Mechanism of spindle pole organization and instability in human oocytes

Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)–mediated clustering of microtubule minus ends focused the spindle pol...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 375; no. 6581; p. eabj3944
Main Authors So, Chun, Menelaou, Katerina, Uraji, Julia, Harasimov, Katarina, Steyer, Anna M., Seres, K. Bianka, Bucevičius, Jonas, Lukinavičius, Gražvydas, Möbius, Wiebke, Sibold, Claus, Tandler-Schneider, Andreas, Eckel, Heike, Moltrecht, Rüdiger, Blayney, Martyn, Elder, Kay, Schuh, Melina
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 11.02.2022
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.abj3944

Cover

Loading…
Abstract Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)–mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes. Chromosomal errors in human eggs are a leading cause of miscarriages and infertility. These errors result from chromosome missegregations during the maturation of oocytes into eggs. Chromosome segregation is driven by the spindle, a macromolecular machinery that pulls chromosomes apart. However, human oocytes often assemble unstable spindles, favoring chromosome missegregations. So et al . discovered that human oocyte spindles are unstable because they are deficient in the molecular motor KIFC1. KIFC1 stabilizes spindles in other mammalian oocytes and in cancer cells. By introducing exogenous KIFC1, the authors were able to increase the fidelity of spindle assembly and chromosome segregation in human oocytes. —SMH Human oocytes have unstable meiotic spindles compared with oocytes from other mammals because of the lack of the molecular motor KIFC1.
AbstractList A missing motor in human meiosisChromosomal errors in human eggs are a leading cause of miscarriages and infertility. These errors result from chromosome missegregations during the maturation of oocytes into eggs. Chromosome segregation is driven by the spindle, a macromolecular machinery that pulls chromosomes apart. However, human oocytes often assemble unstable spindles, favoring chromosome missegregations. So et al. discovered that human oocyte spindles are unstable because they are deficient in the molecular motor KIFC1. KIFC1 stabilizes spindles in other mammalian oocytes and in cancer cells. By introducing exogenous KIFC1, the authors were able to increase the fidelity of spindle assembly and chromosome segregation in human oocytes. —SMHINTRODUCTIONMany human eggs carry an incorrect number of chromosomes, a condition known as aneuploidy. Aneuploidy in human eggs is the leading cause of aberrant embryonic development, resulting in pregnancy loss and genetic disorders such as Down syndrome. Most aneuploidy results from chromosome segregation errors during the maturation of oocytes into fertilizable eggs. Unlike somatic cells, human oocytes segregate chromosomes with a specialized microtubule spindle that lacks centrosomes. Previous live-imaging studies revealed that human oocytes often assemble spindles with unstable poles, favoring chromosome segregation errors. The causes of high spindle instability in human oocytes were unknown.RATIONALEIdentifying the causes of spindle instability may lead to therapeutic strategies that reduce chromosome segregation errors in human eggs and improve outcomes of assisted reproductive technology. We thus set out to investigate how spindle poles are organized in the absence of centrosomes and why spindles are unstable in human oocytes. To this end, we systematically studied the localization and function of proteins that are required for spindle pole assembly or spindle stability in oocytes of different mammalian species. In stark contrast to human oocytes, the spindles of other mammalian oocytes were stable. We thus carried out a comparative analysis to investigate whether differences in molecular composition can explain the high degree of spindle instability in human oocytes.RESULTSSpindle pole assembly requires the bundling of parallel microtubules by microtubule cross-linking proteins as well as stabilization and/or anchoring of microtubule minus ends in the spindle pole region by minus end–binding proteins. We found that the microtubule cross-linking protein NUMA (nuclear mitotic apparatus protein) localized to microtubule minus ends, where it recruited the molecular motor dynein for spindle pole focusing. Depletion of NUMA or inhibition of dynein splayed microtubule minus ends, demonstrating that NUMA and dynein organize the spindle poles in human oocytes.NUMA was similarly enriched at the spindle poles in bovine and porcine oocytes, which naturally lack centrosomes, as well as in mouse oocytes that we artificially depleted of acentriolar microtubule organizing centers (aMTOCs). We thus asked whether spindle instability is a general feature of mammalian oocytes that use NUMA for spindle pole organization. Live imaging, however, revealed that bovine, porcine, and aMTOC-free mouse oocytes did not assemble unstable spindles, indicating that additional mechanisms stabilize spindles in these oocytes.Using an RNA interference screen of proteins with diverse functions in spindle organization, we identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing factor that is present in other mammalian oocytes but deficient in human oocytes. Depletion of KIFC1 in other mammalian oocytes recapitulated the spindle instability of human oocytes, resulting in spindles with unstable poles and an increase in aneuploidy. To investigate further if the spindle instability in human oocytes was a result of KIFC1 deficiency, we injected recombinant KIFC1 protein into human oocytes and performed live imaging of spindle assembly. Introduction of exogenous KIFC1 stabilized the spindles and reduced chromosome segregation errors, confirming that KIFC1 deficiency contributes to spindle instability in human oocytes.CONCLUSIONOur data reveal notable differences in spindle pole organization in different systems. In somatic cells, two centrosomes act as the main MTOCs and promote bipolar spindle assembly. In mouse oocytes, centrosomes are functionally replaced by aMTOCs. In other mammalian oocytes, including humans, NUMA is enriched at microtubule minus ends. NUMA primarily engages the motor activity of dynein but can also cross-link microtubules itself. These activities allow NUMA to cluster microtubule minus ends, and to thereby organize the spindle poles in the absence of centrosomes or aMTOCs.Our data also elucidate a cause of spindle instability in human oocytes: Human oocytes are deficient in KIFC1, a key spindle-stabilizing protein in other mammalian oocytes and in cancer cells. KIFC1 stabilizes the spindle poles and prevents their fragmentation. This is likely achieved through the formation of static cross-links along parallel microtubules at the poles and the alignment of antiparallel microtubules in the central region of the spindle. Because human oocytes are deficient in KIFC1, we propose that the deficiency of these activities renders their spindles unstable.By delivering a defined amount of KIFC1 protein into human oocytes, we were able to reduce spindle instability and the risk of aneuploidy in human oocytes. Thus, our data also reveal a potential method for increasing the fidelity of spindle assembly and chromosome segregation in human oocytes.
Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)–mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes. Chromosomal errors in human eggs are a leading cause of miscarriages and infertility. These errors result from chromosome missegregations during the maturation of oocytes into eggs. Chromosome segregation is driven by the spindle, a macromolecular machinery that pulls chromosomes apart. However, human oocytes often assemble unstable spindles, favoring chromosome missegregations. So et al . discovered that human oocyte spindles are unstable because they are deficient in the molecular motor KIFC1. KIFC1 stabilizes spindles in other mammalian oocytes and in cancer cells. By introducing exogenous KIFC1, the authors were able to increase the fidelity of spindle assembly and chromosome segregation in human oocytes. —SMH Human oocytes have unstable meiotic spindles compared with oocytes from other mammals because of the lack of the molecular motor KIFC1.
Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.
Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.
Author So, Chun
Bucevičius, Jonas
Sibold, Claus
Harasimov, Katarina
Möbius, Wiebke
Eckel, Heike
Moltrecht, Rüdiger
Steyer, Anna M.
Uraji, Julia
Menelaou, Katerina
Schuh, Melina
Lukinavičius, Gražvydas
Tandler-Schneider, Andreas
Elder, Kay
Blayney, Martyn
Seres, K. Bianka
Author_xml – sequence: 1
  givenname: Chun
  orcidid: 0000-0003-3901-7654
  surname: So
  fullname: So, Chun
  organization: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
– sequence: 2
  givenname: Katerina
  orcidid: 0000-0003-0286-3777
  surname: Menelaou
  fullname: Menelaou, Katerina
  organization: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany., Bourn Hall Clinic, Cambridge, UK
– sequence: 3
  givenname: Julia
  orcidid: 0000-0002-1441-4074
  surname: Uraji
  fullname: Uraji, Julia
  organization: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany., Bourn Hall Clinic, Cambridge, UK
– sequence: 4
  givenname: Katarina
  orcidid: 0000-0003-2703-4342
  surname: Harasimov
  fullname: Harasimov, Katarina
  organization: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
– sequence: 5
  givenname: Anna M.
  orcidid: 0000-0002-4814-7517
  surname: Steyer
  fullname: Steyer, Anna M.
  organization: Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
– sequence: 6
  givenname: K. Bianka
  orcidid: 0000-0002-4288-4719
  surname: Seres
  fullname: Seres, K. Bianka
  organization: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany., Bourn Hall Clinic, Cambridge, UK
– sequence: 7
  givenname: Jonas
  orcidid: 0000-0001-5725-8940
  surname: Bucevičius
  fullname: Bucevičius, Jonas
  organization: Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
– sequence: 8
  givenname: Gražvydas
  orcidid: 0000-0002-7176-1793
  surname: Lukinavičius
  fullname: Lukinavičius, Gražvydas
  organization: Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
– sequence: 9
  givenname: Wiebke
  orcidid: 0000-0002-2902-7165
  surname: Möbius
  fullname: Möbius, Wiebke
  organization: Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany., Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
– sequence: 10
  givenname: Claus
  surname: Sibold
  fullname: Sibold, Claus
  organization: Fertility Center Berlin, Berlin, Germany
– sequence: 11
  givenname: Andreas
  surname: Tandler-Schneider
  fullname: Tandler-Schneider, Andreas
  organization: Fertility Center Berlin, Berlin, Germany
– sequence: 12
  givenname: Heike
  surname: Eckel
  fullname: Eckel, Heike
  organization: Kinderwunschzentrum Göttingen, Göttingen, Germany
– sequence: 13
  givenname: Rüdiger
  surname: Moltrecht
  fullname: Moltrecht, Rüdiger
  organization: Kinderwunschzentrum Göttingen, Göttingen, Germany
– sequence: 14
  givenname: Martyn
  surname: Blayney
  fullname: Blayney, Martyn
  organization: Bourn Hall Clinic, Cambridge, UK
– sequence: 15
  givenname: Kay
  orcidid: 0000-0003-3510-8268
  surname: Elder
  fullname: Elder, Kay
  organization: Bourn Hall Clinic, Cambridge, UK
– sequence: 16
  givenname: Melina
  orcidid: 0000-0003-0025-8952
  surname: Schuh
  fullname: Schuh, Melina
  organization: Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany., Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35143306$$D View this record in MEDLINE/PubMed
BookMark eNp1kb1PwzAQxS1URD9gZkORWFjS-jNNRlRBQSpigTmynQt1ldghToby1-PSwFCJ5e6k-73T6b0pGllnAaFrgueE0GThtQGrYS7VjmWcn6EJwZmIM4rZCE0wZkmc4qUYo6n3O4zDLmMXaMwE4YzhZILWL6C30hpfR66MfGNsUUHUuFBc-xEWX7IzzkbSFpGxvpPKVKbbhzna9rW0kXN634G_ROelrDxcDX2G3h8f3lZP8eZ1_by638SaM9rFBSwx5qWSACVPgGYy5ZInaYEZVVxpTlRKKWMq4yJTYlkKVhLQNCVSEgopm6G7492mdZ89-C6vjddQVdKC631OE5rSLEmwCOjtCbpzfWvDd4FiB1uEwIG6Gahe1VDkTWtq2e7zX4sCsDgCunXet1D-IQTnhxDyIYR8CCEoxIlCm-7Hxq6VpvpX9w15qI4P
CitedBy_id crossref_primary_10_1007_s12551_024_01236_z
crossref_primary_10_1038_s41598_024_55376_z
crossref_primary_10_32607_actanaturae_25255
crossref_primary_10_1016_j_reprotox_2024_108762
crossref_primary_10_1007_s43032_023_01331_8
crossref_primary_10_23868_202205009
crossref_primary_10_3390_ijerph191811208
crossref_primary_10_1016_j_isci_2024_110451
crossref_primary_10_1038_s41594_024_01471_8
crossref_primary_10_1038_s41467_024_54659_3
crossref_primary_10_7554_eLife_85208
crossref_primary_10_57582_RIVER_240101_010
crossref_primary_10_1073_pnas_2206398119
crossref_primary_10_3389_fcell_2022_864692
crossref_primary_10_3390_cells14010008
crossref_primary_10_1371_journal_pgen_1010489
crossref_primary_10_1007_s10815_022_02615_9
crossref_primary_10_3390_cancers14235755
crossref_primary_10_3390_ijerph192416721
crossref_primary_10_1016_j_ajhg_2023_11_002
crossref_primary_10_1098_rsob_240041
crossref_primary_10_3389_fimmu_2023_1193293
crossref_primary_10_1038_s41598_024_81393_z
crossref_primary_10_1364_BOE_534658
crossref_primary_10_1016_j_theriogenology_2025_01_012
crossref_primary_10_1091_mbc_E23_10_0407
crossref_primary_10_1073_pnas_2422190122
crossref_primary_10_1083_jcb_202210093
crossref_primary_10_1016_j_cell_2024_12_028
crossref_primary_10_1016_j_bbadis_2024_167228
crossref_primary_10_1016_j_theriogenology_2023_08_020
crossref_primary_10_1038_s41467_024_49815_8
crossref_primary_10_1097_MD_0000000000037286
crossref_primary_10_1021_acssynbio_3c00588
crossref_primary_10_1262_jrd_2022_101
crossref_primary_10_1038_s41594_022_00907_3
crossref_primary_10_1242_dev_201313
crossref_primary_10_1126_science_abq7361
crossref_primary_10_1016_j_theriogenology_2022_11_016
crossref_primary_10_1007_s00439_023_02633_2
crossref_primary_10_1016_j_cub_2022_12_017
crossref_primary_10_1038_s41467_024_45251_w
crossref_primary_10_3390_ijms23052880
crossref_primary_10_1016_j_cub_2023_01_010
crossref_primary_10_1016_j_cell_2023_11_013
crossref_primary_10_1126_science_ado1022
crossref_primary_10_1038_s41467_025_57671_3
crossref_primary_10_1073_pnas_2209053119
crossref_primary_10_3390_genes13040602
crossref_primary_10_18632_aging_205203
crossref_primary_10_1016_j_cell_2023_10_003
crossref_primary_10_1038_s41421_023_00599_z
crossref_primary_10_1038_s41556_022_01082_9
crossref_primary_10_1111_acel_14466
crossref_primary_10_1146_annurev_genet_072820_033609
crossref_primary_10_1093_lifemedi_lnae038
crossref_primary_10_1038_s41580_022_00517_3
crossref_primary_10_1038_s41580_024_00780_6
crossref_primary_10_1007_s00018_024_05213_3
crossref_primary_10_1016_j_yexcr_2025_114524
crossref_primary_10_3724_abbs_2023093
crossref_primary_10_23736_S2724_606X_24_05343_0
crossref_primary_10_1016_j_mcpro_2022_100481
crossref_primary_10_1038_s41598_023_43732_4
crossref_primary_10_1186_s12967_024_05162_2
crossref_primary_10_1007_s10815_022_02480_6
crossref_primary_10_1016_j_xfss_2024_08_002
crossref_primary_10_1146_annurev_cellbio_121420_100107
crossref_primary_10_26508_lsa_202402884
crossref_primary_10_1242_dev_201976
crossref_primary_10_1016_j_jtha_2024_03_010
crossref_primary_10_1002_advs_202413097
Cites_doi 10.7554/eLife.12504
10.1074/mcp.M115.056887
10.1016/bs.mcb.2017.03.005
10.1038/s41467-021-27528-6
10.1038/s41586-018-0080-8
10.1016/j.rbmo.2009.09.013
10.1038/nrm3209
10.1038/nature14568
10.1038/nrm4062
10.1007/s10577-015-9508-2
10.1083/jcb.202104114
10.1021/acs.jproteome.5b01083
10.1093/molehr/gar009
10.1073/pnas.1218017109
10.1016/j.cub.2017.06.018
10.1016/S0960-9822(03)00530-X
10.1038/nature12364
10.1016/j.devcel.2005.07.002
10.1002/mrd.23172
10.1007/978-1-0716-0219-5_2
10.1083/jcb.136.4.859
10.1242/jcs.107474
10.1083/jcb.200810091
10.1093/humrep/dex083
10.15252/embr.201745225
10.1126/science.aav7321
10.1083/jcb.138.3.615
10.1242/jcs.11.2.521
10.1016/j.cell.2021.04.013
10.1101/2021.09.09.459640
10.1186/1471-2105-12-323
10.1093/emboj/18.6.1689
10.1242/jcs.115.9.1815
10.7554/eLife.61170
10.1091/mbc.e10-12-0951
10.1242/jcs.196188
10.1101/gad.1886810
10.1038/ncb1834
10.1016/j.tcb.2018.02.011
10.1016/j.stem.2021.04.012
10.1371/journal.pone.0049303
10.1016/j.cell.2007.06.025
10.1038/s41598-019-46605-x
10.1038/nrm4025
10.1101/cshperspect.a015800
10.1083/jcb.153.4.637
10.1534/genetics.105.051557
10.1016/j.cub.2015.12.051
10.15252/embr.201949234
10.1038/nmeth.4074
10.1095/biolreprod62.5.1184
10.15252/embj.2019102378
10.1016/j.tibs.2020.02.002
10.1101/2020.07.17.208744
10.1126/science.aat9557
10.1039/D0SC02154G
10.1038/nprot.2018.040
10.1083/jcb.200203089
10.1242/jcs.189340
10.1038/srep20889
10.1007/s10815-015-0568-1
10.1371/journal.pgen.1005261
10.1242/jcs.200261
10.1073/pnas.1204686109
10.1093/molehr/5.9.836
10.1016/0896-6273(92)90239-A
10.1038/ncomms8217
10.1093/oxfordjournals.humrep.a137955
10.1038/nrc924
10.1016/j.cell.2017.10.033
10.1091/mbc.e08-09-0971
10.1083/jcb.200208159
10.1002/mrd.22633
10.1083/jcb.135.2.399
10.1096/fj.201901818RR
10.1002/mrd.10280
10.7554/eLife.29328
10.1111/j.1749-6632.1975.tb19218.x
10.1083/jcb.201005065
10.1016/j.devcel.2021.07.022
10.1093/humrep/der067
10.1111/j.1600-0854.2009.00945.x
10.1242/bio.052308
10.1534/genetics.116.194647
10.1016/j.cub.2019.12.056
10.1002/(SICI)1097-0169(1999)42:3<189::AID-CM3>3.0.CO;2-X
10.1242/jcs.101.3.547
10.1002/mrd.22422
10.1007/s12064-012-0162-3
10.1038/s41596-018-0028-3
10.1095/biolreprod.104.031245
10.1242/jcs.094672
10.1371/journal.pgen.1006986
10.1530/REP-21-0061
10.1083/jcb.147.2.351
10.1091/mbc.e13-11-0687
10.1083/jcb.149.4.851
10.1016/S0092-8674(00)81365-3
10.1083/jcb.201902110
10.1038/ncb2996
10.1016/j.stem.2019.09.004
10.1247/csf.12014
10.1126/science.1074952
10.1371/journal.pone.0003338
10.1242/jcs.005959
10.1083/jcb.131.3.693
10.1073/pnas.88.11.4806
10.1083/jcb.201203166
10.1101/gad.1700908
10.1091/mbc.e04-08-0682
10.1093/humrep/7.suppl_1.89
10.1093/HUMREP/11.2.345
10.1083/jcb.202010106
10.7554/eLife.36559
10.1038/382420a0
10.1007/s10815-018-1241-2
10.1073/pnas.1321569111
10.1083/jcb.138.5.1055
10.1016/j.celrep.2014.07.015
10.1083/jcb.200505107
10.1038/ncb2958
10.1083/jcb.201401091
10.1016/j.celrep.2016.02.087
10.1016/j.cub.2011.04.029
10.1038/s41598-018-25698-w
10.1038/cr.2009.54
10.1002/cm.10151
10.1038/s41467-019-12674-9
10.1126/science.aaa9529
10.1002/jemt.1070270208
10.1083/jcb.134.2.455
10.1242/dev.035089
10.1534/genetics.115.181081
10.1091/mbc.e04-12-1110
10.1038/ncomms11005
10.1242/jcs.110.11.1287
10.1002/j.1460-2075.1991.tb04899.x
10.1016/S0960-9822(07)00370-3
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abj3944
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID 35143306
10_1126_science_abj3944
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c432t-de7004fbaeef46e29a84a468d032b4bc41b82233b9459b57f53f1ec281aa12e83
ISSN 0036-8075
1095-9203
IngestDate Mon Jul 21 11:07:29 EDT 2025
Fri Jul 25 10:31:35 EDT 2025
Thu Apr 03 07:08:23 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Tue Jul 01 02:24:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6581
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c432t-de7004fbaeef46e29a84a468d032b4bc41b82233b9459b57f53f1ec281aa12e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3510-8268
0000-0003-0025-8952
0000-0003-0286-3777
0000-0001-5725-8940
0000-0002-4814-7517
0000-0002-4288-4719
0000-0002-2902-7165
0000-0002-1441-4074
0000-0002-7176-1793
0000-0003-2703-4342
0000-0003-3901-7654
OpenAccessLink https://www.science.org/doi/pdf/10.1126/science.abj3944?download=true
PMID 35143306
PQID 2638075550
PQPubID 1256
ParticipantIDs proquest_miscellaneous_2628296605
proquest_journals_2638075550
pubmed_primary_35143306
crossref_primary_10_1126_science_abj3944
crossref_citationtrail_10_1126_science_abj3944
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-11
20220211
PublicationDateYYYYMMDD 2022-02-11
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2022
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_3_96_2
e_1_3_3_50_2
e_1_3_3_77_2
Maekawa T. (e_1_3_3_70_2) 1991; 54
e_1_3_3_117_2
e_1_3_3_16_2
e_1_3_3_39_2
e_1_3_3_132_2
e_1_3_3_12_2
e_1_3_3_58_2
e_1_3_3_35_2
e_1_3_3_92_2
e_1_3_3_113_2
e_1_3_3_136_2
e_1_3_3_54_2
cr-split#-e_1_3_3_14_2.1
e_1_3_3_31_2
e_1_3_3_73_2
e_1_3_3_61_2
e_1_3_3_88_2
cr-split#-e_1_3_3_30_2.2
cr-split#-e_1_3_3_30_2.1
e_1_3_3_5_2
e_1_3_3_128_2
e_1_3_3_105_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_109_2
e_1_3_3_23_2
e_1_3_3_69_2
e_1_3_3_120_2
e_1_3_3_46_2
e_1_3_3_80_2
e_1_3_3_65_2
e_1_3_3_124_2
e_1_3_3_42_2
e_1_3_3_84_2
e_1_3_3_101_2
e_1_3_3_76_2
e_1_3_3_99_2
e_1_3_3_139_2
e_1_3_3_116_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_131_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_91_2
e_1_3_3_135_2
e_1_3_3_11_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_95_2
e_1_3_3_112_2
e_1_3_3_60_2
e_1_3_3_87_2
e_1_3_3_8_2
e_1_3_3_104_2
e_1_3_3_127_2
e_1_3_3_49_2
e_1_3_3_108_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
e_1_3_3_83_2
e_1_3_3_100_2
e_1_3_3_123_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_98_2
e_1_3_3_79_2
e_1_3_3_115_2
e_1_3_3_138_2
e_1_3_3_119_2
e_1_3_3_18_2
e_1_3_3_37_2
e_1_3_3_90_2
e_1_3_3_130_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_94_2
e_1_3_3_111_2
e_1_3_3_134_2
e_1_3_3_10_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_86_2
e_1_3_3_107_2
e_1_3_3_7_2
e_1_3_3_126_2
e_1_3_3_29_2
e_1_3_3_48_2
e_1_3_3_141_2
e_1_3_3_25_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_82_2
e_1_3_3_103_2
cr-split#-e_1_3_3_68_2.2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_63_2
cr-split#-e_1_3_3_68_2.1
e_1_3_3_122_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_97_2
e_1_3_3_78_2
e_1_3_3_118_2
e_1_3_3_137_2
e_1_3_3_17_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_110_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_93_2
e_1_3_3_114_2
e_1_3_3_133_2
cr-split#-e_1_3_3_14_2.2
e_1_3_3_62_2
e_1_3_3_85_2
e_1_3_3_89_2
e_1_3_3_6_2
e_1_3_3_106_2
e_1_3_3_129_2
e_1_3_3_28_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_121_2
e_1_3_3_140_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_102_2
e_1_3_3_125_2
35348951 - J Assist Reprod Genet. 2022 Mar;39(3):553-554
References_xml – ident: e_1_3_3_83_2
  doi: 10.7554/eLife.12504
– ident: e_1_3_3_97_2
  doi: 10.1074/mcp.M115.056887
– ident: e_1_3_3_139_2
  doi: 10.1016/bs.mcb.2017.03.005
– ident: e_1_3_3_73_2
  doi: 10.1038/s41467-021-27528-6
– ident: e_1_3_3_100_2
  doi: 10.1038/s41586-018-0080-8
– ident: e_1_3_3_10_2
  doi: 10.1016/j.rbmo.2009.09.013
– ident: e_1_3_3_55_2
  doi: 10.1038/nrm3209
– ident: e_1_3_3_56_2
  doi: 10.1038/nature14568
– ident: e_1_3_3_17_2
  doi: 10.1038/nrm4062
– ident: e_1_3_3_18_2
  doi: 10.1007/s10577-015-9508-2
– ident: e_1_3_3_93_2
  doi: 10.1083/jcb.202104114
– ident: e_1_3_3_96_2
  doi: 10.1021/acs.jproteome.5b01083
– ident: e_1_3_3_40_2
  doi: 10.1093/molehr/gar009
– ident: e_1_3_3_137_2
  doi: 10.1073/pnas.1218017109
– ident: e_1_3_3_67_2
  doi: 10.1016/j.cub.2017.06.018
– ident: #cr-split#-e_1_3_3_14_2.2
– ident: e_1_3_3_42_2
  doi: 10.1016/S0960-9822(03)00530-X
– ident: e_1_3_3_98_2
  doi: 10.1038/nature12364
– ident: e_1_3_3_48_2
  doi: 10.1016/j.devcel.2005.07.002
– ident: e_1_3_3_37_2
  doi: 10.1002/mrd.23172
– ident: e_1_3_3_135_2
  doi: 10.1007/978-1-0716-0219-5_2
– ident: e_1_3_3_109_2
  doi: 10.1083/jcb.136.4.859
– ident: e_1_3_3_117_2
  doi: 10.1242/jcs.107474
– ident: e_1_3_3_45_2
  doi: 10.1083/jcb.200810091
– ident: e_1_3_3_4_2
  doi: 10.1093/humrep/dex083
– ident: e_1_3_3_104_2
  doi: 10.15252/embr.201745225
– ident: e_1_3_3_2_2
  doi: 10.1126/science.aav7321
– ident: e_1_3_3_26_2
  doi: 10.1083/jcb.138.3.615
– ident: e_1_3_3_20_2
  doi: 10.1242/jcs.11.2.521
– ident: e_1_3_3_124_2
  doi: 10.1016/j.cell.2021.04.013
– ident: #cr-split#-e_1_3_3_30_2.1
  doi: 10.1101/2021.09.09.459640
– ident: e_1_3_3_140_2
  doi: 10.1186/1471-2105-12-323
– ident: e_1_3_3_65_2
  doi: 10.1093/emboj/18.6.1689
– ident: e_1_3_3_82_2
  doi: 10.1242/jcs.115.9.1815
– ident: e_1_3_3_92_2
  doi: 10.7554/eLife.61170
– ident: e_1_3_3_27_2
  doi: 10.1091/mbc.e10-12-0951
– ident: e_1_3_3_61_2
  doi: 10.1242/jcs.196188
– ident: e_1_3_3_88_2
  doi: 10.1101/gad.1886810
– ident: e_1_3_3_51_2
  doi: 10.1038/ncb1834
– ident: e_1_3_3_43_2
  doi: 10.1016/j.tcb.2018.02.011
– ident: e_1_3_3_103_2
  doi: 10.1016/j.stem.2021.04.012
– ident: e_1_3_3_53_2
  doi: 10.1371/journal.pone.0049303
– ident: e_1_3_3_31_2
  doi: 10.1016/j.cell.2007.06.025
– ident: e_1_3_3_79_2
  doi: 10.1038/s41598-019-46605-x
– ident: e_1_3_3_16_2
  doi: 10.1038/nrm4025
– ident: e_1_3_3_122_2
  doi: 10.1101/cshperspect.a015800
– ident: e_1_3_3_46_2
  doi: 10.1083/jcb.153.4.637
– ident: e_1_3_3_49_2
  doi: 10.1534/genetics.105.051557
– ident: e_1_3_3_84_2
  doi: 10.1016/j.cub.2015.12.051
– ident: e_1_3_3_120_2
  doi: 10.15252/embr.201949234
– ident: e_1_3_3_130_2
  doi: 10.1038/nmeth.4074
– ident: e_1_3_3_38_2
  doi: 10.1095/biolreprod62.5.1184
– ident: e_1_3_3_72_2
  doi: 10.15252/embj.2019102378
– ident: e_1_3_3_86_2
  doi: 10.1016/j.tibs.2020.02.002
– ident: #cr-split#-e_1_3_3_14_2.1
  doi: 10.1101/2020.07.17.208744
– ident: e_1_3_3_32_2
  doi: 10.1126/science.aat9557
– ident: e_1_3_3_136_2
  doi: 10.1039/D0SC02154G
– ident: e_1_3_3_138_2
  doi: 10.1038/nprot.2018.040
– ident: e_1_3_3_85_2
  doi: 10.1083/jcb.200203089
– ident: e_1_3_3_36_2
  doi: 10.1242/jcs.189340
– ident: e_1_3_3_128_2
  doi: 10.1038/srep20889
– ident: e_1_3_3_11_2
  doi: 10.1007/s10815-015-0568-1
– ident: e_1_3_3_115_2
  doi: 10.1371/journal.pgen.1005261
– ident: e_1_3_3_107_2
  doi: 10.1242/jcs.200261
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.1204686109
– ident: e_1_3_3_9_2
  doi: 10.1093/molehr/5.9.836
– ident: e_1_3_3_131_2
  doi: 10.1016/0896-6273(92)90239-A
– ident: e_1_3_3_35_2
  doi: 10.1038/ncomms8217
– ident: e_1_3_3_7_2
  doi: 10.1093/oxfordjournals.humrep.a137955
– ident: e_1_3_3_121_2
  doi: 10.1038/nrc924
– ident: e_1_3_3_57_2
  doi: 10.1016/j.cell.2017.10.033
– ident: e_1_3_3_108_2
  doi: 10.1091/mbc.e08-09-0971
– ident: e_1_3_3_59_2
  doi: 10.1083/jcb.200208159
– ident: e_1_3_3_12_2
  doi: 10.1002/mrd.22633
– ident: e_1_3_3_76_2
  doi: 10.1083/jcb.135.2.399
– ident: e_1_3_3_102_2
  doi: 10.1096/fj.201901818RR
– ident: e_1_3_3_39_2
  doi: 10.1002/mrd.10280
– ident: #cr-split#-e_1_3_3_30_2.2
– ident: e_1_3_3_77_2
  doi: 10.7554/eLife.29328
– ident: e_1_3_3_58_2
  doi: 10.1111/j.1749-6632.1975.tb19218.x
– ident: e_1_3_3_89_2
  doi: 10.1083/jcb.201005065
– ident: e_1_3_3_126_2
  doi: 10.1016/j.devcel.2021.07.022
– ident: e_1_3_3_41_2
  doi: 10.1093/humrep/der067
– ident: e_1_3_3_132_2
  doi: 10.1111/j.1600-0854.2009.00945.x
– ident: e_1_3_3_111_2
  doi: 10.1242/bio.052308
– ident: e_1_3_3_29_2
  doi: 10.1534/genetics.116.194647
– ident: e_1_3_3_106_2
  doi: 10.1016/j.cub.2019.12.056
– ident: e_1_3_3_71_2
  doi: 10.1002/(SICI)1097-0169(1999)42:3<189::AID-CM3>3.0.CO;2-X
– ident: e_1_3_3_23_2
  doi: 10.1242/jcs.101.3.547
– ident: e_1_3_3_60_2
  doi: 10.1002/mrd.22422
– ident: e_1_3_3_141_2
  doi: 10.1007/s12064-012-0162-3
– ident: e_1_3_3_134_2
  doi: 10.1038/s41596-018-0028-3
– ident: e_1_3_3_22_2
  doi: 10.1095/biolreprod.104.031245
– ident: e_1_3_3_94_2
  doi: 10.1242/jcs.094672
– ident: e_1_3_3_110_2
  doi: 10.1371/journal.pgen.1006986
– ident: e_1_3_3_15_2
  doi: 10.1530/REP-21-0061
– ident: #cr-split#-e_1_3_3_68_2.2
– ident: e_1_3_3_105_2
  doi: 10.1083/jcb.147.2.351
– ident: e_1_3_3_28_2
  doi: 10.1091/mbc.e13-11-0687
– ident: e_1_3_3_75_2
  doi: 10.1083/jcb.149.4.851
– ident: e_1_3_3_74_2
  doi: 10.1016/S0092-8674(00)81365-3
– ident: e_1_3_3_54_2
  doi: 10.1083/jcb.201902110
– ident: e_1_3_3_66_2
  doi: 10.1038/ncb2996
– ident: e_1_3_3_101_2
  doi: 10.1016/j.stem.2019.09.004
– ident: e_1_3_3_118_2
  doi: 10.1247/csf.12014
– ident: e_1_3_3_129_2
  doi: 10.1126/science.1074952
– ident: e_1_3_3_50_2
  doi: 10.1371/journal.pone.0003338
– ident: #cr-split#-e_1_3_3_68_2.1
– ident: e_1_3_3_62_2
  doi: 10.1242/jcs.005959
– ident: e_1_3_3_63_2
  doi: 10.1083/jcb.131.3.693
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.88.11.4806
– ident: e_1_3_3_80_2
  doi: 10.1083/jcb.201203166
– ident: e_1_3_3_116_2
  doi: 10.1101/gad.1700908
– ident: e_1_3_3_47_2
  doi: 10.1091/mbc.e04-08-0682
– ident: e_1_3_3_6_2
  doi: 10.1093/humrep/7.suppl_1.89
– ident: e_1_3_3_8_2
  doi: 10.1093/HUMREP/11.2.345
– ident: e_1_3_3_125_2
  doi: 10.1083/jcb.202010106
– ident: e_1_3_3_81_2
  doi: 10.7554/eLife.36559
– ident: e_1_3_3_25_2
  doi: 10.1038/382420a0
– ident: e_1_3_3_13_2
  doi: 10.1007/s10815-018-1241-2
– ident: e_1_3_3_99_2
  doi: 10.1073/pnas.1321569111
– ident: e_1_3_3_44_2
  doi: 10.1083/jcb.138.5.1055
– ident: e_1_3_3_90_2
  doi: 10.1016/j.celrep.2014.07.015
– ident: e_1_3_3_114_2
  doi: 10.1083/jcb.200505107
– ident: e_1_3_3_19_2
  doi: 10.1038/ncb2958
– ident: e_1_3_3_78_2
  doi: 10.1083/jcb.201401091
– ident: e_1_3_3_91_2
  doi: 10.1016/j.celrep.2016.02.087
– ident: e_1_3_3_133_2
  doi: 10.1016/j.cub.2011.04.029
– ident: e_1_3_3_123_2
  doi: 10.1038/s41598-018-25698-w
– ident: e_1_3_3_33_2
  doi: 10.1038/cr.2009.54
– ident: e_1_3_3_87_2
  doi: 10.1002/cm.10151
– ident: e_1_3_3_127_2
  doi: 10.1038/s41467-019-12674-9
– ident: e_1_3_3_3_2
  doi: 10.1126/science.aaa9529
– ident: e_1_3_3_21_2
  doi: 10.1002/jemt.1070270208
– ident: e_1_3_3_24_2
  doi: 10.1083/jcb.134.2.455
– ident: e_1_3_3_52_2
  doi: 10.1242/dev.035089
– ident: e_1_3_3_95_2
  doi: 10.1534/genetics.115.181081
– ident: e_1_3_3_113_2
  doi: 10.1091/mbc.e04-12-1110
– volume: 54
  start-page: 255
  year: 1991
  ident: e_1_3_3_70_2
  article-title: Identification of a minus end-specific microtubule-associated protein located at the mitotic poles in cultured mammalian cells
  publication-title: Eur. J. Cell Biol.
– ident: e_1_3_3_119_2
  doi: 10.1038/ncomms11005
– ident: e_1_3_3_64_2
  doi: 10.1242/jcs.110.11.1287
– ident: e_1_3_3_69_2
  doi: 10.1002/j.1460-2075.1991.tb04899.x
– ident: e_1_3_3_112_2
  doi: 10.1016/S0960-9822(07)00370-3
– reference: 35348951 - J Assist Reprod Genet. 2022 Mar;39(3):553-554
SSID ssj0009593
Score 2.6207905
Snippet Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle...
A missing motor in human meiosisChromosomal errors in human eggs are a leading cause of miscarriages and infertility. These errors result from chromosome...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage eabj3944
SubjectTerms 1-Alkyl-2-acetylglycerophosphocholine Esterase - metabolism
Accuracy
Aneuploidy
Animals
Assembly
Cancer
Cattle
Cell Cycle Proteins - metabolism
Centrosomes
Chemical composition
Chromosomes
Comparative analysis
Crosslinking
Depletion
Down Syndrome
Down's syndrome
Dynactin Complex - metabolism
Dynein
Dyneins - metabolism
Eggs
Embryogenesis
Embryonic growth stage
Errors
Female
Fidelity
Gametocytes
Genetic disorders
Human performance
Humans
Imaging
Infertility
Kinesin
Kinesins - deficiency
Kinesins - genetics
Kinesins - metabolism
Localization
Macromolecules
Mammals
Maturation
Meiosis
Mice
Microtubule-Associated Proteins - metabolism
Microtubule-Organizing Center - physiology
Microtubule-Organizing Center - ultrastructure
Microtubules
Microtubules - metabolism
Molecular motors
Motor activity
Oocytes
Oocytes - physiology
Oocytes - ultrastructure
Poles
Pregnancy
Proteins
Recombinant Proteins - metabolism
Reproductive technologies
RNA-mediated interference
Somatic cells
Spindle Apparatus - physiology
Spindle Apparatus - ultrastructure
Spindle Poles - physiology
Spindle Poles - ultrastructure
Spindles
Stability
Swine
Title Mechanism of spindle pole organization and instability in human oocytes
URI https://www.ncbi.nlm.nih.gov/pubmed/35143306
https://www.proquest.com/docview/2638075550
https://www.proquest.com/docview/2628296605
Volume 375
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZKJyReEBu_CgMZiYfxkCqxnSx57GBlQut4oJX6FtmJo22amqlNEOOv5xxfPA910uAlilxfU_k-X--cu_sI-SiMk8sPRZCUpQwEC0UgU5kFKtSS8aqsYm4KhWdnyclCfFvGy8Hgl5e11DZqXPzeWlfyP1qFMdCrqZL9B826L4UBuAf9whU0DNcH6XimTd2uobkAl29zfWEaJhjahZ6syZZYYoMlcAO7RNiu0M9S89V1cdNgEiE6qP1eB8fTvczxVOiyEic2d6BPJUAx71zhhz2DPW8d-mZgVq9k3WISh6k7dP8Ji7W8vOjrteWtWVzLDYDpJ4pIJ4LnFBDiGtaUyDOtoWGFZKE1Z3rLGNpjbqlUEHjgIUWegdVSXZpa3u3W3-Or1GNv5t0-22ff8-ni9DSfHy_nj8gOgwCDDcnO5OjL0fTvhs3uF2JbKK_gqn_AXY_mnjClc1fmz8hTjDPoxIJmlwz0ao88tsyjN3tkFxW2oQfYePzTc_LV4YnWFUU8UYMn6uOJAp6ohye4px2eKOLpBVlMj-efTwIk2ggKwVkTlNqQHFRKal2JRLNMpkKKJC1DzpRQhYgU-JGcq0zEmYoPYQNXkS5YGkkZMZ3yl2S4qlf6NaFlluqQqzSKVCiUjFVZSfDAJVMlRAZKj8i4X6y8wC70hgzlKu-iUZbkuLo5ru6IHDiBa9uA5f6p-_3q57hLNzlLDKVCDIH4iHxwH4MNNS_G5ErXrZlj8gkSiOxH5JXVmnuWqXThEFe_eYD0W_LkFvn7ZNisW_0OfNZGvUd4_QGyIZ0A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+spindle+pole+organization+and+instability+in+human+oocytes&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=So%2C+Chun&rft.au=Menelaou%2C+Katerina&rft.au=Uraji%2C+Julia&rft.au=Harasimov%2C+Katarina&rft.date=2022-02-11&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=375&rft.issue=6581&rft.spage=eabj3944&rft_id=info:doi/10.1126%2Fscience.abj3944&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon