Broadband electromagnetic wave absorption using pure carbon aerogel by synergistically modulating propagation path and carbonization degree
[Display omitted] Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effe...
Saved in:
Published in | Journal of colloid and interface science Vol. 652; no. Pt A; pp. 780 - 788 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effective absorption. Herein, a novel strategy using pure carbon aerogel with oriented structure was reported to enhance the EM wave absorption by synergistically modulating the wave propagation path and carbonization degree. The aerogel contained proposed modified carbon nanofibers (MCNF) derived from bacterial cellulose (BC), and core-shell carbon nanofibers @ reduced oxide graphene (CNF@RGO). The oriented structure was induced by the temperature field, which manifests anisotropic EM constitutive parameters (εx ≠ εz) at different directions of incident wave. The carbonization degree was adjusted by varying the carbonization temperature. At the carbonization temperature of 700 °C, the maximum reflection loss and effective absorption bandwidth reached −53.94 dB and 7.14 GHz, respectively, enabling the aerogel to outperform its previous counterparts. To clarify the EM wave mode-of-action in conjunction, physical models of the aerogel were established in addition to finite element simulation and theoretical analysis. Notably, the aerogel with a density of 3.6 mg/cm3 featured ultra-light weight, superhydrophobicity, superior compressibility, and thermal insulation. Our work offers an efficient strategy for designing broadband and multifunctional EM wave absorption materials (EWAMs), promising great potentials in complex stealth equipment. |
---|---|
AbstractList | Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effective absorption. Herein, a novel strategy using pure carbon aerogel with oriented structure was reported to enhance the EM wave absorption by synergistically modulating the wave propagation path and carbonization degree. The aerogel contained proposed modified carbon nanofibers (MCNF) derived from bacterial cellulose (BC), and core-shell carbon nanofibers @ reduced oxide graphene (CNF@RGO). The oriented structure was induced by the temperature field, which manifests anisotropic EM constitutive parameters (εx ≠ εz) at different directions of incident wave. The carbonization degree was adjusted by varying the carbonization temperature. At the carbonization temperature of 700 °C, the maximum reflection loss and effective absorption bandwidth reached -53.94 dB and 7.14 GHz, respectively, enabling the aerogel to outperform its previous counterparts. To clarify the EM wave mode-of-action in conjunction, physical models of the aerogel were established in addition to finite element simulation and theoretical analysis. Notably, the aerogel with a density of 3.6 mg/cm3 featured ultra-light weight, superhydrophobicity, superior compressibility, and thermal insulation. Our work offers an efficient strategy for designing broadband and multifunctional EM wave absorption materials (EWAMs), promising great potentials in complex stealth equipment.Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effective absorption. Herein, a novel strategy using pure carbon aerogel with oriented structure was reported to enhance the EM wave absorption by synergistically modulating the wave propagation path and carbonization degree. The aerogel contained proposed modified carbon nanofibers (MCNF) derived from bacterial cellulose (BC), and core-shell carbon nanofibers @ reduced oxide graphene (CNF@RGO). The oriented structure was induced by the temperature field, which manifests anisotropic EM constitutive parameters (εx ≠ εz) at different directions of incident wave. The carbonization degree was adjusted by varying the carbonization temperature. At the carbonization temperature of 700 °C, the maximum reflection loss and effective absorption bandwidth reached -53.94 dB and 7.14 GHz, respectively, enabling the aerogel to outperform its previous counterparts. To clarify the EM wave mode-of-action in conjunction, physical models of the aerogel were established in addition to finite element simulation and theoretical analysis. Notably, the aerogel with a density of 3.6 mg/cm3 featured ultra-light weight, superhydrophobicity, superior compressibility, and thermal insulation. Our work offers an efficient strategy for designing broadband and multifunctional EM wave absorption materials (EWAMs), promising great potentials in complex stealth equipment. [Display omitted] Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effective absorption. Herein, a novel strategy using pure carbon aerogel with oriented structure was reported to enhance the EM wave absorption by synergistically modulating the wave propagation path and carbonization degree. The aerogel contained proposed modified carbon nanofibers (MCNF) derived from bacterial cellulose (BC), and core-shell carbon nanofibers @ reduced oxide graphene (CNF@RGO). The oriented structure was induced by the temperature field, which manifests anisotropic EM constitutive parameters (εx ≠ εz) at different directions of incident wave. The carbonization degree was adjusted by varying the carbonization temperature. At the carbonization temperature of 700 °C, the maximum reflection loss and effective absorption bandwidth reached −53.94 dB and 7.14 GHz, respectively, enabling the aerogel to outperform its previous counterparts. To clarify the EM wave mode-of-action in conjunction, physical models of the aerogel were established in addition to finite element simulation and theoretical analysis. Notably, the aerogel with a density of 3.6 mg/cm3 featured ultra-light weight, superhydrophobicity, superior compressibility, and thermal insulation. Our work offers an efficient strategy for designing broadband and multifunctional EM wave absorption materials (EWAMs), promising great potentials in complex stealth equipment. Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effective absorption. Herein, a novel strategy using pure carbon aerogel with oriented structure was reported to enhance the EM wave absorption by synergistically modulating the wave propagation path and carbonization degree. The aerogel contained proposed modified carbon nanofibers (MCNF) derived from bacterial cellulose (BC), and core-shell carbon nanofibers @ reduced oxide graphene (CNF@RGO). The oriented structure was induced by the temperature field, which manifests anisotropic EM constitutive parameters (εₓ ≠ εz) at different directions of incident wave. The carbonization degree was adjusted by varying the carbonization temperature. At the carbonization temperature of 700 °C, the maximum reflection loss and effective absorption bandwidth reached −53.94 dB and 7.14 GHz, respectively, enabling the aerogel to outperform its previous counterparts. To clarify the EM wave mode-of-action in conjunction, physical models of the aerogel were established in addition to finite element simulation and theoretical analysis. Notably, the aerogel with a density of 3.6 mg/cm³ featured ultra-light weight, superhydrophobicity, superior compressibility, and thermal insulation. Our work offers an efficient strategy for designing broadband and multifunctional EM wave absorption materials (EWAMs), promising great potentials in complex stealth equipment. |
Author | Han, Mengjie Liu, Yaqing Xu, He-Xiu Wu, Qilei Zhang, Bin Su, Xiaogang Wang, Jun Liu, Yanan Huo, Siqi |
Author_xml | – sequence: 1 givenname: Xiaogang orcidid: 0000-0002-9323-3916 surname: Su fullname: Su, Xiaogang email: sxgwhut@163.com organization: Key Laboratory of Functional Nanocomposites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China – sequence: 2 givenname: Jun surname: Wang fullname: Wang, Jun organization: Key Laboratory of Functional Nanocomposites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China – sequence: 3 givenname: Mengjie surname: Han fullname: Han, Mengjie organization: Key Laboratory of Functional Nanocomposites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China – sequence: 4 givenname: Yanan surname: Liu fullname: Liu, Yanan organization: Key Laboratory of Functional Nanocomposites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China – sequence: 5 givenname: Bin surname: Zhang fullname: Zhang, Bin organization: School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 6 givenname: Siqi orcidid: 0000-0002-6454-5208 surname: Huo fullname: Huo, Siqi organization: Center for Future Materials, University of Southern Queensland, Springfield 4300, Australia – sequence: 7 givenname: Qilei surname: Wu fullname: Wu, Qilei organization: Science and Technology on Electromagnetic Compatibility Laboratory, China Ship Development and Design Centre, Wuhan 430070, China – sequence: 8 givenname: Yaqing surname: Liu fullname: Liu, Yaqing email: lyq@nuc.edu.cn organization: Key Laboratory of Functional Nanocomposites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China – sequence: 9 givenname: He-Xiu surname: Xu fullname: Xu, He-Xiu email: hxxuellen@gmail.com organization: Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China |
BookMark | eNqFkctu3CAUhlGVSJ1cXiArlt3YBTPYWOqmjXqTInXTrtExPuMyYsAFnGryCn3pMuOuskhXSEf_9x90vity4YNHQu44qznj7dt9vTc21Q1rRM1Uzbl4RTac9bLqOBMXZMNYw6u-67vX5CqlPWOcS9lvyJ8PMcA4gB8pOjQ5hgNMHrM19Dc8IoUhhThnGzxdkvUTnZeI1EAcygQwhgkdHY40HT3GyaYCgnNHegjj4iCfiRhmmODcMUP-SU_L1gb7tI5HnCLiDbncgUt4---9Jj8-ffx-_6V6-Pb56_37h8psRZMrxA7bTnaDYQbFMLJ2KxkfYYeKGyFN3wvZNwblwCVwY4TawgDQclCguBTimrxZe8vPfi2Ysj7YZNA58BiWpEUJcdUK9f9oo2Sntm0vmxJt1qiJIaWIOz1He4B41JzpkyS91ydJ-iRJM6WLpAKpZ5Cx-XyTHMG6l9F3K4rlVI8Wo07Gojc42lhE6jHYl_C_3cCz4w |
CitedBy_id | crossref_primary_10_1021_acsanm_3c05693 crossref_primary_10_1002_adfm_202403397 crossref_primary_10_1002_smll_202401755 crossref_primary_10_1016_j_diamond_2023_110443 crossref_primary_10_1016_j_diamond_2025_112066 crossref_primary_10_1016_j_carbon_2024_119105 crossref_primary_10_1016_j_cej_2024_150952 crossref_primary_10_1016_j_mtphys_2023_101277 crossref_primary_10_1016_j_jcis_2024_08_211 crossref_primary_10_1016_j_jmst_2024_01_006 crossref_primary_10_1016_j_jcis_2024_10_057 crossref_primary_10_1016_j_carbon_2024_119409 crossref_primary_10_1016_j_ceramint_2024_04_077 crossref_primary_10_1016_j_nanoen_2023_108938 crossref_primary_10_1021_acsami_3c13489 crossref_primary_10_1039_D4TC00929K crossref_primary_10_1002_smll_202405371 crossref_primary_10_1016_j_cej_2025_160646 crossref_primary_10_1617_s11527_023_02268_9 crossref_primary_10_1002_pc_29430 crossref_primary_10_1021_acsanm_4c03838 crossref_primary_10_1016_j_carbon_2024_119475 crossref_primary_10_1016_j_jcis_2023_09_121 crossref_primary_10_1016_j_diamond_2023_110594 crossref_primary_10_1016_j_carbon_2024_119412 crossref_primary_10_1016_j_mtcomm_2024_110178 crossref_primary_10_1016_j_polymdegradstab_2023_110634 crossref_primary_10_1007_s10853_023_09292_8 crossref_primary_10_1016_j_coco_2024_102157 crossref_primary_10_1016_j_eurpolymj_2023_112634 crossref_primary_10_1002_smll_202403583 crossref_primary_10_1016_j_cej_2024_153663 crossref_primary_10_1016_j_compositesb_2024_111572 crossref_primary_10_1016_j_jcis_2024_09_017 crossref_primary_10_1016_j_cej_2024_154777 crossref_primary_10_1002_adfm_202414838 crossref_primary_10_1016_j_matdes_2023_112397 |
Cites_doi | 10.1016/j.carbon.2021.04.053 10.1016/j.compscitech.2022.109663 10.1016/j.compositesb.2022.110403 10.1016/j.carbon.2023.02.052 10.1007/s40820-023-01158-7 10.1007/s40820-020-0393-7 10.1016/j.cej.2022.137279 10.1016/j.carbon.2021.11.047 10.1073/pnas.2105610118 10.1016/j.compositesb.2021.109565 10.1016/j.carbon.2023.118070 10.1016/j.jcis.2023.05.094 10.1016/j.carbon.2022.10.015 10.1021/acsnano.3c02170 10.1016/j.carbon.2023.03.024 10.1016/j.carbon.2022.02.016 10.1002/adma.202207969 10.34133/2021/9806789 10.1002/adfm.202300374 10.1021/acs.iecr.1c03585 10.1016/j.carbon.2023.01.057 10.1002/adfm.202211996 10.1021/acsnano.0c09982 10.1016/j.ceramint.2023.02.054 10.1007/s12274-023-5522-4 10.1002/adpr.202200063 10.1021/acsnano.2c06164 10.1021/acsami.1c21272 10.1007/s12613-022-2476-6 10.1007/s12274-022-4494-0 10.1016/j.compositesa.2022.106814 10.1016/j.jmst.2022.04.005 10.1016/j.compositesa.2021.106781 10.1002/adfm.202213357 10.1016/j.cej.2022.136975 10.1016/j.carbon.2020.06.013 10.1016/j.jcis.2022.05.165 10.1016/j.gca.2008.10.041 10.1016/j.apsusc.2022.153681 10.1002/adfm.202202588 10.1016/j.carbon.2022.03.029 10.1016/j.carbon.2022.05.057 10.1021/acsnano.2c08678 10.1016/j.jcis.2022.01.063 10.1021/acsami.2c22935 10.1016/j.carbon.2021.07.019 10.1016/j.jmst.2022.05.058 10.1007/s40820-022-00986-3 10.1016/j.jcis.2022.08.094 10.1016/j.carbon.2021.01.138 10.1016/j.carbon.2021.01.001 10.1016/j.carbon.2023.02.067 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2023.08.113 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 788 |
ExternalDocumentID | 10_1016_j_jcis_2023_08_113 S0021979723016016 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SSH VH1 WUQ ZGI ZXP 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c432t-ee7e6757bc0ce3bd064501dafe81c35c993592ce5b15a1cc384abaa61a8a81533 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 16:12:57 EDT 2025 Tue Aug 05 09:20:03 EDT 2025 Tue Jul 01 04:19:11 EDT 2025 Thu Apr 24 22:56:53 EDT 2025 Fri Feb 23 02:36:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | Electromagnetic wave absorption Oriented structures Propagation path Carbon aerogel Carbonization degree |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-ee7e6757bc0ce3bd064501dafe81c35c993592ce5b15a1cc384abaa61a8a81533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9323-3916 0000-0002-6454-5208 |
PQID | 2857846952 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3153186383 proquest_miscellaneous_2857846952 crossref_primary_10_1016_j_jcis_2023_08_113 crossref_citationtrail_10_1016_j_jcis_2023_08_113 elsevier_sciencedirect_doi_10_1016_j_jcis_2023_08_113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-15 |
PublicationDateYYYYMMDD | 2023-12-15 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Shu, Wu, Li, Li, Shi (b0090) 2022; 613 Mao, Fan, Long, Li, Chen, Zhou (b0095) 2023; 49 Cheng, Wang, Zhang, Zhao, Wang (b0110) 2021; 183 Tingting, Yuying, Yuxin, Laibin, Ting, Alan, Zhenjiang, Meng (b0225) 2023; 206 Yin, Wu, Tang, Liu, Zhang, Bu, Dai, Zhao, Liu (b0085) 2022; 446 Wang, Han, Liu, Xiang, Liang, Su, Liu (b0120) 2023; 646 Kong, Zhang, Liu, Wu, Fan, Cao, Huang (b0070) 2023; 207 Li, Xu, Li, Zhi, Chen, Lu, Wang, Liu, Meng (b0135) 2022; 231 Xie, Wang, Sun, Wang, Yu, Du, Wu (b0075) 2023; 133 Biesinger (b0170) 2022; 597 Wang, Liu, Jia, Zhao, Wu (b0195) 2022; 15 Wu, Chen, Han, Liu, Xu, Yu, Wang, Wen, Ju, Gu (b0205) 2023; 16 Li, Yang, Wu, Zhao, Jin, Wang, Li, Liu, Liu, Zeng (b0020) 2022; 16 Wenting, Enjie, Wenxi, Jiaqiang, Chuyang, Liying (b0260) 2023; C Zhang, Du, Hou, Ding, Huang, Chen, Ma, Lu, Tang (b0165) 2022; 188 Qiao, Wang, Wei, Li, Lei, Lei, Wei, Zhang (b0240) 2022; 18 Liu, Wang, Zhang, Huang, Zhang, Liu, Zhang, Che (b0210) 2022; 32 Dawei, Lei, Fengyuan, Hao, Jia, Tong, Hongjie, Yunchen (b0220) 2022; 196 Wang, Xu, Wang, Luo, Wang, Wang (b0035) 2022; 3 Kong, Zhang, Liu, Xu, Fan, Huang (b0125) 2023; 207 Zhang, Tian, Qin, Qiao, Pan, Wu, Wang, Zhao, Liu, Cui (b0030) 2023; 17 Su, Han, Wang, Wu, Duan, Liang, Zhang, Pu, Liu (b0050) 2022; 624 Xu, Lin, Chen, Fan, Pei, Yang, Kou, Wang, Zou, Xi, Yin, Su, Zhou, Dai, Pan, Zhao (b0040) 2023; 201 Cao, Yang, Zhao, Xue (b0160) 2023; 15 Cui, Zhou, Zhao, You, Yang, Fan, Wu, Che (b0275) 2023; 210 Yan, Xiaochuang, Jian, Liaona, Hongge, Biao, Renchao (b0230) 2022; 191 Huang, Zhao, Wu, Zhou, Tan, Tang, Ji (b0235) 2022; 446 Jia, Kong, Yu, Ma, Pan, Wu (b0055) 2022; 127 Liang, Li, Yan, Feng, Wang, Zhang, Zhou, Liu, Shen, Xie (b0265) 2021; 15 Zheng, Zeng, Qiao, Liu, Liu (b0065) 2022; 155 Wu, Yang, Wang, Wu, Pan, Zhang, Liu, Zeng (b0140) 2023; 35 Su, Han, Liu, Wang, Liang, Liu (b0045) 2022; 628 Wei, He, Li, Ma, Dang, Liu, Gu (b0080) 2023; 36 Fushuo, Peiying, Feiyue, Zhihua, Jingwen, Peigen, Long, Michel, Longzhu, ZhengMing (b0255) 2023; 15 Wang, Zhou, Zeng, Chen, Luo, Fan, Li (b0060) 2021; 175 Xu, Wang, Hu, Wang, Wang, Wang, Zeng, Li, Zhang, Huang (b0025) 2021; 2021 Pan, Ning, Li, Batalu, Guo, Wang, Wu, Lu (b0005) 2023; 33 Chaobo, Wei, Chunlei, Jie, Yang, Mengjie, Zongwei, Yaqing (b0010) 2023; 471 Y. Ma, D. Chen, Z. Fang, Y. Zheng, W. Li, S. Xu, X. Lu, G. Shao, Q. Liu, W. Yang, High energy density and extremely stable supercapacitors based on carbon aerogels with 100% capacitance retention up to 65,000 cycles, Proc. Natl. Acad. Sci. 118(21) (2021) e2105610118. Schindler M, Hawthorne F C, Freund M S, et al. XPS spectra of uranyl minerals and synthetic uranyl compounds. II: The O 1s spectrum. Geochimi Cosmochim Ac. 73(9) (2009) 2488-2509. Li, Wu, Yang, Pan, Wang, Wang, Xiao, Liu, Liu, Zeng (b0015) 2023; 33 Pan, Liu, Deng, Dong, Zhu, Huang, Shi, Lu (b0130) 2021; 179 Yang, Wang, Lu, Cheng, Wang, Li (b0155) 2023; 205 Fei, Wang, Yuan, Liang, Chen, Zou (b0250) 2022; 61 Sun, Xiong, Zhang, Chen, Qin, Wang, Wu, Liu (b0190) 2022; 228 Yue-Yi, Jin-Long, Nan, Jun-Feng, Jian-Hua, Ding-Xiang, Zhong-Ming (b0245) 2022; 15 Song, Zhang, Chen, Jia, Zhou, Liu, Wang (b0100) 2021; 176 Ding, Du, Liu, Zhang, Zhao, Hou, Wang, Hassan, Huang, Yue, Chen, Ma, Lu (b0105) 2023; 249 Fei, Liang, Zhou, Chen, Zou (b0115) 2020; 167 Guo, Su, Chen, Cheng, Wang, Gong, Luo (b0215) 2022; 14 Ding, Liu, Yan, Huang, Ryu, Lan, Yu, Zhong, Yang (b0180) 2020; 12 Tao, Xu, Pei, Gu, He, Zhang, Tao, Zhou, Yao, Tao, Wu (b0270) 2022; 33 Yang, Wu, Li, Liu, Pan, Zeng, Liu (b0145) 2022; 16 Zeng, Zhao, Yin, Nie, Xie, Yu, Stucky (b0185) 2022; 193 Ni, Chen, Jiang, Luo, Zou, Liu (b0200) 2022; 154 Kong, Luo, Zhang, Zhang, Liang (b0150) 2023; 30 Wu (10.1016/j.jcis.2023.08.113_b0140) 2023; 35 Yang (10.1016/j.jcis.2023.08.113_b0155) 2023; 205 Zhang (10.1016/j.jcis.2023.08.113_b0030) 2023; 17 Li (10.1016/j.jcis.2023.08.113_b0015) 2023; 33 Cao (10.1016/j.jcis.2023.08.113_b0160) 2023; 15 Wenting (10.1016/j.jcis.2023.08.113_b0260) 2023; C Wei (10.1016/j.jcis.2023.08.113_b0080) 2023; 36 Xie (10.1016/j.jcis.2023.08.113_b0075) 2023; 133 Cheng (10.1016/j.jcis.2023.08.113_b0110) 2021; 183 Fei (10.1016/j.jcis.2023.08.113_b0115) 2020; 167 Xu (10.1016/j.jcis.2023.08.113_b0025) 2021; 2021 Kong (10.1016/j.jcis.2023.08.113_b0070) 2023; 207 Wang (10.1016/j.jcis.2023.08.113_b0195) 2022; 15 Shu (10.1016/j.jcis.2023.08.113_b0090) 2022; 613 Ni (10.1016/j.jcis.2023.08.113_b0200) 2022; 154 Fei (10.1016/j.jcis.2023.08.113_b0250) 2022; 61 Yin (10.1016/j.jcis.2023.08.113_b0085) 2022; 446 Yan (10.1016/j.jcis.2023.08.113_b0230) 2022; 191 Wu (10.1016/j.jcis.2023.08.113_b0205) 2023; 16 Tingting (10.1016/j.jcis.2023.08.113_b0225) 2023; 206 Qiao (10.1016/j.jcis.2023.08.113_b0240) 2022; 18 Ding (10.1016/j.jcis.2023.08.113_b0105) 2023; 249 Pan (10.1016/j.jcis.2023.08.113_b0005) 2023; 33 Li (10.1016/j.jcis.2023.08.113_b0135) 2022; 231 Huang (10.1016/j.jcis.2023.08.113_b0235) 2022; 446 10.1016/j.jcis.2023.08.113_b0175 Zeng (10.1016/j.jcis.2023.08.113_b0185) 2022; 193 Pan (10.1016/j.jcis.2023.08.113_b0130) 2021; 179 Fushuo (10.1016/j.jcis.2023.08.113_b0255) 2023; 15 Ding (10.1016/j.jcis.2023.08.113_b0180) 2020; 12 Liang (10.1016/j.jcis.2023.08.113_b0265) 2021; 15 Wang (10.1016/j.jcis.2023.08.113_b0035) 2022; 3 Song (10.1016/j.jcis.2023.08.113_b0100) 2021; 176 Yue-Yi (10.1016/j.jcis.2023.08.113_b0245) 2022; 15 Li (10.1016/j.jcis.2023.08.113_b0020) 2022; 16 Zheng (10.1016/j.jcis.2023.08.113_b0065) 2022; 155 Chaobo (10.1016/j.jcis.2023.08.113_b0010) 2023; 471 10.1016/j.jcis.2023.08.113_b0280 Cui (10.1016/j.jcis.2023.08.113_b0275) 2023; 210 Xu (10.1016/j.jcis.2023.08.113_b0040) 2023; 201 Liu (10.1016/j.jcis.2023.08.113_b0210) 2022; 32 Yang (10.1016/j.jcis.2023.08.113_b0145) 2022; 16 Dawei (10.1016/j.jcis.2023.08.113_b0220) 2022; 196 Sun (10.1016/j.jcis.2023.08.113_b0190) 2022; 228 Su (10.1016/j.jcis.2023.08.113_b0050) 2022; 624 Kong (10.1016/j.jcis.2023.08.113_b0125) 2023; 207 Kong (10.1016/j.jcis.2023.08.113_b0150) 2023; 30 Tao (10.1016/j.jcis.2023.08.113_b0270) 2022; 33 Guo (10.1016/j.jcis.2023.08.113_b0215) 2022; 14 Biesinger (10.1016/j.jcis.2023.08.113_b0170) 2022; 597 Su (10.1016/j.jcis.2023.08.113_b0045) 2022; 628 Jia (10.1016/j.jcis.2023.08.113_b0055) 2022; 127 Zhang (10.1016/j.jcis.2023.08.113_b0165) 2022; 188 Wang (10.1016/j.jcis.2023.08.113_b0060) 2021; 175 Mao (10.1016/j.jcis.2023.08.113_b0095) 2023; 49 Wang (10.1016/j.jcis.2023.08.113_b0120) 2023; 646 |
References_xml | – volume: 624 start-page: 619 year: 2022 end-page: 628 ident: b0050 article-title: Regulated dielectric loss based on core-sheath carbon-carbon hierarchical nanofibers toward the high-performance microwave absorption publication-title: J. Colloid. Interf. Sci. – volume: 36 year: 2023 ident: b0080 article-title: Hollow Co/NC@MnO publication-title: Mater Today Phys. – volume: 191 start-page: 625 year: 2022 end-page: 635 ident: b0230 article-title: Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation publication-title: Carbon – volume: 18 year: 2022 ident: b0240 article-title: Influence of crystalline phase evolution of shells on microwave absorption performance of core-shell Fe publication-title: Mater. Today. Nano. – volume: 446 year: 2022 ident: b0085 article-title: Structure regulation in N-doping biconical carbon frame decorated with CoFe publication-title: Chem. Eng. J. – volume: 16 start-page: 19293 year: 2022 end-page: 19304 ident: b0020 article-title: Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/ superaligned carbon nanotube film publication-title: ACS Nano – volume: 12 start-page: 63 year: 2020 ident: b0180 article-title: An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors publication-title: Nano-micro Lett – volume: 35 start-page: 2207969 year: 2023 ident: b0140 article-title: Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels publication-title: Adv. Mater. – volume: 2021 start-page: 9806789 year: 2021 ident: b0025 article-title: Adaptable invisibility management using kirigami-inspired transformable metamaterials publication-title: Research – volume: 61 start-page: 1684 year: 2022 end-page: 1693 ident: b0250 article-title: Co nanoparticles encapsulated in carbon nanotubes decorated carbon aerogels toward excellent microwave absorption publication-title: Ind. Eng. Chem. Res. – volume: 15 start-page: 194 year: 2023 ident: b0255 article-title: Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation publication-title: Nano-Micro Lett – volume: 16 start-page: 15042 year: 2022 end-page: 15052 ident: b0145 article-title: Biomimetic porous mXene sediment-based hydrogel for high-performance and multifunctional electromagnetic Interference Shielding publication-title: ACS Nano – volume: 249 year: 2023 ident: b0105 article-title: Reduced graphene oxide loaded with rich defects CoO/Co publication-title: Compos Part B-Eng. – volume: 16 start-page: 7801 year: 2023 end-page: 7809 ident: b0205 article-title: Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption publication-title: Nano Res. – volume: 196 start-page: 867 year: 2022 end-page: 876 ident: b0220 article-title: Hierarchical carbon nanotubes@Ni/C foams for high-performance microwave absorption publication-title: Carbon – volume: 205 start-page: 411 year: 2023 end-page: 421 ident: b0155 article-title: Construction of multi-dimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption publication-title: Carbon – volume: 30 start-page: 570 year: 2023 end-page: 580 ident: b0150 article-title: Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption publication-title: Int. J. Min. Met. Mater. – reference: Y. Ma, D. Chen, Z. Fang, Y. Zheng, W. Li, S. Xu, X. Lu, G. Shao, Q. Liu, W. Yang, High energy density and extremely stable supercapacitors based on carbon aerogels with 100% capacitance retention up to 65,000 cycles, Proc. Natl. Acad. Sci. 118(21) (2021) e2105610118. – volume: 201 start-page: 1090 year: 2023 end-page: 1114 ident: b0040 article-title: Carbon-based cages with hollow confined structures for efficient microwave absorption: State of the art and prospects publication-title: Carbon – volume: 155 year: 2022 ident: b0065 article-title: Facile preparation of C/MnO/Co nanocomposite fibers for high-performance microwave absorption publication-title: Compos. Part. A-Appl S. – volume: 15 start-page: 7723 year: 2022 end-page: 7730 ident: b0245 article-title: Carbon aerogel microspheres with in-situ mineralized TiO publication-title: Nano Res. – reference: Schindler M, Hawthorne F C, Freund M S, et al. XPS spectra of uranyl minerals and synthetic uranyl compounds. II: The O 1s spectrum. Geochimi Cosmochim Ac. 73(9) (2009) 2488-2509. – volume: 597 year: 2022 ident: b0170 article-title: Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review publication-title: Appl. Surf. Sci. – volume: 133 start-page: 1 year: 2023 end-page: 11 ident: b0075 article-title: Optimizing impedance matching by a dual-carbon Co-regulation strategy of Co publication-title: J. Mater. Sci. Technol. – volume: 188 start-page: 442 year: 2022 end-page: 452 ident: b0165 article-title: Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption publication-title: Carbon – volume: 15 start-page: 13 year: 2022 ident: b0195 article-title: Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption publication-title: Nano-micro Lett – volume: 206 start-page: 181 year: 2023 end-page: 191 ident: b0225 article-title: Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance publication-title: Carbon – volume: 32 start-page: 2202588 year: 2022 ident: b0210 article-title: Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction publication-title: Adv. Funct. Mater. – volume: 127 start-page: 153 year: 2022 end-page: 163 ident: b0055 article-title: Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties publication-title: J. Mater. Sci. Technol. – volume: 193 start-page: 26 year: 2022 end-page: 34 ident: b0185 article-title: Construction of NiCo2O4 nanosheets-covered Ti publication-title: Carbon – volume: 49 start-page: 16924 year: 2023 end-page: 16931 ident: b0095 article-title: Constructing 3D hierarchical CNTs/VO publication-title: Ceram. Int. – volume: 15 start-page: 9685 year: 2023 end-page: 9696 ident: b0160 article-title: Fabrication of an ultralight Ni-MOF-rGO aerogel with both dielectric and magnetic performances for enhanced microwave absorption: microspheres with hollow structure grow onto the GO nanosheets publication-title: ACS. Appl. Mater. Interf. – volume: 231 year: 2022 ident: b0135 article-title: Multifunctional antimony tin oxide/reduced graphene oxide aerogels with wideband microwave absorption and low infrared emissivity publication-title: Compos Part B-Eng. – volume: 33 start-page: 2211996 year: 2022 ident: b0270 article-title: Catfish effect induced by anion sequential doping for microwave absorption publication-title: Adv. Funct. Mater. – volume: 207 start-page: 198 year: 2023 end-page: 206 ident: b0070 article-title: Hierarchical architecture bioinspired CNTs/CNF electromagnetic wave absorbing materials publication-title: Carbon – volume: 176 start-page: 279 year: 2021 end-page: 289 ident: b0100 article-title: A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption publication-title: Carbon – volume: 17 start-page: 12510 year: 2023 end-page: 12518 ident: b0030 article-title: Conductive metal–organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption publication-title: ACS Nano – volume: 175 start-page: 233 year: 2021 end-page: 242 ident: b0060 article-title: Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers publication-title: Carbon – volume: 33 start-page: 2300374 year: 2023 ident: b0005 article-title: Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber publication-title: Adv. Funct. Mater. – volume: 471 year: 2023 ident: b0010 article-title: Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics publication-title: Chem. Eng. J. – volume: 207 start-page: 13 year: 2023 end-page: 22 ident: b0125 article-title: Flexible CNTs/CNF-WPU aerogel for smart electromagnetic wave absorbing with tuning effective absorption bandwidth publication-title: Carbon – volume: 15 start-page: 6622 year: 2021 end-page: 6632 ident: b0265 article-title: Multifunctional magnetic Ti publication-title: ACS Nano – volume: 646 start-page: 970 year: 2023 end-page: 979 ident: b0120 article-title: Multifunctional microwave absorption materials of multiscale cobalt sulfide/diatoms co-doped carbon aerogel publication-title: J. Colloid. Interf. Sci. – volume: 210 year: 2023 ident: b0275 article-title: 3D porous PVDF foam anchored with ultra-low content of graphene and Ni nanochains towards wideband electromagnetic waves absorption publication-title: Carbon – volume: 167 start-page: 575 year: 2020 end-page: 584 ident: b0115 article-title: Unique carbon nanofiber@ Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding publication-title: Carbon – volume: 183 start-page: 205 year: 2021 end-page: 215 ident: b0110 article-title: Growing MoO publication-title: Carbon – volume: 14 start-page: 3084 year: 2022 end-page: 3094 ident: b0215 article-title: Hollow beaded Fe publication-title: ACS Appl. Mater. Interf. – volume: 228 year: 2022 ident: b0190 article-title: One-dimensional Ag@NC-Co@NC composites with multiphase core-shell hetero-interfaces for boosting microwave absorption publication-title: Compos. Sci. Technol. – volume: 628 start-page: 984 year: 2022 end-page: 994 ident: b0045 article-title: In-situ construction of nitrogen-doped reduced graphene oxide@carbon nanofibers towards the synergetic enhancement of their microwave absorption properties via integrating point defects and structure engineering publication-title: J. Colloid. Interf. Sci. – volume: 154 year: 2022 ident: b0200 article-title: Anisotropic electromagnetic wave absorption performance of polyimide/multi-walled carbon nanotubes composite aerogels with aligned slit-like channels structure publication-title: Compos. Part. A-Appl S. – volume: 179 start-page: 554 year: 2021 end-page: 565 ident: b0130 article-title: Magnetic Fe publication-title: Carbon – volume: 3 start-page: 2200063 year: 2022 ident: b0035 article-title: Multi-mode-assisted Broadband Impedance-gradient Thin Metamaterial Absorber publication-title: Adv. Photon. Res – volume: 613 start-page: 477 year: 2022 end-page: 487 ident: b0090 article-title: Fabrication of bimetallic metal-organic frameworks derived cobalt iron alloy@carbon-carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers publication-title: J. Colloid Interf Sci. – volume: C year: 2023 ident: b0260 article-title: Microstructure controllable polyimide/MXene composite aerogels for high-temperature thermal insulation and microwave absorption publication-title: J. Mater. Chem. – volume: 33 start-page: 2213357 year: 2023 ident: b0015 article-title: Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films publication-title: Adv. Funct. Mater. – volume: 446 year: 2022 ident: b0235 article-title: A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility publication-title: Chem. Eng. J. – volume: 179 start-page: 554 year: 2021 ident: 10.1016/j.jcis.2023.08.113_b0130 article-title: Magnetic Fe3S4 LTMCs micro-flowers@ wax gourd aerogel-derived carbon hybrids as efficient and sustainable electromagnetic absorber publication-title: Carbon doi: 10.1016/j.carbon.2021.04.053 – volume: 228 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0190 article-title: One-dimensional Ag@NC-Co@NC composites with multiphase core-shell hetero-interfaces for boosting microwave absorption publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2022.109663 – volume: 249 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0105 article-title: Reduced graphene oxide loaded with rich defects CoO/Co3O4 for broadband microwave absorption publication-title: Compos Part B-Eng. doi: 10.1016/j.compositesb.2022.110403 – volume: 206 start-page: 181 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0225 article-title: Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance publication-title: Carbon doi: 10.1016/j.carbon.2023.02.052 – volume: 15 start-page: 194 issue: 1 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0255 article-title: Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation publication-title: Nano-Micro Lett doi: 10.1007/s40820-023-01158-7 – volume: 12 start-page: 63 issue: 1 year: 2020 ident: 10.1016/j.jcis.2023.08.113_b0180 article-title: An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors publication-title: Nano-micro Lett doi: 10.1007/s40820-020-0393-7 – volume: 446 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0235 article-title: A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137279 – volume: 188 start-page: 442 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0165 article-title: Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2021.11.047 – ident: 10.1016/j.jcis.2023.08.113_b0280 doi: 10.1073/pnas.2105610118 – volume: 231 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0135 article-title: Multifunctional antimony tin oxide/reduced graphene oxide aerogels with wideband microwave absorption and low infrared emissivity publication-title: Compos Part B-Eng. doi: 10.1016/j.compositesb.2021.109565 – volume: 18 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0240 article-title: Influence of crystalline phase evolution of shells on microwave absorption performance of core-shell Fe3O4@TiO2 nanochains publication-title: Mater. Today. Nano. – volume: 210 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0275 article-title: 3D porous PVDF foam anchored with ultra-low content of graphene and Ni nanochains towards wideband electromagnetic waves absorption publication-title: Carbon doi: 10.1016/j.carbon.2023.118070 – volume: 646 start-page: 970 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0120 article-title: Multifunctional microwave absorption materials of multiscale cobalt sulfide/diatoms co-doped carbon aerogel publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2023.05.094 – volume: 201 start-page: 1090 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0040 article-title: Carbon-based cages with hollow confined structures for efficient microwave absorption: State of the art and prospects publication-title: Carbon doi: 10.1016/j.carbon.2022.10.015 – volume: 471 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0010 article-title: Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics publication-title: Chem. Eng. J. – volume: 17 start-page: 12510 issue: 13 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0030 article-title: Conductive metal–organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption publication-title: ACS Nano doi: 10.1021/acsnano.3c02170 – volume: 207 start-page: 198 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0070 article-title: Hierarchical architecture bioinspired CNTs/CNF electromagnetic wave absorbing materials publication-title: Carbon doi: 10.1016/j.carbon.2023.03.024 – volume: 191 start-page: 625 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0230 article-title: Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation publication-title: Carbon doi: 10.1016/j.carbon.2022.02.016 – volume: 36 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0080 article-title: Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption publication-title: Mater Today Phys. – volume: 35 start-page: 2207969 issue: 1 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0140 article-title: Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels publication-title: Adv. Mater. doi: 10.1002/adma.202207969 – volume: 2021 start-page: 9806789 year: 2021 ident: 10.1016/j.jcis.2023.08.113_b0025 article-title: Adaptable invisibility management using kirigami-inspired transformable metamaterials publication-title: Research doi: 10.34133/2021/9806789 – volume: 33 start-page: 2300374 issue: 27 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0005 article-title: Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202300374 – volume: 61 start-page: 1684 issue: 4 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0250 article-title: Co nanoparticles encapsulated in carbon nanotubes decorated carbon aerogels toward excellent microwave absorption publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c03585 – volume: 205 start-page: 411 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0155 article-title: Construction of multi-dimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2023.01.057 – volume: 33 start-page: 2211996 issue: 8 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0270 article-title: Catfish effect induced by anion sequential doping for microwave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211996 – volume: 15 start-page: 6622 issue: 4 year: 2021 ident: 10.1016/j.jcis.2023.08.113_b0265 article-title: Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance publication-title: ACS Nano doi: 10.1021/acsnano.0c09982 – volume: 49 start-page: 16924 issue: 11 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0095 article-title: Constructing 3D hierarchical CNTs/VO2 composite microspheres with superior electromagnetic absorption performance publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2023.02.054 – volume: 16 start-page: 7801 issue: 5 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0205 article-title: Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption publication-title: Nano Res. doi: 10.1007/s12274-023-5522-4 – volume: 3 start-page: 2200063 issue: 10 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0035 article-title: Multi-mode-assisted Broadband Impedance-gradient Thin Metamaterial Absorber publication-title: Adv. Photon. Res doi: 10.1002/adpr.202200063 – volume: 16 start-page: 15042 issue: 9 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0145 article-title: Biomimetic porous mXene sediment-based hydrogel for high-performance and multifunctional electromagnetic Interference Shielding publication-title: ACS Nano doi: 10.1021/acsnano.2c06164 – volume: 14 start-page: 3084 issue: 2 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0215 article-title: Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.1c21272 – volume: 30 start-page: 570 issue: 3 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0150 article-title: Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption publication-title: Int. J. Min. Met. Mater. doi: 10.1007/s12613-022-2476-6 – volume: 15 start-page: 7723 issue: 8 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0245 article-title: Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption publication-title: Nano Res. doi: 10.1007/s12274-022-4494-0 – volume: 155 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0065 article-title: Facile preparation of C/MnO/Co nanocomposite fibers for high-performance microwave absorption publication-title: Compos. Part. A-Appl S. doi: 10.1016/j.compositesa.2022.106814 – volume: 127 start-page: 153 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0055 article-title: Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.04.005 – volume: 154 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0200 article-title: Anisotropic electromagnetic wave absorption performance of polyimide/multi-walled carbon nanotubes composite aerogels with aligned slit-like channels structure publication-title: Compos. Part. A-Appl S. doi: 10.1016/j.compositesa.2021.106781 – volume: 33 start-page: 2213357 issue: 11 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0015 article-title: Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202213357 – volume: 446 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0085 article-title: Structure regulation in N-doping biconical carbon frame decorated with CoFe2O4 and (Fe, Ni) for broadband microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136975 – volume: 167 start-page: 575 year: 2020 ident: 10.1016/j.jcis.2023.08.113_b0115 article-title: Unique carbon nanofiber@ Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding publication-title: Carbon doi: 10.1016/j.carbon.2020.06.013 – volume: 624 start-page: 619 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0050 article-title: Regulated dielectric loss based on core-sheath carbon-carbon hierarchical nanofibers toward the high-performance microwave absorption publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2022.05.165 – ident: 10.1016/j.jcis.2023.08.113_b0175 doi: 10.1016/j.gca.2008.10.041 – volume: 597 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0170 article-title: Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153681 – volume: 32 start-page: 2202588 issue: 33 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0210 article-title: Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202202588 – volume: 193 start-page: 26 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0185 article-title: Construction of NiCo2O4 nanosheets-covered Ti3C2Tx MXene heterostructure for remarkable electromagnetic microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2022.03.029 – volume: 196 start-page: 867 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0220 article-title: Hierarchical carbon nanotubes@Ni/C foams for high-performance microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2022.05.057 – volume: 16 start-page: 19293 issue: 11 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0020 article-title: Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/ superaligned carbon nanotube film publication-title: ACS Nano doi: 10.1021/acsnano.2c08678 – volume: 613 start-page: 477 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0090 article-title: Fabrication of bimetallic metal-organic frameworks derived cobalt iron alloy@carbon-carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers publication-title: J. Colloid Interf Sci. doi: 10.1016/j.jcis.2022.01.063 – volume: 15 start-page: 9685 issue: 7 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0160 article-title: Fabrication of an ultralight Ni-MOF-rGO aerogel with both dielectric and magnetic performances for enhanced microwave absorption: microspheres with hollow structure grow onto the GO nanosheets publication-title: ACS. Appl. Mater. Interf. doi: 10.1021/acsami.2c22935 – volume: C year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0260 article-title: Microstructure controllable polyimide/MXene composite aerogels for high-temperature thermal insulation and microwave absorption publication-title: J. Mater. Chem. – volume: 183 start-page: 205 year: 2021 ident: 10.1016/j.jcis.2023.08.113_b0110 article-title: Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2021.07.019 – volume: 133 start-page: 1 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0075 article-title: Optimizing impedance matching by a dual-carbon Co-regulation strategy of Co3O4@rGO/celery stalks derived carbon composites for excellent microwave absorption publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.05.058 – volume: 15 start-page: 13 issue: 1 year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0195 article-title: Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption publication-title: Nano-micro Lett doi: 10.1007/s40820-022-00986-3 – volume: 628 start-page: 984 issue: Pt B year: 2022 ident: 10.1016/j.jcis.2023.08.113_b0045 article-title: In-situ construction of nitrogen-doped reduced graphene oxide@carbon nanofibers towards the synergetic enhancement of their microwave absorption properties via integrating point defects and structure engineering publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2022.08.094 – volume: 176 start-page: 279 year: 2021 ident: 10.1016/j.jcis.2023.08.113_b0100 article-title: A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2021.01.138 – volume: 175 start-page: 233 year: 2021 ident: 10.1016/j.jcis.2023.08.113_b0060 article-title: Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers publication-title: Carbon doi: 10.1016/j.carbon.2021.01.001 – volume: 207 start-page: 13 year: 2023 ident: 10.1016/j.jcis.2023.08.113_b0125 article-title: Flexible CNTs/CNF-WPU aerogel for smart electromagnetic wave absorbing with tuning effective absorption bandwidth publication-title: Carbon doi: 10.1016/j.carbon.2023.02.067 |
SSID | ssj0011559 |
Score | 2.5961614 |
Snippet | [Display omitted]
Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance... Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 780 |
SubjectTerms | absorption aerogels anisotropy Carbon aerogel carbon nanofibers carbonization Carbonization degree cellulose compressibility electrical conductivity electromagnetic radiation Electromagnetic wave absorption finite element analysis graphene hydrophobicity insulating materials Oriented structures Propagation path temperature |
Title | Broadband electromagnetic wave absorption using pure carbon aerogel by synergistically modulating propagation path and carbonization degree |
URI | https://dx.doi.org/10.1016/j.jcis.2023.08.113 https://www.proquest.com/docview/2857846952 https://www.proquest.com/docview/3153186383 |
Volume | 652 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCAqI8qiMxA2F7sR5OMdqRbWA6IlKvUVje3a11TZZpbugvfAH-NPMJE4FSO2BY6xxHHmcecjffKPUO18FcJWFhDgYSjJwmNhAkASYOITMp1WPqvx6VszOs88X-cWemo61MAKrjLZ_sOm9tY4jx3E3j9fLpdT48t9WStcsYUkDod3OslJO-YefNzAPkGu3AeYBiUjHwpkB43Xpl0LZnRqh8QQwtzmnf8x073tOH6tHMWjUJ8N3PVF71Byo-9OxV9uBevgHreBT9YtzawwOm6Bjl5srXDRSrah_4HfS6K7brjcVWmDvC73edqQ9do5HkLp2QSvtdvp6J4WBPZMzrlY7fdWGvtmXzOg42V70WtXS1FjLYsMbYmGnDsSpPD1T56cfv01nSWy6kPjMpJuEqCROIkrnJ56MC8JnN4GAc1amN7mvpJQ39ZQ7yBG8NzZDh1gAWrQSPD5X-03b0AulyZbE2dR8TkKCUxZYzZG9YcERAzhTVocKxt2ufWQkl8YYq3qEnl3WoqFaNFRPLGcr5lC9v5mzHvg47pTORyXWf52qmh3GnfPejhqvWZNyh4INtVsWsmzisqLK09tlDG8DWDZs5uV_rv9KPZAngc1A_lrtb7otveHgZ-OO-tN9pO6dfPoyO_sNOe8HxA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOCAqo5WkkOKHQnTjPAwdUqLb0cWql3sLYmY222mZX2V2qvfAH-Dn8QWYSpwKk9oDUq-NH5LHnIX_zjVJvXV6CzTMIiJ2hIAKLQVYSBCUMLELkwrxFVR4dJ8PT6OtZfLamfvW5MAKr9Lq_0-mttvYtO343d2bjseT48m1LpWqWsKRB4pGVB7S65Lht_nH_Mwv5XRjufTnZHQa-tEDgIhMuAqKU2FVOrRs4MrYU1rYBlDjiX3YmdrkkrIaOYgsxgnMmi9AiJoAZZuIi8bx31N2I1YWUTfjw4wpXAvLO1-FKIJDf85k6Hajs3I2FIzw0whsKYK6zhv_YhdbY7T1UD7yXqj91G_FIrVG9qTZ2--Jwm-r-HzyGj9VPDuaxtFiX2pfVucCqlvRIfYnfSaOdT5tWN2nB2Vd6tmxIO2wstyA104om2q70fCWZiC11NE4mK30xLdvqYjKi4ei-ao-RlirKWhbrZvCZpLqkqiF6ok5vRRRP1Xo9rWlLacpS4vBtNCJh3UkTzEfI5jdhFwWsSfNtBf1uF85ToEsljknRY93OC5FQIRIqBhmHR2Zbvb8aM-sIQG7sHfdCLP46xgVbqBvHveklXrAk5dEGa5ouuVPGOjVK8ji8vo_hbYCMNal59p_rv1Ybw5Ojw-Jw__jgubonXwSzA_ELtb5olvSSPa-FfdWedK2-3fbV-g0lXUQi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadband+electromagnetic+wave+absorption+using+pure+carbon+aerogel+by+synergistically+modulating+propagation+path+and+carbonization+degree&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Su%2C+Xiaogang&rft.au=Wang%2C+Jun&rft.au=Han%2C+Mengjie&rft.au=Liu%2C+Yanan&rft.date=2023-12-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=652&rft.spage=780&rft.epage=788&rft_id=info:doi/10.1016%2Fj.jcis.2023.08.113&rft.externalDocID=S0021979723016016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |