ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution
CoAl-LDH has a larger specific surface area than ZCS nanoparticles, which makes ZCS evenly dispersed and inhibits its aggregation. The uniform dispersion of the ZCS nanoparticles exposes more active sites and facilitates the catalyst reaction. In addition, the 2D heterostructure formed by ZCS and Co...
Saved in:
Published in | Journal of colloid and interface science Vol. 572; pp. 62 - 73 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CoAl-LDH has a larger specific surface area than ZCS nanoparticles, which makes ZCS evenly dispersed and inhibits its aggregation. The uniform dispersion of the ZCS nanoparticles exposes more active sites and facilitates the catalyst reaction. In addition, the 2D heterostructure formed by ZCS and CoAl-LDH is beneficial to the increase of hydrogen production.
[Display omitted]
CoAl-LDH and ZnxCd1-xS (ZCS) were successfully assembled. By studying the microstructure of the catalysts, it was found that the agglomerated ZCS nanoparticles were equably dispersed on the hexagonal plate-like CoAl-LDH surface. The increase of the specific surface area of the composite catalyst further proves that the agglomeration state of ZCS nanoparticles has been improved. When the mass of the introduced CoAl-LDH is 20% of the ZCS, the maximum hydrogen production after the optimization is 1516 μmol/5h, which is about 6.9 times that of pure ZCS. UV–vis DRS in the range of 250–800 nm proved that the visible light absorption intensity of the composite is enhanced compared to pure materials. Electrochemical and photoluminescence experiments proved that the heterostructure formed between ZCS and CoAl-LDH accelerates photoelectron transfer and inhibits the recombination of electrons and holes. In addition, possible mechanisms of the sample were explored by UV–vis DRS and Mott-Schottcky. |
---|---|
AbstractList | CoAl-LDH and ZnxCd1-xS (ZCS) were successfully assembled. By studying the microstructure of the catalysts, it was found that the agglomerated ZCS nanoparticles were equably dispersed on the hexagonal plate-like CoAl-LDH surface. The increase of the specific surface area of the composite catalyst further proves that the agglomeration state of ZCS nanoparticles has been improved. When the mass of the introduced CoAl-LDH is 20% of the ZCS, the maximum hydrogen production after the optimization is 1516 μmol/5h, which is about 6.9 times that of pure ZCS. UV-vis DRS in the range of 250-800 nm proved that the visible light absorption intensity of the composite is enhanced compared to pure materials. Electrochemical and photoluminescence experiments proved that the heterostructure formed between ZCS and CoAl-LDH accelerates photoelectron transfer and inhibits the recombination of electrons and holes. In addition, possible mechanisms of the sample were explored by UV-vis DRS and Mott-Schottcky.CoAl-LDH and ZnxCd1-xS (ZCS) were successfully assembled. By studying the microstructure of the catalysts, it was found that the agglomerated ZCS nanoparticles were equably dispersed on the hexagonal plate-like CoAl-LDH surface. The increase of the specific surface area of the composite catalyst further proves that the agglomeration state of ZCS nanoparticles has been improved. When the mass of the introduced CoAl-LDH is 20% of the ZCS, the maximum hydrogen production after the optimization is 1516 μmol/5h, which is about 6.9 times that of pure ZCS. UV-vis DRS in the range of 250-800 nm proved that the visible light absorption intensity of the composite is enhanced compared to pure materials. Electrochemical and photoluminescence experiments proved that the heterostructure formed between ZCS and CoAl-LDH accelerates photoelectron transfer and inhibits the recombination of electrons and holes. In addition, possible mechanisms of the sample were explored by UV-vis DRS and Mott-Schottcky. CoAl-LDH has a larger specific surface area than ZCS nanoparticles, which makes ZCS evenly dispersed and inhibits its aggregation. The uniform dispersion of the ZCS nanoparticles exposes more active sites and facilitates the catalyst reaction. In addition, the 2D heterostructure formed by ZCS and CoAl-LDH is beneficial to the increase of hydrogen production. [Display omitted] CoAl-LDH and ZnxCd1-xS (ZCS) were successfully assembled. By studying the microstructure of the catalysts, it was found that the agglomerated ZCS nanoparticles were equably dispersed on the hexagonal plate-like CoAl-LDH surface. The increase of the specific surface area of the composite catalyst further proves that the agglomeration state of ZCS nanoparticles has been improved. When the mass of the introduced CoAl-LDH is 20% of the ZCS, the maximum hydrogen production after the optimization is 1516 μmol/5h, which is about 6.9 times that of pure ZCS. UV–vis DRS in the range of 250–800 nm proved that the visible light absorption intensity of the composite is enhanced compared to pure materials. Electrochemical and photoluminescence experiments proved that the heterostructure formed between ZCS and CoAl-LDH accelerates photoelectron transfer and inhibits the recombination of electrons and holes. In addition, possible mechanisms of the sample were explored by UV–vis DRS and Mott-Schottcky. CoAl-LDH and ZnₓCd₁₋ₓS (ZCS) were successfully assembled. By studying the microstructure of the catalysts, it was found that the agglomerated ZCS nanoparticles were equably dispersed on the hexagonal plate-like CoAl-LDH surface. The increase of the specific surface area of the composite catalyst further proves that the agglomeration state of ZCS nanoparticles has been improved. When the mass of the introduced CoAl-LDH is 20% of the ZCS, the maximum hydrogen production after the optimization is 1516 μmol/5h, which is about 6.9 times that of pure ZCS. UV–vis DRS in the range of 250–800 nm proved that the visible light absorption intensity of the composite is enhanced compared to pure materials. Electrochemical and photoluminescence experiments proved that the heterostructure formed between ZCS and CoAl-LDH accelerates photoelectron transfer and inhibits the recombination of electrons and holes. In addition, possible mechanisms of the sample were explored by UV–vis DRS and Mott-Schottcky. |
Author | Hao, Xuqiang Liu, Yang Li, Hongying Jin, Zhiliang Li, Yanbing |
Author_xml | – sequence: 1 givenname: Hongying surname: Li fullname: Li, Hongying – sequence: 2 givenname: Xuqiang surname: Hao fullname: Hao, Xuqiang – sequence: 3 givenname: Yang surname: Liu fullname: Liu, Yang – sequence: 4 givenname: Yanbing surname: Li fullname: Li, Yanbing – sequence: 5 givenname: Zhiliang surname: Jin fullname: Jin, Zhiliang email: zl-jin@nun.edu.cn |
BookMark | eNqFkb1uFDEUhS0UJDZLXiCVyzQz-HfGI9FEmwSQIlEADY3lte-yXjn2xPZEu0_AazOjpaII1dWVzneK812ii5giIHRNSUsJ7T4c2oP1pWWEkZbwlkj2Bq0oGWTTU8Iv0IoQRpuhH_p36LKUAyGUSjms0O-f8bhxtDl-w9HENJpcvQ1QsPNlhFzA4RTxJt2GJpgT5Pl3adoGwPuTy-noHWAfMbvDe6iQU6l5snXKgHcpY4h7E-3MjPtUkzXVhNPcf2Z_QcTwksJUfYrv0dudCQWu_t41-vFw_33zuXn8-unL5vaxsYKz2gDlvKO0Ez1VTClDpRFCDsNWOOIsbK1QRpl-YMCVZMYIxh1h2x2DviNOKr5GN-feMafnCUrVT75YCMFESFPRTHCqhJSi-3-UKyEGxcjSys5ROy9QMuz0mP2TySdNiV4E6YNeBOlFkCZcz4JmSP0DWV_NMkbNxofX0Y9nFOapXjxkXayHZWmfwVbtkn8N_wME5q_1 |
CitedBy_id | crossref_primary_10_1016_j_seppur_2022_122764 crossref_primary_10_1016_j_jece_2024_113420 crossref_primary_10_1021_acs_jpcc_0c10239 crossref_primary_10_1002_cctc_202000903 crossref_primary_10_1016_j_jphotochem_2020_113081 crossref_primary_10_1039_D1QI01603B crossref_primary_10_1016_j_jece_2022_108151 crossref_primary_10_1016_j_solidstatesciences_2022_106992 crossref_primary_10_1021_acsaem_2c00689 crossref_primary_10_1016_j_ijhydene_2023_01_342 crossref_primary_10_1016_j_jcis_2023_07_136 crossref_primary_10_1016_j_surfin_2021_101105 crossref_primary_10_1016_j_jallcom_2021_160832 crossref_primary_10_1016_j_surfin_2021_101263 crossref_primary_10_1039_D3QI01187A crossref_primary_10_1016_j_cplett_2021_139124 crossref_primary_10_1016_j_enmm_2021_100451 crossref_primary_10_1016_j_apsusc_2020_148835 crossref_primary_10_1038_s41598_022_09998_w crossref_primary_10_1016_j_ccr_2021_214103 crossref_primary_10_1002_solr_202000535 crossref_primary_10_1039_D2NR02671F crossref_primary_10_1002_admi_202101303 crossref_primary_10_1016_j_jcis_2020_10_072 crossref_primary_10_1016_j_apsusc_2021_150379 crossref_primary_10_1016_j_ijhydene_2021_10_099 crossref_primary_10_1039_D1NJ02705K crossref_primary_10_1002_er_7102 crossref_primary_10_1016_j_jcis_2023_10_099 crossref_primary_10_1016_j_ijhydene_2025_03_069 crossref_primary_10_1039_D1CY01757H crossref_primary_10_1039_D1DT01333E crossref_primary_10_1007_s10971_023_06280_x crossref_primary_10_1016_j_seppur_2024_128933 crossref_primary_10_1002_adma_202305835 crossref_primary_10_1016_j_jpcs_2024_112057 crossref_primary_10_1039_D3NJ00856H crossref_primary_10_1039_D2DT00825D crossref_primary_10_1007_s12209_020_00269_1 crossref_primary_10_2139_ssrn_4133380 crossref_primary_10_1016_j_mcat_2021_111828 crossref_primary_10_1016_j_jcis_2024_09_003 crossref_primary_10_1016_j_mtener_2023_101281 crossref_primary_10_3866_PKU_WHXB202307016 crossref_primary_10_1021_acsanm_1c03219 crossref_primary_10_1016_j_jallcom_2020_157933 crossref_primary_10_1016_j_surfin_2024_105485 crossref_primary_10_1002_er_7335 crossref_primary_10_1016_j_ijhydene_2020_10_124 crossref_primary_10_1039_D2MA00191H crossref_primary_10_2139_ssrn_4057225 crossref_primary_10_1016_j_apsusc_2023_157237 crossref_primary_10_1016_j_est_2022_105377 crossref_primary_10_1039_D5NJ00342C crossref_primary_10_1016_j_jcis_2021_11_065 crossref_primary_10_1007_s10562_021_03660_2 crossref_primary_10_1016_j_vacuum_2024_113451 crossref_primary_10_1039_D1NJ01902C crossref_primary_10_1016_j_seppur_2022_122090 crossref_primary_10_1063_5_0217518 crossref_primary_10_1016_j_ijhydene_2021_10_032 crossref_primary_10_1016_j_clay_2023_106924 crossref_primary_10_1002_solr_202101061 crossref_primary_10_1016_j_ijhydene_2022_01_198 crossref_primary_10_1016_j_ijhydene_2022_10_099 crossref_primary_10_1007_s10971_021_05655_2 |
Cites_doi | 10.1103/PhysRevLett.77.3865 10.1016/j.jcis.2018.11.049 10.1021/cr200434v 10.1039/C9DT00538B 10.1021/cm3023506 10.1021/jp509575p 10.1016/j.clay.2009.11.009 10.1002/smll.201703798 10.1016/j.ijhydene.2018.05.172 10.1039/C4TA04461D 10.1016/j.colsurfa.2011.09.029 10.1088/1361-6528/ab3d22 10.1039/C8CP07275B 10.1016/j.apsusc.2016.12.054 10.1021/acsami.5b00176 10.1016/0039-6028(93)90910-C 10.1016/S0926-860X(00)00906-6 10.1016/j.carbon.2019.04.088 10.1021/nl301831h 10.1063/1.2802338 10.1002/adma.201601694 10.1016/j.apcatb.2018.01.069 10.1021/acs.jpcc.8b01666 10.1016/j.ceramint.2013.07.127 10.1016/j.cej.2019.01.081 10.1021/jp510032u 10.1021/ja061858c 10.1021/acscatal.8b01017 10.1021/acsomega.9b01146 10.1039/C9NJ04584H 10.1016/j.ijhydene.2007.08.022 10.1103/PhysRevB.13.5188 10.1039/C8TA08149B 10.1016/j.mcat.2020.110832 10.1016/j.apcatb.2016.05.074 10.1021/cs4000975 10.1016/j.ijhydene.2006.02.003 10.1016/j.tca.2010.01.009 10.1016/j.ceramint.2017.07.159 10.1039/C8QI00952J 10.1016/j.ijhydene.2013.11.059 10.1007/s10562-019-02777-9 10.1039/C8NJ06110F 10.1016/j.apsusc.2016.08.119 10.1039/C8CC00059J 10.1039/C8TA07362G 10.1016/j.apcatb.2014.08.013 10.1039/C3CY00611E 10.1007/BF00659937 10.1016/j.jallcom.2016.12.310 10.1016/j.jwpe.2019.101084 10.1021/j100277a024 10.1021/ja809307s 10.1016/j.apcatb.2019.117761 10.1149/1.1393177 10.1016/j.apsusc.2018.01.193 10.1021/acsami.6b12877 10.1039/C3TA14048B 10.1016/S1872-2067(18)63173-0 10.1021/ja0584471 10.1039/C5CY01730K 10.1039/C9DT01421G |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2020.03.052 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 73 |
ExternalDocumentID | 10_1016_j_jcis_2020_03_052 S0021979720303441 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c432t-e13361164718288a15a44599b4d0dcebc48a8a792e3852aa423d02bf2e760d583 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 03:23:40 EDT 2025 Fri Jul 11 11:41:46 EDT 2025 Thu Apr 24 23:09:45 EDT 2025 Tue Jul 01 01:18:51 EDT 2025 Fri Feb 23 02:47:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heterostructure ZnxCd1-xS Hydrogen evolution Layered double hydroxides |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-e13361164718288a15a44599b4d0dcebc48a8a792e3852aa423d02bf2e760d583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2384498208 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2431845546 proquest_miscellaneous_2384498208 crossref_primary_10_1016_j_jcis_2020_03_052 crossref_citationtrail_10_1016_j_jcis_2020_03_052 elsevier_sciencedirect_doi_10_1016_j_jcis_2020_03_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-15 |
PublicationDateYYYYMMDD | 2020-07-15 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Reddy, Chowdhury, Reddy (b0240) 2001; 213 Yan, Wang, Sun (b0305) 2018; 227 Zhang, Huang, Zhang (b0280) 2015; 163 Gong, Hao (b0120) 2019; 43 Yang, Jin, Liu (b0015) 2018; 122 Sahoo, Patnaik, Parida (b0255) 2019; 4 Li, Jin, Zhang (b0285) 2019; 40 Zhang, Jin, Ma (b0310) 2019; 43 Hongdan Peng, Han (b0200) 2010; 502 Reber, Rusek (b0050) 1986; 90 PingYang, Murase (b0025) 2011; 390 Lai, Wang, Zeng (b0175) 2016; 390 Low, Jiaguo, Jaroniec (b0005) 2017; 29 Kresse, Hafner (b0145) 1994; 6 Guo, Fang, Hao (b0245) 2019; 48 Li, Li, Chaochao (b0105) 2017; 698 Yan, Jin, Zhang (b0320) 2019; 21 Jiang, Song, Zeng (b0225) 2015; 7 Gong, Zhang, Wang (b0180) 2020; 485 Rudolf, Dragoi, Ungureanu (b0300) 2014; 4 Yan, Jin, Zhang (b0215) 2019; 48 Wang, Maeda, Chen (b0275) 2009; 131 Wang, Wang, Wang (b0085) 2019; 149 Yuan, Chen, Kang (b0135) 2017; 399 Luo, Chen, Wei (b0290) 2019; 255 Jian, Cai, Hong (b0010) 2018; 14 Detwiler, Gharachorlou, Mayr (b0235) 2015; 119 Zhang, Alavi (b0130) 2007; 127 PingXu, Braterman (b0095) 2010; 48 Chakrabarty, Chakraborty, Laha (b0040) 2014; 118 Liu, Ma, Osada (b0185) 2006; 128 Jie, Gai, He (b0260) 2014; 2 Xing, Zhang, Yan (b0055) 2006; 31 Zhang, Jiaguo, Jaroniec (b0160) 2012; 12 Sung, Lee, Park (b0070) 2006; 128 Zhou, Song, Liu (b0110) 2018; 43 Tang, Kong, Wang (b0205) 2019; 30 Diao, Zhang, Hao (b0190) 2014; 40 Nie, Zhang, Junwei (b0170) 2018; 441 Zeng, Zhang, Deng (b0220) 2020; 33 Li, Li, Shaonan (b0080) 2016; 6 Zhang, Wang, Lin (b0165) 2017; 43 Das, Sulagna Patnaik (b0230) 2019; 6 Wang, Jin (b0020) 2019; 467–468 Yang, Yan, Jang (b0030) 2016; 8 Li, Jin, Wang (b0315) 2019; 537 Gundersen, Hammer, Jacobsen (b0125) 1993; 285 Liu, Wang, Ma (b0270) 2019; 149 Min, Hou, Lei (b0115) 2018; 54 Li, Meng, Zhou (b0065) 2013; 3 Chan, Chang, Hsu (b0045) 2014; 39 Mostovaya, Ya, Petkevich (b0295) 1989; 51 Chen, Shen, Lv (b0210) 2018; 6 Li, Jiaguo, Low (b0325) 2015; 3 Sanati, Rezvan (b0195) 2019; 362 Zeng, Chen, Chen (b0155) 2018; 6 Fengkai Yang, Dr. Kirill Sliozberg, Dr. Ilya Sinev, Synergistic effect of cobalt and iron in layered double hydroxide catalysts for the oxygen evolution reaction. ChemSusChem, 10 (2017) 156–165. Wang, O’Hare (b0090) 2012; 112 Liu, Dang, Zhuoran (b0100) 2018; 8 Meng, Zhang, Difa (b0265) 2016; 198 Perdew, Burke, Ernzerhof (b0140) 1996; 77 Zhang, Jing, Xing (b0060) 2007; 32 Monkhorst, Pack (b0150) 1976; 13 Al Kuhaimi, Tulbah (b0075) 2000; 147 McPeak, Opasanont, Shibata (b0035) 2013; 25 Sahoo (10.1016/j.jcis.2020.03.052_b0255) 2019; 4 Yan (10.1016/j.jcis.2020.03.052_b0305) 2018; 227 PingYang (10.1016/j.jcis.2020.03.052_b0025) 2011; 390 Low (10.1016/j.jcis.2020.03.052_b0005) 2017; 29 Reber (10.1016/j.jcis.2020.03.052_b0050) 1986; 90 Zeng (10.1016/j.jcis.2020.03.052_b0155) 2018; 6 Chan (10.1016/j.jcis.2020.03.052_b0045) 2014; 39 Li (10.1016/j.jcis.2020.03.052_b0065) 2013; 3 Zhang (10.1016/j.jcis.2020.03.052_b0130) 2007; 127 Jie (10.1016/j.jcis.2020.03.052_b0260) 2014; 2 Perdew (10.1016/j.jcis.2020.03.052_b0140) 1996; 77 Mostovaya (10.1016/j.jcis.2020.03.052_b0295) 1989; 51 Min (10.1016/j.jcis.2020.03.052_b0115) 2018; 54 Rudolf (10.1016/j.jcis.2020.03.052_b0300) 2014; 4 Wang (10.1016/j.jcis.2020.03.052_b0020) 2019; 467–468 Liu (10.1016/j.jcis.2020.03.052_b0270) 2019; 149 Detwiler (10.1016/j.jcis.2020.03.052_b0235) 2015; 119 Sanati (10.1016/j.jcis.2020.03.052_b0195) 2019; 362 Al Kuhaimi (10.1016/j.jcis.2020.03.052_b0075) 2000; 147 Jiang (10.1016/j.jcis.2020.03.052_b0225) 2015; 7 Li (10.1016/j.jcis.2020.03.052_b0315) 2019; 537 Wang (10.1016/j.jcis.2020.03.052_b0090) 2012; 112 Zhang (10.1016/j.jcis.2020.03.052_b0310) 2019; 43 Liu (10.1016/j.jcis.2020.03.052_b0100) 2018; 8 Gong (10.1016/j.jcis.2020.03.052_b0120) 2019; 43 Hongdan Peng (10.1016/j.jcis.2020.03.052_b0200) 2010; 502 Zeng (10.1016/j.jcis.2020.03.052_b0220) 2020; 33 Das (10.1016/j.jcis.2020.03.052_b0230) 2019; 6 Yan (10.1016/j.jcis.2020.03.052_b0215) 2019; 48 Jian (10.1016/j.jcis.2020.03.052_b0010) 2018; 14 Wang (10.1016/j.jcis.2020.03.052_b0085) 2019; 149 Tang (10.1016/j.jcis.2020.03.052_b0205) 2019; 30 Chakrabarty (10.1016/j.jcis.2020.03.052_b0040) 2014; 118 Chen (10.1016/j.jcis.2020.03.052_b0210) 2018; 6 Yan (10.1016/j.jcis.2020.03.052_b0320) 2019; 21 Yang (10.1016/j.jcis.2020.03.052_b0030) 2016; 8 10.1016/j.jcis.2020.03.052_b0250 Zhang (10.1016/j.jcis.2020.03.052_b0160) 2012; 12 Liu (10.1016/j.jcis.2020.03.052_b0185) 2006; 128 Li (10.1016/j.jcis.2020.03.052_b0105) 2017; 698 Nie (10.1016/j.jcis.2020.03.052_b0170) 2018; 441 PingXu (10.1016/j.jcis.2020.03.052_b0095) 2010; 48 Li (10.1016/j.jcis.2020.03.052_b0325) 2015; 3 Gundersen (10.1016/j.jcis.2020.03.052_b0125) 1993; 285 Wang (10.1016/j.jcis.2020.03.052_b0275) 2009; 131 Gong (10.1016/j.jcis.2020.03.052_b0180) 2020; 485 Zhang (10.1016/j.jcis.2020.03.052_b0060) 2007; 32 Monkhorst (10.1016/j.jcis.2020.03.052_b0150) 1976; 13 Zhou (10.1016/j.jcis.2020.03.052_b0110) 2018; 43 Lai (10.1016/j.jcis.2020.03.052_b0175) 2016; 390 Guo (10.1016/j.jcis.2020.03.052_b0245) 2019; 48 Li (10.1016/j.jcis.2020.03.052_b0080) 2016; 6 Kresse (10.1016/j.jcis.2020.03.052_b0145) 1994; 6 Yang (10.1016/j.jcis.2020.03.052_b0015) 2018; 122 Zhang (10.1016/j.jcis.2020.03.052_b0165) 2017; 43 McPeak (10.1016/j.jcis.2020.03.052_b0035) 2013; 25 Sung (10.1016/j.jcis.2020.03.052_b0070) 2006; 128 Diao (10.1016/j.jcis.2020.03.052_b0190) 2014; 40 Li (10.1016/j.jcis.2020.03.052_b0285) 2019; 40 Luo (10.1016/j.jcis.2020.03.052_b0290) 2019; 255 Meng (10.1016/j.jcis.2020.03.052_b0265) 2016; 198 Reddy (10.1016/j.jcis.2020.03.052_b0240) 2001; 213 Yuan (10.1016/j.jcis.2020.03.052_b0135) 2017; 399 Xing (10.1016/j.jcis.2020.03.052_b0055) 2006; 31 Zhang (10.1016/j.jcis.2020.03.052_b0280) 2015; 163 |
