Acquired resistance to PD-L1 inhibition enhances a type I IFN-regulated secretory program in tumors
Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells fol...
Saved in:
Published in | EMBO reports Vol. 26; no. 2; pp. 521 - 559 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.01.2025
EMBO Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors ‘rewires’ tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack.
Synopsis
Acquired resistance to PD-L1 inhibition can rewire the interferon-regulated secretory machinery in tumor cells, altering the immune microenvironment. These secretory programs may be exploited as biomarkers and therapeutic targets following treatment failure.
Resistance to αPD-L1 treatment can increase type I IFN-regulated secretory programs.
An αPD-L1 treatment-induced secretome (PTIS) can suppress CD8 T cell function and protect resistant tumor cells from splenocyte cytotoxicity.
Blocking IFN signaling and the PTIS can slow resistant tumor growth.
Acquired resistance to PD-L1 inhibition can rewire the interferon-regulated secretory machinery in tumor cells, altering the immune microenvironment. These secretory programs may be exploited as biomarkers and therapeutic targets following treatment failure. |
---|---|
AbstractList | Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. SinceIFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examinedIFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxcity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype high-lighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors ‘rewires’ tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack. Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors 'rewires' tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack.Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors 'rewires' tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack. Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors ‘rewires’ tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack. Synopsis Acquired resistance to PD-L1 inhibition can rewire the interferon-regulated secretory machinery in tumor cells, altering the immune microenvironment. These secretory programs may be exploited as biomarkers and therapeutic targets following treatment failure. Resistance to αPD-L1 treatment can increase type I IFN-regulated secretory programs. An αPD-L1 treatment-induced secretome (PTIS) can suppress CD8 T cell function and protect resistant tumor cells from splenocyte cytotoxicity. Blocking IFN signaling and the PTIS can slow resistant tumor growth. Acquired resistance to PD-L1 inhibition can rewire the interferon-regulated secretory machinery in tumor cells, altering the immune microenvironment. These secretory programs may be exploited as biomarkers and therapeutic targets following treatment failure. Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors ‘rewires’ tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack. Acquired resistance to PD-L1 inhibition can rewire the interferon-regulated secretory machinery in tumor cells, altering the immune microenvironment. These secretory programs may be exploited as biomarkers and therapeutic targets following treatment failure. Resistance to αPD-L1 treatment can increase type I IFN-regulated secretory programs. An αPD-L1 treatment-induced secretome (PTIS) can suppress CD8 T cell function and protect resistant tumor cells from splenocyte cytotoxicity. Blocking IFN signaling and the PTIS can slow resistant tumor growth. Acquired resistance to PD-L1 inhibition can rewire the interferon-regulated secretory machinery in tumor cells, altering the immune microenvironment. These secretory programs may be exploited as biomarkers and therapeutic targets following treatment failure. Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors ‘rewires’ tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack. |
Author | Shi, Yuhao Long, Mark McKenery, Amber Puzanov, Igor Benzekry, Sebastien Ebos, John M L Dolan, Melissa Dommer, Adam Abrams, Scott I Mastri, Michalis Hill, James W |
Author_xml | – sequence: 1 givenname: Yuhao surname: Shi fullname: Shi, Yuhao organization: Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center – sequence: 2 givenname: Amber surname: McKenery fullname: McKenery, Amber organization: Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center – sequence: 3 givenname: Melissa surname: Dolan fullname: Dolan, Melissa organization: Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center – sequence: 4 givenname: Michalis surname: Mastri fullname: Mastri, Michalis organization: Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center – sequence: 5 givenname: James W surname: Hill fullname: Hill, James W organization: Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo – sequence: 6 givenname: Adam surname: Dommer fullname: Dommer, Adam organization: Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center – sequence: 7 givenname: Sebastien orcidid: 0000-0002-3749-8637 surname: Benzekry fullname: Benzekry, Sebastien organization: Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis-Méditerranée, Centre de Recherches en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Faculté de Pharmacie, Aix-Marseille University – sequence: 8 givenname: Mark surname: Long fullname: Long, Mark organization: Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center – sequence: 9 givenname: Scott I orcidid: 0000-0002-8742-4708 surname: Abrams fullname: Abrams, Scott I organization: Department of Immunology, Roswell Park Comprehensive Cancer Center – sequence: 10 givenname: Igor surname: Puzanov fullname: Puzanov, Igor organization: Department of Medicine, Roswell Park Comprehensive Cancer Center – sequence: 11 givenname: John M L orcidid: 0000-0002-7175-9044 surname: Ebos fullname: Ebos, John M L email: John.Ebos@RoswellPark.org organization: Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Department of Medicine, Roswell Park Comprehensive Cancer Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39663510$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-04387866$$DView record in HAL |
BookMark | eNp9kU9v1DAQxS1URP_AF-CAfIRDwM4kcXxCq0LblVbAAc6W40x2XSX21nYq7bfH25SqcOBiW57fex7POycnzjsk5C1nHzmD9lOsKuCyYGVVMAYABXtBznjVyAK4aE-enU_JeYy3jLFaivYVOQXZNFBzdkbMytzNNmBPA0Ybk3YGafL0x5diw6l1O9vZZL2j6HbHWqSapsMe6Zqur74VAbfzqFOWRzQBkw8Hug9-G_SUxTTNkw_xNXk56DHim8f9gvy6-vrz8qbYfL9eX642hamgTAVW-RO9HMCUohlqXucFqkqaDqDrei4FsHroeiax1CWARGlaUZe8AS2g7-GCfF5893M3YW_QpaBHtQ920uGgvLbq74qzO7X194pzIcqWi-zwYXHY_aO7WW3U8Y5V0Iq2ae7LzL5_fC34uxljUpONBsdRO_RzVJCn3-TuapbRd88be3L-E0MGygUwwccYcHhCOFPHrNWStcpZq4es1VEEiyhm2G0xqFs_B5cn_D_VbwZ3qwo |
Cites_doi | 10.1038/s41388-019-0919-y 10.1093/nar/gkv007 10.1084/jem.192.7.1027 10.1038/nmeth.3337 10.1186/s40425-019-0799-2 10.3791/2259-v 10.1136/jitc-2020-000678 10.1002/eji.200324084 10.15252/emmm.201403989 10.1038/s41467-018-06300-3 10.1177/1078155217745144 10.1038/s41572-020-0160-6 10.1186/s40425-019-0635-8 10.1038/sigtrans.2016.30 10.1111/cas.13226 10.1001/jamanetworkopen.2019.7621 10.1002/(SICI)1097-0045(19971201)33:4<233::AID-PROS2>3.0.CO;2-I 10.1158/2326-6066.CIR-16-0114 10.1073/pnas.1910856117 10.1158/2159-8290.CD-19-1409 10.1158/1078-0432.CCR-23-0354 10.1038/nrc.2016.14 10.1016/j.trecan.2020.02.020 10.1172/JCI127458 10.1158/2159-8290.CD-15-1545 10.1146/annurev-immunol-032713-120231 10.1016/j.cell.2019.07.019 10.3390/cancers13133116 10.1016/j.smim.2014.01.008 10.1172/JCI44952 10.2177/jsci.40.95 10.1080/14653240601182838 10.1158/2159-8290.CD-18-0044 10.1038/s41467-017-02424-0 10.1016/j.ccell.2020.03.017 10.1002/pbc.26642 10.1016/j.cell.2018.09.030 10.1093/ckj/sfw024 10.1158/2159-8290.CD-18-1454 10.3389/fphar.2020.00557 10.1158/1535-7163.26934993 10.18632/oncotarget.23315 10.1038/s41467-017-01062-w 10.1016/j.cell.2016.11.022 10.1053/j.seminoncol.2014.02.002 10.1158/2326-6066.CIR-18-0633 10.1038/s41592-019-0654-x 10.1158/0008-5472.CAN-08-2281 10.1080/19420862.2020.1857100 10.1182/blood-2007-11-123141 10.7554/eLife.52330 10.1002/ijc.25621 10.1101/gad.348314.121 10.1093/bioinformatics/bts356 10.3390/ph3040994 10.1136/jitc-2020-000949 10.4049/jimmunol.1502376 10.1038/nrc2734 10.1073/pnas.2112258118 10.1146/annurev-pathol-031920-093932 10.1158/0008-5472.CAN-09-1934 10.1158/0008-5472.CAN-18-0118 10.1038/nature23270 10.1016/j.immuni.2016.12.004 10.1038/s41418-020-00651-5 10.1186/s40425-019-0583-3 10.1016/j.cels.2015.12.004 10.1073/pnas.0809242105 10.1038/ncomms7702 10.1158/1535-7163.MCT-17-1066 10.1158/0008-5472.CAN-18-3060 10.1016/j.immuni.2018.03.023 10.1038/s41591-018-0302-5 10.1056/NEJMoa1604958 10.1136/jitc-2019-000367 10.1080/0284186X.2017.1406668 10.1080/2162402X.2021.1898104 10.1126/scitranslmed.aan5488 10.1038/s41422-019-0224-x 10.1016/j.it.2017.05.005 10.1016/j.cell.2017.01.017 10.1200/EDBK_280571 10.1093/bioinformatics/bts635 10.1158/2159-8290.CD-17-1033 10.1016/j.celrep.2018.12.017 10.1073/pnas.201398198 10.3389/fphar.2020.00441 10.1016/j.celrep.2019.11.113 10.1158/2159-8290.CD-17-0593 10.1038/cddis.2017.67 10.1038/s41467-022-32567-8 10.1126/science.adf1329 10.1093/annonc/mdx190 10.3389/fmed.2018.00351 10.1093/nar/gks1215 10.1038/s42003-020-01441-y 10.1016/j.ccell.2023.07.011 10.1016/j.cell.2017.07.024 10.1093/annonc/mdw041 10.1038/s41577-019-0218-4 10.1016/j.immuni.2005.09.010 10.1371/journal.pone.0220101 10.1016/j.cell.2015.08.016 10.1111/cas.13433 10.1016/j.ccell.2017.01.004 10.1093/bioinformatics/btw777 10.3389/fimmu.2018.01286 10.1038/nrclinonc.2016.57 10.1172/JCI67250 10.1007/s00262-017-2052-5 10.1038/nature13988 10.1158/1078-0432.CCR-17-3451 10.1158/0008-5472.CAN-16-0258 10.1093/ndt/14.9.2137 10.1038/s43018-023-00519-w 10.1016/j.celrep.2017.04.031 10.1038/s41388-018-0252-x 10.1146/annurev-virology-092818-015756 10.3791/51485 10.1016/j.celrep.2017.07.075 10.1158/0008-5472.CAN-15-0308 10.3390/cancers14040883 10.1016/j.annonc.2020.05.005 10.1016/j.annonc.2021.08.1748 10.1016/j.celrep.2018.02.053 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). Attribution The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Attribution – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
DOI | 10.1038/s44319-024-00333-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1469-3178 |
EndPage | 559 |
ExternalDocumentID | PMC11772817 oai_HAL_hal_04387866v2 39663510 10_1038_s44319_024_00333_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: American Cancer Society (ACS) grantid: RSG-18-064-01-TBG; MBGI-23-1038434-01-MBG funderid: http://dx.doi.org/10.13039/100000048 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: NCI F30 CA243281; P30CA016056 funderid: http://dx.doi.org/10.13039/100000054 – fundername: RPCI | Roswell Park Alliance Foundation funderid: http://dx.doi.org/10.13039/100006398 – fundername: American Cancer Society (ACS) grantid: RSG-18-064-01-TBG – fundername: American Cancer Society (ACS) grantid: MBGI-23-1038434-01-MBG – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: NCI F30 CA243281 – fundername: NCI NIH HHS grantid: P30 CA016056 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: P30CA016056 – fundername: NCI NIH HHS grantid: F30 CA243281 |
GroupedDBID | --- -DZ 0R~ 1OC 24P 29G 2WC 33P 36B 39C 5GY 70F AAESR AAEVG AAHBH AAHHS AAJSJ AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABLJU ABZEH ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BFHJK BHPHI BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DPXWK DRFUL DRSTM E3Z EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ HK~ H~9 KQ8 L7B LATKE LEEKS LITHE LOXES LUTES LYRES MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P2P P2W R.K RHI RNS ROL RPM SV3 TR2 WBKPD WIH WIK WIN WOHZO WYJ ZGI ZZTAW 53G AASML AAYXX CITATION NAO -Q- .55 3O- 5VS 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAMMB AANHP AASGY ABUWG ACBWZ ACRPL ACYXJ ADNMO AEFGJ AEUYN AFKRA AGQPQ AGXDD AIDQK AIDYY ALUQN ASPBG AVWKF AZQEC BBNVY BDRZF BENPR BPHCQ BVXVI C1A CAG CCPQU CGR COF CUY CVF DIK DWQXO ECM EIF EJD FEDTE FYUFA GNUQQ GODZA GUQSH GX1 H13 HCIFZ HMCUK HVGLF HYE LH4 LK8 LW6 M1P M2O M7P MEWTI NPM PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RIG RNI RZO UKHRP WOQ WXSBR X7M 7X8 1XC PUEGO VOOES 5PM |
ID | FETCH-LOGICAL-c432t-e4033d9f3c276f5156f53449cb33bbd197305fbd09e2a2339e9c8752163a73dd3 |
IEDL.DBID | AAJSJ |
ISSN | 1469-3178 1469-221X |
IngestDate | Thu Aug 21 18:40:10 EDT 2025 Wed Aug 27 07:42:50 EDT 2025 Fri Jul 11 12:27:46 EDT 2025 Mon Jul 21 06:04:22 EDT 2025 Tue Jul 01 02:32:18 EDT 2025 Fri Feb 21 02:36:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Resistance IFN PD-L1 Immune-checkpoint Secretome |
Language | English |
License | 2024. The Author(s). Attribution: http://creativecommons.org/licenses/by Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the data associated with this article, unless otherwise stated in a credit line to the data, but does not extend to the graphical or creative elements of illustrations, charts, or figures. This waiver removes legal barriers to the re-use and mining of research data. According to standard scholarly practice, it is recommended to provide appropriate citation and attribution whenever technically possible. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-e4033d9f3c276f5156f53449cb33bbd197305fbd09e2a2339e9c8752163a73dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3749-8637 0000-0002-7175-9044 0000-0002-8742-4708 |
OpenAccessLink | https://www.nature.com/articles/s44319-024-00333-0 |
PMID | 39663510 |
PQID | 3146652150 |
PQPubID | 23479 |
PageCount | 39 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11772817 hal_primary_oai_HAL_hal_04387866v2 proquest_miscellaneous_3146652150 pubmed_primary_39663510 crossref_primary_10_1038_s44319_024_00333_0 springer_journals_10_1038_s44319_024_00333_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-27 |
PublicationDateYYYYMMDD | 2025-01-27 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | EMBO reports |
PublicationTitleAbbrev | EMBO Rep |
PublicationTitleAlternate | EMBO Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK EMBO Press |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press |
References | MM Gubin (333_CR48) 2014; 515 CA Clark (333_CR23) 2016; 76 A Ceschi (333_CR12) 2020; 11 T Vraetz (333_CR125) 1999; 14 333_CR46 F Tsushima (333_CR123) 2003; 33 Y Lan (333_CR60) 2018; 10 Y Shaked (333_CR112) 2016; 13 J Lau (333_CR62) 2017; 8 BS Parker (333_CR90) 2016; 16 M Gato-Canas (333_CR44) 2017; 20 H Kitamura (333_CR58) 2005; 23 D Mathew (333_CR77) 2024; 384 A Dobin (333_CR25) 2013; 29 R Clift (333_CR24) 2019; 79 WM Schneider (333_CR106) 2014; 32 JW Schoggins (333_CR110) 2019; 6 JA Bridge (333_CR11) 2018; 5 H Harlin (333_CR50) 2009; 69 GM Boukhaled (333_CR10) 2021; 16 WB McKean (333_CR79) 2020; 40 EL Hopewell (333_CR52) 2013; 123 I Rusinova (333_CR99) 2013; 41 L Wang (333_CR126) 2012; 28 DY Torrejon (333_CR118) 2020; 10 RA Amezquita (333_CR2) 2020; 17 B Olson (333_CR89) 2018; 8 JA Flores-Toro (333_CR39) 2020; 117 N Jacquelot (333_CR53) 2019; 29 M Mondini (333_CR81) 2019; 7 HB Gupta (333_CR49) 2016; 1 B Li (333_CR65) 2011; 12 JP Medema (333_CR80) 2001; 98 RR Weichselbaum (333_CR131) 2008; 105 333_CR61 KG Paulson (333_CR91) 2018; 9 SC Wei (333_CR130) 2017; 170 AB Nixon (333_CR87) 2019; 7 O Adler (333_CR1) 2023; 4 MF Sanmamed (333_CR101) 2016; 27 Z Lu (333_CR72) 2019; 2 N Yamazaki (333_CR133) 2017; 108 H Tsukamoto (333_CR122) 2015; 6 J Sceneay (333_CR103) 2019; 9 BW Higgs (333_CR51) 2018; 24 MM Tu (333_CR124) 2020; 3 JM Ebos (333_CR30) 2015; 75 M Sade-Feldman (333_CR100) 2017; 8 A Liberzon (333_CR67) 2015; 1 M Eltahir (333_CR34) 2021; 13 P Sharma (333_CR113) 2017; 168 N Murakami (333_CR83) 2016; 9 D Feng (333_CR35) 2019; 38 JL Benci (333_CR8) 2016; 167 S Wang (333_CR128) 2018; 37 P Bhat (333_CR9) 2017; 8 GJ Freeman (333_CR40) 2000; 192 JL Benci (333_CR7) 2019; 178 J Zak (333_CR136) 2024; 384 CH Chang (333_CR13) 2015; 162 SI Mosely (333_CR82) 2017; 5 D Pilger (333_CR93) 2021; 35 DT Fisher (333_CR37) 2014; 26 A Garcia-Diaz (333_CR42) 2017; 19 M Mastri (333_CR75) 2018; 17 AM Newman (333_CR86) 2015; 12 C Lu (333_CR71) 2019; 7 333_CR119 M Wang (333_CR127) 2021; 12 M Mastri (333_CR76) 2018; 25 AJ Schoenfeld (333_CR107) 2020; 37 LM Snell (333_CR114) 2017; 38 AR Naqash (333_CR85) 2018; 57 RS Kerbel (333_CR57) 2010; 16 JW Yu (333_CR135) 2018; 13 J Chen (333_CR14) 2019; 129 L Chen (333_CR15) 2018; 8 JL Reading (333_CR96) 2016; 45 ME Ritchie (333_CR97) 2015; 43 EC Madden (333_CR73) 2020; 6 333_CR98 M Dolan (333_CR26) 2019; 14 CR Stroud (333_CR115) 2019; 25 L Chocarro de Erauso (333_CR22) 2020; 11 Z Chen (333_CR18) 2018; 9 MF Sanmamed (333_CR102) 2017; 28 A Kumar (333_CR59) 2020; 9 333_CR94 333_CR92 Y Myojin (333_CR84) 2022; 14 DJ Schofield (333_CR109) 2021; 13 H Cheon (333_CR19) 2014; 41 DA Schaer (333_CR105) 2018; 22 X Leng (333_CR64) 2009; 69 M Ramos-Casals (333_CR95) 2020; 6 J Doms (333_CR28) 2020; 31 H Tsukamoto (333_CR121) 2018; 109 T Azuma (333_CR4) 2008; 111 K Feng (333_CR36) 2020; 8 J Bekisz (333_CR6) 2010; 3 RM Zemek (333_CR138) 2022; 13 R Weber (333_CR129) 2020; 8 JM Zaretsky (333_CR137) 2016; 375 NH Bander (333_CR5) 1997; 33 WB Lindsey (333_CR68) 2007; 9 S Shah (333_CR111) 2018; 9 MM Gubin (333_CR47) 2018; 175 DJ McCarthy (333_CR78) 2017; 33 S Gettinger (333_CR45) 2017; 7 RT Manguso (333_CR74) 2017; 547 H Yu (333_CR134) 2009; 9 R Arends (333_CR3) 2021; 10 PL Chen (333_CR16) 2016; 6 W Lederle (333_CR63) 2011; 128 A Kalbasi (333_CR54) 2020; 20 333_CR33 A Garcia-Diaz (333_CR43) 2019; 29 JM Ebos (333_CR31) 2014; 6 KV Katlinski (333_CR55) 2017; 31 X Wu (333_CR132) 2018; 4 Y Loriot (333_CR70) 2021; 32 SL Topalian (333_CR117) 2023; 41 M Efremova (333_CR32) 2018; 9 ZS Chheda (333_CR21) 2016; 197 XL Fu (333_CR41) 2017; 66 A Keegan (333_CR56) 2020; 8 H Tsukamoto (333_CR120) 2018; 78 H Liu (333_CR69) 2019; 25 DT Fisher (333_CR38) 2011; 121 JD Schoenfeld (333_CR108) 2019; 7 333_CR104 333_CR27 Z Chen (333_CR17) 2017; 7 W Du (333_CR29) 2021; 28 R Li (333_CR66) 2023; 29 H Cheon (333_CR20) 2021; 118 V Thorsson (333_CR116) 2018; 48 N Okiyama (333_CR88) 2017; 40 |
References_xml | – volume: 38 start-page: 6752 year: 2019 ident: 333_CR35 publication-title: Oncogene doi: 10.1038/s41388-019-0919-y – volume: 43 start-page: e47 year: 2015 ident: 333_CR97 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 – volume: 192 start-page: 1027 year: 2000 ident: 333_CR40 publication-title: J Exp Med doi: 10.1084/jem.192.7.1027 – volume: 12 start-page: 453 year: 2015 ident: 333_CR86 publication-title: Nat Methods doi: 10.1038/nmeth.3337 – volume: 7 start-page: 325 year: 2019 ident: 333_CR87 publication-title: J Immunother Cancer doi: 10.1186/s40425-019-0799-2 – ident: 333_CR94 doi: 10.3791/2259-v – volume: 12 year: 2021 ident: 333_CR127 publication-title: Front Immunol – volume: 8 start-page: e000678 year: 2020 ident: 333_CR56 publication-title: J Immunother Cancer doi: 10.1136/jitc-2020-000678 – volume: 33 start-page: 2773 year: 2003 ident: 333_CR123 publication-title: Eur J Immunol doi: 10.1002/eji.200324084 – volume: 6 start-page: 1561 year: 2014 ident: 333_CR31 publication-title: EMBO Mol Med doi: 10.15252/emmm.201403989 – ident: 333_CR92 doi: 10.1038/s41467-018-06300-3 – volume: 25 start-page: 551 year: 2019 ident: 333_CR115 publication-title: J Oncol Pharm Pr doi: 10.1177/1078155217745144 – volume: 6 start-page: 38 year: 2020 ident: 333_CR95 publication-title: Nat Rev Dis Prim doi: 10.1038/s41572-020-0160-6 – volume: 7 start-page: 157 year: 2019 ident: 333_CR71 publication-title: J Immunother Cancer doi: 10.1186/s40425-019-0635-8 – volume: 1 year: 2016 ident: 333_CR49 publication-title: Signal Transduct Target Ther doi: 10.1038/sigtrans.2016.30 – volume: 108 start-page: 1022 year: 2017 ident: 333_CR133 publication-title: Cancer Sci doi: 10.1111/cas.13226 – volume: 2 start-page: e197621 year: 2019 ident: 333_CR72 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.7621 – volume: 33 start-page: 233 year: 1997 ident: 333_CR5 publication-title: Prostate doi: 10.1002/(SICI)1097-0045(19971201)33:4<233::AID-PROS2>3.0.CO;2-I – volume: 5 start-page: 29 year: 2017 ident: 333_CR82 publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-16-0114 – volume: 117 start-page: 1129 year: 2020 ident: 333_CR39 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1910856117 – volume: 10 start-page: 1140 year: 2020 ident: 333_CR118 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-19-1409 – volume: 29 start-page: 3875 year: 2023 ident: 333_CR66 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-23-0354 – volume: 16 start-page: 131 year: 2016 ident: 333_CR90 publication-title: Nat Rev Cancer doi: 10.1038/nrc.2016.14 – volume: 9 year: 2018 ident: 333_CR91 publication-title: Nat Commun doi: 10.1038/s41467-018-06300-3 – volume: 6 start-page: 489 year: 2020 ident: 333_CR73 publication-title: Trends cancer doi: 10.1016/j.trecan.2020.02.020 – volume: 129 start-page: 4224 year: 2019 ident: 333_CR14 publication-title: J Clin Investig doi: 10.1172/JCI127458 – volume: 6 start-page: 827 year: 2016 ident: 333_CR16 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-15-1545 – volume: 32 start-page: 513 year: 2014 ident: 333_CR106 publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-032713-120231 – volume: 178 start-page: 933 year: 2019 ident: 333_CR7 publication-title: Cell doi: 10.1016/j.cell.2019.07.019 – volume: 13 start-page: 3116 year: 2021 ident: 333_CR34 publication-title: Cancers doi: 10.3390/cancers13133116 – volume: 26 start-page: 38 year: 2014 ident: 333_CR37 publication-title: Semin Immunol doi: 10.1016/j.smim.2014.01.008 – volume: 121 start-page: 3846 year: 2011 ident: 333_CR38 publication-title: J Clin Invest doi: 10.1172/JCI44952 – volume: 40 start-page: 95 year: 2017 ident: 333_CR88 publication-title: Nihon Rinsho Meneki Gakkai Kaishi doi: 10.2177/jsci.40.95 – volume: 9 start-page: 123 year: 2007 ident: 333_CR68 publication-title: Cytotherapy doi: 10.1080/14653240601182838 – volume: 8 start-page: 1358 year: 2018 ident: 333_CR89 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-18-0044 – ident: 333_CR33 doi: 10.1038/s41467-017-02424-0 – volume: 37 start-page: 443 year: 2020 ident: 333_CR107 publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.03.017 – volume: 16 start-page: 1084 year: 2010 ident: 333_CR57 publication-title: NatMed – ident: 333_CR98 doi: 10.1002/pbc.26642 – volume: 175 start-page: 1014 year: 2018 ident: 333_CR47 publication-title: Cell doi: 10.1016/j.cell.2018.09.030 – volume: 9 start-page: 411 year: 2016 ident: 333_CR83 publication-title: Clin Kidney J doi: 10.1093/ckj/sfw024 – ident: 333_CR104 doi: 10.1158/2159-8290.CD-18-1454 – volume: 11 start-page: 557 year: 2020 ident: 333_CR12 publication-title: Front Pharm doi: 10.3389/fphar.2020.00557 – ident: 333_CR27 doi: 10.1158/1535-7163.26934993 – volume: 9 start-page: 4375 year: 2018 ident: 333_CR111 publication-title: Oncotarget doi: 10.18632/oncotarget.23315 – volume: 8 year: 2017 ident: 333_CR100 publication-title: Nat Commun doi: 10.1038/s41467-017-01062-w – volume: 167 start-page: 1540 year: 2016 ident: 333_CR8 publication-title: Cell doi: 10.1016/j.cell.2016.11.022 – volume: 41 start-page: 156 year: 2014 ident: 333_CR19 publication-title: Semin Oncol doi: 10.1053/j.seminoncol.2014.02.002 – volume: 7 start-page: 376 year: 2019 ident: 333_CR81 publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-18-0633 – volume: 17 start-page: 137 year: 2020 ident: 333_CR2 publication-title: Nat Methods doi: 10.1038/s41592-019-0654-x – volume: 69 start-page: 3077 year: 2009 ident: 333_CR50 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-2281 – volume: 13 year: 2021 ident: 333_CR109 publication-title: MAbs doi: 10.1080/19420862.2020.1857100 – volume: 111 start-page: 3635 year: 2008 ident: 333_CR4 publication-title: Blood doi: 10.1182/blood-2007-11-123141 – volume: 384 year: 2024 ident: 333_CR136 publication-title: Science – volume: 7 year: 2017 ident: 333_CR17 publication-title: Sci Rep – volume: 9 start-page: e52330 year: 2020 ident: 333_CR59 publication-title: eLife doi: 10.7554/eLife.52330 – volume: 128 start-page: 2803 year: 2011 ident: 333_CR63 publication-title: Int J Cancer doi: 10.1002/ijc.25621 – volume: 35 start-page: 602 year: 2021 ident: 333_CR93 publication-title: Genes Dev doi: 10.1101/gad.348314.121 – volume: 28 start-page: 2184 year: 2012 ident: 333_CR126 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts356 – volume: 3 start-page: 994 year: 2010 ident: 333_CR6 publication-title: Pharmaceuticals doi: 10.3390/ph3040994 – volume: 8 start-page: e000949 year: 2020 ident: 333_CR129 publication-title: J Immunother Cancer doi: 10.1136/jitc-2020-000949 – volume: 197 start-page: 2016 year: 2016 ident: 333_CR21 publication-title: J Immunol doi: 10.4049/jimmunol.1502376 – volume: 9 start-page: 798 year: 2009 ident: 333_CR134 publication-title: Nat Rev Cancer doi: 10.1038/nrc2734 – volume: 118 start-page: e2112258118 year: 2021 ident: 333_CR20 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2112258118 – volume: 16 start-page: 167 year: 2021 ident: 333_CR10 publication-title: Annu Rev Pathol doi: 10.1146/annurev-pathol-031920-093932 – volume: 69 start-page: 8579 year: 2009 ident: 333_CR64 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-1934 – volume: 9 start-page: 1208 year: 2019 ident: 333_CR103 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-18-1454 – volume: 78 start-page: 5011 year: 2018 ident: 333_CR120 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-0118 – volume: 547 start-page: 413 year: 2017 ident: 333_CR74 publication-title: Nature doi: 10.1038/nature23270 – volume: 45 start-page: 1181 year: 2016 ident: 333_CR96 publication-title: Immunity doi: 10.1016/j.immuni.2016.12.004 – volume: 28 start-page: 1284 year: 2021 ident: 333_CR29 publication-title: Cell Death Differ doi: 10.1038/s41418-020-00651-5 – volume: 7 start-page: 112 year: 2019 ident: 333_CR108 publication-title: J Immunother Cancer doi: 10.1186/s40425-019-0583-3 – volume: 1 start-page: 417 year: 2015 ident: 333_CR67 publication-title: Cell Syst doi: 10.1016/j.cels.2015.12.004 – volume: 105 start-page: 18490 year: 2008 ident: 333_CR131 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0809242105 – volume: 6 year: 2015 ident: 333_CR122 publication-title: Nat Commun doi: 10.1038/ncomms7702 – volume: 17 start-page: 1602 year: 2018 ident: 333_CR75 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-17-1066 – volume: 79 start-page: 4149 year: 2019 ident: 333_CR24 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-3060 – volume: 48 start-page: 812 year: 2018 ident: 333_CR116 publication-title: Immunity doi: 10.1016/j.immuni.2018.03.023 – volume: 25 start-page: 95 year: 2019 ident: 333_CR69 publication-title: Nat Med doi: 10.1038/s41591-018-0302-5 – volume: 375 start-page: 819 year: 2016 ident: 333_CR137 publication-title: N. Engl J Med doi: 10.1056/NEJMoa1604958 – volume: 8 start-page: e000367 year: 2020 ident: 333_CR36 publication-title: J Immunother Cancer doi: 10.1136/jitc-2019-000367 – volume: 57 start-page: 705 year: 2018 ident: 333_CR85 publication-title: Acta Oncol doi: 10.1080/0284186X.2017.1406668 – volume: 12 year: 2011 ident: 333_CR65 publication-title: BMC Bioinforma – volume: 10 year: 2021 ident: 333_CR3 publication-title: Oncoimmunology doi: 10.1080/2162402X.2021.1898104 – ident: 333_CR61 doi: 10.1126/scitranslmed.aan5488 – volume: 10 start-page: eaan5488 year: 2018 ident: 333_CR60 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aan5488 – ident: 333_CR46 – volume: 29 start-page: 846 issue: 10 year: 2019 ident: 333_CR53 publication-title: Cell Res doi: 10.1038/s41422-019-0224-x – volume: 38 start-page: 542 year: 2017 ident: 333_CR114 publication-title: Trends Immunol doi: 10.1016/j.it.2017.05.005 – volume: 168 start-page: 707 year: 2017 ident: 333_CR113 publication-title: Cell doi: 10.1016/j.cell.2017.01.017 – volume: 40 start-page: e275 year: 2020 ident: 333_CR79 publication-title: Am Soc Clin Oncol Educ Book doi: 10.1200/EDBK_280571 – volume: 29 start-page: 15 year: 2013 ident: 333_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 8 start-page: 1156 year: 2018 ident: 333_CR15 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-17-1033 – volume: 13 year: 2018 ident: 333_CR135 publication-title: PLoS ONE – volume: 9 year: 2018 ident: 333_CR32 publication-title: Nat Commun doi: 10.1038/s41467-017-02424-0 – volume: 25 start-page: 3706 year: 2018 ident: 333_CR76 publication-title: Cell Rep doi: 10.1016/j.celrep.2018.12.017 – volume: 98 start-page: 11515 year: 2001 ident: 333_CR80 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.201398198 – volume: 11 start-page: 441 year: 2020 ident: 333_CR22 publication-title: Front Pharm doi: 10.3389/fphar.2020.00441 – volume: 29 start-page: 3766 year: 2019 ident: 333_CR43 publication-title: Cell Rep doi: 10.1016/j.celrep.2019.11.113 – volume: 7 start-page: 1420 year: 2017 ident: 333_CR45 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-17-0593 – volume: 8 year: 2017 ident: 333_CR9 publication-title: Cell Death Dis doi: 10.1038/cddis.2017.67 – volume: 13 year: 2022 ident: 333_CR138 publication-title: Nat Commun doi: 10.1038/s41467-022-32567-8 – volume: 8 year: 2017 ident: 333_CR62 publication-title: Nat Commun – volume: 384 year: 2024 ident: 333_CR77 publication-title: Science doi: 10.1126/science.adf1329 – volume: 28 start-page: 1988 year: 2017 ident: 333_CR102 publication-title: Ann Oncol doi: 10.1093/annonc/mdx190 – volume: 5 start-page: 351 year: 2018 ident: 333_CR11 publication-title: Front Med doi: 10.3389/fmed.2018.00351 – volume: 41 start-page: D1040 year: 2013 ident: 333_CR99 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1215 – volume: 3 start-page: 720 year: 2020 ident: 333_CR124 publication-title: Commun Biol doi: 10.1038/s42003-020-01441-y – volume: 41 start-page: 1551 year: 2023 ident: 333_CR117 publication-title: Cancer Cell doi: 10.1016/j.ccell.2023.07.011 – volume: 170 start-page: 1120 year: 2017 ident: 333_CR130 publication-title: Cell doi: 10.1016/j.cell.2017.07.024 – volume: 27 start-page: 1190 year: 2016 ident: 333_CR101 publication-title: Ann Oncol doi: 10.1093/annonc/mdw041 – volume: 20 start-page: 25 year: 2020 ident: 333_CR54 publication-title: Nat Rev Immunol doi: 10.1038/s41577-019-0218-4 – volume: 23 start-page: 491 year: 2005 ident: 333_CR58 publication-title: Immunity doi: 10.1016/j.immuni.2005.09.010 – volume: 14 start-page: e0220101 year: 2019 ident: 333_CR26 publication-title: PLoS ONE doi: 10.1371/journal.pone.0220101 – volume: 162 start-page: 1229 year: 2015 ident: 333_CR13 publication-title: Cell doi: 10.1016/j.cell.2015.08.016 – volume: 109 start-page: 523 year: 2018 ident: 333_CR121 publication-title: Cancer Sci doi: 10.1111/cas.13433 – volume: 31 start-page: 194 year: 2017 ident: 333_CR55 publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.01.004 – volume: 33 start-page: 1179 year: 2017 ident: 333_CR78 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw777 – volume: 4 year: 2018 ident: 333_CR132 publication-title: Heliyon – volume: 9 start-page: 1286 year: 2018 ident: 333_CR18 publication-title: Front Immunol doi: 10.3389/fimmu.2018.01286 – volume: 13 start-page: 611 year: 2016 ident: 333_CR112 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2016.57 – volume: 123 start-page: 2509 year: 2013 ident: 333_CR52 publication-title: J Clin Invest doi: 10.1172/JCI67250 – volume: 66 start-page: 1597 year: 2017 ident: 333_CR41 publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-017-2052-5 – volume: 515 start-page: 577 year: 2014 ident: 333_CR48 publication-title: Nature doi: 10.1038/nature13988 – volume: 24 start-page: 3857 year: 2018 ident: 333_CR51 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-3451 – volume: 76 start-page: 6964 year: 2016 ident: 333_CR23 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-16-0258 – volume: 14 start-page: 2137 year: 1999 ident: 333_CR125 publication-title: Nephrol Dial Transpl doi: 10.1093/ndt/14.9.2137 – volume: 4 start-page: 401 year: 2023 ident: 333_CR1 publication-title: Nat Cancer doi: 10.1038/s43018-023-00519-w – volume: 19 start-page: 1189 year: 2017 ident: 333_CR42 publication-title: Cell Rep doi: 10.1016/j.celrep.2017.04.031 – volume: 37 start-page: 4164 year: 2018 ident: 333_CR128 publication-title: Oncogene doi: 10.1038/s41388-018-0252-x – volume: 6 start-page: 567 year: 2019 ident: 333_CR110 publication-title: Annu Rev Virol doi: 10.1146/annurev-virology-092818-015756 – ident: 333_CR119 doi: 10.3791/51485 – volume: 20 start-page: 1818 year: 2017 ident: 333_CR44 publication-title: Cell Rep doi: 10.1016/j.celrep.2017.07.075 – volume: 75 start-page: 3427 year: 2015 ident: 333_CR30 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-15-0308 – volume: 14 start-page: 883 year: 2022 ident: 333_CR84 publication-title: Cancers doi: 10.3390/cancers14040883 – volume: 31 start-page: 1273 year: 2020 ident: 333_CR28 publication-title: Ann Oncol doi: 10.1016/j.annonc.2020.05.005 – volume: 32 start-page: 1381 year: 2021 ident: 333_CR70 publication-title: Ann Oncol doi: 10.1016/j.annonc.2021.08.1748 – volume: 22 start-page: 2978 year: 2018 ident: 333_CR105 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.02.053 |
SSID | ssj0005978 |
Score | 2.4580674 |
Snippet | Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular... Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. SinceIFN-regulated intracellular... |
SourceID | pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 521 |
SubjectTerms | Animals B7-H1 Antigen - antagonists & inhibitors B7-H1 Antigen - genetics B7-H1 Antigen - metabolism Biomedical and Life Sciences Cancer Cell Line, Tumor Drug Resistance, Neoplasm EMBO03 EMBO19 EMBO37 Humans Immune Checkpoint Inhibitors - pharmacology Interferon Type I - metabolism Life Sciences Mice Neoplasms - drug therapy Neoplasms - immunology Neoplasms - metabolism Neoplasms - pathology Signal Transduction - drug effects |
Title | Acquired resistance to PD-L1 inhibition enhances a type I IFN-regulated secretory program in tumors |
URI | https://link.springer.com/article/10.1038/s44319-024-00333-0 https://www.ncbi.nlm.nih.gov/pubmed/39663510 https://www.proquest.com/docview/3146652150 https://inria.hal.science/hal-04387866 https://pubmed.ncbi.nlm.nih.gov/PMC11772817 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELb6EKiXCsqjW2BlEDewiB-J42O0sNqu2goJKvVm2YlXuwey1SZbiX_PjJMULUVIXHKIY-fx-fFN5vMMIe-TNAiYAlDULjxTqRPMV0IzJ4NapFXFncaNwpdX2exazW_Smz0ihr0wUbQfQ1rGaXpQh31qlIrbbYRimH5MMjDTDzFUO_Ttw6KYf5v_FnaAYdRvj0lk_peaO0vQ_hIFkA_Z5UOR5B-e0rgATZ-Q45450qJ71qdkL9Qn5FGXS_LnCXl82XvJn5GyKFHfGyoKtjTyQwCWtmv69TO74HRVL1c-CrVoqJdY1lBH8VcsPafn0yu26dLTQ_UGOSV64Wkv44LKtN3-WG-a5-R6-uX7ZMb6ZAqsVFK0LCh4-cosZCl0tgAWAweplCm9lN5X3MBQTxe-SkwQTkhpginBlhHA15yWVSVfkIN6XYdTQrUMLmhTcjTeHK74QNND4nnQvBTOjMiH4fva2y5mho2-bpnbDg0LaNiIhk1G5B1AcH8hhrueFRcWz6GXUudZdidG5O2AkIX-j04NV4f1trESpvoMHjOFhl52iN23JQ3yKQ4l-Q6WOzfbLalXyxhjG33ZIud6RD4OsNt-dDf_eJmz_7v8FTkSmE844Uzo1-Sg3WzDGyA5rR_3vXpM9ifZZBx_FfwCAAL3Uw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH_ahmBcEIyv8mkQnJhFYjtxcuBQdVQtaysOm7SbcRKX9rAUNSlo_w5_Ke85yVAZQuKwSw5x7Dj--eP38n72A3gTRE7gFECidpFxFVnBs0JobqVT86goQqtpo_B0Fo9O1aez6GwHfnZ7Ybxo3x9p6afpTh32vlLKb7cRilP4McmDVkh57C5-oJlWfRgfIaZvhRh-PBmMeBtJgOdKipo7hXmKdC5zoeM5LuF4kUqleSZllhVhiv08mmdFkDphhZSpS3Mk8gLJitWyKCSWuws38FZMI2cQD37LSNAMazfjBDL5Sz23FrzdBcktr3LZq5LMP_yyfrkb3oU7LU9l_aZl7sGOKw_gZhO58uIAbk1bn_x9yPs5qYldwdByJzaK3YjVK_b5iE9CtiwXy8zLwpgrF5RWMcvoxy8bs_FwxtfuK0UQw-wVMVjy-bNWNIaZWb05X62rB3B6LQ3-EPbKVekeA9PSWafTPCRT0RK_QKPABVnodJgLm_bgXde-5ltzQofxnnWZmAYNg2gYj4YJevAaIbh8kA7XHvUnhu6RT1Qncfxd9OBVh5DB0UYuFFu61aYyEheWGKsZYUGPGsQuy5IpsbcQU5ItLLdetp1SLhf-RG_ynIsk1D047GA37VxS_eNjnvzf4y9hf3QynZjJeHb8FG4LimQchFzoZ7BXrzfuOdKrOnvh-zeDL9c9oH4BBpUv4g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD7aOjHxgmDcytUgeAJDfEmcPPAQUaq266pJMGlvnhO7tA-kU5OC9of4nRznMlSGkHjYSx7s2En8-fKdnM8-AK-C0HGcAryonWdUhobTzHJFjXByHlrLjPIbhY9m0ehETk7D0x342e2FqUX79ZGW9TTdqcPel1LW2224pD78mKDBu3M7b8WUh-7iB5pq5YfxAHF9zfnw05ePI9pGE6C5FLyiTmI5m8xFzlU0x2UcL0LKJM-EyDLLEuzr4TyzQeK44UIkLsmRzHMkLEYJawXWuwt7mMRkD_bSdPJ58ltMgsZYuyUnEPFf3nZr2dtdeNHlVUZ7VZj5h3e2XvSGt-FWy1ZJ2rTPHdhxxQHcaOJXXhzA_lHrmb8LeZp7TbGzBO13z0mxM5FqRY4HdMrIslgss1ocRlyx8HklMcT__iVjMh7O6Np99XHEsHjpeaz3_JNWOoaFSbX5tlqX9-DkWpr8PvSKVeEeAlHCGaeSnHmD0XiWgaaBCzLmFMu5Sfrwpmtffd6c06Fr_7qIdYOGRjR0jYYO-vASIbi80R-xPUqn2qd5z6iKo-g778OLDiGNY847UkzhVptSC1xeInzNECt60CB2WZdIPIdjmBNvYbn1sO2cYrmoz_X2_nMeM9WHtx3sup1Ryn98zKP_u_057B8Phno6nh0-hpvchzMOGOXqCfSq9cY9RY5VZc_aDk7g7LrH1C-kPTJG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acquired+resistance+to+PD-L1+inhibition+enhances+a+type+I+IFN-regulated+secretory+program+in+tumors&rft.jtitle=EMBO+reports&rft.au=Shi%2C+Yuhao&rft.au=McKenery%2C+Amber&rft.au=Dolan%2C+Melissa&rft.au=Mastri%2C+Michalis&rft.date=2025-01-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=1469-3178&rft.volume=26&rft.issue=2&rft.spage=521&rft.epage=559&rft_id=info:doi/10.1038%2Fs44319-024-00333-0&rft.externalDocID=10_1038_s44319_024_00333_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-3178&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-3178&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-3178&client=summon |