Acquired resistance to PD-L1 inhibition enhances a type I IFN-regulated secretory program in tumors

Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells fol...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 26; no. 2; pp. 521 - 559
Main Authors Shi, Yuhao, McKenery, Amber, Dolan, Melissa, Mastri, Michalis, Hill, James W, Dommer, Adam, Benzekry, Sebastien, Long, Mark, Abrams, Scott I, Puzanov, Igor, Ebos, John M L
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.01.2025
EMBO Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors ‘rewires’ tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack. Synopsis Acquired resistance to PD-L1 inhibition can rewire the interferon-regulated secretory machinery in tumor cells, altering the immune microenvironment. These secretory programs may be exploited as biomarkers and therapeutic targets following treatment failure. Resistance to αPD-L1 treatment can increase type I IFN-regulated secretory programs. An αPD-L1 treatment-induced secretome (PTIS) can suppress CD8 T cell function and protect resistant tumor cells from splenocyte cytotoxicity. Blocking IFN signaling and the PTIS can slow resistant tumor growth. Acquired resistance to PD-L1 inhibition can rewire the interferon-regulated secretory machinery in tumor cells, altering the immune microenvironment. These secretory programs may be exploited as biomarkers and therapeutic targets following treatment failure.
AbstractList Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. SinceIFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examinedIFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxcity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype high-lighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors ‘rewires’ tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack.
Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors 'rewires' tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack.Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors 'rewires' tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack.
Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors ‘rewires’ tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack. Synopsis Acquired resistance to PD-L1 inhibition can rewire the interferon-regulated secretory machinery in tumor cells, altering the immune microenvironment. These secretory programs may be exploited as biomarkers and therapeutic targets following treatment failure. Resistance to αPD-L1 treatment can increase type I IFN-regulated secretory programs. An αPD-L1 treatment-induced secretome (PTIS) can suppress CD8 T cell function and protect resistant tumor cells from splenocyte cytotoxicity. Blocking IFN signaling and the PTIS can slow resistant tumor growth. Acquired resistance to PD-L1 inhibition can rewire the interferon-regulated secretory machinery in tumor cells, altering the immune microenvironment. These secretory programs may be exploited as biomarkers and therapeutic targets following treatment failure.
Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors ‘rewires’ tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack. Acquired resistance to PD-L1 inhibition can rewire the interferon-regulated secretory machinery in tumor cells, altering the immune microenvironment. These secretory programs may be exploited as biomarkers and therapeutic targets following treatment failure. Resistance to αPD-L1 treatment can increase type I IFN-regulated secretory programs. An αPD-L1 treatment-induced secretome (PTIS) can suppress CD8 T cell function and protect resistant tumor cells from splenocyte cytotoxicity. Blocking IFN signaling and the PTIS can slow resistant tumor growth. Acquired resistance to PD-L1 inhibition can rewire the interferon-regulated secretory machinery in tumor cells, altering the immune microenvironment. These secretory programs may be exploited as biomarkers and therapeutic targets following treatment failure.
Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors ‘rewires’ tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack.
Author Shi, Yuhao
Long, Mark
McKenery, Amber
Puzanov, Igor
Benzekry, Sebastien
Ebos, John M L
Dolan, Melissa
Dommer, Adam
Abrams, Scott I
Mastri, Michalis
Hill, James W
Author_xml – sequence: 1
  givenname: Yuhao
  surname: Shi
  fullname: Shi, Yuhao
  organization: Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center
– sequence: 2
  givenname: Amber
  surname: McKenery
  fullname: McKenery, Amber
  organization: Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center
– sequence: 3
  givenname: Melissa
  surname: Dolan
  fullname: Dolan, Melissa
  organization: Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center
– sequence: 4
  givenname: Michalis
  surname: Mastri
  fullname: Mastri, Michalis
  organization: Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center
– sequence: 5
  givenname: James W
  surname: Hill
  fullname: Hill, James W
  organization: Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo
– sequence: 6
  givenname: Adam
  surname: Dommer
  fullname: Dommer, Adam
  organization: Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center
– sequence: 7
  givenname: Sebastien
  orcidid: 0000-0002-3749-8637
  surname: Benzekry
  fullname: Benzekry, Sebastien
  organization: Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis-Méditerranée, Centre de Recherches en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Faculté de Pharmacie, Aix-Marseille University
– sequence: 8
  givenname: Mark
  surname: Long
  fullname: Long, Mark
  organization: Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center
– sequence: 9
  givenname: Scott I
  orcidid: 0000-0002-8742-4708
  surname: Abrams
  fullname: Abrams, Scott I
  organization: Department of Immunology, Roswell Park Comprehensive Cancer Center
– sequence: 10
  givenname: Igor
  surname: Puzanov
  fullname: Puzanov, Igor
  organization: Department of Medicine, Roswell Park Comprehensive Cancer Center
– sequence: 11
  givenname: John M L
  orcidid: 0000-0002-7175-9044
  surname: Ebos
  fullname: Ebos, John M L
  email: John.Ebos@RoswellPark.org
  organization: Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Department of Medicine, Roswell Park Comprehensive Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39663510$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-04387866$$DView record in HAL
BookMark eNp9kU9v1DAQxS1URP_AF-CAfIRDwM4kcXxCq0LblVbAAc6W40x2XSX21nYq7bfH25SqcOBiW57fex7POycnzjsk5C1nHzmD9lOsKuCyYGVVMAYABXtBznjVyAK4aE-enU_JeYy3jLFaivYVOQXZNFBzdkbMytzNNmBPA0Ybk3YGafL0x5diw6l1O9vZZL2j6HbHWqSapsMe6Zqur74VAbfzqFOWRzQBkw8Hug9-G_SUxTTNkw_xNXk56DHim8f9gvy6-vrz8qbYfL9eX642hamgTAVW-RO9HMCUohlqXucFqkqaDqDrei4FsHroeiax1CWARGlaUZe8AS2g7-GCfF5893M3YW_QpaBHtQ920uGgvLbq74qzO7X194pzIcqWi-zwYXHY_aO7WW3U8Y5V0Iq2ae7LzL5_fC34uxljUpONBsdRO_RzVJCn3-TuapbRd88be3L-E0MGygUwwccYcHhCOFPHrNWStcpZq4es1VEEiyhm2G0xqFs_B5cn_D_VbwZ3qwo
Cites_doi 10.1038/s41388-019-0919-y
10.1093/nar/gkv007
10.1084/jem.192.7.1027
10.1038/nmeth.3337
10.1186/s40425-019-0799-2
10.3791/2259-v
10.1136/jitc-2020-000678
10.1002/eji.200324084
10.15252/emmm.201403989
10.1038/s41467-018-06300-3
10.1177/1078155217745144
10.1038/s41572-020-0160-6
10.1186/s40425-019-0635-8
10.1038/sigtrans.2016.30
10.1111/cas.13226
10.1001/jamanetworkopen.2019.7621
10.1002/(SICI)1097-0045(19971201)33:4<233::AID-PROS2>3.0.CO;2-I
10.1158/2326-6066.CIR-16-0114
10.1073/pnas.1910856117
10.1158/2159-8290.CD-19-1409
10.1158/1078-0432.CCR-23-0354
10.1038/nrc.2016.14
10.1016/j.trecan.2020.02.020
10.1172/JCI127458
10.1158/2159-8290.CD-15-1545
10.1146/annurev-immunol-032713-120231
10.1016/j.cell.2019.07.019
10.3390/cancers13133116
10.1016/j.smim.2014.01.008
10.1172/JCI44952
10.2177/jsci.40.95
10.1080/14653240601182838
10.1158/2159-8290.CD-18-0044
10.1038/s41467-017-02424-0
10.1016/j.ccell.2020.03.017
10.1002/pbc.26642
10.1016/j.cell.2018.09.030
10.1093/ckj/sfw024
10.1158/2159-8290.CD-18-1454
10.3389/fphar.2020.00557
10.1158/1535-7163.26934993
10.18632/oncotarget.23315
10.1038/s41467-017-01062-w
10.1016/j.cell.2016.11.022
10.1053/j.seminoncol.2014.02.002
10.1158/2326-6066.CIR-18-0633
10.1038/s41592-019-0654-x
10.1158/0008-5472.CAN-08-2281
10.1080/19420862.2020.1857100
10.1182/blood-2007-11-123141
10.7554/eLife.52330
10.1002/ijc.25621
10.1101/gad.348314.121
10.1093/bioinformatics/bts356
10.3390/ph3040994
10.1136/jitc-2020-000949
10.4049/jimmunol.1502376
10.1038/nrc2734
10.1073/pnas.2112258118
10.1146/annurev-pathol-031920-093932
10.1158/0008-5472.CAN-09-1934
10.1158/0008-5472.CAN-18-0118
10.1038/nature23270
10.1016/j.immuni.2016.12.004
10.1038/s41418-020-00651-5
10.1186/s40425-019-0583-3
10.1016/j.cels.2015.12.004
10.1073/pnas.0809242105
10.1038/ncomms7702
10.1158/1535-7163.MCT-17-1066
10.1158/0008-5472.CAN-18-3060
10.1016/j.immuni.2018.03.023
10.1038/s41591-018-0302-5
10.1056/NEJMoa1604958
10.1136/jitc-2019-000367
10.1080/0284186X.2017.1406668
10.1080/2162402X.2021.1898104
10.1126/scitranslmed.aan5488
10.1038/s41422-019-0224-x
10.1016/j.it.2017.05.005
10.1016/j.cell.2017.01.017
10.1200/EDBK_280571
10.1093/bioinformatics/bts635
10.1158/2159-8290.CD-17-1033
10.1016/j.celrep.2018.12.017
10.1073/pnas.201398198
10.3389/fphar.2020.00441
10.1016/j.celrep.2019.11.113
10.1158/2159-8290.CD-17-0593
10.1038/cddis.2017.67
10.1038/s41467-022-32567-8
10.1126/science.adf1329
10.1093/annonc/mdx190
10.3389/fmed.2018.00351
10.1093/nar/gks1215
10.1038/s42003-020-01441-y
10.1016/j.ccell.2023.07.011
10.1016/j.cell.2017.07.024
10.1093/annonc/mdw041
10.1038/s41577-019-0218-4
10.1016/j.immuni.2005.09.010
10.1371/journal.pone.0220101
10.1016/j.cell.2015.08.016
10.1111/cas.13433
10.1016/j.ccell.2017.01.004
10.1093/bioinformatics/btw777
10.3389/fimmu.2018.01286
10.1038/nrclinonc.2016.57
10.1172/JCI67250
10.1007/s00262-017-2052-5
10.1038/nature13988
10.1158/1078-0432.CCR-17-3451
10.1158/0008-5472.CAN-16-0258
10.1093/ndt/14.9.2137
10.1038/s43018-023-00519-w
10.1016/j.celrep.2017.04.031
10.1038/s41388-018-0252-x
10.1146/annurev-virology-092818-015756
10.3791/51485
10.1016/j.celrep.2017.07.075
10.1158/0008-5472.CAN-15-0308
10.3390/cancers14040883
10.1016/j.annonc.2020.05.005
10.1016/j.annonc.2021.08.1748
10.1016/j.celrep.2018.02.053
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Attribution
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Attribution
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOI 10.1038/s44319-024-00333-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1469-3178
EndPage 559
ExternalDocumentID PMC11772817
oai_HAL_hal_04387866v2
39663510
10_1038_s44319_024_00333_0
Genre Journal Article
GrantInformation_xml – fundername: American Cancer Society (ACS)
  grantid: RSG-18-064-01-TBG; MBGI-23-1038434-01-MBG
  funderid: http://dx.doi.org/10.13039/100000048
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: NCI F30 CA243281; P30CA016056
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: RPCI | Roswell Park Alliance Foundation
  funderid: http://dx.doi.org/10.13039/100006398
– fundername: American Cancer Society (ACS)
  grantid: RSG-18-064-01-TBG
– fundername: American Cancer Society (ACS)
  grantid: MBGI-23-1038434-01-MBG
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: NCI F30 CA243281
– fundername: NCI NIH HHS
  grantid: P30 CA016056
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: P30CA016056
– fundername: NCI NIH HHS
  grantid: F30 CA243281
GroupedDBID ---
-DZ
0R~
1OC
24P
29G
2WC
33P
36B
39C
5GY
70F
AAESR
AAEVG
AAHBH
AAHHS
AAJSJ
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABZEH
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BFHJK
BHPHI
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DPXWK
DRFUL
DRSTM
E3Z
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
HK~
H~9
KQ8
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
R.K
RHI
RNS
ROL
RPM
SV3
TR2
WBKPD
WIH
WIK
WIN
WOHZO
WYJ
ZGI
ZZTAW
53G
AASML
AAYXX
CITATION
NAO
-Q-
.55
3O-
5VS
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAMMB
AANHP
AASGY
ABUWG
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AEUYN
AFKRA
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
ASPBG
AVWKF
AZQEC
BBNVY
BDRZF
BENPR
BPHCQ
BVXVI
C1A
CAG
CCPQU
CGR
COF
CUY
CVF
DIK
DWQXO
ECM
EIF
EJD
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
GX1
H13
HCIFZ
HMCUK
HVGLF
HYE
LH4
LK8
LW6
M1P
M2O
M7P
MEWTI
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNI
RZO
UKHRP
WOQ
WXSBR
X7M
7X8
1XC
PUEGO
VOOES
5PM
ID FETCH-LOGICAL-c432t-e4033d9f3c276f5156f53449cb33bbd197305fbd09e2a2339e9c8752163a73dd3
IEDL.DBID AAJSJ
ISSN 1469-3178
1469-221X
IngestDate Thu Aug 21 18:40:10 EDT 2025
Wed Aug 27 07:42:50 EDT 2025
Fri Jul 11 12:27:46 EDT 2025
Mon Jul 21 06:04:22 EDT 2025
Tue Jul 01 02:32:18 EDT 2025
Fri Feb 21 02:36:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Resistance
IFN
PD-L1
Immune-checkpoint
Secretome
Language English
License 2024. The Author(s).
Attribution: http://creativecommons.org/licenses/by
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the data associated with this article, unless otherwise stated in a credit line to the data, but does not extend to the graphical or creative elements of illustrations, charts, or figures. This waiver removes legal barriers to the re-use and mining of research data. According to standard scholarly practice, it is recommended to provide appropriate citation and attribution whenever technically possible.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-e4033d9f3c276f5156f53449cb33bbd197305fbd09e2a2339e9c8752163a73dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3749-8637
0000-0002-7175-9044
0000-0002-8742-4708
OpenAccessLink https://www.nature.com/articles/s44319-024-00333-0
PMID 39663510
PQID 3146652150
PQPubID 23479
PageCount 39
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11772817
hal_primary_oai_HAL_hal_04387866v2
proquest_miscellaneous_3146652150
pubmed_primary_39663510
crossref_primary_10_1038_s44319_024_00333_0
springer_journals_10_1038_s44319_024_00333_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-27
PublicationDateYYYYMMDD 2025-01-27
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
EMBO Press
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
References MM Gubin (333_CR48) 2014; 515
CA Clark (333_CR23) 2016; 76
A Ceschi (333_CR12) 2020; 11
T Vraetz (333_CR125) 1999; 14
333_CR46
F Tsushima (333_CR123) 2003; 33
Y Lan (333_CR60) 2018; 10
Y Shaked (333_CR112) 2016; 13
J Lau (333_CR62) 2017; 8
BS Parker (333_CR90) 2016; 16
M Gato-Canas (333_CR44) 2017; 20
H Kitamura (333_CR58) 2005; 23
D Mathew (333_CR77) 2024; 384
A Dobin (333_CR25) 2013; 29
R Clift (333_CR24) 2019; 79
WM Schneider (333_CR106) 2014; 32
JW Schoggins (333_CR110) 2019; 6
JA Bridge (333_CR11) 2018; 5
H Harlin (333_CR50) 2009; 69
GM Boukhaled (333_CR10) 2021; 16
WB McKean (333_CR79) 2020; 40
EL Hopewell (333_CR52) 2013; 123
I Rusinova (333_CR99) 2013; 41
L Wang (333_CR126) 2012; 28
DY Torrejon (333_CR118) 2020; 10
RA Amezquita (333_CR2) 2020; 17
B Olson (333_CR89) 2018; 8
JA Flores-Toro (333_CR39) 2020; 117
N Jacquelot (333_CR53) 2019; 29
M Mondini (333_CR81) 2019; 7
HB Gupta (333_CR49) 2016; 1
B Li (333_CR65) 2011; 12
JP Medema (333_CR80) 2001; 98
RR Weichselbaum (333_CR131) 2008; 105
333_CR61
KG Paulson (333_CR91) 2018; 9
SC Wei (333_CR130) 2017; 170
AB Nixon (333_CR87) 2019; 7
O Adler (333_CR1) 2023; 4
MF Sanmamed (333_CR101) 2016; 27
Z Lu (333_CR72) 2019; 2
N Yamazaki (333_CR133) 2017; 108
H Tsukamoto (333_CR122) 2015; 6
J Sceneay (333_CR103) 2019; 9
BW Higgs (333_CR51) 2018; 24
MM Tu (333_CR124) 2020; 3
JM Ebos (333_CR30) 2015; 75
M Sade-Feldman (333_CR100) 2017; 8
A Liberzon (333_CR67) 2015; 1
M Eltahir (333_CR34) 2021; 13
P Sharma (333_CR113) 2017; 168
N Murakami (333_CR83) 2016; 9
D Feng (333_CR35) 2019; 38
JL Benci (333_CR8) 2016; 167
S Wang (333_CR128) 2018; 37
P Bhat (333_CR9) 2017; 8
GJ Freeman (333_CR40) 2000; 192
JL Benci (333_CR7) 2019; 178
J Zak (333_CR136) 2024; 384
CH Chang (333_CR13) 2015; 162
SI Mosely (333_CR82) 2017; 5
D Pilger (333_CR93) 2021; 35
DT Fisher (333_CR37) 2014; 26
A Garcia-Diaz (333_CR42) 2017; 19
M Mastri (333_CR75) 2018; 17
AM Newman (333_CR86) 2015; 12
C Lu (333_CR71) 2019; 7
333_CR119
M Wang (333_CR127) 2021; 12
M Mastri (333_CR76) 2018; 25
AJ Schoenfeld (333_CR107) 2020; 37
LM Snell (333_CR114) 2017; 38
AR Naqash (333_CR85) 2018; 57
RS Kerbel (333_CR57) 2010; 16
JW Yu (333_CR135) 2018; 13
J Chen (333_CR14) 2019; 129
L Chen (333_CR15) 2018; 8
JL Reading (333_CR96) 2016; 45
ME Ritchie (333_CR97) 2015; 43
EC Madden (333_CR73) 2020; 6
333_CR98
M Dolan (333_CR26) 2019; 14
CR Stroud (333_CR115) 2019; 25
L Chocarro de Erauso (333_CR22) 2020; 11
Z Chen (333_CR18) 2018; 9
MF Sanmamed (333_CR102) 2017; 28
A Kumar (333_CR59) 2020; 9
333_CR94
333_CR92
Y Myojin (333_CR84) 2022; 14
DJ Schofield (333_CR109) 2021; 13
H Cheon (333_CR19) 2014; 41
DA Schaer (333_CR105) 2018; 22
X Leng (333_CR64) 2009; 69
M Ramos-Casals (333_CR95) 2020; 6
J Doms (333_CR28) 2020; 31
H Tsukamoto (333_CR121) 2018; 109
T Azuma (333_CR4) 2008; 111
K Feng (333_CR36) 2020; 8
J Bekisz (333_CR6) 2010; 3
RM Zemek (333_CR138) 2022; 13
R Weber (333_CR129) 2020; 8
JM Zaretsky (333_CR137) 2016; 375
NH Bander (333_CR5) 1997; 33
WB Lindsey (333_CR68) 2007; 9
S Shah (333_CR111) 2018; 9
MM Gubin (333_CR47) 2018; 175
DJ McCarthy (333_CR78) 2017; 33
S Gettinger (333_CR45) 2017; 7
RT Manguso (333_CR74) 2017; 547
H Yu (333_CR134) 2009; 9
R Arends (333_CR3) 2021; 10
PL Chen (333_CR16) 2016; 6
W Lederle (333_CR63) 2011; 128
A Kalbasi (333_CR54) 2020; 20
333_CR33
A Garcia-Diaz (333_CR43) 2019; 29
JM Ebos (333_CR31) 2014; 6
KV Katlinski (333_CR55) 2017; 31
X Wu (333_CR132) 2018; 4
Y Loriot (333_CR70) 2021; 32
SL Topalian (333_CR117) 2023; 41
M Efremova (333_CR32) 2018; 9
ZS Chheda (333_CR21) 2016; 197
XL Fu (333_CR41) 2017; 66
A Keegan (333_CR56) 2020; 8
H Tsukamoto (333_CR120) 2018; 78
H Liu (333_CR69) 2019; 25
DT Fisher (333_CR38) 2011; 121
JD Schoenfeld (333_CR108) 2019; 7
333_CR104
333_CR27
Z Chen (333_CR17) 2017; 7
W Du (333_CR29) 2021; 28
R Li (333_CR66) 2023; 29
H Cheon (333_CR20) 2021; 118
V Thorsson (333_CR116) 2018; 48
N Okiyama (333_CR88) 2017; 40
References_xml – volume: 38
  start-page: 6752
  year: 2019
  ident: 333_CR35
  publication-title: Oncogene
  doi: 10.1038/s41388-019-0919-y
– volume: 43
  start-page: e47
  year: 2015
  ident: 333_CR97
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume: 192
  start-page: 1027
  year: 2000
  ident: 333_CR40
  publication-title: J Exp Med
  doi: 10.1084/jem.192.7.1027
– volume: 12
  start-page: 453
  year: 2015
  ident: 333_CR86
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3337
– volume: 7
  start-page: 325
  year: 2019
  ident: 333_CR87
  publication-title: J Immunother Cancer
  doi: 10.1186/s40425-019-0799-2
– ident: 333_CR94
  doi: 10.3791/2259-v
– volume: 12
  year: 2021
  ident: 333_CR127
  publication-title: Front Immunol
– volume: 8
  start-page: e000678
  year: 2020
  ident: 333_CR56
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2020-000678
– volume: 33
  start-page: 2773
  year: 2003
  ident: 333_CR123
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200324084
– volume: 6
  start-page: 1561
  year: 2014
  ident: 333_CR31
  publication-title: EMBO Mol Med
  doi: 10.15252/emmm.201403989
– ident: 333_CR92
  doi: 10.1038/s41467-018-06300-3
– volume: 25
  start-page: 551
  year: 2019
  ident: 333_CR115
  publication-title: J Oncol Pharm Pr
  doi: 10.1177/1078155217745144
– volume: 6
  start-page: 38
  year: 2020
  ident: 333_CR95
  publication-title: Nat Rev Dis Prim
  doi: 10.1038/s41572-020-0160-6
– volume: 7
  start-page: 157
  year: 2019
  ident: 333_CR71
  publication-title: J Immunother Cancer
  doi: 10.1186/s40425-019-0635-8
– volume: 1
  year: 2016
  ident: 333_CR49
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/sigtrans.2016.30
– volume: 108
  start-page: 1022
  year: 2017
  ident: 333_CR133
  publication-title: Cancer Sci
  doi: 10.1111/cas.13226
– volume: 2
  start-page: e197621
  year: 2019
  ident: 333_CR72
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.7621
– volume: 33
  start-page: 233
  year: 1997
  ident: 333_CR5
  publication-title: Prostate
  doi: 10.1002/(SICI)1097-0045(19971201)33:4<233::AID-PROS2>3.0.CO;2-I
– volume: 5
  start-page: 29
  year: 2017
  ident: 333_CR82
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-16-0114
– volume: 117
  start-page: 1129
  year: 2020
  ident: 333_CR39
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1910856117
– volume: 10
  start-page: 1140
  year: 2020
  ident: 333_CR118
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-19-1409
– volume: 29
  start-page: 3875
  year: 2023
  ident: 333_CR66
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-23-0354
– volume: 16
  start-page: 131
  year: 2016
  ident: 333_CR90
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc.2016.14
– volume: 9
  year: 2018
  ident: 333_CR91
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06300-3
– volume: 6
  start-page: 489
  year: 2020
  ident: 333_CR73
  publication-title: Trends cancer
  doi: 10.1016/j.trecan.2020.02.020
– volume: 129
  start-page: 4224
  year: 2019
  ident: 333_CR14
  publication-title: J Clin Investig
  doi: 10.1172/JCI127458
– volume: 6
  start-page: 827
  year: 2016
  ident: 333_CR16
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-1545
– volume: 32
  start-page: 513
  year: 2014
  ident: 333_CR106
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032713-120231
– volume: 178
  start-page: 933
  year: 2019
  ident: 333_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2019.07.019
– volume: 13
  start-page: 3116
  year: 2021
  ident: 333_CR34
  publication-title: Cancers
  doi: 10.3390/cancers13133116
– volume: 26
  start-page: 38
  year: 2014
  ident: 333_CR37
  publication-title: Semin Immunol
  doi: 10.1016/j.smim.2014.01.008
– volume: 121
  start-page: 3846
  year: 2011
  ident: 333_CR38
  publication-title: J Clin Invest
  doi: 10.1172/JCI44952
– volume: 40
  start-page: 95
  year: 2017
  ident: 333_CR88
  publication-title: Nihon Rinsho Meneki Gakkai Kaishi
  doi: 10.2177/jsci.40.95
– volume: 9
  start-page: 123
  year: 2007
  ident: 333_CR68
  publication-title: Cytotherapy
  doi: 10.1080/14653240601182838
– volume: 8
  start-page: 1358
  year: 2018
  ident: 333_CR89
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-18-0044
– ident: 333_CR33
  doi: 10.1038/s41467-017-02424-0
– volume: 37
  start-page: 443
  year: 2020
  ident: 333_CR107
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.03.017
– volume: 16
  start-page: 1084
  year: 2010
  ident: 333_CR57
  publication-title: NatMed
– ident: 333_CR98
  doi: 10.1002/pbc.26642
– volume: 175
  start-page: 1014
  year: 2018
  ident: 333_CR47
  publication-title: Cell
  doi: 10.1016/j.cell.2018.09.030
– volume: 9
  start-page: 411
  year: 2016
  ident: 333_CR83
  publication-title: Clin Kidney J
  doi: 10.1093/ckj/sfw024
– ident: 333_CR104
  doi: 10.1158/2159-8290.CD-18-1454
– volume: 11
  start-page: 557
  year: 2020
  ident: 333_CR12
  publication-title: Front Pharm
  doi: 10.3389/fphar.2020.00557
– ident: 333_CR27
  doi: 10.1158/1535-7163.26934993
– volume: 9
  start-page: 4375
  year: 2018
  ident: 333_CR111
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.23315
– volume: 8
  year: 2017
  ident: 333_CR100
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01062-w
– volume: 167
  start-page: 1540
  year: 2016
  ident: 333_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.022
– volume: 41
  start-page: 156
  year: 2014
  ident: 333_CR19
  publication-title: Semin Oncol
  doi: 10.1053/j.seminoncol.2014.02.002
– volume: 7
  start-page: 376
  year: 2019
  ident: 333_CR81
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-18-0633
– volume: 17
  start-page: 137
  year: 2020
  ident: 333_CR2
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0654-x
– volume: 69
  start-page: 3077
  year: 2009
  ident: 333_CR50
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-2281
– volume: 13
  year: 2021
  ident: 333_CR109
  publication-title: MAbs
  doi: 10.1080/19420862.2020.1857100
– volume: 111
  start-page: 3635
  year: 2008
  ident: 333_CR4
  publication-title: Blood
  doi: 10.1182/blood-2007-11-123141
– volume: 384
  year: 2024
  ident: 333_CR136
  publication-title: Science
– volume: 7
  year: 2017
  ident: 333_CR17
  publication-title: Sci Rep
– volume: 9
  start-page: e52330
  year: 2020
  ident: 333_CR59
  publication-title: eLife
  doi: 10.7554/eLife.52330
– volume: 128
  start-page: 2803
  year: 2011
  ident: 333_CR63
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25621
– volume: 35
  start-page: 602
  year: 2021
  ident: 333_CR93
  publication-title: Genes Dev
  doi: 10.1101/gad.348314.121
– volume: 28
  start-page: 2184
  year: 2012
  ident: 333_CR126
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts356
– volume: 3
  start-page: 994
  year: 2010
  ident: 333_CR6
  publication-title: Pharmaceuticals
  doi: 10.3390/ph3040994
– volume: 8
  start-page: e000949
  year: 2020
  ident: 333_CR129
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2020-000949
– volume: 197
  start-page: 2016
  year: 2016
  ident: 333_CR21
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1502376
– volume: 9
  start-page: 798
  year: 2009
  ident: 333_CR134
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2734
– volume: 118
  start-page: e2112258118
  year: 2021
  ident: 333_CR20
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2112258118
– volume: 16
  start-page: 167
  year: 2021
  ident: 333_CR10
  publication-title: Annu Rev Pathol
  doi: 10.1146/annurev-pathol-031920-093932
– volume: 69
  start-page: 8579
  year: 2009
  ident: 333_CR64
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-1934
– volume: 9
  start-page: 1208
  year: 2019
  ident: 333_CR103
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-18-1454
– volume: 78
  start-page: 5011
  year: 2018
  ident: 333_CR120
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-0118
– volume: 547
  start-page: 413
  year: 2017
  ident: 333_CR74
  publication-title: Nature
  doi: 10.1038/nature23270
– volume: 45
  start-page: 1181
  year: 2016
  ident: 333_CR96
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.12.004
– volume: 28
  start-page: 1284
  year: 2021
  ident: 333_CR29
  publication-title: Cell Death Differ
  doi: 10.1038/s41418-020-00651-5
– volume: 7
  start-page: 112
  year: 2019
  ident: 333_CR108
  publication-title: J Immunother Cancer
  doi: 10.1186/s40425-019-0583-3
– volume: 1
  start-page: 417
  year: 2015
  ident: 333_CR67
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2015.12.004
– volume: 105
  start-page: 18490
  year: 2008
  ident: 333_CR131
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0809242105
– volume: 6
  year: 2015
  ident: 333_CR122
  publication-title: Nat Commun
  doi: 10.1038/ncomms7702
– volume: 17
  start-page: 1602
  year: 2018
  ident: 333_CR75
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-17-1066
– volume: 79
  start-page: 4149
  year: 2019
  ident: 333_CR24
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-3060
– volume: 48
  start-page: 812
  year: 2018
  ident: 333_CR116
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.03.023
– volume: 25
  start-page: 95
  year: 2019
  ident: 333_CR69
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0302-5
– volume: 375
  start-page: 819
  year: 2016
  ident: 333_CR137
  publication-title: N. Engl J Med
  doi: 10.1056/NEJMoa1604958
– volume: 8
  start-page: e000367
  year: 2020
  ident: 333_CR36
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2019-000367
– volume: 57
  start-page: 705
  year: 2018
  ident: 333_CR85
  publication-title: Acta Oncol
  doi: 10.1080/0284186X.2017.1406668
– volume: 12
  year: 2011
  ident: 333_CR65
  publication-title: BMC Bioinforma
– volume: 10
  year: 2021
  ident: 333_CR3
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2021.1898104
– ident: 333_CR61
  doi: 10.1126/scitranslmed.aan5488
– volume: 10
  start-page: eaan5488
  year: 2018
  ident: 333_CR60
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aan5488
– ident: 333_CR46
– volume: 29
  start-page: 846
  issue: 10
  year: 2019
  ident: 333_CR53
  publication-title: Cell Res
  doi: 10.1038/s41422-019-0224-x
– volume: 38
  start-page: 542
  year: 2017
  ident: 333_CR114
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2017.05.005
– volume: 168
  start-page: 707
  year: 2017
  ident: 333_CR113
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.017
– volume: 40
  start-page: e275
  year: 2020
  ident: 333_CR79
  publication-title: Am Soc Clin Oncol Educ Book
  doi: 10.1200/EDBK_280571
– volume: 29
  start-page: 15
  year: 2013
  ident: 333_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 8
  start-page: 1156
  year: 2018
  ident: 333_CR15
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-17-1033
– volume: 13
  year: 2018
  ident: 333_CR135
  publication-title: PLoS ONE
– volume: 9
  year: 2018
  ident: 333_CR32
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02424-0
– volume: 25
  start-page: 3706
  year: 2018
  ident: 333_CR76
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.12.017
– volume: 98
  start-page: 11515
  year: 2001
  ident: 333_CR80
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.201398198
– volume: 11
  start-page: 441
  year: 2020
  ident: 333_CR22
  publication-title: Front Pharm
  doi: 10.3389/fphar.2020.00441
– volume: 29
  start-page: 3766
  year: 2019
  ident: 333_CR43
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.11.113
– volume: 7
  start-page: 1420
  year: 2017
  ident: 333_CR45
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-17-0593
– volume: 8
  year: 2017
  ident: 333_CR9
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2017.67
– volume: 13
  year: 2022
  ident: 333_CR138
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-32567-8
– volume: 8
  year: 2017
  ident: 333_CR62
  publication-title: Nat Commun
– volume: 384
  year: 2024
  ident: 333_CR77
  publication-title: Science
  doi: 10.1126/science.adf1329
– volume: 28
  start-page: 1988
  year: 2017
  ident: 333_CR102
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdx190
– volume: 5
  start-page: 351
  year: 2018
  ident: 333_CR11
  publication-title: Front Med
  doi: 10.3389/fmed.2018.00351
– volume: 41
  start-page: D1040
  year: 2013
  ident: 333_CR99
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1215
– volume: 3
  start-page: 720
  year: 2020
  ident: 333_CR124
  publication-title: Commun Biol
  doi: 10.1038/s42003-020-01441-y
– volume: 41
  start-page: 1551
  year: 2023
  ident: 333_CR117
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2023.07.011
– volume: 170
  start-page: 1120
  year: 2017
  ident: 333_CR130
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.024
– volume: 27
  start-page: 1190
  year: 2016
  ident: 333_CR101
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdw041
– volume: 20
  start-page: 25
  year: 2020
  ident: 333_CR54
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-019-0218-4
– volume: 23
  start-page: 491
  year: 2005
  ident: 333_CR58
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.09.010
– volume: 14
  start-page: e0220101
  year: 2019
  ident: 333_CR26
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0220101
– volume: 162
  start-page: 1229
  year: 2015
  ident: 333_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.016
– volume: 109
  start-page: 523
  year: 2018
  ident: 333_CR121
  publication-title: Cancer Sci
  doi: 10.1111/cas.13433
– volume: 31
  start-page: 194
  year: 2017
  ident: 333_CR55
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.01.004
– volume: 33
  start-page: 1179
  year: 2017
  ident: 333_CR78
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw777
– volume: 4
  year: 2018
  ident: 333_CR132
  publication-title: Heliyon
– volume: 9
  start-page: 1286
  year: 2018
  ident: 333_CR18
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.01286
– volume: 13
  start-page: 611
  year: 2016
  ident: 333_CR112
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2016.57
– volume: 123
  start-page: 2509
  year: 2013
  ident: 333_CR52
  publication-title: J Clin Invest
  doi: 10.1172/JCI67250
– volume: 66
  start-page: 1597
  year: 2017
  ident: 333_CR41
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-017-2052-5
– volume: 515
  start-page: 577
  year: 2014
  ident: 333_CR48
  publication-title: Nature
  doi: 10.1038/nature13988
– volume: 24
  start-page: 3857
  year: 2018
  ident: 333_CR51
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-3451
– volume: 76
  start-page: 6964
  year: 2016
  ident: 333_CR23
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-16-0258
– volume: 14
  start-page: 2137
  year: 1999
  ident: 333_CR125
  publication-title: Nephrol Dial Transpl
  doi: 10.1093/ndt/14.9.2137
– volume: 4
  start-page: 401
  year: 2023
  ident: 333_CR1
  publication-title: Nat Cancer
  doi: 10.1038/s43018-023-00519-w
– volume: 19
  start-page: 1189
  year: 2017
  ident: 333_CR42
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.04.031
– volume: 37
  start-page: 4164
  year: 2018
  ident: 333_CR128
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0252-x
– volume: 6
  start-page: 567
  year: 2019
  ident: 333_CR110
  publication-title: Annu Rev Virol
  doi: 10.1146/annurev-virology-092818-015756
– ident: 333_CR119
  doi: 10.3791/51485
– volume: 20
  start-page: 1818
  year: 2017
  ident: 333_CR44
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.07.075
– volume: 75
  start-page: 3427
  year: 2015
  ident: 333_CR30
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-15-0308
– volume: 14
  start-page: 883
  year: 2022
  ident: 333_CR84
  publication-title: Cancers
  doi: 10.3390/cancers14040883
– volume: 31
  start-page: 1273
  year: 2020
  ident: 333_CR28
  publication-title: Ann Oncol
  doi: 10.1016/j.annonc.2020.05.005
– volume: 32
  start-page: 1381
  year: 2021
  ident: 333_CR70
  publication-title: Ann Oncol
  doi: 10.1016/j.annonc.2021.08.1748
– volume: 22
  start-page: 2978
  year: 2018
  ident: 333_CR105
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.02.053
SSID ssj0005978
Score 2.4580674
Snippet Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular...
Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. SinceIFN-regulated intracellular...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 521
SubjectTerms Animals
B7-H1 Antigen - antagonists & inhibitors
B7-H1 Antigen - genetics
B7-H1 Antigen - metabolism
Biomedical and Life Sciences
Cancer
Cell Line, Tumor
Drug Resistance, Neoplasm
EMBO03
EMBO19
EMBO37
Humans
Immune Checkpoint Inhibitors - pharmacology
Interferon Type I - metabolism
Life Sciences
Mice
Neoplasms - drug therapy
Neoplasms - immunology
Neoplasms - metabolism
Neoplasms - pathology
Signal Transduction - drug effects
Title Acquired resistance to PD-L1 inhibition enhances a type I IFN-regulated secretory program in tumors
URI https://link.springer.com/article/10.1038/s44319-024-00333-0
https://www.ncbi.nlm.nih.gov/pubmed/39663510
https://www.proquest.com/docview/3146652150
https://inria.hal.science/hal-04387866
https://pubmed.ncbi.nlm.nih.gov/PMC11772817
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELb6EKiXCsqjW2BlEDewiB-J42O0sNqu2goJKvVm2YlXuwey1SZbiX_PjJMULUVIXHKIY-fx-fFN5vMMIe-TNAiYAlDULjxTqRPMV0IzJ4NapFXFncaNwpdX2exazW_Smz0ihr0wUbQfQ1rGaXpQh31qlIrbbYRimH5MMjDTDzFUO_Ttw6KYf5v_FnaAYdRvj0lk_peaO0vQ_hIFkA_Z5UOR5B-e0rgATZ-Q45450qJ71qdkL9Qn5FGXS_LnCXl82XvJn5GyKFHfGyoKtjTyQwCWtmv69TO74HRVL1c-CrVoqJdY1lBH8VcsPafn0yu26dLTQ_UGOSV64Wkv44LKtN3-WG-a5-R6-uX7ZMb6ZAqsVFK0LCh4-cosZCl0tgAWAweplCm9lN5X3MBQTxe-SkwQTkhpginBlhHA15yWVSVfkIN6XYdTQrUMLmhTcjTeHK74QNND4nnQvBTOjMiH4fva2y5mho2-bpnbDg0LaNiIhk1G5B1AcH8hhrueFRcWz6GXUudZdidG5O2AkIX-j04NV4f1trESpvoMHjOFhl52iN23JQ3yKQ4l-Q6WOzfbLalXyxhjG33ZIud6RD4OsNt-dDf_eJmz_7v8FTkSmE844Uzo1-Sg3WzDGyA5rR_3vXpM9ifZZBx_FfwCAAL3Uw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH_ahmBcEIyv8mkQnJhFYjtxcuBQdVQtaysOm7SbcRKX9rAUNSlo_w5_Ke85yVAZQuKwSw5x7Dj--eP38n72A3gTRE7gFECidpFxFVnBs0JobqVT86goQqtpo_B0Fo9O1aez6GwHfnZ7Ybxo3x9p6afpTh32vlLKb7cRilP4McmDVkh57C5-oJlWfRgfIaZvhRh-PBmMeBtJgOdKipo7hXmKdC5zoeM5LuF4kUqleSZllhVhiv08mmdFkDphhZSpS3Mk8gLJitWyKCSWuws38FZMI2cQD37LSNAMazfjBDL5Sz23FrzdBcktr3LZq5LMP_yyfrkb3oU7LU9l_aZl7sGOKw_gZhO58uIAbk1bn_x9yPs5qYldwdByJzaK3YjVK_b5iE9CtiwXy8zLwpgrF5RWMcvoxy8bs_FwxtfuK0UQw-wVMVjy-bNWNIaZWb05X62rB3B6LQ3-EPbKVekeA9PSWafTPCRT0RK_QKPABVnodJgLm_bgXde-5ltzQofxnnWZmAYNg2gYj4YJevAaIbh8kA7XHvUnhu6RT1Qncfxd9OBVh5DB0UYuFFu61aYyEheWGKsZYUGPGsQuy5IpsbcQU5ItLLdetp1SLhf-RG_ynIsk1D047GA37VxS_eNjnvzf4y9hf3QynZjJeHb8FG4LimQchFzoZ7BXrzfuOdKrOnvh-zeDL9c9oH4BBpUv4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD7aOjHxgmDcytUgeAJDfEmcPPAQUaq266pJMGlvnhO7tA-kU5OC9of4nRznMlSGkHjYSx7s2En8-fKdnM8-AK-C0HGcAryonWdUhobTzHJFjXByHlrLjPIbhY9m0ehETk7D0x342e2FqUX79ZGW9TTdqcPel1LW2224pD78mKDBu3M7b8WUh-7iB5pq5YfxAHF9zfnw05ePI9pGE6C5FLyiTmI5m8xFzlU0x2UcL0LKJM-EyDLLEuzr4TyzQeK44UIkLsmRzHMkLEYJawXWuwt7mMRkD_bSdPJ58ltMgsZYuyUnEPFf3nZr2dtdeNHlVUZ7VZj5h3e2XvSGt-FWy1ZJ2rTPHdhxxQHcaOJXXhzA_lHrmb8LeZp7TbGzBO13z0mxM5FqRY4HdMrIslgss1ocRlyx8HklMcT__iVjMh7O6Np99XHEsHjpeaz3_JNWOoaFSbX5tlqX9-DkWpr8PvSKVeEeAlHCGaeSnHmD0XiWgaaBCzLmFMu5Sfrwpmtffd6c06Fr_7qIdYOGRjR0jYYO-vASIbi80R-xPUqn2qd5z6iKo-g778OLDiGNY847UkzhVptSC1xeInzNECt60CB2WZdIPIdjmBNvYbn1sO2cYrmoz_X2_nMeM9WHtx3sup1Ryn98zKP_u_057B8Phno6nh0-hpvchzMOGOXqCfSq9cY9RY5VZc_aDk7g7LrH1C-kPTJG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acquired+resistance+to+PD-L1+inhibition+enhances+a+type+I+IFN-regulated+secretory+program+in+tumors&rft.jtitle=EMBO+reports&rft.au=Shi%2C+Yuhao&rft.au=McKenery%2C+Amber&rft.au=Dolan%2C+Melissa&rft.au=Mastri%2C+Michalis&rft.date=2025-01-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=1469-3178&rft.volume=26&rft.issue=2&rft.spage=521&rft.epage=559&rft_id=info:doi/10.1038%2Fs44319-024-00333-0&rft.externalDocID=10_1038_s44319_024_00333_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-3178&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-3178&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-3178&client=summon