References_xml | – volume: 31 start-page: 2018 year: 2006 end-page: 2024 ident: b0055 article-title: Band structure-controlled solid solution of Cd publication-title: Int. J. Hydrogen Energy – volume: 48 start-page: 11122 year: 2019 end-page: 11135 ident: b0215 article-title: Sustainable and efficient hydrogen evolution over noble metal-free WP double modified Zn publication-title: Dalton Trans. – volume: 122 start-page: 10430 year: 2018 end-page: 10441 ident: b0015 article-title: Visible light harvesting and spatial charge separation over creative Ni/CdS/Co publication-title: J. Phys. Chem. C – volume: 131 start-page: 1680 year: 2009 end-page: 1681 ident: b0275 article-title: Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 5533 year: 2018 end-page: 5541 ident: b0100 article-title: Electrochemical oxidation of 5-Hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts publication-title: ACS Catal. – volume: 43 start-page: 19159 year: 2019 end-page: 19171 ident: b0120 article-title: Zhiliang Jin, WP modified the S-scheme Zn publication-title: New J. Chem. – volume: 285 start-page: 27 year: 1993 end-page: 30 ident: b0125 article-title: Chemisorption and vibration of hydrogen on Cu (111) publication-title: Surf. Sci. – volume: 485 start-page: 110832 year: 2020 ident: b0180 article-title: Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution publication-title: Mol. Catal. – reference: Fengkai Yang, Dr. Kirill Sliozberg, Dr. Ilya Sinev, Synergistic effect of cobalt and iron in layered double hydroxide catalysts for the oxygen evolution reaction. ChemSusChem, 10 (2017) 156–165. – volume: 399 start-page: 463 year: 2017 end-page: 468 ident: b0135 article-title: First-principles investigation of hydrogen storage capacity of Y-decorated porous graphene publication-title: Appl. Surf. Sci. – volume: 213 start-page: 279 year: 2001 end-page: 288 ident: b0240 article-title: An XPS study of dispersion and chemical state of MoO publication-title: Appl. Catal. A – volume: 163 start-page: 298 year: 2015 end-page: 305 ident: b0280 article-title: Ultrathin hexagonal SnS publication-title: Appl. Catal. B – volume: 255 start-page: 117761 year: 2019 ident: b0290 article-title: Three-dimensional network structure assembled by g-C publication-title: Appl. Catal. B – volume: 467–468 start-page: 1239 year: 2019 end-page: 1248 ident: b0020 article-title: Function of NiSe publication-title: Appl. Surf. Sci. – volume: 227 start-page: 530 year: 2018 end-page: 540 ident: b0305 article-title: Photogenerated charge transfer via interfacial internal electric field for significantly improved photocatalysis in direct Z-scheme oxygen-doped carbon nitrogen/CoAl-layered double hydroxide heterojunction publication-title: Appl. Catal. B – volume: 3 start-page: 2485 year: 2015 end-page: 2534 ident: b0325 article-title: Engineering heterogeneous semiconductors for solar water splitting publication-title: J. Mater. Chem. A – volume: 30 start-page: 475704 year: 2019 ident: b0205 article-title: Construction of direct Z-scheme system for enhanced visible light photocatalytic activity based on Zn publication-title: Nanotechnology – volume: 25 start-page: 297 year: 2013 end-page: 306 ident: b0035 article-title: Microreactor chemical bath deposition of laterally graded Cd publication-title: Chem. Mater. – volume: 6 start-page: 19631 year: 2018 end-page: 19642 ident: b0210 article-title: Fabricating sandwich-shelled ZnCdS/ZnO/ZnCdS dodecahedral cages with “one stone” as Z-scheme photocatalysts for highly efficient hydrogen production publication-title: J. Mater. Chem. A – volume: 6 start-page: 94 year: 2019 end-page: 109 ident: b0230 article-title: Fabrication of a Au-loaded CaFe publication-title: Inorg. Chem. Front. – volume: 40 start-page: 2115 year: 2014 end-page: 2120 ident: b0190 article-title: Facile synthesis of CoAl-LDH/MnO publication-title: Ceram. Int. – volume: 6 start-page: 8245 year: 1994 ident: b0145 article-title: Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements publication-title: J. Phys.: Condens. Matter – volume: 54 start-page: 3243 year: 2018 end-page: 3246 ident: b0115 article-title: CoAl-layered double hydroxide nanosheets as an active matrix to anchor an amorphous MoS publication-title: Chem. Commun. – volume: 2 start-page: 1022 year: 2014 end-page: 1031 ident: b0260 article-title: A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: fabrication and high supercapacitor performance publication-title: J. Mater. Chem. A – volume: 112 start-page: 4124 year: 2012 end-page: 4155 ident: b0090 article-title: Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets publication-title: Chem. Rev. – volume: 39 start-page: 1630 year: 2014 end-page: 1639 ident: b0045 article-title: Efficient and stable photocatalytic hydrogen production from water splitting over Zn publication-title: Int. J. Hydrogen Energy – volume: 149 start-page: 618 year: 2019 end-page: 626 ident: b0085 article-title: 3D/2D direct Z-scheme heterojunctions of hierarchical TiO publication-title: Carbon – volume: 128 start-page: 9002 year: 2006 end-page: 9003 ident: b0070 article-title: Kinetic analysis for formation of Cd publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 4685 year: 2007 end-page: 4691 ident: b0060 article-title: Significantly improved photocatalytic hydrogen production activity over Cd publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 179 year: 2014 end-page: 189 ident: b0300 article-title: NiAl and CoAl materials derived from takovite-like LDHs and related structures as efficient chemoselective hydrogenation catalysts publication-title: Catal. Sci. Technol. – volume: 14 start-page: 1703798 year: 2018 ident: b0010 article-title: Edge-riched MoSe publication-title: Small – volume: 8 start-page: 35021 year: 2016 end-page: 35032 ident: b0030 article-title: Multifunctional polymer ligand interface CdZnSeS/ZnS quantum dot/Cy3-labeled protein pairs as sensitive FRET sensors publication-title: ACS Appl. Mater. Interfaces – volume: 198 start-page: 286 year: 2016 end-page: 294 ident: b0265 article-title: Enhanced photocatalytic H publication-title: Appl. Catal. B – volume: 48 start-page: 235 year: 2010 end-page: 242 ident: b0095 article-title: Synthesis, structure and morphology of organic layered double hydroxide (LDH) hybrids: Comparison between aliphatic anions and their oxygenated analogs publication-title: Appl. Clay Sci. – volume: 118 start-page: 28283 year: 2014 end-page: 28290 ident: b0040 article-title: Photocurrent generation and conductivity relaxation in reduced graphene oxide Cd publication-title: J. Phys. Chem. C – volume: 90 start-page: 824 year: 1986 end-page: 834 ident: b0050 article-title: Photochemical hydrogen-production with platinized suspensions of cadmium sulfide and cadmium zinc-sulfide modified by silver sulfide publication-title: J. Phys. Chem. – volume: 6 start-page: 3510 year: 2016 end-page: 3519 ident: b0080 article-title: In-built Tb4þ/Tb3þ redox centers in terbium-doped bismuth molybdate nanograss for enhanced photocatalytic activity publication-title: Catal. Sci. Technol. – volume: 127 start-page: 214704 year: 2007 ident: b0130 article-title: Hydrogen absorption in bulk BC publication-title: J. Chem. Phys. – volume: 441 start-page: 12 year: 2018 end-page: 22 ident: b0170 article-title: Self-assembled hierarchical direct Z-scheme g-C publication-title: Appl. Surf. Sci. – volume: 33 start-page: 101084 year: 2020 ident: b0220 article-title: Peroxymonosulfate-assisted photocatalytic degradation of sulfadiazine using self-assembled multi-layered CoAl-LDH/g-C publication-title: J. Water Process Eng. – volume: 29 start-page: 1601694 year: 2017 ident: b0005 article-title: Heterojunction photocatalysts publication-title: Adv. Mater. – volume: 77 start-page: 3865 year: 1996 ident: b0140 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 6 start-page: 24311 year: 2018 end-page: 24316 ident: b0155 article-title: One-step, room temperature generation of porous and amorphous cobalt hydroxysulfides from layered double hydroxides for superior oxygen evolution reactions publication-title: J. Mater. Chem. A – volume: 362 start-page: 743 year: 2019 end-page: 757 ident: b0195 article-title: g-C publication-title: Chem. Eng. J. – volume: 3 start-page: 882 year: 2013 end-page: 889 ident: b0065 article-title: Zn publication-title: ACS Catal. – volume: 502 start-page: 1 year: 2010 end-page: 7 ident: b0200 article-title: Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation publication-title: Thermochim. Acta – volume: 21 start-page: 4501 year: 2019 end-page: 4512 ident: b0320 article-title: Controllable design of double metal oxide (NiCo publication-title: PCCP – volume: 43 start-page: 3609 year: 2019 end-page: 3618 ident: b0310 article-title: Properties of iron vanadate over CdS nanorods for efficient photocatalytic hydrogen production publication-title: New J. Chem. – volume: 537 start-page: 629 year: 2019 end-page: 639 ident: b0315 article-title: Effect of electron-hole separation in MoO publication-title: J. Colloid Interface Sci. – volume: 128 start-page: 4872 year: 2006 end-page: 4880 ident: b0185 article-title: Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies publication-title: J. Am. Chem. Soc. – volume: 147 start-page: 214 year: 2000 end-page: 218 ident: b0075 article-title: Structural, compositional, optical, and electrical properties of solution-grown Zn publication-title: J. Electrochem. Soc. – volume: 43 start-page: 14328 year: 2018 end-page: 14336 ident: b0110 article-title: Fabrication of CdS/NiFe LDH heterostructure for improved photocatalytic hydrogen evolution from aqueous methanol solution publication-title: Int. J. Hydrogen Energy – volume: 13 start-page: 5188 year: 1976 ident: b0150 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 390 start-page: 207 year: 2011 end-page: 211 ident: b0025 article-title: Facile synthesis of highly luminescent CdSe/Cd publication-title: Colloids Surf., A – volume: 48 start-page: 5214 year: 2019 end-page: 5221 ident: b0245 article-title: Activating hierarchically hortensia-like CoAl layered double hydroxides by alkaline etching and anion modulation strategies for the efficient oxygen evolution reaction publication-title: Dalton Trans. – volume: 149 start-page: 1788 year: 2019 end-page: 1799 ident: b0270 article-title: Noble-metal-free visible light driven hetero-structural Ni/Zn publication-title: Catal. Lett. – volume: 4 start-page: 14721 year: 2019 end-page: 14741 ident: b0255 article-title: Construction of a Z-scheme dictated WO publication-title: ACS Omega – volume: 51 start-page: 1298 year: 1989 end-page: 1301 ident: b0295 article-title: Kupcha, Diffuse-reflection spectroscopy applied to the structure of an aluminum-cobalt oxide system publication-title: J. Appl. Spectrosc. – volume: 390 start-page: 368 year: 2016 end-page: 376 ident: b0175 article-title: Synthesis of surface molecular imprinted TiO publication-title: Appl. Surf. Sci. – volume: 7 start-page: 8506 year: 2015 end-page: 8514 ident: b0225 article-title: Self-assembly fabrication of hollow mesoporous silica@Co-Al layered double hydroxide@graphene and application in toxic effluents elimination publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 4584 year: 2012 end-page: 4589 ident: b0160 article-title: Noble metal-free reduced graphene oxide-Zn publication-title: Nano Letters – volume: 119 start-page: 2399 year: 2015 end-page: 2411 ident: b0235 article-title: Reaction of trimethylaluminum with water on Pt (111) and Pd (111) from 10–5 to 10–1 Millibar publication-title: J. Phys. Chem. C – volume: 698 start-page: 852 year: 2017 end-page: 862 ident: b0105 article-title: Hierarchically porous MoS publication-title: J. Alloy. Compd. – volume: 40 start-page: 390 year: 2019 end-page: 402 ident: b0285 article-title: Controllable design of Zn-Ni-P on g-C publication-title: Chin. J. Catal. – volume: 43 start-page: 14168 year: 2017 end-page: 14175 ident: b0165 article-title: Controllable synthesis of cross-linked CoAl-LDH/NiCo publication-title: Ceram. Int. – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jcis.2020.03.052_b0140 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 537 start-page: 629 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0315 article-title: Effect of electron-hole separation in MoO3@Ni2P hybrid nanocomposite as highly efficient metal-free photocatalyst for H2 production publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.11.049 – volume: 112 start-page: 4124 year: 2012 ident: 10.1016/j.jcis.2020.03.052_b0090 article-title: Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets publication-title: Chem. Rev. doi: 10.1021/cr200434v – volume: 48 start-page: 5214 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0245 article-title: Activating hierarchically hortensia-like CoAl layered double hydroxides by alkaline etching and anion modulation strategies for the efficient oxygen evolution reaction publication-title: Dalton Trans. doi: 10.1039/C9DT00538B – volume: 25 start-page: 297 year: 2013 ident: 10.1016/j.jcis.2020.03.052_b0035 article-title: Microreactor chemical bath deposition of laterally graded Cd1-xZnxS thin films: A route to high-throughput optimization for photovoltaic buffer Layers publication-title: Chem. Mater. doi: 10.1021/cm3023506 – volume: 118 start-page: 28283 year: 2014 ident: 10.1016/j.jcis.2020.03.052_b0040 article-title: Photocurrent generation and conductivity relaxation in reduced graphene oxide Cd0.75Zn0.25S nanocomposite and its photocatalytic activity publication-title: J. Phys. Chem. C doi: 10.1021/jp509575p – volume: 48 start-page: 235 year: 2010 ident: 10.1016/j.jcis.2020.03.052_b0095 article-title: Synthesis, structure and morphology of organic layered double hydroxide (LDH) hybrids: Comparison between aliphatic anions and their oxygenated analogs publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2009.11.009 – volume: 14 start-page: 1703798 year: 2018 ident: 10.1016/j.jcis.2020.03.052_b0010 article-title: Edge-riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction publication-title: Small doi: 10.1002/smll.201703798 – volume: 43 start-page: 14328 year: 2018 ident: 10.1016/j.jcis.2020.03.052_b0110 article-title: Fabrication of CdS/NiFe LDH heterostructure for improved photocatalytic hydrogen evolution from aqueous methanol solution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.05.172 – volume: 3 start-page: 2485 year: 2015 ident: 10.1016/j.jcis.2020.03.052_b0325 article-title: Engineering heterogeneous semiconductors for solar water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04461D – volume: 390 start-page: 207 year: 2011 ident: 10.1016/j.jcis.2020.03.052_b0025 article-title: Facile synthesis of highly luminescent CdSe/CdxZn1-xS quantum dots with widely tunable emission spectra publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2011.09.029 – volume: 30 start-page: 475704 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0205 article-title: Construction of direct Z-scheme system for enhanced visible light photocatalytic activity based on Zn0.1Cd0.9S/FeWO4 heterojunction publication-title: Nanotechnology doi: 10.1088/1361-6528/ab3d22 – volume: 21 start-page: 4501 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0320 article-title: Controllable design of double metal oxide (NiCo2O4)-modified CdS for efficient photocatalytic hydrogen production publication-title: PCCP doi: 10.1039/C8CP07275B – volume: 399 start-page: 463 year: 2017 ident: 10.1016/j.jcis.2020.03.052_b0135 article-title: First-principles investigation of hydrogen storage capacity of Y-decorated porous graphene publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.12.054 – volume: 7 start-page: 8506 year: 2015 ident: 10.1016/j.jcis.2020.03.052_b0225 article-title: Self-assembly fabrication of hollow mesoporous silica@Co-Al layered double hydroxide@graphene and application in toxic effluents elimination publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00176 – volume: 285 start-page: 27 year: 1993 ident: 10.1016/j.jcis.2020.03.052_b0125 article-title: Chemisorption and vibration of hydrogen on Cu (111) publication-title: Surf. Sci. doi: 10.1016/0039-6028(93)90910-C – volume: 213 start-page: 279 year: 2001 ident: 10.1016/j.jcis.2020.03.052_b0240 article-title: An XPS study of dispersion and chemical state of MoO3 on Al2O3-TiO2 binary oxide support publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(00)00906-6 – volume: 149 start-page: 618 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0085 article-title: 3D/2D direct Z-scheme heterojunctions of hierarchical TiO2 microflowers/g-C3N4 nanosheets with enhanced charge carrier separation for photocatalytic H2 evolution publication-title: Carbon doi: 10.1016/j.carbon.2019.04.088 – volume: 12 start-page: 4584 year: 2012 ident: 10.1016/j.jcis.2020.03.052_b0160 article-title: Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2 production performance publication-title: Nano Letters doi: 10.1021/nl301831h – volume: 127 start-page: 214704 year: 2007 ident: 10.1016/j.jcis.2020.03.052_b0130 article-title: Hydrogen absorption in bulk BC3: A first-principles study publication-title: J. Chem. Phys. doi: 10.1063/1.2802338 – volume: 29 start-page: 1601694 year: 2017 ident: 10.1016/j.jcis.2020.03.052_b0005 article-title: Heterojunction photocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.201601694 – volume: 227 start-page: 530 year: 2018 ident: 10.1016/j.jcis.2020.03.052_b0305 article-title: Photogenerated charge transfer via interfacial internal electric field for significantly improved photocatalysis in direct Z-scheme oxygen-doped carbon nitrogen/CoAl-layered double hydroxide heterojunction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.01.069 – volume: 122 start-page: 10430 year: 2018 ident: 10.1016/j.jcis.2020.03.052_b0015 article-title: Visible light harvesting and spatial charge separation over creative Ni/CdS/Co3O4 photocatalyst publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b01666 – volume: 40 start-page: 2115 year: 2014 ident: 10.1016/j.jcis.2020.03.052_b0190 article-title: Facile synthesis of CoAl-LDH/MnO2 hierarchical nanocomposites for high-performance supercapacitors publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.07.127 – volume: 362 start-page: 743 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0195 article-title: g-C3N4 nanosheet@CoAl-layered double hydroxide composites for electrochemical energy storage in supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.081 – volume: 119 start-page: 2399 year: 2015 ident: 10.1016/j.jcis.2020.03.052_b0235 article-title: Reaction of trimethylaluminum with water on Pt (111) and Pd (111) from 10–5 to 10–1 Millibar publication-title: J. Phys. Chem. C doi: 10.1021/jp510032u – volume: 128 start-page: 9002 year: 2006 ident: 10.1016/j.jcis.2020.03.052_b0070 article-title: Kinetic analysis for formation of Cd1-xZnxSe solid-solution nanocrystals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061858c – volume: 8 start-page: 5533 year: 2018 ident: 10.1016/j.jcis.2020.03.052_b0100 article-title: Electrochemical oxidation of 5-Hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.8b01017 – volume: 4 start-page: 14721 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0255 article-title: Construction of a Z-scheme dictated WO3-X/Ag/ZnCr LDH synergistically visible light-induced photocatalyst towards tetracycline degradation and H2 evolution publication-title: ACS Omega doi: 10.1021/acsomega.9b01146 – volume: 43 start-page: 19159 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0120 article-title: Zhiliang Jin, WP modified the S-scheme Zn0.5Cd0.5S/WO3 for efficient photocatalytic hydrogen production publication-title: New J. Chem. doi: 10.1039/C9NJ04584H – volume: 32 start-page: 4685 year: 2007 ident: 10.1016/j.jcis.2020.03.052_b0060 article-title: Significantly improved photocatalytic hydrogen production activity over Cd1-xZnxS photocatalysts prepared by a novel thermal sulfuration method publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.08.022 – volume: 13 start-page: 5188 year: 1976 ident: 10.1016/j.jcis.2020.03.052_b0150 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 6 start-page: 24311 year: 2018 ident: 10.1016/j.jcis.2020.03.052_b0155 article-title: One-step, room temperature generation of porous and amorphous cobalt hydroxysulfides from layered double hydroxides for superior oxygen evolution reactions publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08149B – volume: 485 start-page: 110832 year: 2020 ident: 10.1016/j.jcis.2020.03.052_b0180 article-title: Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution publication-title: Mol. Catal. doi: 10.1016/j.mcat.2020.110832 – volume: 198 start-page: 286 year: 2016 ident: 10.1016/j.jcis.2020.03.052_b0265 article-title: Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on 101 and 001 facets publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.05.074 – volume: 3 start-page: 882 year: 2013 ident: 10.1016/j.jcis.2020.03.052_b0065 article-title: Zn1-xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2 production activity publication-title: ACS Catal. doi: 10.1021/cs4000975 – volume: 31 start-page: 2018 year: 2006 ident: 10.1016/j.jcis.2020.03.052_b0055 article-title: Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.02.003 – volume: 502 start-page: 1 year: 2010 ident: 10.1016/j.jcis.2020.03.052_b0200 article-title: Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation publication-title: Thermochim. Acta doi: 10.1016/j.tca.2010.01.009 – volume: 43 start-page: 14168 year: 2017 ident: 10.1016/j.jcis.2020.03.052_b0165 article-title: Controllable synthesis of cross-linked CoAl-LDH/NiCo2S4 sheets for high performance asymmetric supercapacitors publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.07.159 – volume: 6 start-page: 94 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0230 article-title: Fabrication of a Au-loaded CaFe2O4/CoAl-LDH p-n junction based architecture with stoichiometric H2 & O2 generation and Cr (vi) reduction under visible light publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00952J – volume: 39 start-page: 1630 year: 2014 ident: 10.1016/j.jcis.2020.03.052_b0045 article-title: Efficient and stable photocatalytic hydrogen production from water splitting over ZnxCd1-xS solid solutions under visible light irradiation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.11.059 – volume: 149 start-page: 1788 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0270 article-title: Noble-metal-free visible light driven hetero-structural Ni/ZnxCd1−xS photocatalyst for efficient hydrogen production publication-title: Catal. Lett. doi: 10.1007/s10562-019-02777-9 – volume: 43 start-page: 3609 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0310 article-title: Properties of iron vanadate over CdS nanorods for efficient photocatalytic hydrogen production publication-title: New J. Chem. doi: 10.1039/C8NJ06110F – volume: 390 start-page: 368 year: 2016 ident: 10.1016/j.jcis.2020.03.052_b0175 article-title: Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.08.119 – volume: 54 start-page: 3243 year: 2018 ident: 10.1016/j.jcis.2020.03.052_b0115 article-title: CoAl-layered double hydroxide nanosheets as an active matrix to anchor an amorphous MoSx catalyst for efficient visible light hydrogen evolution publication-title: Chem. Commun. doi: 10.1039/C8CC00059J – volume: 6 start-page: 19631 year: 2018 ident: 10.1016/j.jcis.2020.03.052_b0210 article-title: Fabricating sandwich-shelled ZnCdS/ZnO/ZnCdS dodecahedral cages with “one stone” as Z-scheme photocatalysts for highly efficient hydrogen production publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07362G – volume: 163 start-page: 298 year: 2015 ident: 10.1016/j.jcis.2020.03.052_b0280 article-title: Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.08.013 – volume: 4 start-page: 179 year: 2014 ident: 10.1016/j.jcis.2020.03.052_b0300 article-title: NiAl and CoAl materials derived from takovite-like LDHs and related structures as efficient chemoselective hydrogenation catalysts publication-title: Catal. Sci. Technol. doi: 10.1039/C3CY00611E – volume: 51 start-page: 1298 year: 1989 ident: 10.1016/j.jcis.2020.03.052_b0295 article-title: Kupcha, Diffuse-reflection spectroscopy applied to the structure of an aluminum-cobalt oxide system publication-title: J. Appl. Spectrosc. doi: 10.1007/BF00659937 – volume: 698 start-page: 852 year: 2017 ident: 10.1016/j.jcis.2020.03.052_b0105 article-title: Hierarchically porous MoS2/CoAl-LDH/HCF with synergistic adsorption-photocatalytic performance under visible light irradiation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.12.310 – volume: 33 start-page: 101084 issue: 33 year: 2020 ident: 10.1016/j.jcis.2020.03.052_b0220 article-title: Peroxymonosulfate-assisted photocatalytic degradation of sulfadiazine using self-assembled multi-layered CoAl-LDH/g-C3N4 heterostructures: performance, mechanism and eco-toxicity evaluation publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2019.101084 – volume: 467–468 start-page: 1239 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0020 article-title: Function of NiSe2 over CdS nanorods for enhancement of photocatalytic hydrogen production-from preparation to mechanism publication-title: Appl. Surf. Sci. – volume: 90 start-page: 824 year: 1986 ident: 10.1016/j.jcis.2020.03.052_b0050 article-title: Photochemical hydrogen-production with platinized suspensions of cadmium sulfide and cadmium zinc-sulfide modified by silver sulfide publication-title: J. Phys. Chem. doi: 10.1021/j100277a024 – volume: 131 start-page: 1680 year: 2009 ident: 10.1016/j.jcis.2020.03.052_b0275 article-title: Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809307s – volume: 255 start-page: 117761 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0290 article-title: Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.117761 – volume: 147 start-page: 214 year: 2000 ident: 10.1016/j.jcis.2020.03.052_b0075 article-title: Structural, compositional, optical, and electrical properties of solution-grown ZnxCd1 -x S films publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393177 – volume: 441 start-page: 12 year: 2018 ident: 10.1016/j.jcis.2020.03.052_b0170 article-title: Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.01.193 – volume: 6 start-page: 8245 year: 1994 ident: 10.1016/j.jcis.2020.03.052_b0145 article-title: Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements publication-title: J. Phys.: Condens. Matter – volume: 8 start-page: 35021 year: 2016 ident: 10.1016/j.jcis.2020.03.052_b0030 article-title: Multifunctional polymer ligand interface CdZnSeS/ZnS quantum dot/Cy3-labeled protein pairs as sensitive FRET sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12877 – ident: 10.1016/j.jcis.2020.03.052_b0250 – volume: 2 start-page: 1022 year: 2014 ident: 10.1016/j.jcis.2020.03.052_b0260 article-title: A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: fabrication and high supercapacitor performance publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14048B – volume: 40 start-page: 390 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0285 article-title: Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(18)63173-0 – volume: 128 start-page: 4872 year: 2006 ident: 10.1016/j.jcis.2020.03.052_b0185 article-title: Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0584471 – volume: 6 start-page: 3510 year: 2016 ident: 10.1016/j.jcis.2020.03.052_b0080 article-title: In-built Tb4þ/Tb3þ redox centers in terbium-doped bismuth molybdate nanograss for enhanced photocatalytic activity publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY01730K – volume: 48 start-page: 11122 year: 2019 ident: 10.1016/j.jcis.2020.03.052_b0215 article-title: Sustainable and efficient hydrogen evolution over noble metal-free WP double modified ZnxCd1-xS photocatalyst under visible-light driven publication-title: Dalton Trans. doi: 10.1039/C9DT01421G |
SSID | ssj0011559 |
Score | 2.5598142 |
Snippet | CoAl-LDH has a larger specific surface area than ZCS nanoparticles, which makes ZCS evenly dispersed and inhibits its aggregation. The uniform dispersion of... CoAl-LDH and ZnxCd1-xS (ZCS) were successfully assembled. By studying the microstructure of the catalysts, it was found that the agglomerated ZCS nanoparticles... CoAl-LDH and ZnₓCd₁₋ₓS (ZCS) were successfully assembled. By studying the microstructure of the catalysts, it was found that the agglomerated ZCS nanoparticles... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 62 |
SubjectTerms | catalysts electrochemistry electrons Heterostructure Hydrogen evolution hydrogen production Layered double hydroxides microstructure nanoparticles photocatalysis photoluminescence surface area ZnxCd1-xS |
Title | ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution |
URI | https://dx.doi.org/10.1016/j.jcis.2020.03.052 https://www.proquest.com/docview/2384498208 https://www.proquest.com/docview/2431845546 |
Volume | 572 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELWqcgAOCAqIAq2MxA2FxrGdOMdVaLWA6AUqVVwiO57Vplo5q7KLdi9c-9udSZwKkNgDx0SeJPJMxjP2mzeMvS2cpjAUkkyCSVSTWvznrEpUAcaU3hXWUqHwl_N8eqE-XerLPVaNtTAEq4y-f_DpvbeOd07ibJ4s25ZqfPFvK0o6RyTeur6CXRVk5e9_3cE8BB27DTAPkdDoWDgzYLyumpYou7O0JzrV2b8Wp7_cdL_2nD1mj2LQyCfDdz1hexAO2P1q7NV2wB7-Riv4lN18D5vKi2TzlQcbMCuO4DfuW-IF_wGed4FX3WSRLOyWmnVy363dAvh866-7TeuBt4FnH_icwDLdwDG7vgaOES6HMO9RA3w571Zdv_2zxecPsmiOHH5Gc37GLs5Ov1XTJDZcSBols1UCmLDmghjGMOswxgptldJl6ZRPfQOuUcYaW5QZSKMzazEU82nmZhkUeeq1kc_ZfugCvGBcejuTQoCwmPJondsZlAblXe5mWkJ5yMQ403UT2cipKcaiHmFnVzVppybt1KmsUTuH7N2dzHLg4tg5Wo8KrP-wqBoXi51yb0Zt16hFOj-xAbo1DpJGqRJDJrNjDAZkRhH07-V_vv8Ve0BXtH8s9Gu2jyqGIwx8Vu64t-xjdm_y8fP0_BaIXQRl |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKORQOCAqo5dNIcEKhsWMnzoFDtaXa0o8LrVRxCU48q021clbtLuxeuPKD-IPMJE4FSOwBqdfEdiI_2zNjP79h7HVWanJDIZIJmEhVscU5Z1WkMjAmd2VmLV0UPj5Jh2fq47k-X2M_-7swRKsMa3-3prerdXiyE3pzZ1rXdMcXZ1uW0zki6daJwKw8hOU3jNuu3h_sIchvpNz_cDoYRiG1QFSpRM4iwNAsFaSlhf61MVZoq5TO81K52FVQVspYY7NcQmK0tBadDhfLciQhS2OnTYLt3mK3FS4XlDbh3fdrXomgc76OVyIi-r1wU6cjlV1UNWmEy7hVVtXyX9bwL7vQGrv9--xe8FL5btcRD9ga-E22MeiTw22yu7_pGD5kPz77xcCJaPGJe-sxDA9sO-5qEiK_AscbzwfN7iSa2CVlB-WumZcT4OOlu2wWtQNeey73-JjYOU0naju_BI4uNQc_bmkKfDpuZk2737TE9ru6OP45fA3z5xE7uxEYHrN133jYYjxxdpQIAcJijKV1akeQG6xfpuVIJ5BvM9H3dFEF-XPKwjEpep7bRUHoFIROEScForPN3l7XmXbiHytL6x7A4o8hXKB1WlnvVY92gSjSgY310MyxUGKUytFHMyvKoAdoFHENn_zn91-yjeHp8VFxdHBy-JTdoTe0eS30M7aOcMNz9Lpm5Yt2lHP25aan1S-9bz45 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZnxCd1-xS+nanoparticles+dispersed+on+CoAl-layered+double+hydroxide+in+2D+heterostructure+for+enhanced+photocatalytic+hydrogen+evolution&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Li%2C+Hongying&rft.au=Hao%2C+Xuqiang&rft.au=Liu%2C+Yang&rft.au=Li%2C+Yanbing&rft.date=2020-07-15&rft.issn=0021-9797&rft.volume=572+p.62-73&rft.spage=62&rft.epage=73&rft_id=info:doi/10.1016%2Fj.jcis.2020.03.052&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |