Mechanism of spindle pole organization and instability in human oocytes
Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)–mediated clustering of microtubule minus ends focused the spindle pol...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 375; no. 6581; p. eabj3944 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
11.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abj3944 |
Cover
Loading…
Abstract | Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)–mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.
Chromosomal errors in human eggs are a leading cause of miscarriages and infertility. These errors result from chromosome missegregations during the maturation of oocytes into eggs. Chromosome segregation is driven by the spindle, a macromolecular machinery that pulls chromosomes apart. However, human oocytes often assemble unstable spindles, favoring chromosome missegregations. So
et al
. discovered that human oocyte spindles are unstable because they are deficient in the molecular motor KIFC1. KIFC1 stabilizes spindles in other mammalian oocytes and in cancer cells. By introducing exogenous KIFC1, the authors were able to increase the fidelity of spindle assembly and chromosome segregation in human oocytes. —SMH
Human oocytes have unstable meiotic spindles compared with oocytes from other mammals because of the lack of the molecular motor KIFC1. |
---|---|
AbstractList | A missing motor in human meiosisChromosomal errors in human eggs are a leading cause of miscarriages and infertility. These errors result from chromosome missegregations during the maturation of oocytes into eggs. Chromosome segregation is driven by the spindle, a macromolecular machinery that pulls chromosomes apart. However, human oocytes often assemble unstable spindles, favoring chromosome missegregations. So et al. discovered that human oocyte spindles are unstable because they are deficient in the molecular motor KIFC1. KIFC1 stabilizes spindles in other mammalian oocytes and in cancer cells. By introducing exogenous KIFC1, the authors were able to increase the fidelity of spindle assembly and chromosome segregation in human oocytes. —SMHINTRODUCTIONMany human eggs carry an incorrect number of chromosomes, a condition known as aneuploidy. Aneuploidy in human eggs is the leading cause of aberrant embryonic development, resulting in pregnancy loss and genetic disorders such as Down syndrome. Most aneuploidy results from chromosome segregation errors during the maturation of oocytes into fertilizable eggs. Unlike somatic cells, human oocytes segregate chromosomes with a specialized microtubule spindle that lacks centrosomes. Previous live-imaging studies revealed that human oocytes often assemble spindles with unstable poles, favoring chromosome segregation errors. The causes of high spindle instability in human oocytes were unknown.RATIONALEIdentifying the causes of spindle instability may lead to therapeutic strategies that reduce chromosome segregation errors in human eggs and improve outcomes of assisted reproductive technology. We thus set out to investigate how spindle poles are organized in the absence of centrosomes and why spindles are unstable in human oocytes. To this end, we systematically studied the localization and function of proteins that are required for spindle pole assembly or spindle stability in oocytes of different mammalian species. In stark contrast to human oocytes, the spindles of other mammalian oocytes were stable. We thus carried out a comparative analysis to investigate whether differences in molecular composition can explain the high degree of spindle instability in human oocytes.RESULTSSpindle pole assembly requires the bundling of parallel microtubules by microtubule cross-linking proteins as well as stabilization and/or anchoring of microtubule minus ends in the spindle pole region by minus end–binding proteins. We found that the microtubule cross-linking protein NUMA (nuclear mitotic apparatus protein) localized to microtubule minus ends, where it recruited the molecular motor dynein for spindle pole focusing. Depletion of NUMA or inhibition of dynein splayed microtubule minus ends, demonstrating that NUMA and dynein organize the spindle poles in human oocytes.NUMA was similarly enriched at the spindle poles in bovine and porcine oocytes, which naturally lack centrosomes, as well as in mouse oocytes that we artificially depleted of acentriolar microtubule organizing centers (aMTOCs). We thus asked whether spindle instability is a general feature of mammalian oocytes that use NUMA for spindle pole organization. Live imaging, however, revealed that bovine, porcine, and aMTOC-free mouse oocytes did not assemble unstable spindles, indicating that additional mechanisms stabilize spindles in these oocytes.Using an RNA interference screen of proteins with diverse functions in spindle organization, we identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing factor that is present in other mammalian oocytes but deficient in human oocytes. Depletion of KIFC1 in other mammalian oocytes recapitulated the spindle instability of human oocytes, resulting in spindles with unstable poles and an increase in aneuploidy. To investigate further if the spindle instability in human oocytes was a result of KIFC1 deficiency, we injected recombinant KIFC1 protein into human oocytes and performed live imaging of spindle assembly. Introduction of exogenous KIFC1 stabilized the spindles and reduced chromosome segregation errors, confirming that KIFC1 deficiency contributes to spindle instability in human oocytes.CONCLUSIONOur data reveal notable differences in spindle pole organization in different systems. In somatic cells, two centrosomes act as the main MTOCs and promote bipolar spindle assembly. In mouse oocytes, centrosomes are functionally replaced by aMTOCs. In other mammalian oocytes, including humans, NUMA is enriched at microtubule minus ends. NUMA primarily engages the motor activity of dynein but can also cross-link microtubules itself. These activities allow NUMA to cluster microtubule minus ends, and to thereby organize the spindle poles in the absence of centrosomes or aMTOCs.Our data also elucidate a cause of spindle instability in human oocytes: Human oocytes are deficient in KIFC1, a key spindle-stabilizing protein in other mammalian oocytes and in cancer cells. KIFC1 stabilizes the spindle poles and prevents their fragmentation. This is likely achieved through the formation of static cross-links along parallel microtubules at the poles and the alignment of antiparallel microtubules in the central region of the spindle. Because human oocytes are deficient in KIFC1, we propose that the deficiency of these activities renders their spindles unstable.By delivering a defined amount of KIFC1 protein into human oocytes, we were able to reduce spindle instability and the risk of aneuploidy in human oocytes. Thus, our data also reveal a potential method for increasing the fidelity of spindle assembly and chromosome segregation in human oocytes. Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)–mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes. Chromosomal errors in human eggs are a leading cause of miscarriages and infertility. These errors result from chromosome missegregations during the maturation of oocytes into eggs. Chromosome segregation is driven by the spindle, a macromolecular machinery that pulls chromosomes apart. However, human oocytes often assemble unstable spindles, favoring chromosome missegregations. So et al . discovered that human oocyte spindles are unstable because they are deficient in the molecular motor KIFC1. KIFC1 stabilizes spindles in other mammalian oocytes and in cancer cells. By introducing exogenous KIFC1, the authors were able to increase the fidelity of spindle assembly and chromosome segregation in human oocytes. —SMH Human oocytes have unstable meiotic spindles compared with oocytes from other mammals because of the lack of the molecular motor KIFC1. Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes. Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes. |
Author | So, Chun Bucevičius, Jonas Sibold, Claus Harasimov, Katarina Möbius, Wiebke Eckel, Heike Moltrecht, Rüdiger Steyer, Anna M. Uraji, Julia Menelaou, Katerina Schuh, Melina Lukinavičius, Gražvydas Tandler-Schneider, Andreas Elder, Kay Blayney, Martyn Seres, K. Bianka |
Author_xml | – sequence: 1 givenname: Chun orcidid: 0000-0003-3901-7654 surname: So fullname: So, Chun organization: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany – sequence: 2 givenname: Katerina orcidid: 0000-0003-0286-3777 surname: Menelaou fullname: Menelaou, Katerina organization: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany., Bourn Hall Clinic, Cambridge, UK – sequence: 3 givenname: Julia orcidid: 0000-0002-1441-4074 surname: Uraji fullname: Uraji, Julia organization: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany., Bourn Hall Clinic, Cambridge, UK – sequence: 4 givenname: Katarina orcidid: 0000-0003-2703-4342 surname: Harasimov fullname: Harasimov, Katarina organization: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany – sequence: 5 givenname: Anna M. orcidid: 0000-0002-4814-7517 surname: Steyer fullname: Steyer, Anna M. organization: Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany – sequence: 6 givenname: K. Bianka orcidid: 0000-0002-4288-4719 surname: Seres fullname: Seres, K. Bianka organization: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany., Bourn Hall Clinic, Cambridge, UK – sequence: 7 givenname: Jonas orcidid: 0000-0001-5725-8940 surname: Bucevičius fullname: Bucevičius, Jonas organization: Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany – sequence: 8 givenname: Gražvydas orcidid: 0000-0002-7176-1793 surname: Lukinavičius fullname: Lukinavičius, Gražvydas organization: Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany – sequence: 9 givenname: Wiebke orcidid: 0000-0002-2902-7165 surname: Möbius fullname: Möbius, Wiebke organization: Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany., Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany – sequence: 10 givenname: Claus surname: Sibold fullname: Sibold, Claus organization: Fertility Center Berlin, Berlin, Germany – sequence: 11 givenname: Andreas surname: Tandler-Schneider fullname: Tandler-Schneider, Andreas organization: Fertility Center Berlin, Berlin, Germany – sequence: 12 givenname: Heike surname: Eckel fullname: Eckel, Heike organization: Kinderwunschzentrum Göttingen, Göttingen, Germany – sequence: 13 givenname: Rüdiger surname: Moltrecht fullname: Moltrecht, Rüdiger organization: Kinderwunschzentrum Göttingen, Göttingen, Germany – sequence: 14 givenname: Martyn surname: Blayney fullname: Blayney, Martyn organization: Bourn Hall Clinic, Cambridge, UK – sequence: 15 givenname: Kay orcidid: 0000-0003-3510-8268 surname: Elder fullname: Elder, Kay organization: Bourn Hall Clinic, Cambridge, UK – sequence: 16 givenname: Melina orcidid: 0000-0003-0025-8952 surname: Schuh fullname: Schuh, Melina organization: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany., Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35143306$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1PwzAQxS1URD9gZkORWFjS-jNNRlRBQSpigTmynQt1ldghToby1-PSwFCJ5e6k-73T6b0pGllnAaFrgueE0GThtQGrYS7VjmWcn6EJwZmIM4rZCE0wZkmc4qUYo6n3O4zDLmMXaMwE4YzhZILWL6C30hpfR66MfGNsUUHUuFBc-xEWX7IzzkbSFpGxvpPKVKbbhzna9rW0kXN634G_ROelrDxcDX2G3h8f3lZP8eZ1_by638SaM9rFBSwx5qWSACVPgGYy5ZInaYEZVVxpTlRKKWMq4yJTYlkKVhLQNCVSEgopm6G7492mdZ89-C6vjddQVdKC631OE5rSLEmwCOjtCbpzfWvDd4FiB1uEwIG6Gahe1VDkTWtq2e7zX4sCsDgCunXet1D-IQTnhxDyIYR8CCEoxIlCm-7Hxq6VpvpX9w15qI4P |
CitedBy_id | crossref_primary_10_1007_s12551_024_01236_z crossref_primary_10_1038_s41598_024_55376_z crossref_primary_10_32607_actanaturae_25255 crossref_primary_10_1016_j_reprotox_2024_108762 crossref_primary_10_1007_s43032_023_01331_8 crossref_primary_10_23868_202205009 crossref_primary_10_3390_ijerph191811208 crossref_primary_10_1016_j_isci_2024_110451 crossref_primary_10_1038_s41594_024_01471_8 crossref_primary_10_1038_s41467_024_54659_3 crossref_primary_10_7554_eLife_85208 crossref_primary_10_57582_RIVER_240101_010 crossref_primary_10_1073_pnas_2206398119 crossref_primary_10_3389_fcell_2022_864692 crossref_primary_10_3390_cells14010008 crossref_primary_10_1371_journal_pgen_1010489 crossref_primary_10_1007_s10815_022_02615_9 crossref_primary_10_3390_cancers14235755 crossref_primary_10_3390_ijerph192416721 crossref_primary_10_1016_j_ajhg_2023_11_002 crossref_primary_10_1098_rsob_240041 crossref_primary_10_3389_fimmu_2023_1193293 crossref_primary_10_1038_s41598_024_81393_z crossref_primary_10_1364_BOE_534658 crossref_primary_10_1016_j_theriogenology_2025_01_012 crossref_primary_10_1091_mbc_E23_10_0407 crossref_primary_10_1073_pnas_2422190122 crossref_primary_10_1083_jcb_202210093 crossref_primary_10_1016_j_cell_2024_12_028 crossref_primary_10_1016_j_bbadis_2024_167228 crossref_primary_10_1016_j_theriogenology_2023_08_020 crossref_primary_10_1038_s41467_024_49815_8 crossref_primary_10_1097_MD_0000000000037286 crossref_primary_10_1021_acssynbio_3c00588 crossref_primary_10_1262_jrd_2022_101 crossref_primary_10_1038_s41594_022_00907_3 crossref_primary_10_1242_dev_201313 crossref_primary_10_1126_science_abq7361 crossref_primary_10_1016_j_theriogenology_2022_11_016 crossref_primary_10_1007_s00439_023_02633_2 crossref_primary_10_1016_j_cub_2022_12_017 crossref_primary_10_1038_s41467_024_45251_w crossref_primary_10_3390_ijms23052880 crossref_primary_10_1016_j_cub_2023_01_010 crossref_primary_10_1016_j_cell_2023_11_013 crossref_primary_10_1126_science_ado1022 crossref_primary_10_1038_s41467_025_57671_3 crossref_primary_10_1073_pnas_2209053119 crossref_primary_10_3390_genes13040602 crossref_primary_10_18632_aging_205203 crossref_primary_10_1016_j_cell_2023_10_003 crossref_primary_10_1038_s41421_023_00599_z crossref_primary_10_1038_s41556_022_01082_9 crossref_primary_10_1111_acel_14466 crossref_primary_10_1146_annurev_genet_072820_033609 crossref_primary_10_1093_lifemedi_lnae038 crossref_primary_10_1038_s41580_022_00517_3 crossref_primary_10_1038_s41580_024_00780_6 crossref_primary_10_1007_s00018_024_05213_3 crossref_primary_10_1016_j_yexcr_2025_114524 crossref_primary_10_3724_abbs_2023093 crossref_primary_10_23736_S2724_606X_24_05343_0 crossref_primary_10_1016_j_mcpro_2022_100481 crossref_primary_10_1038_s41598_023_43732_4 crossref_primary_10_1186_s12967_024_05162_2 crossref_primary_10_1007_s10815_022_02480_6 crossref_primary_10_1016_j_xfss_2024_08_002 crossref_primary_10_1146_annurev_cellbio_121420_100107 crossref_primary_10_26508_lsa_202402884 crossref_primary_10_1242_dev_201976 crossref_primary_10_1016_j_jtha_2024_03_010 crossref_primary_10_1002_advs_202413097 |
Cites_doi | 10.7554/eLife.12504 10.1074/mcp.M115.056887 10.1016/bs.mcb.2017.03.005 10.1038/s41467-021-27528-6 10.1038/s41586-018-0080-8 10.1016/j.rbmo.2009.09.013 10.1038/nrm3209 10.1038/nature14568 10.1038/nrm4062 10.1007/s10577-015-9508-2 10.1083/jcb.202104114 10.1021/acs.jproteome.5b01083 10.1093/molehr/gar009 10.1073/pnas.1218017109 10.1016/j.cub.2017.06.018 10.1016/S0960-9822(03)00530-X 10.1038/nature12364 10.1016/j.devcel.2005.07.002 10.1002/mrd.23172 10.1007/978-1-0716-0219-5_2 10.1083/jcb.136.4.859 10.1242/jcs.107474 10.1083/jcb.200810091 10.1093/humrep/dex083 10.15252/embr.201745225 10.1126/science.aav7321 10.1083/jcb.138.3.615 10.1242/jcs.11.2.521 10.1016/j.cell.2021.04.013 10.1101/2021.09.09.459640 10.1186/1471-2105-12-323 10.1093/emboj/18.6.1689 10.1242/jcs.115.9.1815 10.7554/eLife.61170 10.1091/mbc.e10-12-0951 10.1242/jcs.196188 10.1101/gad.1886810 10.1038/ncb1834 10.1016/j.tcb.2018.02.011 10.1016/j.stem.2021.04.012 10.1371/journal.pone.0049303 10.1016/j.cell.2007.06.025 10.1038/s41598-019-46605-x 10.1038/nrm4025 10.1101/cshperspect.a015800 10.1083/jcb.153.4.637 10.1534/genetics.105.051557 10.1016/j.cub.2015.12.051 10.15252/embr.201949234 10.1038/nmeth.4074 10.1095/biolreprod62.5.1184 10.15252/embj.2019102378 10.1016/j.tibs.2020.02.002 10.1101/2020.07.17.208744 10.1126/science.aat9557 10.1039/D0SC02154G 10.1038/nprot.2018.040 10.1083/jcb.200203089 10.1242/jcs.189340 10.1038/srep20889 10.1007/s10815-015-0568-1 10.1371/journal.pgen.1005261 10.1242/jcs.200261 10.1073/pnas.1204686109 10.1093/molehr/5.9.836 10.1016/0896-6273(92)90239-A 10.1038/ncomms8217 10.1093/oxfordjournals.humrep.a137955 10.1038/nrc924 10.1016/j.cell.2017.10.033 10.1091/mbc.e08-09-0971 10.1083/jcb.200208159 10.1002/mrd.22633 10.1083/jcb.135.2.399 10.1096/fj.201901818RR 10.1002/mrd.10280 10.7554/eLife.29328 10.1111/j.1749-6632.1975.tb19218.x 10.1083/jcb.201005065 10.1016/j.devcel.2021.07.022 10.1093/humrep/der067 10.1111/j.1600-0854.2009.00945.x 10.1242/bio.052308 10.1534/genetics.116.194647 10.1016/j.cub.2019.12.056 10.1002/(SICI)1097-0169(1999)42:3<189::AID-CM3>3.0.CO;2-X 10.1242/jcs.101.3.547 10.1002/mrd.22422 10.1007/s12064-012-0162-3 10.1038/s41596-018-0028-3 10.1095/biolreprod.104.031245 10.1242/jcs.094672 10.1371/journal.pgen.1006986 10.1530/REP-21-0061 10.1083/jcb.147.2.351 10.1091/mbc.e13-11-0687 10.1083/jcb.149.4.851 10.1016/S0092-8674(00)81365-3 10.1083/jcb.201902110 10.1038/ncb2996 10.1016/j.stem.2019.09.004 10.1247/csf.12014 10.1126/science.1074952 10.1371/journal.pone.0003338 10.1242/jcs.005959 10.1083/jcb.131.3.693 10.1073/pnas.88.11.4806 10.1083/jcb.201203166 10.1101/gad.1700908 10.1091/mbc.e04-08-0682 10.1093/humrep/7.suppl_1.89 10.1093/HUMREP/11.2.345 10.1083/jcb.202010106 10.7554/eLife.36559 10.1038/382420a0 10.1007/s10815-018-1241-2 10.1073/pnas.1321569111 10.1083/jcb.138.5.1055 10.1016/j.celrep.2014.07.015 10.1083/jcb.200505107 10.1038/ncb2958 10.1083/jcb.201401091 10.1016/j.celrep.2016.02.087 10.1016/j.cub.2011.04.029 10.1038/s41598-018-25698-w 10.1038/cr.2009.54 10.1002/cm.10151 10.1038/s41467-019-12674-9 10.1126/science.aaa9529 10.1002/jemt.1070270208 10.1083/jcb.134.2.455 10.1242/dev.035089 10.1534/genetics.115.181081 10.1091/mbc.e04-12-1110 10.1038/ncomms11005 10.1242/jcs.110.11.1287 10.1002/j.1460-2075.1991.tb04899.x 10.1016/S0960-9822(07)00370-3 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abj3944 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
ExternalDocumentID | 35143306 10_1126_science_abj3944 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c432t-de7004fbaeef46e29a84a468d032b4bc41b82233b9459b57f53f1ec281aa12e83 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Jul 21 11:07:29 EDT 2025 Fri Jul 25 10:31:35 EDT 2025 Thu Apr 03 07:08:23 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 Tue Jul 01 02:24:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6581 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c432t-de7004fbaeef46e29a84a468d032b4bc41b82233b9459b57f53f1ec281aa12e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3510-8268 0000-0003-0025-8952 0000-0003-0286-3777 0000-0001-5725-8940 0000-0002-4814-7517 0000-0002-4288-4719 0000-0002-2902-7165 0000-0002-1441-4074 0000-0002-7176-1793 0000-0003-2703-4342 0000-0003-3901-7654 |
OpenAccessLink | https://www.science.org/doi/pdf/10.1126/science.abj3944?download=true |
PMID | 35143306 |
PQID | 2638075550 |
PQPubID | 1256 |
ParticipantIDs | proquest_miscellaneous_2628296605 proquest_journals_2638075550 pubmed_primary_35143306 crossref_primary_10_1126_science_abj3944 crossref_citationtrail_10_1126_science_abj3944 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-11 20220211 |
PublicationDateYYYYMMDD | 2022-02-11 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_3_96_2 e_1_3_3_50_2 e_1_3_3_77_2 Maekawa T. (e_1_3_3_70_2) 1991; 54 e_1_3_3_117_2 e_1_3_3_16_2 e_1_3_3_39_2 e_1_3_3_132_2 e_1_3_3_12_2 e_1_3_3_58_2 e_1_3_3_35_2 e_1_3_3_92_2 e_1_3_3_113_2 e_1_3_3_136_2 e_1_3_3_54_2 cr-split#-e_1_3_3_14_2.1 e_1_3_3_31_2 e_1_3_3_73_2 e_1_3_3_61_2 e_1_3_3_88_2 cr-split#-e_1_3_3_30_2.2 cr-split#-e_1_3_3_30_2.1 e_1_3_3_5_2 e_1_3_3_128_2 e_1_3_3_105_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_109_2 e_1_3_3_23_2 e_1_3_3_69_2 e_1_3_3_120_2 e_1_3_3_46_2 e_1_3_3_80_2 e_1_3_3_65_2 e_1_3_3_124_2 e_1_3_3_42_2 e_1_3_3_84_2 e_1_3_3_101_2 e_1_3_3_76_2 e_1_3_3_99_2 e_1_3_3_139_2 e_1_3_3_116_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_131_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_91_2 e_1_3_3_135_2 e_1_3_3_11_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_95_2 e_1_3_3_112_2 e_1_3_3_60_2 e_1_3_3_87_2 e_1_3_3_8_2 e_1_3_3_104_2 e_1_3_3_127_2 e_1_3_3_49_2 e_1_3_3_108_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 e_1_3_3_100_2 e_1_3_3_123_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_98_2 e_1_3_3_79_2 e_1_3_3_115_2 e_1_3_3_138_2 e_1_3_3_119_2 e_1_3_3_18_2 e_1_3_3_37_2 e_1_3_3_90_2 e_1_3_3_130_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_94_2 e_1_3_3_111_2 e_1_3_3_134_2 e_1_3_3_10_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_86_2 e_1_3_3_107_2 e_1_3_3_7_2 e_1_3_3_126_2 e_1_3_3_29_2 e_1_3_3_48_2 e_1_3_3_141_2 e_1_3_3_25_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_82_2 e_1_3_3_103_2 cr-split#-e_1_3_3_68_2.2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_63_2 cr-split#-e_1_3_3_68_2.1 e_1_3_3_122_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_97_2 e_1_3_3_78_2 e_1_3_3_118_2 e_1_3_3_137_2 e_1_3_3_17_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_110_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_93_2 e_1_3_3_114_2 e_1_3_3_133_2 cr-split#-e_1_3_3_14_2.2 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_89_2 e_1_3_3_6_2 e_1_3_3_106_2 e_1_3_3_129_2 e_1_3_3_28_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_121_2 e_1_3_3_140_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_102_2 e_1_3_3_125_2 35348951 - J Assist Reprod Genet. 2022 Mar;39(3):553-554 |
References_xml | – ident: e_1_3_3_83_2 doi: 10.7554/eLife.12504 – ident: e_1_3_3_97_2 doi: 10.1074/mcp.M115.056887 – ident: e_1_3_3_139_2 doi: 10.1016/bs.mcb.2017.03.005 – ident: e_1_3_3_73_2 doi: 10.1038/s41467-021-27528-6 – ident: e_1_3_3_100_2 doi: 10.1038/s41586-018-0080-8 – ident: e_1_3_3_10_2 doi: 10.1016/j.rbmo.2009.09.013 – ident: e_1_3_3_55_2 doi: 10.1038/nrm3209 – ident: e_1_3_3_56_2 doi: 10.1038/nature14568 – ident: e_1_3_3_17_2 doi: 10.1038/nrm4062 – ident: e_1_3_3_18_2 doi: 10.1007/s10577-015-9508-2 – ident: e_1_3_3_93_2 doi: 10.1083/jcb.202104114 – ident: e_1_3_3_96_2 doi: 10.1021/acs.jproteome.5b01083 – ident: e_1_3_3_40_2 doi: 10.1093/molehr/gar009 – ident: e_1_3_3_137_2 doi: 10.1073/pnas.1218017109 – ident: e_1_3_3_67_2 doi: 10.1016/j.cub.2017.06.018 – ident: #cr-split#-e_1_3_3_14_2.2 – ident: e_1_3_3_42_2 doi: 10.1016/S0960-9822(03)00530-X – ident: e_1_3_3_98_2 doi: 10.1038/nature12364 – ident: e_1_3_3_48_2 doi: 10.1016/j.devcel.2005.07.002 – ident: e_1_3_3_37_2 doi: 10.1002/mrd.23172 – ident: e_1_3_3_135_2 doi: 10.1007/978-1-0716-0219-5_2 – ident: e_1_3_3_109_2 doi: 10.1083/jcb.136.4.859 – ident: e_1_3_3_117_2 doi: 10.1242/jcs.107474 – ident: e_1_3_3_45_2 doi: 10.1083/jcb.200810091 – ident: e_1_3_3_4_2 doi: 10.1093/humrep/dex083 – ident: e_1_3_3_104_2 doi: 10.15252/embr.201745225 – ident: e_1_3_3_2_2 doi: 10.1126/science.aav7321 – ident: e_1_3_3_26_2 doi: 10.1083/jcb.138.3.615 – ident: e_1_3_3_20_2 doi: 10.1242/jcs.11.2.521 – ident: e_1_3_3_124_2 doi: 10.1016/j.cell.2021.04.013 – ident: #cr-split#-e_1_3_3_30_2.1 doi: 10.1101/2021.09.09.459640 – ident: e_1_3_3_140_2 doi: 10.1186/1471-2105-12-323 – ident: e_1_3_3_65_2 doi: 10.1093/emboj/18.6.1689 – ident: e_1_3_3_82_2 doi: 10.1242/jcs.115.9.1815 – ident: e_1_3_3_92_2 doi: 10.7554/eLife.61170 – ident: e_1_3_3_27_2 doi: 10.1091/mbc.e10-12-0951 – ident: e_1_3_3_61_2 doi: 10.1242/jcs.196188 – ident: e_1_3_3_88_2 doi: 10.1101/gad.1886810 – ident: e_1_3_3_51_2 doi: 10.1038/ncb1834 – ident: e_1_3_3_43_2 doi: 10.1016/j.tcb.2018.02.011 – ident: e_1_3_3_103_2 doi: 10.1016/j.stem.2021.04.012 – ident: e_1_3_3_53_2 doi: 10.1371/journal.pone.0049303 – ident: e_1_3_3_31_2 doi: 10.1016/j.cell.2007.06.025 – ident: e_1_3_3_79_2 doi: 10.1038/s41598-019-46605-x – ident: e_1_3_3_16_2 doi: 10.1038/nrm4025 – ident: e_1_3_3_122_2 doi: 10.1101/cshperspect.a015800 – ident: e_1_3_3_46_2 doi: 10.1083/jcb.153.4.637 – ident: e_1_3_3_49_2 doi: 10.1534/genetics.105.051557 – ident: e_1_3_3_84_2 doi: 10.1016/j.cub.2015.12.051 – ident: e_1_3_3_120_2 doi: 10.15252/embr.201949234 – ident: e_1_3_3_130_2 doi: 10.1038/nmeth.4074 – ident: e_1_3_3_38_2 doi: 10.1095/biolreprod62.5.1184 – ident: e_1_3_3_72_2 doi: 10.15252/embj.2019102378 – ident: e_1_3_3_86_2 doi: 10.1016/j.tibs.2020.02.002 – ident: #cr-split#-e_1_3_3_14_2.1 doi: 10.1101/2020.07.17.208744 – ident: e_1_3_3_32_2 doi: 10.1126/science.aat9557 – ident: e_1_3_3_136_2 doi: 10.1039/D0SC02154G – ident: e_1_3_3_138_2 doi: 10.1038/nprot.2018.040 – ident: e_1_3_3_85_2 doi: 10.1083/jcb.200203089 – ident: e_1_3_3_36_2 doi: 10.1242/jcs.189340 – ident: e_1_3_3_128_2 doi: 10.1038/srep20889 – ident: e_1_3_3_11_2 doi: 10.1007/s10815-015-0568-1 – ident: e_1_3_3_115_2 doi: 10.1371/journal.pgen.1005261 – ident: e_1_3_3_107_2 doi: 10.1242/jcs.200261 – ident: e_1_3_3_34_2 doi: 10.1073/pnas.1204686109 – ident: e_1_3_3_9_2 doi: 10.1093/molehr/5.9.836 – ident: e_1_3_3_131_2 doi: 10.1016/0896-6273(92)90239-A – ident: e_1_3_3_35_2 doi: 10.1038/ncomms8217 – ident: e_1_3_3_7_2 doi: 10.1093/oxfordjournals.humrep.a137955 – ident: e_1_3_3_121_2 doi: 10.1038/nrc924 – ident: e_1_3_3_57_2 doi: 10.1016/j.cell.2017.10.033 – ident: e_1_3_3_108_2 doi: 10.1091/mbc.e08-09-0971 – ident: e_1_3_3_59_2 doi: 10.1083/jcb.200208159 – ident: e_1_3_3_12_2 doi: 10.1002/mrd.22633 – ident: e_1_3_3_76_2 doi: 10.1083/jcb.135.2.399 – ident: e_1_3_3_102_2 doi: 10.1096/fj.201901818RR – ident: e_1_3_3_39_2 doi: 10.1002/mrd.10280 – ident: #cr-split#-e_1_3_3_30_2.2 – ident: e_1_3_3_77_2 doi: 10.7554/eLife.29328 – ident: e_1_3_3_58_2 doi: 10.1111/j.1749-6632.1975.tb19218.x – ident: e_1_3_3_89_2 doi: 10.1083/jcb.201005065 – ident: e_1_3_3_126_2 doi: 10.1016/j.devcel.2021.07.022 – ident: e_1_3_3_41_2 doi: 10.1093/humrep/der067 – ident: e_1_3_3_132_2 doi: 10.1111/j.1600-0854.2009.00945.x – ident: e_1_3_3_111_2 doi: 10.1242/bio.052308 – ident: e_1_3_3_29_2 doi: 10.1534/genetics.116.194647 – ident: e_1_3_3_106_2 doi: 10.1016/j.cub.2019.12.056 – ident: e_1_3_3_71_2 doi: 10.1002/(SICI)1097-0169(1999)42:3<189::AID-CM3>3.0.CO;2-X – ident: e_1_3_3_23_2 doi: 10.1242/jcs.101.3.547 – ident: e_1_3_3_60_2 doi: 10.1002/mrd.22422 – ident: e_1_3_3_141_2 doi: 10.1007/s12064-012-0162-3 – ident: e_1_3_3_134_2 doi: 10.1038/s41596-018-0028-3 – ident: e_1_3_3_22_2 doi: 10.1095/biolreprod.104.031245 – ident: e_1_3_3_94_2 doi: 10.1242/jcs.094672 – ident: e_1_3_3_110_2 doi: 10.1371/journal.pgen.1006986 – ident: e_1_3_3_15_2 doi: 10.1530/REP-21-0061 – ident: #cr-split#-e_1_3_3_68_2.2 – ident: e_1_3_3_105_2 doi: 10.1083/jcb.147.2.351 – ident: e_1_3_3_28_2 doi: 10.1091/mbc.e13-11-0687 – ident: e_1_3_3_75_2 doi: 10.1083/jcb.149.4.851 – ident: e_1_3_3_74_2 doi: 10.1016/S0092-8674(00)81365-3 – ident: e_1_3_3_54_2 doi: 10.1083/jcb.201902110 – ident: e_1_3_3_66_2 doi: 10.1038/ncb2996 – ident: e_1_3_3_101_2 doi: 10.1016/j.stem.2019.09.004 – ident: e_1_3_3_118_2 doi: 10.1247/csf.12014 – ident: e_1_3_3_129_2 doi: 10.1126/science.1074952 – ident: e_1_3_3_50_2 doi: 10.1371/journal.pone.0003338 – ident: #cr-split#-e_1_3_3_68_2.1 – ident: e_1_3_3_62_2 doi: 10.1242/jcs.005959 – ident: e_1_3_3_63_2 doi: 10.1083/jcb.131.3.693 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.88.11.4806 – ident: e_1_3_3_80_2 doi: 10.1083/jcb.201203166 – ident: e_1_3_3_116_2 doi: 10.1101/gad.1700908 – ident: e_1_3_3_47_2 doi: 10.1091/mbc.e04-08-0682 – ident: e_1_3_3_6_2 doi: 10.1093/humrep/7.suppl_1.89 – ident: e_1_3_3_8_2 doi: 10.1093/HUMREP/11.2.345 – ident: e_1_3_3_125_2 doi: 10.1083/jcb.202010106 – ident: e_1_3_3_81_2 doi: 10.7554/eLife.36559 – ident: e_1_3_3_25_2 doi: 10.1038/382420a0 – ident: e_1_3_3_13_2 doi: 10.1007/s10815-018-1241-2 – ident: e_1_3_3_99_2 doi: 10.1073/pnas.1321569111 – ident: e_1_3_3_44_2 doi: 10.1083/jcb.138.5.1055 – ident: e_1_3_3_90_2 doi: 10.1016/j.celrep.2014.07.015 – ident: e_1_3_3_114_2 doi: 10.1083/jcb.200505107 – ident: e_1_3_3_19_2 doi: 10.1038/ncb2958 – ident: e_1_3_3_78_2 doi: 10.1083/jcb.201401091 – ident: e_1_3_3_91_2 doi: 10.1016/j.celrep.2016.02.087 – ident: e_1_3_3_133_2 doi: 10.1016/j.cub.2011.04.029 – ident: e_1_3_3_123_2 doi: 10.1038/s41598-018-25698-w – ident: e_1_3_3_33_2 doi: 10.1038/cr.2009.54 – ident: e_1_3_3_87_2 doi: 10.1002/cm.10151 – ident: e_1_3_3_127_2 doi: 10.1038/s41467-019-12674-9 – ident: e_1_3_3_3_2 doi: 10.1126/science.aaa9529 – ident: e_1_3_3_21_2 doi: 10.1002/jemt.1070270208 – ident: e_1_3_3_24_2 doi: 10.1083/jcb.134.2.455 – ident: e_1_3_3_52_2 doi: 10.1242/dev.035089 – ident: e_1_3_3_95_2 doi: 10.1534/genetics.115.181081 – ident: e_1_3_3_113_2 doi: 10.1091/mbc.e04-12-1110 – volume: 54 start-page: 255 year: 1991 ident: e_1_3_3_70_2 article-title: Identification of a minus end-specific microtubule-associated protein located at the mitotic poles in cultured mammalian cells publication-title: Eur. J. Cell Biol. – ident: e_1_3_3_119_2 doi: 10.1038/ncomms11005 – ident: e_1_3_3_64_2 doi: 10.1242/jcs.110.11.1287 – ident: e_1_3_3_69_2 doi: 10.1002/j.1460-2075.1991.tb04899.x – ident: e_1_3_3_112_2 doi: 10.1016/S0960-9822(07)00370-3 – reference: 35348951 - J Assist Reprod Genet. 2022 Mar;39(3):553-554 |
SSID | ssj0009593 |
Score | 2.6207905 |
Snippet | Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle... A missing motor in human meiosisChromosomal errors in human eggs are a leading cause of miscarriages and infertility. These errors result from chromosome... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | eabj3944 |
SubjectTerms | 1-Alkyl-2-acetylglycerophosphocholine Esterase - metabolism Accuracy Aneuploidy Animals Assembly Cancer Cattle Cell Cycle Proteins - metabolism Centrosomes Chemical composition Chromosomes Comparative analysis Crosslinking Depletion Down Syndrome Down's syndrome Dynactin Complex - metabolism Dynein Dyneins - metabolism Eggs Embryogenesis Embryonic growth stage Errors Female Fidelity Gametocytes Genetic disorders Human performance Humans Imaging Infertility Kinesin Kinesins - deficiency Kinesins - genetics Kinesins - metabolism Localization Macromolecules Mammals Maturation Meiosis Mice Microtubule-Associated Proteins - metabolism Microtubule-Organizing Center - physiology Microtubule-Organizing Center - ultrastructure Microtubules Microtubules - metabolism Molecular motors Motor activity Oocytes Oocytes - physiology Oocytes - ultrastructure Poles Pregnancy Proteins Recombinant Proteins - metabolism Reproductive technologies RNA-mediated interference Somatic cells Spindle Apparatus - physiology Spindle Apparatus - ultrastructure Spindle Poles - physiology Spindle Poles - ultrastructure Spindles Stability Swine |
Title | Mechanism of spindle pole organization and instability in human oocytes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35143306 https://www.proquest.com/docview/2638075550 https://www.proquest.com/docview/2628296605 |
Volume | 375 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZKJyReEBu_CgMZiYfxkCqxnSx57GBlQut4oJX6FtmJo22amqlNEOOv5xxfPA910uAlilxfU_k-X--cu_sI-SiMk8sPRZCUpQwEC0UgU5kFKtSS8aqsYm4KhWdnyclCfFvGy8Hgl5e11DZqXPzeWlfyP1qFMdCrqZL9B826L4UBuAf9whU0DNcH6XimTd2uobkAl29zfWEaJhjahZ6syZZYYoMlcAO7RNiu0M9S89V1cdNgEiE6qP1eB8fTvczxVOiyEic2d6BPJUAx71zhhz2DPW8d-mZgVq9k3WISh6k7dP8Ji7W8vOjrteWtWVzLDYDpJ4pIJ4LnFBDiGtaUyDOtoWGFZKE1Z3rLGNpjbqlUEHjgIUWegdVSXZpa3u3W3-Or1GNv5t0-22ff8-ni9DSfHy_nj8gOgwCDDcnO5OjL0fTvhs3uF2JbKK_gqn_AXY_mnjClc1fmz8hTjDPoxIJmlwz0ao88tsyjN3tkFxW2oQfYePzTc_LV4YnWFUU8UYMn6uOJAp6ohye4px2eKOLpBVlMj-efTwIk2ggKwVkTlNqQHFRKal2JRLNMpkKKJC1DzpRQhYgU-JGcq0zEmYoPYQNXkS5YGkkZMZ3yl2S4qlf6NaFlluqQqzSKVCiUjFVZSfDAJVMlRAZKj8i4X6y8wC70hgzlKu-iUZbkuLo5ru6IHDiBa9uA5f6p-_3q57hLNzlLDKVCDIH4iHxwH4MNNS_G5ErXrZlj8gkSiOxH5JXVmnuWqXThEFe_eYD0W_LkFvn7ZNisW_0OfNZGvUd4_QGyIZ0A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+spindle+pole+organization+and+instability+in+human+oocytes&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=So%2C+Chun&rft.au=Menelaou%2C+Katerina&rft.au=Uraji%2C+Julia&rft.au=Harasimov%2C+Katarina&rft.date=2022-02-11&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=375&rft.issue=6581&rft.spage=eabj3944&rft_id=info:doi/10.1126%2Fscience.abj3944&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |