Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models
Bayesian inference for stochastic volatility models using MCMC methods highly depends on actual parameter values in terms of sampling efficiency. While draws from the posterior utilizing the standard centered parameterization break down when the volatility of volatility parameter in the latent state...
Saved in:
Published in | Computational statistics & data analysis Vol. 76; pp. 408 - 423 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bayesian inference for stochastic volatility models using MCMC methods highly depends on actual parameter values in terms of sampling efficiency. While draws from the posterior utilizing the standard centered parameterization break down when the volatility of volatility parameter in the latent state equation is small, non-centered versions of the model show deficiencies for highly persistent latent variable series. The novel approach of ancillarity-sufficiency interweaving has recently been shown to aid in overcoming these issues for a broad class of multilevel models. It is demonstrated how such an interweaving strategy can be applied to stochastic volatility models in order to greatly improve sampling efficiency for all parameters and throughout the entire parameter range. Moreover, this method of “combining best of different worlds” allows for inference for parameter constellations that have previously been infeasible to estimate without the need to select a particular parameterization beforehand. |
---|---|
AbstractList | Bayesian inference for stochastic volatility models using MCMC methods highly depends on actual parameter values in terms of sampling efficiency. While draws from the posterior utilizing the standard centered parameterization break down when the volatility of volatility parameter in the latent state equation is small, non-centered versions of the model show deficiencies for highly persistent latent variable series. The novel approach of ancillarity-sufficiency interweaving has recently been shown to aid in overcoming these issues for a broad class of multilevel models. It is demonstrated how such an interweaving strategy can be applied to stochastic volatility models in order to greatly improve sampling efficiency for all parameters and throughout the entire parameter range. Moreover, this method of "combining best of different worlds" allows for inference for parameter constellations that have previously been infeasible to estimate without the need to select a particular parameterization beforehand. |
Author | Frühwirth-Schnatter, Sylvia Kastner, Gregor |
Author_xml | – sequence: 1 givenname: Gregor surname: Kastner fullname: Kastner, Gregor email: gregor.kastner@wu.ac.at – sequence: 2 givenname: Sylvia surname: Frühwirth-Schnatter fullname: Frühwirth-Schnatter, Sylvia email: sylvia.fruehwirth-schnatter@wu.ac.at |
BookMark | eNqFkU9vEzEQxS3USqQtX4CTj-Wwi__GuxKXKIJSqRWHwtnyesfF0Wbd2k5Qvn0nDScO5WRr5vdGM-9dkLM5zUDIR85azvjy86b1ZXStYFy2jLeMiXdkwTsjGiO1OCMLhEzTKyPfk4tSNgwJZboFeV7NPk6Ty7EemrILIfoIsz_QOFfIf8Dt4_xIS82uwuOBXq8ebh8-0ZAyHVIq9di8X9-vKeB_62pMM00B-eR_Oyx5uk8TliccT7dphKlckfPgpgIf_r6X5Ne3rz_X35u7Hze369Vd45UUtQGPhwXWcy5gYMPSjJ00bsm7oPiIq7vBK68HPUjlOjMED0Z3KvRgBtYr5eUluT7NfcrpeYf72W0sHvDWGdKuWCG0FFz2Uv8X5VpzpjvBDaLdCfU5lZIhWB_r691oUZwsZ_YYiN3YYyD2GIhl3KLdKBX_SJ8yepYPb4u-nEToHOwjZFteA4IxZvDVjim-JX8BvSOoAg |
CitedBy_id | crossref_primary_10_2139_ssrn_3130157 crossref_primary_10_1007_s10687_019_00368_w crossref_primary_10_1016_j_health_2024_100367 crossref_primary_10_2139_ssrn_4620913 crossref_primary_10_1016_j_ecosta_2016_08_002 crossref_primary_10_1142_S2010007824500039 crossref_primary_10_1111_obes_12438 crossref_primary_10_3390_jrfm14040145 crossref_primary_10_1007_s10640_023_00831_0 crossref_primary_10_1002_for_2498 crossref_primary_10_1057_s41308_023_00216_9 crossref_primary_10_1093_jjfinec_nbae035 crossref_primary_10_2139_ssrn_4418264 crossref_primary_10_1016_j_jimonfin_2020_102221 crossref_primary_10_1080_00401706_2024_2407316 crossref_primary_10_1016_j_ijforecast_2022_03_002 crossref_primary_10_7554_eLife_42950 crossref_primary_10_2139_ssrn_4010599 crossref_primary_10_1002_for_2524 crossref_primary_10_1007_s11222_022_10183_2 crossref_primary_10_1016_j_spl_2018_02_053 crossref_primary_10_2139_ssrn_4851797 crossref_primary_10_1111_rssb_12325 crossref_primary_10_32609_0042_8736_2022_9_34_52 crossref_primary_10_1080_26941899_2022_2152764 crossref_primary_10_3390_jrfm13090202 crossref_primary_10_1016_j_ins_2020_03_075 crossref_primary_10_1080_07474938_2024_2330127 crossref_primary_10_2139_ssrn_4016961 crossref_primary_10_1016_j_jedc_2020_103989 crossref_primary_10_1515_jtse_2018_0034 crossref_primary_10_1016_j_physa_2024_130330 crossref_primary_10_1080_10618600_2017_1322091 crossref_primary_10_1515_snde_2022_0077 crossref_primary_10_1515_snde_2022_0110 crossref_primary_10_1515_scid_2020_0005 crossref_primary_10_1080_07350015_2024_2362269 crossref_primary_10_1080_23322039_2022_2028975 crossref_primary_10_2139_ssrn_2820071 crossref_primary_10_2139_ssrn_4627773 crossref_primary_10_1214_22_STS867 crossref_primary_10_1002_jae_2804 crossref_primary_10_1016_j_jbankfin_2019_03_017 crossref_primary_10_1016_j_jeconom_2024_105787 crossref_primary_10_1016_j_jspi_2022_02_009 crossref_primary_10_1016_j_ecosta_2019_08_002 crossref_primary_10_1016_j_ecosta_2020_12_001 crossref_primary_10_1016_j_ecosta_2017_11_001 crossref_primary_10_1016_j_ecosta_2023_08_001 crossref_primary_10_1214_18_BA1099 crossref_primary_10_3390_en11112893 crossref_primary_10_1080_10618600_2022_2077350 crossref_primary_10_2139_ssrn_2688343 crossref_primary_10_1002_for_3121 crossref_primary_10_1002_ijfe_3008 crossref_primary_10_1016_j_jedc_2022_104580 crossref_primary_10_1007_s10614_019_09958_z crossref_primary_10_1088_1742_6596_2489_1_012002 crossref_primary_10_2139_ssrn_4816040 crossref_primary_10_2139_ssrn_2659017 crossref_primary_10_1002_for_2667 crossref_primary_10_1016_j_ijforecast_2022_06_002 crossref_primary_10_1515_snde_2018_0098 crossref_primary_10_2139_ssrn_2750773 crossref_primary_10_1007_s11222_020_09944_8 crossref_primary_10_1007_s00181_023_02437_3 crossref_primary_10_1016_j_irfa_2023_103038 crossref_primary_10_1080_07350015_2021_1990772 crossref_primary_10_2139_ssrn_2340389 crossref_primary_10_1080_07474938_2023_2237274 crossref_primary_10_1016_j_jebo_2021_09_044 crossref_primary_10_1016_j_jinteco_2020_103296 crossref_primary_10_1016_j_eneco_2016_03_026 crossref_primary_10_1016_j_jeconom_2014_06_008 crossref_primary_10_1016_j_econlet_2022_110374 crossref_primary_10_1016_j_jimonfin_2020_102151 crossref_primary_10_2139_ssrn_4322548 crossref_primary_10_3389_fenrg_2020_00045 crossref_primary_10_1016_j_jebo_2019_03_004 crossref_primary_10_1214_21_AOAS1488 crossref_primary_10_1111_rssa_12569 crossref_primary_10_1002_ijfe_3110 crossref_primary_10_3390_econometrics8020020 crossref_primary_10_1016_j_econlet_2016_11_008 crossref_primary_10_1109_TNNLS_2024_3376530 crossref_primary_10_1002_for_2680 crossref_primary_10_1214_21_BA1268 crossref_primary_10_3141_2442_08 crossref_primary_10_1007_s11079_020_09604_4 crossref_primary_10_1016_j_resourpol_2023_104167 crossref_primary_10_1111_boer_12094 crossref_primary_10_17016_feds_2017_066 crossref_primary_10_1016_j_pacfin_2017_06_007 crossref_primary_10_1016_j_econlet_2025_112260 crossref_primary_10_1108_IMEFM_04_2019_0137 crossref_primary_10_1111_jtsa_12561 crossref_primary_10_1016_j_jeconom_2024_105843 crossref_primary_10_1016_j_pacfin_2024_102509 crossref_primary_10_1093_jjfinec_nby010 crossref_primary_10_1016_j_frl_2021_102365 crossref_primary_10_1080_1406099X_2020_1813964 crossref_primary_10_1002_jae_2680 crossref_primary_10_1016_j_econmod_2021_105643 crossref_primary_10_1007_s00181_022_02309_2 crossref_primary_10_3390_jrfm11040071 crossref_primary_10_1080_07350015_2020_1713796 crossref_primary_10_1007_s00362_024_01652_z crossref_primary_10_1080_10618600_2020_1725523 crossref_primary_10_1002_for_2851 crossref_primary_10_1016_j_jedc_2023_104800 crossref_primary_10_2139_ssrn_4790038 crossref_primary_10_1111_1467_8489_12433 crossref_primary_10_2139_ssrn_4650097 crossref_primary_10_1080_07474938_2016_1167948 crossref_primary_10_22201_fca_24488410e_2021_2642 crossref_primary_10_3390_math8122148 crossref_primary_10_1007_s10663_024_09618_y crossref_primary_10_1016_j_ijforecast_2025_02_001 crossref_primary_10_2139_ssrn_4651227 crossref_primary_10_2139_ssrn_4640161 crossref_primary_10_1111_rssa_12439 crossref_primary_10_1080_00036846_2023_2257039 crossref_primary_10_1108_IJOEM_03_2020_0240 crossref_primary_10_1016_j_jedc_2016_06_006 crossref_primary_10_1016_j_ijforecast_2024_09_001 crossref_primary_10_1016_j_iref_2016_11_003 crossref_primary_10_1016_j_intfin_2022_101696 crossref_primary_10_1002_ijfe_2241 crossref_primary_10_3390_risks8010012 crossref_primary_10_1016_j_jedc_2018_01_027 crossref_primary_10_1016_j_frl_2023_103795 crossref_primary_10_1080_07350015_2020_1806853 crossref_primary_10_1016_j_eneco_2019_104589 crossref_primary_10_1080_13504851_2021_1983127 crossref_primary_10_1080_07350015_2016_1256217 crossref_primary_10_2139_ssrn_3628071 crossref_primary_10_1080_01621459_2016_1165104 crossref_primary_10_2139_ssrn_3461554 crossref_primary_10_1016_j_sigpro_2017_06_008 crossref_primary_10_1080_03610918_2020_1861463 crossref_primary_10_1002_fut_22360 crossref_primary_10_1016_j_jeconom_2018_11_007 crossref_primary_10_1016_j_jeconom_2018_11_006 crossref_primary_10_1080_07350015_2024_2447302 crossref_primary_10_2139_ssrn_2513851 crossref_primary_10_1017_S1365100521000663 crossref_primary_10_1080_14697688_2020_1724319 crossref_primary_10_1016_j_eneco_2023_106738 crossref_primary_10_1016_j_econlet_2022_110500 crossref_primary_10_1016_j_euroecorev_2023_104383 crossref_primary_10_1016_j_ijforecast_2018_01_007 crossref_primary_10_1016_j_najef_2019_01_015 crossref_primary_10_1214_25_BA1515 crossref_primary_10_1016_j_jempfin_2023_07_002 crossref_primary_10_2139_ssrn_2827838 crossref_primary_10_2139_ssrn_3809866 crossref_primary_10_1016_j_ecosta_2021_08_009 crossref_primary_10_1111_ecca_12334 crossref_primary_10_1111_irfi_12397 crossref_primary_10_1016_j_csda_2016_09_008 crossref_primary_10_1016_j_eneco_2019_06_001 crossref_primary_10_1080_10618600_2015_1105748 crossref_primary_10_11644_KIEP_EAER_2024_28_1_432 crossref_primary_10_5547_01956574_42_5_nbeh crossref_primary_10_1111_jtsa_12652 crossref_primary_10_2139_ssrn_2768650 crossref_primary_10_1016_j_asoc_2022_108985 crossref_primary_10_1029_2021WR031662 crossref_primary_10_1016_j_csda_2014_08_010 crossref_primary_10_1111_geer_12154 crossref_primary_10_1016_j_frl_2021_102315 crossref_primary_10_1002_jae_3087 crossref_primary_10_1017_S1365100518000494 crossref_primary_10_3390_econometrics12010005 crossref_primary_10_1007_s10663_023_09570_3 crossref_primary_10_1257_aer_20131193 crossref_primary_10_1016_j_irfa_2020_101456 crossref_primary_10_1016_j_ecosta_2021_06_001 crossref_primary_10_1111_iere_12619 crossref_primary_10_2139_ssrn_4349929 crossref_primary_10_1016_j_eneco_2020_104961 crossref_primary_10_1002_for_3055 crossref_primary_10_1016_j_intfin_2024_102084 crossref_primary_10_1002_for_2911 crossref_primary_10_1016_j_jimonfin_2017_02_023 crossref_primary_10_1016_j_apenergy_2023_121446 crossref_primary_10_3390_econometrics12040035 |
Cites_doi | 10.1093/biomet/81.3.541 10.1016/j.csda.2010.07.009 10.1016/j.jeconom.2004.08.002 10.1214/11-BA632 10.1007/978-3-540-30218-6_19 10.1111/1467-9868.00288 10.1016/j.jeconom.2006.07.008 10.1111/j.1540-6261.1987.tb02568.x 10.1080/07474930600713424 10.1093/biomet/84.3.653 10.1016/j.csda.2011.06.031 10.18637/jss.v040.i08 10.1198/jcgs.2011.203main 10.1002/(SICI)1099-1255(200003/04)15:2<137::AID-JAE546>3.0.CO;2-M 10.1093/biomet/89.3.603 10.1093/biomet/81.1.115 10.1287/opre.50.6.1073.358 10.1016/j.csda.2010.07.012 10.1111/1467-9892.00126 10.1093/biomet/82.3.479 10.1111/j.1467-9892.1994.tb00184.x 10.1016/S0304-4076(01)00137-3 10.1080/07350015.1994.10524553 10.1016/j.jeconom.2009.07.003 10.1016/j.csda.2007.10.010 10.1111/j.1369-7412.2004.05139.x 10.1016/j.csda.2010.07.008 10.1111/1467-937X.00050 10.1016/j.csda.2010.07.015 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. |
Copyright_xml | – notice: 2013 Elsevier B.V. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7S9 L.6 |
DOI | 10.1016/j.csda.2013.01.002 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Computer and Information Systems Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1872-7352 |
EndPage | 423 |
ExternalDocumentID | 10_1016_j_csda_2013_01_002 S0167947313000030 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD JQ2 L7M L~C L~D 7S9 L.6 |
ID | FETCH-LOGICAL-c432t-ec101f09112eb0b67d837a618f41d478abc4c5b5b34a87bfce7584f9e7b0944c3 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Fri Jul 11 15:42:36 EDT 2025 Thu Jul 10 18:12:40 EDT 2025 Tue Jul 01 02:24:27 EDT 2025 Thu Apr 24 22:53:36 EDT 2025 Fri Feb 23 02:23:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | State space model Exchange rate data Auxiliary mixture sampling Markov chain Monte Carlo Massively parallel computing Non-centering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-ec101f09112eb0b67d837a618f41d478abc4c5b5b34a87bfce7584f9e7b0944c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1551058217 |
PQPubID | 23500 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2253213935 proquest_miscellaneous_1551058217 crossref_citationtrail_10_1016_j_csda_2013_01_002 crossref_primary_10_1016_j_csda_2013_01_002 elsevier_sciencedirect_doi_10_1016_j_csda_2013_01_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rue (br000150) 2001; 63 Frühwirth-Schnatter (br000050) 2004 Nakajima, Omori (br000120) 2012; 56 Tsiotas (br000185) 2012; 56 Carter, Kohn (br000020) 1994; 81 Frühwirth-Schnatter, Wagner (br000060) 2010; 154 Yu, Meng (br000200) 2011; 20 Shephard (br000155) 1994; 81 Shephard, Pitt (br000165) 1997; 84 Durbin, Koopman (br000035) 2002; 89 R Development Core Team (br000140) 2012 Jacquier, Polson, Rossi (br000085) 1994; 12 Wang, Chan, Choy (br000190) 2011; 55 Chib, Nardari, Shephard (br000025) 2002; 108 Pitt, Shephard (br000130) 1999; 20 Kastner, G., 2013. stochvol: Efficient Bayesian inference for stochastic volatility (SV) models. R Package Version 0.5-0. Anderson, Bai, Bischof, Blackford, Demmel, Dongarra, Croz, Greenbaum, Hammarling, McKenney, Sorensen (br000005) 1999 Frühwirth-Schnatter, Sögner (br000055) 2008; 11 Yu (br000195) 2005; 127 Ishihara, Omori (br000080) 2012; 56 Roberts, Papaspiliopoulos, Dellaportas (br000145) 2004; 66 Kim, Shephard, Chib (br000095) 1998; 65 Hull, White (br000075) 1987; 42 Delatola, Griffin (br000030) 2011; 6 Strickland, Martin, Forbes (br000170) 2008; 52 Basu (br000010) 1955; 15 Plummer, Best, Cowles, Vines (br000135) 2006; 6 Eddelbuettel, François (br000040) 2011; 40 Gelfand, Sahu, Carlin (br000070) 1995; 82 Frühwirth-Schnatter (br000045) 1994; 15 Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S., 2004. Open MPI: goals, concept, and design of a next generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting. Budapest, Hungary, pp. 97–104. Omori, Chib, Shephard, Nakajima (br000125) 2007; 140 Tierney, L., Rossini, A.J., Li, N., Sevcikova, H., 2011. snow: Simple network of workstations. R Package Version 0.3-8. Bos (br000015) 2012 Liesenfeld, Richard (br000110) 2006; 25 Taylor (br000175) 1982 L’Ecuyer, Simard, Chen, Kelton (br000100) 2002; 50 Shephard, Kim (br000160) 1994; 12 McCausland, Miller, Pelletier (br000115) 2011; 55 Liesenfeld, Jung (br000105) 2000; 15 Delatola (10.1016/j.csda.2013.01.002_br000030) 2011; 6 Nakajima (10.1016/j.csda.2013.01.002_br000120) 2012; 56 Plummer (10.1016/j.csda.2013.01.002_br000135) 2006; 6 Pitt (10.1016/j.csda.2013.01.002_br000130) 1999; 20 Eddelbuettel (10.1016/j.csda.2013.01.002_br000040) 2011; 40 Rue (10.1016/j.csda.2013.01.002_br000150) 2001; 63 Bos (10.1016/j.csda.2013.01.002_br000015) 2012 10.1016/j.csda.2013.01.002_br000090 Omori (10.1016/j.csda.2013.01.002_br000125) 2007; 140 Ishihara (10.1016/j.csda.2013.01.002_br000080) 2012; 56 Durbin (10.1016/j.csda.2013.01.002_br000035) 2002; 89 Liesenfeld (10.1016/j.csda.2013.01.002_br000105) 2000; 15 Hull (10.1016/j.csda.2013.01.002_br000075) 1987; 42 Kim (10.1016/j.csda.2013.01.002_br000095) 1998; 65 Basu (10.1016/j.csda.2013.01.002_br000010) 1955; 15 Gelfand (10.1016/j.csda.2013.01.002_br000070) 1995; 82 Jacquier (10.1016/j.csda.2013.01.002_br000085) 1994; 12 Frühwirth-Schnatter (10.1016/j.csda.2013.01.002_br000050) 2004 Chib (10.1016/j.csda.2013.01.002_br000025) 2002; 108 Frühwirth-Schnatter (10.1016/j.csda.2013.01.002_br000055) 2008; 11 10.1016/j.csda.2013.01.002_br000065 Yu (10.1016/j.csda.2013.01.002_br000200) 2011; 20 Tsiotas (10.1016/j.csda.2013.01.002_br000185) 2012; 56 Liesenfeld (10.1016/j.csda.2013.01.002_br000110) 2006; 25 Roberts (10.1016/j.csda.2013.01.002_br000145) 2004; 66 R Development Core Team (10.1016/j.csda.2013.01.002_br000140) 2012 10.1016/j.csda.2013.01.002_br000180 Taylor (10.1016/j.csda.2013.01.002_br000175) 1982 Frühwirth-Schnatter (10.1016/j.csda.2013.01.002_br000045) 1994; 15 Carter (10.1016/j.csda.2013.01.002_br000020) 1994; 81 Shephard (10.1016/j.csda.2013.01.002_br000165) 1997; 84 Frühwirth-Schnatter (10.1016/j.csda.2013.01.002_br000060) 2010; 154 L’Ecuyer (10.1016/j.csda.2013.01.002_br000100) 2002; 50 Strickland (10.1016/j.csda.2013.01.002_br000170) 2008; 52 Wang (10.1016/j.csda.2013.01.002_br000190) 2011; 55 Anderson (10.1016/j.csda.2013.01.002_br000005) 1999 McCausland (10.1016/j.csda.2013.01.002_br000115) 2011; 55 Yu (10.1016/j.csda.2013.01.002_br000195) 2005; 127 Shephard (10.1016/j.csda.2013.01.002_br000160) 1994; 12 Shephard (10.1016/j.csda.2013.01.002_br000155) 1994; 81 |
References_xml | – volume: 56 start-page: 151 year: 2012 end-page: 172 ident: br000185 article-title: On generalised asymmetric stochastic volatility models publication-title: Computational Statistics and Data Analysis – volume: 65 start-page: 361 year: 1998 end-page: 393 ident: br000095 article-title: Stochastic volatility: likelihood inference and comparison with ARCH models publication-title: Review of Economic Studies – volume: 55 start-page: 852 year: 2011 end-page: 862 ident: br000190 article-title: Stochastic volatility models with leverage and heavy-tailed distributions: a Bayesian approach using scale mixtures publication-title: Computational Statistics and Data Analysis – volume: 15 start-page: 183 year: 1994 end-page: 202 ident: br000045 article-title: Data augmentation and dynamic linear models publication-title: Journal of Time Series Analysis – volume: 15 start-page: 377 year: 1955 end-page: 380 ident: br000010 article-title: On statistics independent of a complete sufficient statistic publication-title: Sankhyā: The Indian Journal of Statistics (1933–1960) – volume: 6 start-page: 901 year: 2011 end-page: 926 ident: br000030 article-title: Bayesian nonparametric modelling of the return distribution with stochastic volatility publication-title: Bayesian Analysis – volume: 63 start-page: 325 year: 2001 end-page: 338 ident: br000150 article-title: Fast sampling of Gaussian Markov random fields publication-title: Journal of the Royal Statistical Society: Series B – volume: 108 start-page: 281 year: 2002 end-page: 316 ident: br000025 article-title: Markov chain Monte Carlo methods for stochastic volatility models publication-title: Journal of Econometrics – volume: 42 start-page: 281 year: 1987 end-page: 300 ident: br000075 article-title: The pricing of options on assets with stochastic volatilities publication-title: The Journal of Finance – year: 2012 ident: br000140 article-title: R: A Language and Environment for Statistical Computing – volume: 15 start-page: 137 year: 2000 end-page: 160 ident: br000105 article-title: Stochastic volatility models: conditional normality versus heavy-tailed distributions publication-title: Journal of Applied Econometrics – volume: 55 start-page: 199 year: 2011 end-page: 212 ident: br000115 article-title: Simulation smoothing for state space models: a computational efficiency analysis publication-title: Computational Statistics and Data Analysis – volume: 89 start-page: 603 year: 2002 end-page: 615 ident: br000035 article-title: A simple and efficient simulation smoother for state space time series analysis publication-title: Biometrika – volume: 25 start-page: 335 year: 2006 end-page: 360 ident: br000110 article-title: Classical and Bayesian analysis of univariate and multivariate stochastic volatility models publication-title: Econometric Reviews – volume: 154 start-page: 85 year: 2010 end-page: 100 ident: br000060 article-title: Stochastic model specification search for Gaussian and partially non-Gaussian state space models publication-title: Journal of Econometrics – volume: 20 start-page: 63 year: 1999 end-page: 85 ident: br000130 article-title: Analytic convergence rates and parameterization issues for the Gibbs sampler applied to state space models publication-title: Journal of Time Series Analysis – volume: 81 start-page: 115 year: 1994 end-page: 131 ident: br000155 article-title: Partial non-Gaussian state space publication-title: Biometrika – volume: 82 start-page: 479 year: 1995 end-page: 488 ident: br000070 article-title: Efficient parametrisations for normal linear mixed models publication-title: Biometrika – reference: Tierney, L., Rossini, A.J., Li, N., Sevcikova, H., 2011. snow: Simple network of workstations. R Package Version 0.3-8. – volume: 20 start-page: 531 year: 2011 end-page: 570 ident: br000200 article-title: To center or not to center: that is not the question—an ancillarity-suffiency interweaving strategy (ASIS) for boosting MCMC efficiency publication-title: Journal of Computational and Graphical Statistics – reference: Kastner, G., 2013. stochvol: Efficient Bayesian inference for stochastic volatility (SV) models. R Package Version 0.5-0. – volume: 66 start-page: 369 year: 2004 end-page: 393 ident: br000145 article-title: Bayesian inference for non-Gaussian Ornstein–Uhlenbeck stochastic volatility processes publication-title: Journal of the Royal Statistical Society: Series B – start-page: 147 year: 2012 end-page: 174 ident: br000015 article-title: Relating stochastic volatility estimation methods publication-title: Handbook of Volatility Models and their Applications – start-page: 203 year: 1982 end-page: 226 ident: br000175 article-title: Financial returns modelled by the product of two stochastic processes—a study of daily sugar prices 1691–1679 publication-title: Time Series Analysis: Theory and Practice 1 – volume: 6 start-page: 7 year: 2006 end-page: 11 ident: br000135 article-title: CODA: convergence diagnosis and output analysis for MCMC publication-title: R News – volume: 140 start-page: 425 year: 2007 end-page: 449 ident: br000125 article-title: Stochastic volatility with leverage: fast and efficient likelihood inference publication-title: Journal of Econometrics – volume: 11 start-page: 5 year: 2008 end-page: 25 ident: br000055 article-title: Bayesian estimation of the Heston stochastic volatility model publication-title: Communications in Dependability and Quality Management – year: 1999 ident: br000005 article-title: LAPACK Users’ Guide – volume: 127 start-page: 165 year: 2005 end-page: 178 ident: br000195 article-title: On leverage in a stochastic volatility model publication-title: Journal of Econometrics – volume: 52 start-page: 2911 year: 2008 end-page: 2930 ident: br000170 article-title: Parameterisation and efficient MCMC estimation of non-Gaussian state space models publication-title: Computational Statistics and Data Analysis – volume: 84 start-page: 653 year: 1997 end-page: 667 ident: br000165 article-title: Likelihood analysis of non-Gaussian measurement time series publication-title: Biometrika – reference: Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S., 2004. Open MPI: goals, concept, and design of a next generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting. Budapest, Hungary, pp. 97–104. – start-page: 123 year: 2004 end-page: 151 ident: br000050 article-title: Efficient Bayesian parameter estimation publication-title: State Space and Unobserved Component Models: Theory and Applications – volume: 40 start-page: 1 year: 2011 end-page: 18 ident: br000040 article-title: Rcpp: seamless R and C ++ integration publication-title: Journal of Statistical Software – volume: 81 start-page: 541 year: 1994 end-page: 553 ident: br000020 article-title: On Gibbs sampling for state space models publication-title: Biometrika – volume: 56 start-page: 3674 year: 2012 end-page: 3689 ident: br000080 article-title: Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors publication-title: Computational Statistics and Data Analysis – volume: 50 start-page: 1073 year: 2002 end-page: 1075 ident: br000100 article-title: An object-oriented random-number package with many long streams and substreams publication-title: Operations Research – volume: 12 start-page: 371 year: 1994 end-page: 417 ident: br000085 article-title: Bayesian analysis of stochastic volatility models publication-title: Journal of Business & Economic Statistics – volume: 12 start-page: 406 year: 1994 end-page: 410 ident: br000160 article-title: [Bayesian analysis of stochastic volatility models]: Comment publication-title: Journal of Business & Economic Statistics – volume: 56 start-page: 3690 year: 2012 end-page: 3704 ident: br000120 article-title: Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s-distribution publication-title: Computational Statistics and Data Analysis – volume: 81 start-page: 541 year: 1994 ident: 10.1016/j.csda.2013.01.002_br000020 article-title: On Gibbs sampling for state space models publication-title: Biometrika doi: 10.1093/biomet/81.3.541 – ident: 10.1016/j.csda.2013.01.002_br000180 – volume: 55 start-page: 199 year: 2011 ident: 10.1016/j.csda.2013.01.002_br000115 article-title: Simulation smoothing for state space models: a computational efficiency analysis publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2010.07.009 – volume: 127 start-page: 165 year: 2005 ident: 10.1016/j.csda.2013.01.002_br000195 article-title: On leverage in a stochastic volatility model publication-title: Journal of Econometrics doi: 10.1016/j.jeconom.2004.08.002 – volume: 11 start-page: 5 year: 2008 ident: 10.1016/j.csda.2013.01.002_br000055 article-title: Bayesian estimation of the Heston stochastic volatility model publication-title: Communications in Dependability and Quality Management – volume: 6 start-page: 901 year: 2011 ident: 10.1016/j.csda.2013.01.002_br000030 article-title: Bayesian nonparametric modelling of the return distribution with stochastic volatility publication-title: Bayesian Analysis doi: 10.1214/11-BA632 – ident: 10.1016/j.csda.2013.01.002_br000065 doi: 10.1007/978-3-540-30218-6_19 – volume: 63 start-page: 325 year: 2001 ident: 10.1016/j.csda.2013.01.002_br000150 article-title: Fast sampling of Gaussian Markov random fields publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/1467-9868.00288 – start-page: 203 year: 1982 ident: 10.1016/j.csda.2013.01.002_br000175 article-title: Financial returns modelled by the product of two stochastic processes—a study of daily sugar prices 1691–1679 – volume: 140 start-page: 425 year: 2007 ident: 10.1016/j.csda.2013.01.002_br000125 article-title: Stochastic volatility with leverage: fast and efficient likelihood inference publication-title: Journal of Econometrics doi: 10.1016/j.jeconom.2006.07.008 – volume: 6 start-page: 7 year: 2006 ident: 10.1016/j.csda.2013.01.002_br000135 article-title: CODA: convergence diagnosis and output analysis for MCMC publication-title: R News – year: 2012 ident: 10.1016/j.csda.2013.01.002_br000140 – volume: 42 start-page: 281 year: 1987 ident: 10.1016/j.csda.2013.01.002_br000075 article-title: The pricing of options on assets with stochastic volatilities publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1987.tb02568.x – volume: 25 start-page: 335 year: 2006 ident: 10.1016/j.csda.2013.01.002_br000110 article-title: Classical and Bayesian analysis of univariate and multivariate stochastic volatility models publication-title: Econometric Reviews doi: 10.1080/07474930600713424 – volume: 84 start-page: 653 year: 1997 ident: 10.1016/j.csda.2013.01.002_br000165 article-title: Likelihood analysis of non-Gaussian measurement time series publication-title: Biometrika doi: 10.1093/biomet/84.3.653 – volume: 12 start-page: 406 year: 1994 ident: 10.1016/j.csda.2013.01.002_br000160 article-title: [Bayesian analysis of stochastic volatility models]: Comment publication-title: Journal of Business & Economic Statistics – volume: 56 start-page: 151 year: 2012 ident: 10.1016/j.csda.2013.01.002_br000185 article-title: On generalised asymmetric stochastic volatility models publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2011.06.031 – volume: 40 start-page: 1 year: 2011 ident: 10.1016/j.csda.2013.01.002_br000040 article-title: Rcpp: seamless R and C ++ integration publication-title: Journal of Statistical Software doi: 10.18637/jss.v040.i08 – volume: 20 start-page: 531 year: 2011 ident: 10.1016/j.csda.2013.01.002_br000200 article-title: To center or not to center: that is not the question—an ancillarity-suffiency interweaving strategy (ASIS) for boosting MCMC efficiency publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/jcgs.2011.203main – volume: 15 start-page: 137 year: 2000 ident: 10.1016/j.csda.2013.01.002_br000105 article-title: Stochastic volatility models: conditional normality versus heavy-tailed distributions publication-title: Journal of Applied Econometrics doi: 10.1002/(SICI)1099-1255(200003/04)15:2<137::AID-JAE546>3.0.CO;2-M – volume: 89 start-page: 603 year: 2002 ident: 10.1016/j.csda.2013.01.002_br000035 article-title: A simple and efficient simulation smoother for state space time series analysis publication-title: Biometrika doi: 10.1093/biomet/89.3.603 – volume: 81 start-page: 115 year: 1994 ident: 10.1016/j.csda.2013.01.002_br000155 article-title: Partial non-Gaussian state space publication-title: Biometrika doi: 10.1093/biomet/81.1.115 – volume: 15 start-page: 377 year: 1955 ident: 10.1016/j.csda.2013.01.002_br000010 article-title: On statistics independent of a complete sufficient statistic publication-title: Sankhyā: The Indian Journal of Statistics (1933–1960) – start-page: 123 year: 2004 ident: 10.1016/j.csda.2013.01.002_br000050 article-title: Efficient Bayesian parameter estimation – volume: 50 start-page: 1073 year: 2002 ident: 10.1016/j.csda.2013.01.002_br000100 article-title: An object-oriented random-number package with many long streams and substreams publication-title: Operations Research doi: 10.1287/opre.50.6.1073.358 – volume: 56 start-page: 3690 year: 2012 ident: 10.1016/j.csda.2013.01.002_br000120 article-title: Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s-distribution publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2010.07.012 – volume: 20 start-page: 63 year: 1999 ident: 10.1016/j.csda.2013.01.002_br000130 article-title: Analytic convergence rates and parameterization issues for the Gibbs sampler applied to state space models publication-title: Journal of Time Series Analysis doi: 10.1111/1467-9892.00126 – year: 1999 ident: 10.1016/j.csda.2013.01.002_br000005 – volume: 82 start-page: 479 year: 1995 ident: 10.1016/j.csda.2013.01.002_br000070 article-title: Efficient parametrisations for normal linear mixed models publication-title: Biometrika doi: 10.1093/biomet/82.3.479 – start-page: 147 year: 2012 ident: 10.1016/j.csda.2013.01.002_br000015 article-title: Relating stochastic volatility estimation methods – volume: 15 start-page: 183 year: 1994 ident: 10.1016/j.csda.2013.01.002_br000045 article-title: Data augmentation and dynamic linear models publication-title: Journal of Time Series Analysis doi: 10.1111/j.1467-9892.1994.tb00184.x – volume: 108 start-page: 281 year: 2002 ident: 10.1016/j.csda.2013.01.002_br000025 article-title: Markov chain Monte Carlo methods for stochastic volatility models publication-title: Journal of Econometrics doi: 10.1016/S0304-4076(01)00137-3 – volume: 12 start-page: 371 year: 1994 ident: 10.1016/j.csda.2013.01.002_br000085 article-title: Bayesian analysis of stochastic volatility models publication-title: Journal of Business & Economic Statistics doi: 10.1080/07350015.1994.10524553 – volume: 154 start-page: 85 year: 2010 ident: 10.1016/j.csda.2013.01.002_br000060 article-title: Stochastic model specification search for Gaussian and partially non-Gaussian state space models publication-title: Journal of Econometrics doi: 10.1016/j.jeconom.2009.07.003 – ident: 10.1016/j.csda.2013.01.002_br000090 – volume: 52 start-page: 2911 year: 2008 ident: 10.1016/j.csda.2013.01.002_br000170 article-title: Parameterisation and efficient MCMC estimation of non-Gaussian state space models publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2007.10.010 – volume: 66 start-page: 369 year: 2004 ident: 10.1016/j.csda.2013.01.002_br000145 article-title: Bayesian inference for non-Gaussian Ornstein–Uhlenbeck stochastic volatility processes publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.1369-7412.2004.05139.x – volume: 55 start-page: 852 year: 2011 ident: 10.1016/j.csda.2013.01.002_br000190 article-title: Stochastic volatility models with leverage and heavy-tailed distributions: a Bayesian approach using scale mixtures publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2010.07.008 – volume: 65 start-page: 361 year: 1998 ident: 10.1016/j.csda.2013.01.002_br000095 article-title: Stochastic volatility: likelihood inference and comparison with ARCH models publication-title: Review of Economic Studies doi: 10.1111/1467-937X.00050 – volume: 56 start-page: 3674 year: 2012 ident: 10.1016/j.csda.2013.01.002_br000080 article-title: Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2010.07.015 |
SSID | ssj0002478 |
Score | 2.5271366 |
Snippet | Bayesian inference for stochastic volatility models using MCMC methods highly depends on actual parameter values in terms of sampling efficiency. While draws... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 408 |
SubjectTerms | Auxiliary mixture sampling Bayesian theory equations Exchange rate data Inference Markov chain Monte Carlo Massively parallel computing Mathematical models Non-centering Parametrization Sampling State space model Statistics Stochasticity Strategy Volatility |
Title | Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models |
URI | https://dx.doi.org/10.1016/j.csda.2013.01.002 https://www.proquest.com/docview/1551058217 https://www.proquest.com/docview/2253213935 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9sYIHRWK7zeR1LEGplvRgFb0t2c0GFUnVtIgXf7szeVQU7cFTyLJLktnJzLe7M98wdpii1w5U7FiJ8bUFYMBSDihLJwnRhQv06nSiGw3d_g1c3jl3DRbWuTAUVlnZ_tKmF9a6amlX0mw_Pzy0RxRAH4Bn04EM6SplsINHWn768RXm0YXSGhO_N_WuEmfKGC-dJ8Q9JOyCurPaWvnFOf0w04XvOV9hyxVo5L3yvVZZw2RrbCmaMa7m6-yll2kqIES16Kx8WhBDUFYlJz6I1zcT08YBz0su2nd-1BtdjI45IlaOMDun2GcehVHIiXSjzGbk4xT7j_V9TFTOHM0YNhNo50X1nHyD3ZyfXYd9qyqnYGmwuxPLaPzqFPGB6BrVUa6X4OI0doWfgkhQSrHSoB3lKBti31OpNriWgDQwnsI1IGh7kzWzcWa2GFd-6oJyhXaVCybwY9u1CfsYLwlS5XRaTNRylLriGqeSF0-yDip7lCR7SbKXHSFR9i12MhvzXDJtzO3t1NMjv-mLRFcwd9xBPZcSfyQ6HYkzM57mkrBjh9KGvb_7oPGzu4Kymbf_-fwdtoh3UIYQ7rLm5HVq9hDWTNR-obf7bKF3MegP6Tq4uh18Anee-ak |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHIAD4ineBIkDCJUtq_s6ThNog5XLmLRb1KSpGEId0E2IC78du48hEHDgmjpq6yT2l8T-zNhJgl47UJFjxcbXFoABSzmgLB3HRBcu0KvTjW5463YGcD10hjXWrnJhKKyytP2FTc-tddlSL7VZfxqN6n0KoA_As-lChubqHFsAXL5UxuDi_TPOowmFOSaCbxIvM2eKIC-dxUQ-JOycu7M8W_nBO32z07nzuVplKyVq5K3iw9ZYzaTrbDmcUa5mG-y5lWqqIETF6KxsmjNDUFolJ0KIl1cT0ckBzwoy2jd-2up3-2ccIStHnJ1R8DMP22GbE-tGkc7IxwnKj_V9RFzOHO0YNhNq53n5nGyTDa4u79odq6ynYGmwmxPLaPzrBAGCaBrVUK4X4-40coWfgIhRS5HSoB3lKBsi31OJNriZgCQwnsJNIGh7i82n49RsM678xAXlCu0qF0zgR7ZrE_gxXhwkymnsMFHpUeqSbJxqXjzKKqrsQZLuJeleNoRE3e-w81mfp4Jq409ppxoe-WXCSPQFf_Y7rsZS4kqi65EoNeNpJgk8Nihv2PtdBq2f3RSUzrz7z_cfscXOXdiTve7tzR5bwidQxBPus_nJy9QcIMaZqMN8Dn8AVuH5lA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ancillarity-sufficiency+interweaving+strategy+%28ASIS%29+for+boosting+MCMC+estimation+of+stochastic+volatility+models&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Kastner%2C+Gregor&rft.au=Fr%C3%BChwirth-Schnatter%2C+Sylvia&rft.date=2014-08-01&rft.issn=0167-9473&rft.volume=76+p.408-423&rft.spage=408&rft.epage=423&rft_id=info:doi/10.1016%2Fj.csda.2013.01.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |