Broadband electromagnetic wave absorption using pure carbon aerogel by synergistically modulating propagation path and carbonization degree

[Display omitted] Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effe...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 652; no. Pt A; pp. 780 - 788
Main Authors Su, Xiaogang, Wang, Jun, Han, Mengjie, Liu, Yanan, Zhang, Bin, Huo, Siqi, Wu, Qilei, Liu, Yaqing, Xu, He-Xiu
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effective absorption. Herein, a novel strategy using pure carbon aerogel with oriented structure was reported to enhance the EM wave absorption by synergistically modulating the wave propagation path and carbonization degree. The aerogel contained proposed modified carbon nanofibers (MCNF) derived from bacterial cellulose (BC), and core-shell carbon nanofibers @ reduced oxide graphene (CNF@RGO). The oriented structure was induced by the temperature field, which manifests anisotropic EM constitutive parameters (εx ≠ εz) at different directions of incident wave. The carbonization degree was adjusted by varying the carbonization temperature. At the carbonization temperature of 700 °C, the maximum reflection loss and effective absorption bandwidth reached −53.94 dB and 7.14 GHz, respectively, enabling the aerogel to outperform its previous counterparts. To clarify the EM wave mode-of-action in conjunction, physical models of the aerogel were established in addition to finite element simulation and theoretical analysis. Notably, the aerogel with a density of 3.6 mg/cm3 featured ultra-light weight, superhydrophobicity, superior compressibility, and thermal insulation. Our work offers an efficient strategy for designing broadband and multifunctional EM wave absorption materials (EWAMs), promising great potentials in complex stealth equipment.
AbstractList Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effective absorption. Herein, a novel strategy using pure carbon aerogel with oriented structure was reported to enhance the EM wave absorption by synergistically modulating the wave propagation path and carbonization degree. The aerogel contained proposed modified carbon nanofibers (MCNF) derived from bacterial cellulose (BC), and core-shell carbon nanofibers @ reduced oxide graphene (CNF@RGO). The oriented structure was induced by the temperature field, which manifests anisotropic EM constitutive parameters (εx ≠ εz) at different directions of incident wave. The carbonization degree was adjusted by varying the carbonization temperature. At the carbonization temperature of 700 °C, the maximum reflection loss and effective absorption bandwidth reached -53.94 dB and 7.14 GHz, respectively, enabling the aerogel to outperform its previous counterparts. To clarify the EM wave mode-of-action in conjunction, physical models of the aerogel were established in addition to finite element simulation and theoretical analysis. Notably, the aerogel with a density of 3.6 mg/cm3 featured ultra-light weight, superhydrophobicity, superior compressibility, and thermal insulation. Our work offers an efficient strategy for designing broadband and multifunctional EM wave absorption materials (EWAMs), promising great potentials in complex stealth equipment.Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effective absorption. Herein, a novel strategy using pure carbon aerogel with oriented structure was reported to enhance the EM wave absorption by synergistically modulating the wave propagation path and carbonization degree. The aerogel contained proposed modified carbon nanofibers (MCNF) derived from bacterial cellulose (BC), and core-shell carbon nanofibers @ reduced oxide graphene (CNF@RGO). The oriented structure was induced by the temperature field, which manifests anisotropic EM constitutive parameters (εx ≠ εz) at different directions of incident wave. The carbonization degree was adjusted by varying the carbonization temperature. At the carbonization temperature of 700 °C, the maximum reflection loss and effective absorption bandwidth reached -53.94 dB and 7.14 GHz, respectively, enabling the aerogel to outperform its previous counterparts. To clarify the EM wave mode-of-action in conjunction, physical models of the aerogel were established in addition to finite element simulation and theoretical analysis. Notably, the aerogel with a density of 3.6 mg/cm3 featured ultra-light weight, superhydrophobicity, superior compressibility, and thermal insulation. Our work offers an efficient strategy for designing broadband and multifunctional EM wave absorption materials (EWAMs), promising great potentials in complex stealth equipment.
[Display omitted] Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effective absorption. Herein, a novel strategy using pure carbon aerogel with oriented structure was reported to enhance the EM wave absorption by synergistically modulating the wave propagation path and carbonization degree. The aerogel contained proposed modified carbon nanofibers (MCNF) derived from bacterial cellulose (BC), and core-shell carbon nanofibers @ reduced oxide graphene (CNF@RGO). The oriented structure was induced by the temperature field, which manifests anisotropic EM constitutive parameters (εx ≠ εz) at different directions of incident wave. The carbonization degree was adjusted by varying the carbonization temperature. At the carbonization temperature of 700 °C, the maximum reflection loss and effective absorption bandwidth reached −53.94 dB and 7.14 GHz, respectively, enabling the aerogel to outperform its previous counterparts. To clarify the EM wave mode-of-action in conjunction, physical models of the aerogel were established in addition to finite element simulation and theoretical analysis. Notably, the aerogel with a density of 3.6 mg/cm3 featured ultra-light weight, superhydrophobicity, superior compressibility, and thermal insulation. Our work offers an efficient strategy for designing broadband and multifunctional EM wave absorption materials (EWAMs), promising great potentials in complex stealth equipment.
Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical conductivity. However, conventional means were typically available by combining carbon and other materials to achieve effective absorption. Herein, a novel strategy using pure carbon aerogel with oriented structure was reported to enhance the EM wave absorption by synergistically modulating the wave propagation path and carbonization degree. The aerogel contained proposed modified carbon nanofibers (MCNF) derived from bacterial cellulose (BC), and core-shell carbon nanofibers @ reduced oxide graphene (CNF@RGO). The oriented structure was induced by the temperature field, which manifests anisotropic EM constitutive parameters (εₓ ≠ εz) at different directions of incident wave. The carbonization degree was adjusted by varying the carbonization temperature. At the carbonization temperature of 700 °C, the maximum reflection loss and effective absorption bandwidth reached −53.94 dB and 7.14 GHz, respectively, enabling the aerogel to outperform its previous counterparts. To clarify the EM wave mode-of-action in conjunction, physical models of the aerogel were established in addition to finite element simulation and theoretical analysis. Notably, the aerogel with a density of 3.6 mg/cm³ featured ultra-light weight, superhydrophobicity, superior compressibility, and thermal insulation. Our work offers an efficient strategy for designing broadband and multifunctional EM wave absorption materials (EWAMs), promising great potentials in complex stealth equipment.
Author Han, Mengjie
Liu, Yaqing
Xu, He-Xiu
Wu, Qilei
Zhang, Bin
Su, Xiaogang
Wang, Jun
Liu, Yanan
Huo, Siqi
Author_xml – sequence: 1
  givenname: Xiaogang
  orcidid: 0000-0002-9323-3916
  surname: Su
  fullname: Su, Xiaogang
  email: sxgwhut@163.com
  organization: Key Laboratory of Functional Nanocomposites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: Key Laboratory of Functional Nanocomposites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
– sequence: 3
  givenname: Mengjie
  surname: Han
  fullname: Han, Mengjie
  organization: Key Laboratory of Functional Nanocomposites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
– sequence: 4
  givenname: Yanan
  surname: Liu
  fullname: Liu, Yanan
  organization: Key Laboratory of Functional Nanocomposites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
– sequence: 5
  givenname: Bin
  surname: Zhang
  fullname: Zhang, Bin
  organization: School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
– sequence: 6
  givenname: Siqi
  orcidid: 0000-0002-6454-5208
  surname: Huo
  fullname: Huo, Siqi
  organization: Center for Future Materials, University of Southern Queensland, Springfield 4300, Australia
– sequence: 7
  givenname: Qilei
  surname: Wu
  fullname: Wu, Qilei
  organization: Science and Technology on Electromagnetic Compatibility Laboratory, China Ship Development and Design Centre, Wuhan 430070, China
– sequence: 8
  givenname: Yaqing
  surname: Liu
  fullname: Liu, Yaqing
  email: lyq@nuc.edu.cn
  organization: Key Laboratory of Functional Nanocomposites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
– sequence: 9
  givenname: He-Xiu
  surname: Xu
  fullname: Xu, He-Xiu
  email: hxxuellen@gmail.com
  organization: Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
BookMark eNqFkctu3CAUhlGVSJ1cXiArlt3YBTPYWOqmjXqTInXTrtExPuMyYsAFnGryCn3pMuOuskhXSEf_9x90vity4YNHQu44qznj7dt9vTc21Q1rRM1Uzbl4RTac9bLqOBMXZMNYw6u-67vX5CqlPWOcS9lvyJ8PMcA4gB8pOjQ5hgNMHrM19Dc8IoUhhThnGzxdkvUTnZeI1EAcygQwhgkdHY40HT3GyaYCgnNHegjj4iCfiRhmmODcMUP-SU_L1gb7tI5HnCLiDbncgUt4---9Jj8-ffx-_6V6-Pb56_37h8psRZMrxA7bTnaDYQbFMLJ2KxkfYYeKGyFN3wvZNwblwCVwY4TawgDQclCguBTimrxZe8vPfi2Ysj7YZNA58BiWpEUJcdUK9f9oo2Sntm0vmxJt1qiJIaWIOz1He4B41JzpkyS91ydJ-iRJM6WLpAKpZ5Cx-XyTHMG6l9F3K4rlVI8Wo07Gojc42lhE6jHYl_C_3cCz4w
CitedBy_id crossref_primary_10_1021_acsanm_3c05693
crossref_primary_10_1002_adfm_202403397
crossref_primary_10_1002_smll_202401755
crossref_primary_10_1016_j_diamond_2023_110443
crossref_primary_10_1016_j_diamond_2025_112066
crossref_primary_10_1016_j_carbon_2024_119105
crossref_primary_10_1016_j_cej_2024_150952
crossref_primary_10_1016_j_mtphys_2023_101277
crossref_primary_10_1016_j_jcis_2024_08_211
crossref_primary_10_1016_j_jmst_2024_01_006
crossref_primary_10_1016_j_jcis_2024_10_057
crossref_primary_10_1016_j_carbon_2024_119409
crossref_primary_10_1016_j_ceramint_2024_04_077
crossref_primary_10_1016_j_nanoen_2023_108938
crossref_primary_10_1021_acsami_3c13489
crossref_primary_10_1039_D4TC00929K
crossref_primary_10_1002_smll_202405371
crossref_primary_10_1016_j_cej_2025_160646
crossref_primary_10_1617_s11527_023_02268_9
crossref_primary_10_1002_pc_29430
crossref_primary_10_1021_acsanm_4c03838
crossref_primary_10_1016_j_carbon_2024_119475
crossref_primary_10_1016_j_jcis_2023_09_121
crossref_primary_10_1016_j_diamond_2023_110594
crossref_primary_10_1016_j_carbon_2024_119412
crossref_primary_10_1016_j_mtcomm_2024_110178
crossref_primary_10_1016_j_polymdegradstab_2023_110634
crossref_primary_10_1007_s10853_023_09292_8
crossref_primary_10_1016_j_coco_2024_102157
crossref_primary_10_1016_j_eurpolymj_2023_112634
crossref_primary_10_1002_smll_202403583
crossref_primary_10_1016_j_cej_2024_153663
crossref_primary_10_1016_j_compositesb_2024_111572
crossref_primary_10_1016_j_jcis_2024_09_017
crossref_primary_10_1016_j_cej_2024_154777
crossref_primary_10_1002_adfm_202414838
crossref_primary_10_1016_j_matdes_2023_112397
Cites_doi 10.1016/j.carbon.2021.04.053
10.1016/j.compscitech.2022.109663
10.1016/j.compositesb.2022.110403
10.1016/j.carbon.2023.02.052
10.1007/s40820-023-01158-7
10.1007/s40820-020-0393-7
10.1016/j.cej.2022.137279
10.1016/j.carbon.2021.11.047
10.1073/pnas.2105610118
10.1016/j.compositesb.2021.109565
10.1016/j.carbon.2023.118070
10.1016/j.jcis.2023.05.094
10.1016/j.carbon.2022.10.015
10.1021/acsnano.3c02170
10.1016/j.carbon.2023.03.024
10.1016/j.carbon.2022.02.016
10.1002/adma.202207969
10.34133/2021/9806789
10.1002/adfm.202300374
10.1021/acs.iecr.1c03585
10.1016/j.carbon.2023.01.057
10.1002/adfm.202211996
10.1021/acsnano.0c09982
10.1016/j.ceramint.2023.02.054
10.1007/s12274-023-5522-4
10.1002/adpr.202200063
10.1021/acsnano.2c06164
10.1021/acsami.1c21272
10.1007/s12613-022-2476-6
10.1007/s12274-022-4494-0
10.1016/j.compositesa.2022.106814
10.1016/j.jmst.2022.04.005
10.1016/j.compositesa.2021.106781
10.1002/adfm.202213357
10.1016/j.cej.2022.136975
10.1016/j.carbon.2020.06.013
10.1016/j.jcis.2022.05.165
10.1016/j.gca.2008.10.041
10.1016/j.apsusc.2022.153681
10.1002/adfm.202202588
10.1016/j.carbon.2022.03.029
10.1016/j.carbon.2022.05.057
10.1021/acsnano.2c08678
10.1016/j.jcis.2022.01.063
10.1021/acsami.2c22935
10.1016/j.carbon.2021.07.019
10.1016/j.jmst.2022.05.058
10.1007/s40820-022-00986-3
10.1016/j.jcis.2022.08.094
10.1016/j.carbon.2021.01.138
10.1016/j.carbon.2021.01.001
10.1016/j.carbon.2023.02.067
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2023.08.113
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 788
ExternalDocumentID 10_1016_j_jcis_2023_08_113
S0021979723016016
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
53G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SSH
VH1
WUQ
ZGI
ZXP
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c432t-ee7e6757bc0ce3bd064501dafe81c35c993592ce5b15a1cc384abaa61a8a81533
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 16:12:57 EDT 2025
Tue Aug 05 09:20:03 EDT 2025
Tue Jul 01 04:19:11 EDT 2025
Thu Apr 24 22:56:53 EDT 2025
Fri Feb 23 02:36:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Electromagnetic wave absorption
Oriented structures
Propagation path
Carbon aerogel
Carbonization degree
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-ee7e6757bc0ce3bd064501dafe81c35c993592ce5b15a1cc384abaa61a8a81533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9323-3916
0000-0002-6454-5208
PQID 2857846952
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_3153186383
proquest_miscellaneous_2857846952
crossref_primary_10_1016_j_jcis_2023_08_113
crossref_citationtrail_10_1016_j_jcis_2023_08_113
elsevier_sciencedirect_doi_10_1016_j_jcis_2023_08_113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Shu, Wu, Li, Li, Shi (b0090) 2022; 613
Mao, Fan, Long, Li, Chen, Zhou (b0095) 2023; 49
Cheng, Wang, Zhang, Zhao, Wang (b0110) 2021; 183
Tingting, Yuying, Yuxin, Laibin, Ting, Alan, Zhenjiang, Meng (b0225) 2023; 206
Yin, Wu, Tang, Liu, Zhang, Bu, Dai, Zhao, Liu (b0085) 2022; 446
Wang, Han, Liu, Xiang, Liang, Su, Liu (b0120) 2023; 646
Kong, Zhang, Liu, Wu, Fan, Cao, Huang (b0070) 2023; 207
Li, Xu, Li, Zhi, Chen, Lu, Wang, Liu, Meng (b0135) 2022; 231
Xie, Wang, Sun, Wang, Yu, Du, Wu (b0075) 2023; 133
Biesinger (b0170) 2022; 597
Wang, Liu, Jia, Zhao, Wu (b0195) 2022; 15
Wu, Chen, Han, Liu, Xu, Yu, Wang, Wen, Ju, Gu (b0205) 2023; 16
Li, Yang, Wu, Zhao, Jin, Wang, Li, Liu, Liu, Zeng (b0020) 2022; 16
Wenting, Enjie, Wenxi, Jiaqiang, Chuyang, Liying (b0260) 2023; C
Zhang, Du, Hou, Ding, Huang, Chen, Ma, Lu, Tang (b0165) 2022; 188
Qiao, Wang, Wei, Li, Lei, Lei, Wei, Zhang (b0240) 2022; 18
Liu, Wang, Zhang, Huang, Zhang, Liu, Zhang, Che (b0210) 2022; 32
Dawei, Lei, Fengyuan, Hao, Jia, Tong, Hongjie, Yunchen (b0220) 2022; 196
Wang, Xu, Wang, Luo, Wang, Wang (b0035) 2022; 3
Kong, Zhang, Liu, Xu, Fan, Huang (b0125) 2023; 207
Zhang, Tian, Qin, Qiao, Pan, Wu, Wang, Zhao, Liu, Cui (b0030) 2023; 17
Su, Han, Wang, Wu, Duan, Liang, Zhang, Pu, Liu (b0050) 2022; 624
Xu, Lin, Chen, Fan, Pei, Yang, Kou, Wang, Zou, Xi, Yin, Su, Zhou, Dai, Pan, Zhao (b0040) 2023; 201
Cao, Yang, Zhao, Xue (b0160) 2023; 15
Cui, Zhou, Zhao, You, Yang, Fan, Wu, Che (b0275) 2023; 210
Yan, Xiaochuang, Jian, Liaona, Hongge, Biao, Renchao (b0230) 2022; 191
Huang, Zhao, Wu, Zhou, Tan, Tang, Ji (b0235) 2022; 446
Jia, Kong, Yu, Ma, Pan, Wu (b0055) 2022; 127
Liang, Li, Yan, Feng, Wang, Zhang, Zhou, Liu, Shen, Xie (b0265) 2021; 15
Zheng, Zeng, Qiao, Liu, Liu (b0065) 2022; 155
Wu, Yang, Wang, Wu, Pan, Zhang, Liu, Zeng (b0140) 2023; 35
Su, Han, Liu, Wang, Liang, Liu (b0045) 2022; 628
Wei, He, Li, Ma, Dang, Liu, Gu (b0080) 2023; 36
Fushuo, Peiying, Feiyue, Zhihua, Jingwen, Peigen, Long, Michel, Longzhu, ZhengMing (b0255) 2023; 15
Wang, Zhou, Zeng, Chen, Luo, Fan, Li (b0060) 2021; 175
Xu, Wang, Hu, Wang, Wang, Wang, Zeng, Li, Zhang, Huang (b0025) 2021; 2021
Pan, Ning, Li, Batalu, Guo, Wang, Wu, Lu (b0005) 2023; 33
Chaobo, Wei, Chunlei, Jie, Yang, Mengjie, Zongwei, Yaqing (b0010) 2023; 471
Y. Ma, D. Chen, Z. Fang, Y. Zheng, W. Li, S. Xu, X. Lu, G. Shao, Q. Liu, W. Yang, High energy density and extremely stable supercapacitors based on carbon aerogels with 100% capacitance retention up to 65,000 cycles, Proc. Natl. Acad. Sci. 118(21) (2021) e2105610118.
Schindler M, Hawthorne F C, Freund M S, et al. XPS spectra of uranyl minerals and synthetic uranyl compounds. II: The O 1s spectrum. Geochimi Cosmochim Ac. 73(9) (2009) 2488-2509.
Li, Wu, Yang, Pan, Wang, Wang, Xiao, Liu, Liu, Zeng (b0015) 2023; 33
Pan, Liu, Deng, Dong, Zhu, Huang, Shi, Lu (b0130) 2021; 179
Yang, Wang, Lu, Cheng, Wang, Li (b0155) 2023; 205
Fei, Wang, Yuan, Liang, Chen, Zou (b0250) 2022; 61
Sun, Xiong, Zhang, Chen, Qin, Wang, Wu, Liu (b0190) 2022; 228
Yue-Yi, Jin-Long, Nan, Jun-Feng, Jian-Hua, Ding-Xiang, Zhong-Ming (b0245) 2022; 15
Song, Zhang, Chen, Jia, Zhou, Liu, Wang (b0100) 2021; 176
Ding, Du, Liu, Zhang, Zhao, Hou, Wang, Hassan, Huang, Yue, Chen, Ma, Lu (b0105) 2023; 249
Fei, Liang, Zhou, Chen, Zou (b0115) 2020; 167
Guo, Su, Chen, Cheng, Wang, Gong, Luo (b0215) 2022; 14
Ding, Liu, Yan, Huang, Ryu, Lan, Yu, Zhong, Yang (b0180) 2020; 12
Tao, Xu, Pei, Gu, He, Zhang, Tao, Zhou, Yao, Tao, Wu (b0270) 2022; 33
Yang, Wu, Li, Liu, Pan, Zeng, Liu (b0145) 2022; 16
Zeng, Zhao, Yin, Nie, Xie, Yu, Stucky (b0185) 2022; 193
Ni, Chen, Jiang, Luo, Zou, Liu (b0200) 2022; 154
Kong, Luo, Zhang, Zhang, Liang (b0150) 2023; 30
Wu (10.1016/j.jcis.2023.08.113_b0140) 2023; 35
Yang (10.1016/j.jcis.2023.08.113_b0155) 2023; 205
Zhang (10.1016/j.jcis.2023.08.113_b0030) 2023; 17
Li (10.1016/j.jcis.2023.08.113_b0015) 2023; 33
Cao (10.1016/j.jcis.2023.08.113_b0160) 2023; 15
Wenting (10.1016/j.jcis.2023.08.113_b0260) 2023; C
Wei (10.1016/j.jcis.2023.08.113_b0080) 2023; 36
Xie (10.1016/j.jcis.2023.08.113_b0075) 2023; 133
Cheng (10.1016/j.jcis.2023.08.113_b0110) 2021; 183
Fei (10.1016/j.jcis.2023.08.113_b0115) 2020; 167
Xu (10.1016/j.jcis.2023.08.113_b0025) 2021; 2021
Kong (10.1016/j.jcis.2023.08.113_b0070) 2023; 207
Wang (10.1016/j.jcis.2023.08.113_b0195) 2022; 15
Shu (10.1016/j.jcis.2023.08.113_b0090) 2022; 613
Ni (10.1016/j.jcis.2023.08.113_b0200) 2022; 154
Fei (10.1016/j.jcis.2023.08.113_b0250) 2022; 61
Yin (10.1016/j.jcis.2023.08.113_b0085) 2022; 446
Yan (10.1016/j.jcis.2023.08.113_b0230) 2022; 191
Wu (10.1016/j.jcis.2023.08.113_b0205) 2023; 16
Tingting (10.1016/j.jcis.2023.08.113_b0225) 2023; 206
Qiao (10.1016/j.jcis.2023.08.113_b0240) 2022; 18
Ding (10.1016/j.jcis.2023.08.113_b0105) 2023; 249
Pan (10.1016/j.jcis.2023.08.113_b0005) 2023; 33
Li (10.1016/j.jcis.2023.08.113_b0135) 2022; 231
Huang (10.1016/j.jcis.2023.08.113_b0235) 2022; 446
10.1016/j.jcis.2023.08.113_b0175
Zeng (10.1016/j.jcis.2023.08.113_b0185) 2022; 193
Pan (10.1016/j.jcis.2023.08.113_b0130) 2021; 179
Fushuo (10.1016/j.jcis.2023.08.113_b0255) 2023; 15
Ding (10.1016/j.jcis.2023.08.113_b0180) 2020; 12
Liang (10.1016/j.jcis.2023.08.113_b0265) 2021; 15
Wang (10.1016/j.jcis.2023.08.113_b0035) 2022; 3
Song (10.1016/j.jcis.2023.08.113_b0100) 2021; 176
Yue-Yi (10.1016/j.jcis.2023.08.113_b0245) 2022; 15
Li (10.1016/j.jcis.2023.08.113_b0020) 2022; 16
Zheng (10.1016/j.jcis.2023.08.113_b0065) 2022; 155
Chaobo (10.1016/j.jcis.2023.08.113_b0010) 2023; 471
10.1016/j.jcis.2023.08.113_b0280
Cui (10.1016/j.jcis.2023.08.113_b0275) 2023; 210
Xu (10.1016/j.jcis.2023.08.113_b0040) 2023; 201
Liu (10.1016/j.jcis.2023.08.113_b0210) 2022; 32
Yang (10.1016/j.jcis.2023.08.113_b0145) 2022; 16
Dawei (10.1016/j.jcis.2023.08.113_b0220) 2022; 196
Sun (10.1016/j.jcis.2023.08.113_b0190) 2022; 228
Su (10.1016/j.jcis.2023.08.113_b0050) 2022; 624
Kong (10.1016/j.jcis.2023.08.113_b0125) 2023; 207
Kong (10.1016/j.jcis.2023.08.113_b0150) 2023; 30
Tao (10.1016/j.jcis.2023.08.113_b0270) 2022; 33
Guo (10.1016/j.jcis.2023.08.113_b0215) 2022; 14
Biesinger (10.1016/j.jcis.2023.08.113_b0170) 2022; 597
Su (10.1016/j.jcis.2023.08.113_b0045) 2022; 628
Jia (10.1016/j.jcis.2023.08.113_b0055) 2022; 127
Zhang (10.1016/j.jcis.2023.08.113_b0165) 2022; 188
Wang (10.1016/j.jcis.2023.08.113_b0060) 2021; 175
Mao (10.1016/j.jcis.2023.08.113_b0095) 2023; 49
Wang (10.1016/j.jcis.2023.08.113_b0120) 2023; 646
References_xml – volume: 624
  start-page: 619
  year: 2022
  end-page: 628
  ident: b0050
  article-title: Regulated dielectric loss based on core-sheath carbon-carbon hierarchical nanofibers toward the high-performance microwave absorption
  publication-title: J. Colloid. Interf. Sci.
– volume: 36
  year: 2023
  ident: b0080
  article-title: Hollow Co/NC@MnO
  publication-title: Mater Today Phys.
– volume: 191
  start-page: 625
  year: 2022
  end-page: 635
  ident: b0230
  article-title: Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation
  publication-title: Carbon
– volume: 18
  year: 2022
  ident: b0240
  article-title: Influence of crystalline phase evolution of shells on microwave absorption performance of core-shell Fe
  publication-title: Mater. Today. Nano.
– volume: 446
  year: 2022
  ident: b0085
  article-title: Structure regulation in N-doping biconical carbon frame decorated with CoFe
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 19293
  year: 2022
  end-page: 19304
  ident: b0020
  article-title: Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/ superaligned carbon nanotube film
  publication-title: ACS Nano
– volume: 12
  start-page: 63
  year: 2020
  ident: b0180
  article-title: An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors
  publication-title: Nano-micro Lett
– volume: 35
  start-page: 2207969
  year: 2023
  ident: b0140
  article-title: Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels
  publication-title: Adv. Mater.
– volume: 2021
  start-page: 9806789
  year: 2021
  ident: b0025
  article-title: Adaptable invisibility management using kirigami-inspired transformable metamaterials
  publication-title: Research
– volume: 61
  start-page: 1684
  year: 2022
  end-page: 1693
  ident: b0250
  article-title: Co nanoparticles encapsulated in carbon nanotubes decorated carbon aerogels toward excellent microwave absorption
  publication-title: Ind. Eng. Chem. Res.
– volume: 15
  start-page: 194
  year: 2023
  ident: b0255
  article-title: Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation
  publication-title: Nano-Micro Lett
– volume: 16
  start-page: 15042
  year: 2022
  end-page: 15052
  ident: b0145
  article-title: Biomimetic porous mXene sediment-based hydrogel for high-performance and multifunctional electromagnetic Interference Shielding
  publication-title: ACS Nano
– volume: 249
  year: 2023
  ident: b0105
  article-title: Reduced graphene oxide loaded with rich defects CoO/Co
  publication-title: Compos Part B-Eng.
– volume: 16
  start-page: 7801
  year: 2023
  end-page: 7809
  ident: b0205
  article-title: Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption
  publication-title: Nano Res.
– volume: 196
  start-page: 867
  year: 2022
  end-page: 876
  ident: b0220
  article-title: Hierarchical carbon nanotubes@Ni/C foams for high-performance microwave absorption
  publication-title: Carbon
– volume: 205
  start-page: 411
  year: 2023
  end-page: 421
  ident: b0155
  article-title: Construction of multi-dimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption
  publication-title: Carbon
– volume: 30
  start-page: 570
  year: 2023
  end-page: 580
  ident: b0150
  article-title: Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption
  publication-title: Int. J. Min. Met. Mater.
– reference: Y. Ma, D. Chen, Z. Fang, Y. Zheng, W. Li, S. Xu, X. Lu, G. Shao, Q. Liu, W. Yang, High energy density and extremely stable supercapacitors based on carbon aerogels with 100% capacitance retention up to 65,000 cycles, Proc. Natl. Acad. Sci. 118(21) (2021) e2105610118.
– volume: 201
  start-page: 1090
  year: 2023
  end-page: 1114
  ident: b0040
  article-title: Carbon-based cages with hollow confined structures for efficient microwave absorption: State of the art and prospects
  publication-title: Carbon
– volume: 155
  year: 2022
  ident: b0065
  article-title: Facile preparation of C/MnO/Co nanocomposite fibers for high-performance microwave absorption
  publication-title: Compos. Part. A-Appl S.
– volume: 15
  start-page: 7723
  year: 2022
  end-page: 7730
  ident: b0245
  article-title: Carbon aerogel microspheres with in-situ mineralized TiO
  publication-title: Nano Res.
– reference: Schindler M, Hawthorne F C, Freund M S, et al. XPS spectra of uranyl minerals and synthetic uranyl compounds. II: The O 1s spectrum. Geochimi Cosmochim Ac. 73(9) (2009) 2488-2509.
– volume: 597
  year: 2022
  ident: b0170
  article-title: Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review
  publication-title: Appl. Surf. Sci.
– volume: 133
  start-page: 1
  year: 2023
  end-page: 11
  ident: b0075
  article-title: Optimizing impedance matching by a dual-carbon Co-regulation strategy of Co
  publication-title: J. Mater. Sci. Technol.
– volume: 188
  start-page: 442
  year: 2022
  end-page: 452
  ident: b0165
  article-title: Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption
  publication-title: Carbon
– volume: 15
  start-page: 13
  year: 2022
  ident: b0195
  article-title: Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption
  publication-title: Nano-micro Lett
– volume: 206
  start-page: 181
  year: 2023
  end-page: 191
  ident: b0225
  article-title: Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance
  publication-title: Carbon
– volume: 32
  start-page: 2202588
  year: 2022
  ident: b0210
  article-title: Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction
  publication-title: Adv. Funct. Mater.
– volume: 127
  start-page: 153
  year: 2022
  end-page: 163
  ident: b0055
  article-title: Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties
  publication-title: J. Mater. Sci. Technol.
– volume: 193
  start-page: 26
  year: 2022
  end-page: 34
  ident: b0185
  article-title: Construction of NiCo2O4 nanosheets-covered Ti
  publication-title: Carbon
– volume: 49
  start-page: 16924
  year: 2023
  end-page: 16931
  ident: b0095
  article-title: Constructing 3D hierarchical CNTs/VO
  publication-title: Ceram. Int.
– volume: 15
  start-page: 9685
  year: 2023
  end-page: 9696
  ident: b0160
  article-title: Fabrication of an ultralight Ni-MOF-rGO aerogel with both dielectric and magnetic performances for enhanced microwave absorption: microspheres with hollow structure grow onto the GO nanosheets
  publication-title: ACS. Appl. Mater. Interf.
– volume: 231
  year: 2022
  ident: b0135
  article-title: Multifunctional antimony tin oxide/reduced graphene oxide aerogels with wideband microwave absorption and low infrared emissivity
  publication-title: Compos Part B-Eng.
– volume: 33
  start-page: 2211996
  year: 2022
  ident: b0270
  article-title: Catfish effect induced by anion sequential doping for microwave absorption
  publication-title: Adv. Funct. Mater.
– volume: 207
  start-page: 198
  year: 2023
  end-page: 206
  ident: b0070
  article-title: Hierarchical architecture bioinspired CNTs/CNF electromagnetic wave absorbing materials
  publication-title: Carbon
– volume: 176
  start-page: 279
  year: 2021
  end-page: 289
  ident: b0100
  article-title: A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption
  publication-title: Carbon
– volume: 17
  start-page: 12510
  year: 2023
  end-page: 12518
  ident: b0030
  article-title: Conductive metal–organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption
  publication-title: ACS Nano
– volume: 175
  start-page: 233
  year: 2021
  end-page: 242
  ident: b0060
  article-title: Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers
  publication-title: Carbon
– volume: 33
  start-page: 2300374
  year: 2023
  ident: b0005
  article-title: Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber
  publication-title: Adv. Funct. Mater.
– volume: 471
  year: 2023
  ident: b0010
  article-title: Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics
  publication-title: Chem. Eng. J.
– volume: 207
  start-page: 13
  year: 2023
  end-page: 22
  ident: b0125
  article-title: Flexible CNTs/CNF-WPU aerogel for smart electromagnetic wave absorbing with tuning effective absorption bandwidth
  publication-title: Carbon
– volume: 15
  start-page: 6622
  year: 2021
  end-page: 6632
  ident: b0265
  article-title: Multifunctional magnetic Ti
  publication-title: ACS Nano
– volume: 646
  start-page: 970
  year: 2023
  end-page: 979
  ident: b0120
  article-title: Multifunctional microwave absorption materials of multiscale cobalt sulfide/diatoms co-doped carbon aerogel
  publication-title: J. Colloid. Interf. Sci.
– volume: 210
  year: 2023
  ident: b0275
  article-title: 3D porous PVDF foam anchored with ultra-low content of graphene and Ni nanochains towards wideband electromagnetic waves absorption
  publication-title: Carbon
– volume: 167
  start-page: 575
  year: 2020
  end-page: 584
  ident: b0115
  article-title: Unique carbon nanofiber@ Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding
  publication-title: Carbon
– volume: 183
  start-page: 205
  year: 2021
  end-page: 215
  ident: b0110
  article-title: Growing MoO
  publication-title: Carbon
– volume: 14
  start-page: 3084
  year: 2022
  end-page: 3094
  ident: b0215
  article-title: Hollow beaded Fe
  publication-title: ACS Appl. Mater. Interf.
– volume: 228
  year: 2022
  ident: b0190
  article-title: One-dimensional Ag@NC-Co@NC composites with multiphase core-shell hetero-interfaces for boosting microwave absorption
  publication-title: Compos. Sci. Technol.
– volume: 628
  start-page: 984
  year: 2022
  end-page: 994
  ident: b0045
  article-title: In-situ construction of nitrogen-doped reduced graphene oxide@carbon nanofibers towards the synergetic enhancement of their microwave absorption properties via integrating point defects and structure engineering
  publication-title: J. Colloid. Interf. Sci.
– volume: 154
  year: 2022
  ident: b0200
  article-title: Anisotropic electromagnetic wave absorption performance of polyimide/multi-walled carbon nanotubes composite aerogels with aligned slit-like channels structure
  publication-title: Compos. Part. A-Appl S.
– volume: 179
  start-page: 554
  year: 2021
  end-page: 565
  ident: b0130
  article-title: Magnetic Fe
  publication-title: Carbon
– volume: 3
  start-page: 2200063
  year: 2022
  ident: b0035
  article-title: Multi-mode-assisted Broadband Impedance-gradient Thin Metamaterial Absorber
  publication-title: Adv. Photon. Res
– volume: 613
  start-page: 477
  year: 2022
  end-page: 487
  ident: b0090
  article-title: Fabrication of bimetallic metal-organic frameworks derived cobalt iron alloy@carbon-carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers
  publication-title: J. Colloid Interf Sci.
– volume: C
  year: 2023
  ident: b0260
  article-title: Microstructure controllable polyimide/MXene composite aerogels for high-temperature thermal insulation and microwave absorption
  publication-title: J. Mater. Chem.
– volume: 33
  start-page: 2213357
  year: 2023
  ident: b0015
  article-title: Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films
  publication-title: Adv. Funct. Mater.
– volume: 446
  year: 2022
  ident: b0235
  article-title: A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility
  publication-title: Chem. Eng. J.
– volume: 179
  start-page: 554
  year: 2021
  ident: 10.1016/j.jcis.2023.08.113_b0130
  article-title: Magnetic Fe3S4 LTMCs micro-flowers@ wax gourd aerogel-derived carbon hybrids as efficient and sustainable electromagnetic absorber
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.04.053
– volume: 228
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0190
  article-title: One-dimensional Ag@NC-Co@NC composites with multiphase core-shell hetero-interfaces for boosting microwave absorption
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2022.109663
– volume: 249
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0105
  article-title: Reduced graphene oxide loaded with rich defects CoO/Co3O4 for broadband microwave absorption
  publication-title: Compos Part B-Eng.
  doi: 10.1016/j.compositesb.2022.110403
– volume: 206
  start-page: 181
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0225
  article-title: Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.02.052
– volume: 15
  start-page: 194
  issue: 1
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0255
  article-title: Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-023-01158-7
– volume: 12
  start-page: 63
  issue: 1
  year: 2020
  ident: 10.1016/j.jcis.2023.08.113_b0180
  article-title: An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors
  publication-title: Nano-micro Lett
  doi: 10.1007/s40820-020-0393-7
– volume: 446
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0235
  article-title: A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137279
– volume: 188
  start-page: 442
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0165
  article-title: Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.11.047
– ident: 10.1016/j.jcis.2023.08.113_b0280
  doi: 10.1073/pnas.2105610118
– volume: 231
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0135
  article-title: Multifunctional antimony tin oxide/reduced graphene oxide aerogels with wideband microwave absorption and low infrared emissivity
  publication-title: Compos Part B-Eng.
  doi: 10.1016/j.compositesb.2021.109565
– volume: 18
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0240
  article-title: Influence of crystalline phase evolution of shells on microwave absorption performance of core-shell Fe3O4@TiO2 nanochains
  publication-title: Mater. Today. Nano.
– volume: 210
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0275
  article-title: 3D porous PVDF foam anchored with ultra-low content of graphene and Ni nanochains towards wideband electromagnetic waves absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.118070
– volume: 646
  start-page: 970
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0120
  article-title: Multifunctional microwave absorption materials of multiscale cobalt sulfide/diatoms co-doped carbon aerogel
  publication-title: J. Colloid. Interf. Sci.
  doi: 10.1016/j.jcis.2023.05.094
– volume: 201
  start-page: 1090
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0040
  article-title: Carbon-based cages with hollow confined structures for efficient microwave absorption: State of the art and prospects
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.10.015
– volume: 471
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0010
  article-title: Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics
  publication-title: Chem. Eng. J.
– volume: 17
  start-page: 12510
  issue: 13
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0030
  article-title: Conductive metal–organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c02170
– volume: 207
  start-page: 198
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0070
  article-title: Hierarchical architecture bioinspired CNTs/CNF electromagnetic wave absorbing materials
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.03.024
– volume: 191
  start-page: 625
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0230
  article-title: Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.02.016
– volume: 36
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0080
  article-title: Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption
  publication-title: Mater Today Phys.
– volume: 35
  start-page: 2207969
  issue: 1
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0140
  article-title: Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207969
– volume: 2021
  start-page: 9806789
  year: 2021
  ident: 10.1016/j.jcis.2023.08.113_b0025
  article-title: Adaptable invisibility management using kirigami-inspired transformable metamaterials
  publication-title: Research
  doi: 10.34133/2021/9806789
– volume: 33
  start-page: 2300374
  issue: 27
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0005
  article-title: Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202300374
– volume: 61
  start-page: 1684
  issue: 4
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0250
  article-title: Co nanoparticles encapsulated in carbon nanotubes decorated carbon aerogels toward excellent microwave absorption
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c03585
– volume: 205
  start-page: 411
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0155
  article-title: Construction of multi-dimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.01.057
– volume: 33
  start-page: 2211996
  issue: 8
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0270
  article-title: Catfish effect induced by anion sequential doping for microwave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211996
– volume: 15
  start-page: 6622
  issue: 4
  year: 2021
  ident: 10.1016/j.jcis.2023.08.113_b0265
  article-title: Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09982
– volume: 49
  start-page: 16924
  issue: 11
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0095
  article-title: Constructing 3D hierarchical CNTs/VO2 composite microspheres with superior electromagnetic absorption performance
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2023.02.054
– volume: 16
  start-page: 7801
  issue: 5
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0205
  article-title: Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-5522-4
– volume: 3
  start-page: 2200063
  issue: 10
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0035
  article-title: Multi-mode-assisted Broadband Impedance-gradient Thin Metamaterial Absorber
  publication-title: Adv. Photon. Res
  doi: 10.1002/adpr.202200063
– volume: 16
  start-page: 15042
  issue: 9
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0145
  article-title: Biomimetic porous mXene sediment-based hydrogel for high-performance and multifunctional electromagnetic Interference Shielding
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c06164
– volume: 14
  start-page: 3084
  issue: 2
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0215
  article-title: Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.1c21272
– volume: 30
  start-page: 570
  issue: 3
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0150
  article-title: Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption
  publication-title: Int. J. Min. Met. Mater.
  doi: 10.1007/s12613-022-2476-6
– volume: 15
  start-page: 7723
  issue: 8
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0245
  article-title: Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4494-0
– volume: 155
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0065
  article-title: Facile preparation of C/MnO/Co nanocomposite fibers for high-performance microwave absorption
  publication-title: Compos. Part. A-Appl S.
  doi: 10.1016/j.compositesa.2022.106814
– volume: 127
  start-page: 153
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0055
  article-title: Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.04.005
– volume: 154
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0200
  article-title: Anisotropic electromagnetic wave absorption performance of polyimide/multi-walled carbon nanotubes composite aerogels with aligned slit-like channels structure
  publication-title: Compos. Part. A-Appl S.
  doi: 10.1016/j.compositesa.2021.106781
– volume: 33
  start-page: 2213357
  issue: 11
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0015
  article-title: Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202213357
– volume: 446
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0085
  article-title: Structure regulation in N-doping biconical carbon frame decorated with CoFe2O4 and (Fe, Ni) for broadband microwave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136975
– volume: 167
  start-page: 575
  year: 2020
  ident: 10.1016/j.jcis.2023.08.113_b0115
  article-title: Unique carbon nanofiber@ Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.06.013
– volume: 624
  start-page: 619
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0050
  article-title: Regulated dielectric loss based on core-sheath carbon-carbon hierarchical nanofibers toward the high-performance microwave absorption
  publication-title: J. Colloid. Interf. Sci.
  doi: 10.1016/j.jcis.2022.05.165
– ident: 10.1016/j.jcis.2023.08.113_b0175
  doi: 10.1016/j.gca.2008.10.041
– volume: 597
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0170
  article-title: Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153681
– volume: 32
  start-page: 2202588
  issue: 33
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0210
  article-title: Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202202588
– volume: 193
  start-page: 26
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0185
  article-title: Construction of NiCo2O4 nanosheets-covered Ti3C2Tx MXene heterostructure for remarkable electromagnetic microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.03.029
– volume: 196
  start-page: 867
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0220
  article-title: Hierarchical carbon nanotubes@Ni/C foams for high-performance microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.05.057
– volume: 16
  start-page: 19293
  issue: 11
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0020
  article-title: Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/ superaligned carbon nanotube film
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c08678
– volume: 613
  start-page: 477
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0090
  article-title: Fabrication of bimetallic metal-organic frameworks derived cobalt iron alloy@carbon-carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers
  publication-title: J. Colloid Interf Sci.
  doi: 10.1016/j.jcis.2022.01.063
– volume: 15
  start-page: 9685
  issue: 7
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0160
  article-title: Fabrication of an ultralight Ni-MOF-rGO aerogel with both dielectric and magnetic performances for enhanced microwave absorption: microspheres with hollow structure grow onto the GO nanosheets
  publication-title: ACS. Appl. Mater. Interf.
  doi: 10.1021/acsami.2c22935
– volume: C
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0260
  article-title: Microstructure controllable polyimide/MXene composite aerogels for high-temperature thermal insulation and microwave absorption
  publication-title: J. Mater. Chem.
– volume: 183
  start-page: 205
  year: 2021
  ident: 10.1016/j.jcis.2023.08.113_b0110
  article-title: Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.07.019
– volume: 133
  start-page: 1
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0075
  article-title: Optimizing impedance matching by a dual-carbon Co-regulation strategy of Co3O4@rGO/celery stalks derived carbon composites for excellent microwave absorption
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.05.058
– volume: 15
  start-page: 13
  issue: 1
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0195
  article-title: Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption
  publication-title: Nano-micro Lett
  doi: 10.1007/s40820-022-00986-3
– volume: 628
  start-page: 984
  issue: Pt B
  year: 2022
  ident: 10.1016/j.jcis.2023.08.113_b0045
  article-title: In-situ construction of nitrogen-doped reduced graphene oxide@carbon nanofibers towards the synergetic enhancement of their microwave absorption properties via integrating point defects and structure engineering
  publication-title: J. Colloid. Interf. Sci.
  doi: 10.1016/j.jcis.2022.08.094
– volume: 176
  start-page: 279
  year: 2021
  ident: 10.1016/j.jcis.2023.08.113_b0100
  article-title: A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.01.138
– volume: 175
  start-page: 233
  year: 2021
  ident: 10.1016/j.jcis.2023.08.113_b0060
  article-title: Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.01.001
– volume: 207
  start-page: 13
  year: 2023
  ident: 10.1016/j.jcis.2023.08.113_b0125
  article-title: Flexible CNTs/CNF-WPU aerogel for smart electromagnetic wave absorbing with tuning effective absorption bandwidth
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.02.067
SSID ssj0011559
Score 2.5961614
Snippet [Display omitted] Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance...
Carbon materials were widely used as electromagnetic (EM) wave absorption due to their advantages of light weight, environmental resistance and high electrical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 780
SubjectTerms absorption
aerogels
anisotropy
Carbon aerogel
carbon nanofibers
carbonization
Carbonization degree
cellulose
compressibility
electrical conductivity
electromagnetic radiation
Electromagnetic wave absorption
finite element analysis
graphene
hydrophobicity
insulating materials
Oriented structures
Propagation path
temperature
Title Broadband electromagnetic wave absorption using pure carbon aerogel by synergistically modulating propagation path and carbonization degree
URI https://dx.doi.org/10.1016/j.jcis.2023.08.113
https://www.proquest.com/docview/2857846952
https://www.proquest.com/docview/3153186383
Volume 652
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCAqI8qiMxA2F7sR5OMdqRbWA6IlKvUVje3a11TZZpbugvfAH-NPMJE4FSO2BY6xxHHmcecjffKPUO18FcJWFhDgYSjJwmNhAkASYOITMp1WPqvx6VszOs88X-cWemo61MAKrjLZ_sOm9tY4jx3E3j9fLpdT48t9WStcsYUkDod3OslJO-YefNzAPkGu3AeYBiUjHwpkB43Xpl0LZnRqh8QQwtzmnf8x073tOH6tHMWjUJ8N3PVF71Byo-9OxV9uBevgHreBT9YtzawwOm6Bjl5srXDRSrah_4HfS6K7brjcVWmDvC73edqQ9do5HkLp2QSvtdvp6J4WBPZMzrlY7fdWGvtmXzOg42V70WtXS1FjLYsMbYmGnDsSpPD1T56cfv01nSWy6kPjMpJuEqCROIkrnJ56MC8JnN4GAc1amN7mvpJQ39ZQ7yBG8NzZDh1gAWrQSPD5X-03b0AulyZbE2dR8TkKCUxZYzZG9YcERAzhTVocKxt2ufWQkl8YYq3qEnl3WoqFaNFRPLGcr5lC9v5mzHvg47pTORyXWf52qmh3GnfPejhqvWZNyh4INtVsWsmzisqLK09tlDG8DWDZs5uV_rv9KPZAngc1A_lrtb7otveHgZ-OO-tN9pO6dfPoyO_sNOe8HxA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOCAqo5WkkOKHQnTjPAwdUqLb0cWql3sLYmY222mZX2V2qvfAH-Dn8QWYSpwKk9oDUq-NH5LHnIX_zjVJvXV6CzTMIiJ2hIAKLQVYSBCUMLELkwrxFVR4dJ8PT6OtZfLamfvW5MAKr9Lq_0-mttvYtO343d2bjseT48m1LpWqWsKRB4pGVB7S65Lht_nH_Mwv5XRjufTnZHQa-tEDgIhMuAqKU2FVOrRs4MrYU1rYBlDjiX3YmdrkkrIaOYgsxgnMmi9AiJoAZZuIi8bx31N2I1YWUTfjw4wpXAvLO1-FKIJDf85k6Hajs3I2FIzw0whsKYK6zhv_YhdbY7T1UD7yXqj91G_FIrVG9qTZ2--Jwm-r-HzyGj9VPDuaxtFiX2pfVucCqlvRIfYnfSaOdT5tWN2nB2Vd6tmxIO2wstyA104om2q70fCWZiC11NE4mK30xLdvqYjKi4ei-ao-RlirKWhbrZvCZpLqkqiF6ok5vRRRP1Xo9rWlLacpS4vBtNCJh3UkTzEfI5jdhFwWsSfNtBf1uF85ToEsljknRY93OC5FQIRIqBhmHR2Zbvb8aM-sIQG7sHfdCLP46xgVbqBvHveklXrAk5dEGa5ouuVPGOjVK8ji8vo_hbYCMNal59p_rv1Ybw5Ojw-Jw__jgubonXwSzA_ELtb5olvSSPa-FfdWedK2-3fbV-g0lXUQi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadband+electromagnetic+wave+absorption+using+pure+carbon+aerogel+by+synergistically+modulating+propagation+path+and+carbonization+degree&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Su%2C+Xiaogang&rft.au=Wang%2C+Jun&rft.au=Han%2C+Mengjie&rft.au=Liu%2C+Yanan&rft.date=2023-12-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=652&rft.spage=780&rft.epage=788&rft_id=info:doi/10.1016%2Fj.jcis.2023.08.113&rft.externalDocID=S0021979723016016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon