Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models

Bayesian inference for stochastic volatility models using MCMC methods highly depends on actual parameter values in terms of sampling efficiency. While draws from the posterior utilizing the standard centered parameterization break down when the volatility of volatility parameter in the latent state...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 76; pp. 408 - 423
Main Authors Kastner, Gregor, Frühwirth-Schnatter, Sylvia
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bayesian inference for stochastic volatility models using MCMC methods highly depends on actual parameter values in terms of sampling efficiency. While draws from the posterior utilizing the standard centered parameterization break down when the volatility of volatility parameter in the latent state equation is small, non-centered versions of the model show deficiencies for highly persistent latent variable series. The novel approach of ancillarity-sufficiency interweaving has recently been shown to aid in overcoming these issues for a broad class of multilevel models. It is demonstrated how such an interweaving strategy can be applied to stochastic volatility models in order to greatly improve sampling efficiency for all parameters and throughout the entire parameter range. Moreover, this method of “combining best of different worlds” allows for inference for parameter constellations that have previously been infeasible to estimate without the need to select a particular parameterization beforehand.
AbstractList Bayesian inference for stochastic volatility models using MCMC methods highly depends on actual parameter values in terms of sampling efficiency. While draws from the posterior utilizing the standard centered parameterization break down when the volatility of volatility parameter in the latent state equation is small, non-centered versions of the model show deficiencies for highly persistent latent variable series. The novel approach of ancillarity-sufficiency interweaving has recently been shown to aid in overcoming these issues for a broad class of multilevel models. It is demonstrated how such an interweaving strategy can be applied to stochastic volatility models in order to greatly improve sampling efficiency for all parameters and throughout the entire parameter range. Moreover, this method of "combining best of different worlds" allows for inference for parameter constellations that have previously been infeasible to estimate without the need to select a particular parameterization beforehand.
Author Frühwirth-Schnatter, Sylvia
Kastner, Gregor
Author_xml – sequence: 1
  givenname: Gregor
  surname: Kastner
  fullname: Kastner, Gregor
  email: gregor.kastner@wu.ac.at
– sequence: 2
  givenname: Sylvia
  surname: Frühwirth-Schnatter
  fullname: Frühwirth-Schnatter, Sylvia
  email: sylvia.fruehwirth-schnatter@wu.ac.at
BookMark eNqFkU9vEzEQxS3USqQtX4CTj-Wwi__GuxKXKIJSqRWHwtnyesfF0Wbd2k5Qvn0nDScO5WRr5vdGM-9dkLM5zUDIR85azvjy86b1ZXStYFy2jLeMiXdkwTsjGiO1OCMLhEzTKyPfk4tSNgwJZboFeV7NPk6Ty7EemrILIfoIsz_QOFfIf8Dt4_xIS82uwuOBXq8ebh8-0ZAyHVIq9di8X9-vKeB_62pMM00B-eR_Oyx5uk8TliccT7dphKlckfPgpgIf_r6X5Ne3rz_X35u7Hze369Vd45UUtQGPhwXWcy5gYMPSjJ00bsm7oPiIq7vBK68HPUjlOjMED0Z3KvRgBtYr5eUluT7NfcrpeYf72W0sHvDWGdKuWCG0FFz2Uv8X5VpzpjvBDaLdCfU5lZIhWB_r691oUZwsZ_YYiN3YYyD2GIhl3KLdKBX_SJ8yepYPb4u-nEToHOwjZFteA4IxZvDVjim-JX8BvSOoAg
CitedBy_id crossref_primary_10_2139_ssrn_3130157
crossref_primary_10_1007_s10687_019_00368_w
crossref_primary_10_1016_j_health_2024_100367
crossref_primary_10_2139_ssrn_4620913
crossref_primary_10_1016_j_ecosta_2016_08_002
crossref_primary_10_1142_S2010007824500039
crossref_primary_10_1111_obes_12438
crossref_primary_10_3390_jrfm14040145
crossref_primary_10_1007_s10640_023_00831_0
crossref_primary_10_1002_for_2498
crossref_primary_10_1057_s41308_023_00216_9
crossref_primary_10_1093_jjfinec_nbae035
crossref_primary_10_2139_ssrn_4418264
crossref_primary_10_1016_j_jimonfin_2020_102221
crossref_primary_10_1080_00401706_2024_2407316
crossref_primary_10_1016_j_ijforecast_2022_03_002
crossref_primary_10_7554_eLife_42950
crossref_primary_10_2139_ssrn_4010599
crossref_primary_10_1002_for_2524
crossref_primary_10_1007_s11222_022_10183_2
crossref_primary_10_1016_j_spl_2018_02_053
crossref_primary_10_2139_ssrn_4851797
crossref_primary_10_1111_rssb_12325
crossref_primary_10_32609_0042_8736_2022_9_34_52
crossref_primary_10_1080_26941899_2022_2152764
crossref_primary_10_3390_jrfm13090202
crossref_primary_10_1016_j_ins_2020_03_075
crossref_primary_10_1080_07474938_2024_2330127
crossref_primary_10_2139_ssrn_4016961
crossref_primary_10_1016_j_jedc_2020_103989
crossref_primary_10_1515_jtse_2018_0034
crossref_primary_10_1016_j_physa_2024_130330
crossref_primary_10_1080_10618600_2017_1322091
crossref_primary_10_1515_snde_2022_0077
crossref_primary_10_1515_snde_2022_0110
crossref_primary_10_1515_scid_2020_0005
crossref_primary_10_1080_07350015_2024_2362269
crossref_primary_10_1080_23322039_2022_2028975
crossref_primary_10_2139_ssrn_2820071
crossref_primary_10_2139_ssrn_4627773
crossref_primary_10_1214_22_STS867
crossref_primary_10_1002_jae_2804
crossref_primary_10_1016_j_jbankfin_2019_03_017
crossref_primary_10_1016_j_jeconom_2024_105787
crossref_primary_10_1016_j_jspi_2022_02_009
crossref_primary_10_1016_j_ecosta_2019_08_002
crossref_primary_10_1016_j_ecosta_2020_12_001
crossref_primary_10_1016_j_ecosta_2017_11_001
crossref_primary_10_1016_j_ecosta_2023_08_001
crossref_primary_10_1214_18_BA1099
crossref_primary_10_3390_en11112893
crossref_primary_10_1080_10618600_2022_2077350
crossref_primary_10_2139_ssrn_2688343
crossref_primary_10_1002_for_3121
crossref_primary_10_1002_ijfe_3008
crossref_primary_10_1016_j_jedc_2022_104580
crossref_primary_10_1007_s10614_019_09958_z
crossref_primary_10_1088_1742_6596_2489_1_012002
crossref_primary_10_2139_ssrn_4816040
crossref_primary_10_2139_ssrn_2659017
crossref_primary_10_1002_for_2667
crossref_primary_10_1016_j_ijforecast_2022_06_002
crossref_primary_10_1515_snde_2018_0098
crossref_primary_10_2139_ssrn_2750773
crossref_primary_10_1007_s11222_020_09944_8
crossref_primary_10_1007_s00181_023_02437_3
crossref_primary_10_1016_j_irfa_2023_103038
crossref_primary_10_1080_07350015_2021_1990772
crossref_primary_10_2139_ssrn_2340389
crossref_primary_10_1080_07474938_2023_2237274
crossref_primary_10_1016_j_jebo_2021_09_044
crossref_primary_10_1016_j_jinteco_2020_103296
crossref_primary_10_1016_j_eneco_2016_03_026
crossref_primary_10_1016_j_jeconom_2014_06_008
crossref_primary_10_1016_j_econlet_2022_110374
crossref_primary_10_1016_j_jimonfin_2020_102151
crossref_primary_10_2139_ssrn_4322548
crossref_primary_10_3389_fenrg_2020_00045
crossref_primary_10_1016_j_jebo_2019_03_004
crossref_primary_10_1214_21_AOAS1488
crossref_primary_10_1111_rssa_12569
crossref_primary_10_1002_ijfe_3110
crossref_primary_10_3390_econometrics8020020
crossref_primary_10_1016_j_econlet_2016_11_008
crossref_primary_10_1109_TNNLS_2024_3376530
crossref_primary_10_1002_for_2680
crossref_primary_10_1214_21_BA1268
crossref_primary_10_3141_2442_08
crossref_primary_10_1007_s11079_020_09604_4
crossref_primary_10_1016_j_resourpol_2023_104167
crossref_primary_10_1111_boer_12094
crossref_primary_10_17016_feds_2017_066
crossref_primary_10_1016_j_pacfin_2017_06_007
crossref_primary_10_1016_j_econlet_2025_112260
crossref_primary_10_1108_IMEFM_04_2019_0137
crossref_primary_10_1111_jtsa_12561
crossref_primary_10_1016_j_jeconom_2024_105843
crossref_primary_10_1016_j_pacfin_2024_102509
crossref_primary_10_1093_jjfinec_nby010
crossref_primary_10_1016_j_frl_2021_102365
crossref_primary_10_1080_1406099X_2020_1813964
crossref_primary_10_1002_jae_2680
crossref_primary_10_1016_j_econmod_2021_105643
crossref_primary_10_1007_s00181_022_02309_2
crossref_primary_10_3390_jrfm11040071
crossref_primary_10_1080_07350015_2020_1713796
crossref_primary_10_1007_s00362_024_01652_z
crossref_primary_10_1080_10618600_2020_1725523
crossref_primary_10_1002_for_2851
crossref_primary_10_1016_j_jedc_2023_104800
crossref_primary_10_2139_ssrn_4790038
crossref_primary_10_1111_1467_8489_12433
crossref_primary_10_2139_ssrn_4650097
crossref_primary_10_1080_07474938_2016_1167948
crossref_primary_10_22201_fca_24488410e_2021_2642
crossref_primary_10_3390_math8122148
crossref_primary_10_1007_s10663_024_09618_y
crossref_primary_10_1016_j_ijforecast_2025_02_001
crossref_primary_10_2139_ssrn_4651227
crossref_primary_10_2139_ssrn_4640161
crossref_primary_10_1111_rssa_12439
crossref_primary_10_1080_00036846_2023_2257039
crossref_primary_10_1108_IJOEM_03_2020_0240
crossref_primary_10_1016_j_jedc_2016_06_006
crossref_primary_10_1016_j_ijforecast_2024_09_001
crossref_primary_10_1016_j_iref_2016_11_003
crossref_primary_10_1016_j_intfin_2022_101696
crossref_primary_10_1002_ijfe_2241
crossref_primary_10_3390_risks8010012
crossref_primary_10_1016_j_jedc_2018_01_027
crossref_primary_10_1016_j_frl_2023_103795
crossref_primary_10_1080_07350015_2020_1806853
crossref_primary_10_1016_j_eneco_2019_104589
crossref_primary_10_1080_13504851_2021_1983127
crossref_primary_10_1080_07350015_2016_1256217
crossref_primary_10_2139_ssrn_3628071
crossref_primary_10_1080_01621459_2016_1165104
crossref_primary_10_2139_ssrn_3461554
crossref_primary_10_1016_j_sigpro_2017_06_008
crossref_primary_10_1080_03610918_2020_1861463
crossref_primary_10_1002_fut_22360
crossref_primary_10_1016_j_jeconom_2018_11_007
crossref_primary_10_1016_j_jeconom_2018_11_006
crossref_primary_10_1080_07350015_2024_2447302
crossref_primary_10_2139_ssrn_2513851
crossref_primary_10_1017_S1365100521000663
crossref_primary_10_1080_14697688_2020_1724319
crossref_primary_10_1016_j_eneco_2023_106738
crossref_primary_10_1016_j_econlet_2022_110500
crossref_primary_10_1016_j_euroecorev_2023_104383
crossref_primary_10_1016_j_ijforecast_2018_01_007
crossref_primary_10_1016_j_najef_2019_01_015
crossref_primary_10_1214_25_BA1515
crossref_primary_10_1016_j_jempfin_2023_07_002
crossref_primary_10_2139_ssrn_2827838
crossref_primary_10_2139_ssrn_3809866
crossref_primary_10_1016_j_ecosta_2021_08_009
crossref_primary_10_1111_ecca_12334
crossref_primary_10_1111_irfi_12397
crossref_primary_10_1016_j_csda_2016_09_008
crossref_primary_10_1016_j_eneco_2019_06_001
crossref_primary_10_1080_10618600_2015_1105748
crossref_primary_10_11644_KIEP_EAER_2024_28_1_432
crossref_primary_10_5547_01956574_42_5_nbeh
crossref_primary_10_1111_jtsa_12652
crossref_primary_10_2139_ssrn_2768650
crossref_primary_10_1016_j_asoc_2022_108985
crossref_primary_10_1029_2021WR031662
crossref_primary_10_1016_j_csda_2014_08_010
crossref_primary_10_1111_geer_12154
crossref_primary_10_1016_j_frl_2021_102315
crossref_primary_10_1002_jae_3087
crossref_primary_10_1017_S1365100518000494
crossref_primary_10_3390_econometrics12010005
crossref_primary_10_1007_s10663_023_09570_3
crossref_primary_10_1257_aer_20131193
crossref_primary_10_1016_j_irfa_2020_101456
crossref_primary_10_1016_j_ecosta_2021_06_001
crossref_primary_10_1111_iere_12619
crossref_primary_10_2139_ssrn_4349929
crossref_primary_10_1016_j_eneco_2020_104961
crossref_primary_10_1002_for_3055
crossref_primary_10_1016_j_intfin_2024_102084
crossref_primary_10_1002_for_2911
crossref_primary_10_1016_j_jimonfin_2017_02_023
crossref_primary_10_1016_j_apenergy_2023_121446
crossref_primary_10_3390_econometrics12040035
Cites_doi 10.1093/biomet/81.3.541
10.1016/j.csda.2010.07.009
10.1016/j.jeconom.2004.08.002
10.1214/11-BA632
10.1007/978-3-540-30218-6_19
10.1111/1467-9868.00288
10.1016/j.jeconom.2006.07.008
10.1111/j.1540-6261.1987.tb02568.x
10.1080/07474930600713424
10.1093/biomet/84.3.653
10.1016/j.csda.2011.06.031
10.18637/jss.v040.i08
10.1198/jcgs.2011.203main
10.1002/(SICI)1099-1255(200003/04)15:2<137::AID-JAE546>3.0.CO;2-M
10.1093/biomet/89.3.603
10.1093/biomet/81.1.115
10.1287/opre.50.6.1073.358
10.1016/j.csda.2010.07.012
10.1111/1467-9892.00126
10.1093/biomet/82.3.479
10.1111/j.1467-9892.1994.tb00184.x
10.1016/S0304-4076(01)00137-3
10.1080/07350015.1994.10524553
10.1016/j.jeconom.2009.07.003
10.1016/j.csda.2007.10.010
10.1111/j.1369-7412.2004.05139.x
10.1016/j.csda.2010.07.008
10.1111/1467-937X.00050
10.1016/j.csda.2010.07.015
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.csda.2013.01.002
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Computer and Information Systems Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
EndPage 423
ExternalDocumentID 10_1016_j_csda_2013_01_002
S0167947313000030
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c432t-ec101f09112eb0b67d837a618f41d478abc4c5b5b34a87bfce7584f9e7b0944c3
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Fri Jul 11 15:42:36 EDT 2025
Thu Jul 10 18:12:40 EDT 2025
Tue Jul 01 02:24:27 EDT 2025
Thu Apr 24 22:53:36 EDT 2025
Fri Feb 23 02:23:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords State space model
Exchange rate data
Auxiliary mixture sampling
Markov chain Monte Carlo
Massively parallel computing
Non-centering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-ec101f09112eb0b67d837a618f41d478abc4c5b5b34a87bfce7584f9e7b0944c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1551058217
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_2253213935
proquest_miscellaneous_1551058217
crossref_citationtrail_10_1016_j_csda_2013_01_002
crossref_primary_10_1016_j_csda_2013_01_002
elsevier_sciencedirect_doi_10_1016_j_csda_2013_01_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rue (br000150) 2001; 63
Frühwirth-Schnatter (br000050) 2004
Nakajima, Omori (br000120) 2012; 56
Tsiotas (br000185) 2012; 56
Carter, Kohn (br000020) 1994; 81
Frühwirth-Schnatter, Wagner (br000060) 2010; 154
Yu, Meng (br000200) 2011; 20
Shephard (br000155) 1994; 81
Shephard, Pitt (br000165) 1997; 84
Durbin, Koopman (br000035) 2002; 89
R Development Core Team (br000140) 2012
Jacquier, Polson, Rossi (br000085) 1994; 12
Wang, Chan, Choy (br000190) 2011; 55
Chib, Nardari, Shephard (br000025) 2002; 108
Pitt, Shephard (br000130) 1999; 20
Kastner, G., 2013. stochvol: Efficient Bayesian inference for stochastic volatility (SV) models. R Package Version 0.5-0.
Anderson, Bai, Bischof, Blackford, Demmel, Dongarra, Croz, Greenbaum, Hammarling, McKenney, Sorensen (br000005) 1999
Frühwirth-Schnatter, Sögner (br000055) 2008; 11
Yu (br000195) 2005; 127
Ishihara, Omori (br000080) 2012; 56
Roberts, Papaspiliopoulos, Dellaportas (br000145) 2004; 66
Kim, Shephard, Chib (br000095) 1998; 65
Hull, White (br000075) 1987; 42
Delatola, Griffin (br000030) 2011; 6
Strickland, Martin, Forbes (br000170) 2008; 52
Basu (br000010) 1955; 15
Plummer, Best, Cowles, Vines (br000135) 2006; 6
Eddelbuettel, François (br000040) 2011; 40
Gelfand, Sahu, Carlin (br000070) 1995; 82
Frühwirth-Schnatter (br000045) 1994; 15
Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S., 2004. Open MPI: goals, concept, and design of a next generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting. Budapest, Hungary, pp. 97–104.
Omori, Chib, Shephard, Nakajima (br000125) 2007; 140
Tierney, L., Rossini, A.J., Li, N., Sevcikova, H., 2011. snow: Simple network of workstations. R Package Version 0.3-8.
Bos (br000015) 2012
Liesenfeld, Richard (br000110) 2006; 25
Taylor (br000175) 1982
L’Ecuyer, Simard, Chen, Kelton (br000100) 2002; 50
Shephard, Kim (br000160) 1994; 12
McCausland, Miller, Pelletier (br000115) 2011; 55
Liesenfeld, Jung (br000105) 2000; 15
Delatola (10.1016/j.csda.2013.01.002_br000030) 2011; 6
Nakajima (10.1016/j.csda.2013.01.002_br000120) 2012; 56
Plummer (10.1016/j.csda.2013.01.002_br000135) 2006; 6
Pitt (10.1016/j.csda.2013.01.002_br000130) 1999; 20
Eddelbuettel (10.1016/j.csda.2013.01.002_br000040) 2011; 40
Rue (10.1016/j.csda.2013.01.002_br000150) 2001; 63
Bos (10.1016/j.csda.2013.01.002_br000015) 2012
10.1016/j.csda.2013.01.002_br000090
Omori (10.1016/j.csda.2013.01.002_br000125) 2007; 140
Ishihara (10.1016/j.csda.2013.01.002_br000080) 2012; 56
Durbin (10.1016/j.csda.2013.01.002_br000035) 2002; 89
Liesenfeld (10.1016/j.csda.2013.01.002_br000105) 2000; 15
Hull (10.1016/j.csda.2013.01.002_br000075) 1987; 42
Kim (10.1016/j.csda.2013.01.002_br000095) 1998; 65
Basu (10.1016/j.csda.2013.01.002_br000010) 1955; 15
Gelfand (10.1016/j.csda.2013.01.002_br000070) 1995; 82
Jacquier (10.1016/j.csda.2013.01.002_br000085) 1994; 12
Frühwirth-Schnatter (10.1016/j.csda.2013.01.002_br000050) 2004
Chib (10.1016/j.csda.2013.01.002_br000025) 2002; 108
Frühwirth-Schnatter (10.1016/j.csda.2013.01.002_br000055) 2008; 11
10.1016/j.csda.2013.01.002_br000065
Yu (10.1016/j.csda.2013.01.002_br000200) 2011; 20
Tsiotas (10.1016/j.csda.2013.01.002_br000185) 2012; 56
Liesenfeld (10.1016/j.csda.2013.01.002_br000110) 2006; 25
Roberts (10.1016/j.csda.2013.01.002_br000145) 2004; 66
R Development Core Team (10.1016/j.csda.2013.01.002_br000140) 2012
10.1016/j.csda.2013.01.002_br000180
Taylor (10.1016/j.csda.2013.01.002_br000175) 1982
Frühwirth-Schnatter (10.1016/j.csda.2013.01.002_br000045) 1994; 15
Carter (10.1016/j.csda.2013.01.002_br000020) 1994; 81
Shephard (10.1016/j.csda.2013.01.002_br000165) 1997; 84
Frühwirth-Schnatter (10.1016/j.csda.2013.01.002_br000060) 2010; 154
L’Ecuyer (10.1016/j.csda.2013.01.002_br000100) 2002; 50
Strickland (10.1016/j.csda.2013.01.002_br000170) 2008; 52
Wang (10.1016/j.csda.2013.01.002_br000190) 2011; 55
Anderson (10.1016/j.csda.2013.01.002_br000005) 1999
McCausland (10.1016/j.csda.2013.01.002_br000115) 2011; 55
Yu (10.1016/j.csda.2013.01.002_br000195) 2005; 127
Shephard (10.1016/j.csda.2013.01.002_br000160) 1994; 12
Shephard (10.1016/j.csda.2013.01.002_br000155) 1994; 81
References_xml – volume: 56
  start-page: 151
  year: 2012
  end-page: 172
  ident: br000185
  article-title: On generalised asymmetric stochastic volatility models
  publication-title: Computational Statistics and Data Analysis
– volume: 65
  start-page: 361
  year: 1998
  end-page: 393
  ident: br000095
  article-title: Stochastic volatility: likelihood inference and comparison with ARCH models
  publication-title: Review of Economic Studies
– volume: 55
  start-page: 852
  year: 2011
  end-page: 862
  ident: br000190
  article-title: Stochastic volatility models with leverage and heavy-tailed distributions: a Bayesian approach using scale mixtures
  publication-title: Computational Statistics and Data Analysis
– volume: 15
  start-page: 183
  year: 1994
  end-page: 202
  ident: br000045
  article-title: Data augmentation and dynamic linear models
  publication-title: Journal of Time Series Analysis
– volume: 15
  start-page: 377
  year: 1955
  end-page: 380
  ident: br000010
  article-title: On statistics independent of a complete sufficient statistic
  publication-title: Sankhyā: The Indian Journal of Statistics (1933–1960)
– volume: 6
  start-page: 901
  year: 2011
  end-page: 926
  ident: br000030
  article-title: Bayesian nonparametric modelling of the return distribution with stochastic volatility
  publication-title: Bayesian Analysis
– volume: 63
  start-page: 325
  year: 2001
  end-page: 338
  ident: br000150
  article-title: Fast sampling of Gaussian Markov random fields
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 108
  start-page: 281
  year: 2002
  end-page: 316
  ident: br000025
  article-title: Markov chain Monte Carlo methods for stochastic volatility models
  publication-title: Journal of Econometrics
– volume: 42
  start-page: 281
  year: 1987
  end-page: 300
  ident: br000075
  article-title: The pricing of options on assets with stochastic volatilities
  publication-title: The Journal of Finance
– year: 2012
  ident: br000140
  article-title: R: A Language and Environment for Statistical Computing
– volume: 15
  start-page: 137
  year: 2000
  end-page: 160
  ident: br000105
  article-title: Stochastic volatility models: conditional normality versus heavy-tailed distributions
  publication-title: Journal of Applied Econometrics
– volume: 55
  start-page: 199
  year: 2011
  end-page: 212
  ident: br000115
  article-title: Simulation smoothing for state space models: a computational efficiency analysis
  publication-title: Computational Statistics and Data Analysis
– volume: 89
  start-page: 603
  year: 2002
  end-page: 615
  ident: br000035
  article-title: A simple and efficient simulation smoother for state space time series analysis
  publication-title: Biometrika
– volume: 25
  start-page: 335
  year: 2006
  end-page: 360
  ident: br000110
  article-title: Classical and Bayesian analysis of univariate and multivariate stochastic volatility models
  publication-title: Econometric Reviews
– volume: 154
  start-page: 85
  year: 2010
  end-page: 100
  ident: br000060
  article-title: Stochastic model specification search for Gaussian and partially non-Gaussian state space models
  publication-title: Journal of Econometrics
– volume: 20
  start-page: 63
  year: 1999
  end-page: 85
  ident: br000130
  article-title: Analytic convergence rates and parameterization issues for the Gibbs sampler applied to state space models
  publication-title: Journal of Time Series Analysis
– volume: 81
  start-page: 115
  year: 1994
  end-page: 131
  ident: br000155
  article-title: Partial non-Gaussian state space
  publication-title: Biometrika
– volume: 82
  start-page: 479
  year: 1995
  end-page: 488
  ident: br000070
  article-title: Efficient parametrisations for normal linear mixed models
  publication-title: Biometrika
– reference: Tierney, L., Rossini, A.J., Li, N., Sevcikova, H., 2011. snow: Simple network of workstations. R Package Version 0.3-8.
– volume: 20
  start-page: 531
  year: 2011
  end-page: 570
  ident: br000200
  article-title: To center or not to center: that is not the question—an ancillarity-suffiency interweaving strategy (ASIS) for boosting MCMC efficiency
  publication-title: Journal of Computational and Graphical Statistics
– reference: Kastner, G., 2013. stochvol: Efficient Bayesian inference for stochastic volatility (SV) models. R Package Version 0.5-0.
– volume: 66
  start-page: 369
  year: 2004
  end-page: 393
  ident: br000145
  article-title: Bayesian inference for non-Gaussian Ornstein–Uhlenbeck stochastic volatility processes
  publication-title: Journal of the Royal Statistical Society: Series B
– start-page: 147
  year: 2012
  end-page: 174
  ident: br000015
  article-title: Relating stochastic volatility estimation methods
  publication-title: Handbook of Volatility Models and their Applications
– start-page: 203
  year: 1982
  end-page: 226
  ident: br000175
  article-title: Financial returns modelled by the product of two stochastic processes—a study of daily sugar prices 1691–1679
  publication-title: Time Series Analysis: Theory and Practice 1
– volume: 6
  start-page: 7
  year: 2006
  end-page: 11
  ident: br000135
  article-title: CODA: convergence diagnosis and output analysis for MCMC
  publication-title: R News
– volume: 140
  start-page: 425
  year: 2007
  end-page: 449
  ident: br000125
  article-title: Stochastic volatility with leverage: fast and efficient likelihood inference
  publication-title: Journal of Econometrics
– volume: 11
  start-page: 5
  year: 2008
  end-page: 25
  ident: br000055
  article-title: Bayesian estimation of the Heston stochastic volatility model
  publication-title: Communications in Dependability and Quality Management
– year: 1999
  ident: br000005
  article-title: LAPACK Users’ Guide
– volume: 127
  start-page: 165
  year: 2005
  end-page: 178
  ident: br000195
  article-title: On leverage in a stochastic volatility model
  publication-title: Journal of Econometrics
– volume: 52
  start-page: 2911
  year: 2008
  end-page: 2930
  ident: br000170
  article-title: Parameterisation and efficient MCMC estimation of non-Gaussian state space models
  publication-title: Computational Statistics and Data Analysis
– volume: 84
  start-page: 653
  year: 1997
  end-page: 667
  ident: br000165
  article-title: Likelihood analysis of non-Gaussian measurement time series
  publication-title: Biometrika
– reference: Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S., 2004. Open MPI: goals, concept, and design of a next generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting. Budapest, Hungary, pp. 97–104.
– start-page: 123
  year: 2004
  end-page: 151
  ident: br000050
  article-title: Efficient Bayesian parameter estimation
  publication-title: State Space and Unobserved Component Models: Theory and Applications
– volume: 40
  start-page: 1
  year: 2011
  end-page: 18
  ident: br000040
  article-title: Rcpp: seamless R and C ++ integration
  publication-title: Journal of Statistical Software
– volume: 81
  start-page: 541
  year: 1994
  end-page: 553
  ident: br000020
  article-title: On Gibbs sampling for state space models
  publication-title: Biometrika
– volume: 56
  start-page: 3674
  year: 2012
  end-page: 3689
  ident: br000080
  article-title: Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors
  publication-title: Computational Statistics and Data Analysis
– volume: 50
  start-page: 1073
  year: 2002
  end-page: 1075
  ident: br000100
  article-title: An object-oriented random-number package with many long streams and substreams
  publication-title: Operations Research
– volume: 12
  start-page: 371
  year: 1994
  end-page: 417
  ident: br000085
  article-title: Bayesian analysis of stochastic volatility models
  publication-title: Journal of Business & Economic Statistics
– volume: 12
  start-page: 406
  year: 1994
  end-page: 410
  ident: br000160
  article-title: [Bayesian analysis of stochastic volatility models]: Comment
  publication-title: Journal of Business & Economic Statistics
– volume: 56
  start-page: 3690
  year: 2012
  end-page: 3704
  ident: br000120
  article-title: Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s-distribution
  publication-title: Computational Statistics and Data Analysis
– volume: 81
  start-page: 541
  year: 1994
  ident: 10.1016/j.csda.2013.01.002_br000020
  article-title: On Gibbs sampling for state space models
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.541
– ident: 10.1016/j.csda.2013.01.002_br000180
– volume: 55
  start-page: 199
  year: 2011
  ident: 10.1016/j.csda.2013.01.002_br000115
  article-title: Simulation smoothing for state space models: a computational efficiency analysis
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2010.07.009
– volume: 127
  start-page: 165
  year: 2005
  ident: 10.1016/j.csda.2013.01.002_br000195
  article-title: On leverage in a stochastic volatility model
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2004.08.002
– volume: 11
  start-page: 5
  year: 2008
  ident: 10.1016/j.csda.2013.01.002_br000055
  article-title: Bayesian estimation of the Heston stochastic volatility model
  publication-title: Communications in Dependability and Quality Management
– volume: 6
  start-page: 901
  year: 2011
  ident: 10.1016/j.csda.2013.01.002_br000030
  article-title: Bayesian nonparametric modelling of the return distribution with stochastic volatility
  publication-title: Bayesian Analysis
  doi: 10.1214/11-BA632
– ident: 10.1016/j.csda.2013.01.002_br000065
  doi: 10.1007/978-3-540-30218-6_19
– volume: 63
  start-page: 325
  year: 2001
  ident: 10.1016/j.csda.2013.01.002_br000150
  article-title: Fast sampling of Gaussian Markov random fields
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/1467-9868.00288
– start-page: 203
  year: 1982
  ident: 10.1016/j.csda.2013.01.002_br000175
  article-title: Financial returns modelled by the product of two stochastic processes—a study of daily sugar prices 1691–1679
– volume: 140
  start-page: 425
  year: 2007
  ident: 10.1016/j.csda.2013.01.002_br000125
  article-title: Stochastic volatility with leverage: fast and efficient likelihood inference
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2006.07.008
– volume: 6
  start-page: 7
  year: 2006
  ident: 10.1016/j.csda.2013.01.002_br000135
  article-title: CODA: convergence diagnosis and output analysis for MCMC
  publication-title: R News
– year: 2012
  ident: 10.1016/j.csda.2013.01.002_br000140
– volume: 42
  start-page: 281
  year: 1987
  ident: 10.1016/j.csda.2013.01.002_br000075
  article-title: The pricing of options on assets with stochastic volatilities
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1987.tb02568.x
– volume: 25
  start-page: 335
  year: 2006
  ident: 10.1016/j.csda.2013.01.002_br000110
  article-title: Classical and Bayesian analysis of univariate and multivariate stochastic volatility models
  publication-title: Econometric Reviews
  doi: 10.1080/07474930600713424
– volume: 84
  start-page: 653
  year: 1997
  ident: 10.1016/j.csda.2013.01.002_br000165
  article-title: Likelihood analysis of non-Gaussian measurement time series
  publication-title: Biometrika
  doi: 10.1093/biomet/84.3.653
– volume: 12
  start-page: 406
  year: 1994
  ident: 10.1016/j.csda.2013.01.002_br000160
  article-title: [Bayesian analysis of stochastic volatility models]: Comment
  publication-title: Journal of Business & Economic Statistics
– volume: 56
  start-page: 151
  year: 2012
  ident: 10.1016/j.csda.2013.01.002_br000185
  article-title: On generalised asymmetric stochastic volatility models
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2011.06.031
– volume: 40
  start-page: 1
  year: 2011
  ident: 10.1016/j.csda.2013.01.002_br000040
  article-title: Rcpp: seamless R and C ++ integration
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v040.i08
– volume: 20
  start-page: 531
  year: 2011
  ident: 10.1016/j.csda.2013.01.002_br000200
  article-title: To center or not to center: that is not the question—an ancillarity-suffiency interweaving strategy (ASIS) for boosting MCMC efficiency
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/jcgs.2011.203main
– volume: 15
  start-page: 137
  year: 2000
  ident: 10.1016/j.csda.2013.01.002_br000105
  article-title: Stochastic volatility models: conditional normality versus heavy-tailed distributions
  publication-title: Journal of Applied Econometrics
  doi: 10.1002/(SICI)1099-1255(200003/04)15:2<137::AID-JAE546>3.0.CO;2-M
– volume: 89
  start-page: 603
  year: 2002
  ident: 10.1016/j.csda.2013.01.002_br000035
  article-title: A simple and efficient simulation smoother for state space time series analysis
  publication-title: Biometrika
  doi: 10.1093/biomet/89.3.603
– volume: 81
  start-page: 115
  year: 1994
  ident: 10.1016/j.csda.2013.01.002_br000155
  article-title: Partial non-Gaussian state space
  publication-title: Biometrika
  doi: 10.1093/biomet/81.1.115
– volume: 15
  start-page: 377
  year: 1955
  ident: 10.1016/j.csda.2013.01.002_br000010
  article-title: On statistics independent of a complete sufficient statistic
  publication-title: Sankhyā: The Indian Journal of Statistics (1933–1960)
– start-page: 123
  year: 2004
  ident: 10.1016/j.csda.2013.01.002_br000050
  article-title: Efficient Bayesian parameter estimation
– volume: 50
  start-page: 1073
  year: 2002
  ident: 10.1016/j.csda.2013.01.002_br000100
  article-title: An object-oriented random-number package with many long streams and substreams
  publication-title: Operations Research
  doi: 10.1287/opre.50.6.1073.358
– volume: 56
  start-page: 3690
  year: 2012
  ident: 10.1016/j.csda.2013.01.002_br000120
  article-title: Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s-distribution
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2010.07.012
– volume: 20
  start-page: 63
  year: 1999
  ident: 10.1016/j.csda.2013.01.002_br000130
  article-title: Analytic convergence rates and parameterization issues for the Gibbs sampler applied to state space models
  publication-title: Journal of Time Series Analysis
  doi: 10.1111/1467-9892.00126
– year: 1999
  ident: 10.1016/j.csda.2013.01.002_br000005
– volume: 82
  start-page: 479
  year: 1995
  ident: 10.1016/j.csda.2013.01.002_br000070
  article-title: Efficient parametrisations for normal linear mixed models
  publication-title: Biometrika
  doi: 10.1093/biomet/82.3.479
– start-page: 147
  year: 2012
  ident: 10.1016/j.csda.2013.01.002_br000015
  article-title: Relating stochastic volatility estimation methods
– volume: 15
  start-page: 183
  year: 1994
  ident: 10.1016/j.csda.2013.01.002_br000045
  article-title: Data augmentation and dynamic linear models
  publication-title: Journal of Time Series Analysis
  doi: 10.1111/j.1467-9892.1994.tb00184.x
– volume: 108
  start-page: 281
  year: 2002
  ident: 10.1016/j.csda.2013.01.002_br000025
  article-title: Markov chain Monte Carlo methods for stochastic volatility models
  publication-title: Journal of Econometrics
  doi: 10.1016/S0304-4076(01)00137-3
– volume: 12
  start-page: 371
  year: 1994
  ident: 10.1016/j.csda.2013.01.002_br000085
  article-title: Bayesian analysis of stochastic volatility models
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.1994.10524553
– volume: 154
  start-page: 85
  year: 2010
  ident: 10.1016/j.csda.2013.01.002_br000060
  article-title: Stochastic model specification search for Gaussian and partially non-Gaussian state space models
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2009.07.003
– ident: 10.1016/j.csda.2013.01.002_br000090
– volume: 52
  start-page: 2911
  year: 2008
  ident: 10.1016/j.csda.2013.01.002_br000170
  article-title: Parameterisation and efficient MCMC estimation of non-Gaussian state space models
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2007.10.010
– volume: 66
  start-page: 369
  year: 2004
  ident: 10.1016/j.csda.2013.01.002_br000145
  article-title: Bayesian inference for non-Gaussian Ornstein–Uhlenbeck stochastic volatility processes
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.1369-7412.2004.05139.x
– volume: 55
  start-page: 852
  year: 2011
  ident: 10.1016/j.csda.2013.01.002_br000190
  article-title: Stochastic volatility models with leverage and heavy-tailed distributions: a Bayesian approach using scale mixtures
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2010.07.008
– volume: 65
  start-page: 361
  year: 1998
  ident: 10.1016/j.csda.2013.01.002_br000095
  article-title: Stochastic volatility: likelihood inference and comparison with ARCH models
  publication-title: Review of Economic Studies
  doi: 10.1111/1467-937X.00050
– volume: 56
  start-page: 3674
  year: 2012
  ident: 10.1016/j.csda.2013.01.002_br000080
  article-title: Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2010.07.015
SSID ssj0002478
Score 2.5271366
Snippet Bayesian inference for stochastic volatility models using MCMC methods highly depends on actual parameter values in terms of sampling efficiency. While draws...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 408
SubjectTerms Auxiliary mixture sampling
Bayesian theory
equations
Exchange rate data
Inference
Markov chain Monte Carlo
Massively parallel computing
Mathematical models
Non-centering
Parametrization
Sampling
State space model
Statistics
Stochasticity
Strategy
Volatility
Title Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models
URI https://dx.doi.org/10.1016/j.csda.2013.01.002
https://www.proquest.com/docview/1551058217
https://www.proquest.com/docview/2253213935
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9sYIHRWK7zeR1LEGplvRgFb0t2c0GFUnVtIgXf7szeVQU7cFTyLJLktnJzLe7M98wdpii1w5U7FiJ8bUFYMBSDihLJwnRhQv06nSiGw3d_g1c3jl3DRbWuTAUVlnZ_tKmF9a6amlX0mw_Pzy0RxRAH4Bn04EM6SplsINHWn768RXm0YXSGhO_N_WuEmfKGC-dJ8Q9JOyCurPaWvnFOf0w04XvOV9hyxVo5L3yvVZZw2RrbCmaMa7m6-yll2kqIES16Kx8WhBDUFYlJz6I1zcT08YBz0su2nd-1BtdjI45IlaOMDun2GcehVHIiXSjzGbk4xT7j_V9TFTOHM0YNhNo50X1nHyD3ZyfXYd9qyqnYGmwuxPLaPzqFPGB6BrVUa6X4OI0doWfgkhQSrHSoB3lKBti31OpNriWgDQwnsI1IGh7kzWzcWa2GFd-6oJyhXaVCybwY9u1CfsYLwlS5XRaTNRylLriGqeSF0-yDip7lCR7SbKXHSFR9i12MhvzXDJtzO3t1NMjv-mLRFcwd9xBPZcSfyQ6HYkzM57mkrBjh9KGvb_7oPGzu4Kymbf_-fwdtoh3UIYQ7rLm5HVq9hDWTNR-obf7bKF3MegP6Tq4uh18Anee-ak
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHIAD4ineBIkDCJUtq_s6ThNog5XLmLRb1KSpGEId0E2IC78du48hEHDgmjpq6yT2l8T-zNhJgl47UJFjxcbXFoABSzmgLB3HRBcu0KvTjW5463YGcD10hjXWrnJhKKyytP2FTc-tddlSL7VZfxqN6n0KoA_As-lChubqHFsAXL5UxuDi_TPOowmFOSaCbxIvM2eKIC-dxUQ-JOycu7M8W_nBO32z07nzuVplKyVq5K3iw9ZYzaTrbDmcUa5mG-y5lWqqIETF6KxsmjNDUFolJ0KIl1cT0ckBzwoy2jd-2up3-2ccIStHnJ1R8DMP22GbE-tGkc7IxwnKj_V9RFzOHO0YNhNq53n5nGyTDa4u79odq6ynYGmwmxPLaPzrBAGCaBrVUK4X4-40coWfgIhRS5HSoB3lKBsi31OJNriZgCQwnsJNIGh7i82n49RsM678xAXlCu0qF0zgR7ZrE_gxXhwkymnsMFHpUeqSbJxqXjzKKqrsQZLuJeleNoRE3e-w81mfp4Jq409ppxoe-WXCSPQFf_Y7rsZS4kqi65EoNeNpJgk8Nihv2PtdBq2f3RSUzrz7z_cfscXOXdiTve7tzR5bwidQxBPus_nJy9QcIMaZqMN8Dn8AVuH5lA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ancillarity-sufficiency+interweaving+strategy+%28ASIS%29+for+boosting+MCMC+estimation+of+stochastic+volatility+models&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Kastner%2C+Gregor&rft.au=Fr%C3%BChwirth-Schnatter%2C+Sylvia&rft.date=2014-08-01&rft.issn=0167-9473&rft.volume=76+p.408-423&rft.spage=408&rft.epage=423&rft_id=info:doi/10.1016%2Fj.csda.2013.01.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon