwG__TF8x2yP7p6bavburG39mfLkJ_cyLmHUpP-ALX5Tu26sbK2MiUhyRR4gvhhBGP2xi1GM8_5btXkVKHUl6BPyS2qqw_vv9Nww1xh53HQ1jmBsjcAPfQHgEvg4zR3nxxsjjbmbXZ5YbyUFf9N9w2a3b4Kp3NsnyEHjpnA88t5-yjka4O0H1bfvT6AO07mjX42GUff_sYzT2mwsBU2GMqfFnhgane4YGlsGGpn99_NNgw0xO0PDtdvj8PXJ2NIKcJaWFd8rJg4CiUwuxrcw12X1xortmsKARTItXQSXMqyxysSy55XBJoSxUVJM6Tp2hc1ZV-jrCKaZlIBRo2VZQzBePyVBFVylRIQekEhf1fynKXg96UQlllOygzQcfDC2ubfmX3o0f9b8_cGm0yEidg0MaUpBP0eugGCWqOxWSl6033jMGDg2cwQc8suYa5EtBxgrPo8O7f8QI92K6EIzRuv270SzBcW_XKsdcvVw6cfw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contingency+and+determinism+in+evolution%3A+Replaying+life%E2%80%99s+tape&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Blount%2C+Zachary+D.&rft.au=Lenski%2C+Richard+E.&rft.au=Losos%2C+Jonathan+B.&rft.date=2018-11-09&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=362&rft.issue=6415&rft_id=info:doi/10.1126%2Fscience.aam5979&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aam5979 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |