Curing mosquitoes with genetic approaches for malaria control

A population modification approach involves spreading genes/elements through the populations to make mosquitoes refractory to the parasite.Parasite refractoriness of mosquito vectors can be achieved by genetic manipulations of mosquito endogenous effectors and host factors or by introducing exogenou...

Full description

Saved in:
Bibliographic Details
Published inTrends in parasitology Vol. 40; no. 6; pp. 487 - 499
Main Authors Kefi, Mary, Cardoso-Jaime, Victor, Saab, Sally A., Dimopoulos, George
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A population modification approach involves spreading genes/elements through the populations to make mosquitoes refractory to the parasite.Parasite refractoriness of mosquito vectors can be achieved by genetic manipulations of mosquito endogenous effectors and host factors or by introducing exogenous effectors into the mosquito genome.Gene-drive technology allows the spread and persistence of the desired genes/elements within targeted populations.The success of transgenic mosquitoes in spreading and maintaining desired genes/elements in the field relies on their performance compared with wild types.Field implementation of the transgenic applications is a phase-by-phase process that is subject to public acceptance and regulations. Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in ‘curing’ Anopheles vectors of the malaria parasite. Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in ‘curing’ Anopheles vectors of the malaria parasite.
AbstractList A population modification approach involves spreading genes/elements through the populations to make mosquitoes refractory to the parasite.Parasite refractoriness of mosquito vectors can be achieved by genetic manipulations of mosquito endogenous effectors and host factors or by introducing exogenous effectors into the mosquito genome.Gene-drive technology allows the spread and persistence of the desired genes/elements within targeted populations.The success of transgenic mosquitoes in spreading and maintaining desired genes/elements in the field relies on their performance compared with wild types.Field implementation of the transgenic applications is a phase-by-phase process that is subject to public acceptance and regulations. Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in ‘curing’ Anopheles vectors of the malaria parasite. Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in ‘curing’ Anopheles vectors of the malaria parasite.
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the last decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in ‘curing’ Anopheles vectors of the malaria parasite.
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite.Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite.
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite.
Author Kefi, Mary
Cardoso-Jaime, Victor
Saab, Sally A.
Dimopoulos, George
Author_xml – sequence: 1
  givenname: Mary
  orcidid: 0009-0006-5205-7449
  surname: Kefi
  fullname: Kefi, Mary
  organization: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
– sequence: 2
  givenname: Victor
  orcidid: 0000-0003-4605-092X
  surname: Cardoso-Jaime
  fullname: Cardoso-Jaime, Victor
  organization: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
– sequence: 3
  givenname: Sally A.
  orcidid: 0009-0005-6655-0894
  surname: Saab
  fullname: Saab, Sally A.
  organization: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
– sequence: 4
  givenname: George
  orcidid: 0000-0001-6755-8111
  surname: Dimopoulos
  fullname: Dimopoulos, George
  email: gdimopo1@jhu.edu
  organization: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38760256$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gzgnlyGWXsZ3YWSQOaAUtUiUucLac8aT1ksSp7RT13-PVLhx6WKSRbVnPM7LfuWRnU5iIsbcc1hy4-rBbz3ktQNRrKMXhBbvgtearBkCfHc_1RohzdpnSDoA3Wm9esXPZagWiURfs03aJfrqrxpAeFp8Dpeq3z_fVHU2UPVZ2nmOweF_u-xCr0Q42elthmHIMw2v2srdDojfH_Yr9_Prlx_Zmdfv9-tv28-0KaynyyjknOoReE-i-26hWSy2FBNfLBrly2LUoNwhOylo2ijvVOSoL1yj6FrS8Yu8PfctjHhZK2Yw-IQ2DnSgsyUjeSKXLT-v_o9AopQFUU9B3R3TpRnJmjn608cn8TacAcAAwhpQi9f8QDmY_ALMzczb7ARgoxaEo6pmCPtvs93lZP5wSPx5EKjk-eoomoacJyflImI0L_pTcPpNx8JNHO_yip9PqHyYMsGE
CitedBy_id crossref_primary_10_1590_0074_02760240247
crossref_primary_10_1186_s40249_024_01256_7
crossref_primary_10_1016_j_isci_2024_111520
crossref_primary_10_1186_s12936_024_05226_0
Cites_doi 10.1126/science.1091789
10.1128/mBio.01631-17
10.1016/S1471-4922(03)00144-2
10.1016/j.tibtech.2020.08.011
10.1016/j.pt.2021.08.009
10.7554/eLife.93142
10.1016/j.ibmb.2020.103509
10.3390/insects9030095
10.1371/journal.pone.0035210
10.1073/pnas.1521077112
10.1038/46463
10.3389/fbioe.2023.1261123
10.1186/s12936-016-1207-8
10.1371/journal.ppat.1006898
10.1038/s41467-024-44907-x
10.1016/j.ibmb.2023.104048
10.1038/s41467-020-19426-0
10.1371/journal.pone.0021572
10.1016/j.tibtech.2022.06.013
10.1111/j.1365-3024.2006.00804.x
10.1038/s41467-021-24790-6
10.1073/pnas.1720354115
10.1101/cshperspect.a025619
10.1089/vbz.2019.2606
10.1038/nature09937
10.1371/journal.ppat.1010538
10.1159/000353602
10.1021/acssynbio.9b00436
10.1371/journal.ppat.1005872
10.1111/j.1365-2583.2004.00549.x
10.3390/genes12010119
10.3389/fgene.2022.891218
10.1371/journal.ppat.1008985
10.1016/j.chom.2012.09.004
10.1111/j.1365-2583.2006.00645.x
10.1073/pnas.0504950102
10.1038/nbt1152
10.1073/pnas.2004838117
10.1093/genetics/iyac072
10.1371/journal.pgen.1007039
10.1126/sciadv.abo1733
10.1016/j.dci.2016.09.012
10.1038/s41467-020-15204-0
10.1371/journal.ppat.1002737
10.1111/j.1365-2583.2004.00557.x
10.1371/annotation/738ac91f-8c41-4bf5-9a39-bddf0b777a89
10.1146/annurev-micro-090817-062427
10.4269/ajtmh.2007.76.1118
10.1016/j.pt.2018.04.011
10.1073/pnas.241491198
10.1016/j.meegid.2023.105419
10.1126/sciadv.aay5898
10.3390/biom13010016
10.1016/j.pt.2020.02.001
10.7554/eLife.58791
10.3389/fphys.2017.00608
10.1371/journal.pgen.1008440
10.1371/journal.ppat.1008453
10.1371/journal.ppat.1000335
10.1371/journal.ppat.1010837
10.1016/j.mib.2009.06.010
10.1371/journal.pbio.3001515
10.1016/S0965-1748(97)00093-3
10.1016/j.dci.2014.10.016
10.1111/j.1365-2583.2012.01168.x
10.1126/science.1199115
10.1371/journal.ppat.1002458
10.1371/journal.ppat.1011440
10.1371/journal.ppat.1003790
10.1371/journal.ppat.1002017
10.1146/annurev-micro-011320-025557
10.1371/journal.ppat.1006113
10.1159/000452797
10.1038/s41564-022-01099-8
10.1016/j.pop.2018.05.001
10.1038/417452a
10.1007/978-1-60327-295-7_5
10.1038/nature15535
10.1016/j.micinf.2008.05.004
10.3389/fgene.2019.01072
10.1073/pnas.0702239104
10.1080/20477724.2018.1427192
10.1126/science.1258096
10.1038/nbt.3439
10.1016/j.ibmb.2020.103339
10.1093/g3journal/jkab369
10.1016/S0166-6851(02)00040-3
10.1073/pnas.2221118120
10.1073/pnas.1919709117
10.1073/pnas.1207738109
10.1073/pnas.2010214117
10.1038/s41467-022-30606-y
10.1016/j.cell.2016.07.055
10.1371/journal.pntd.0001317
10.3389/fcimb.2017.00258
10.1371/journal.ppat.0030192
10.1038/nbt.4245
10.1038/s41467-021-24214-5
10.1186/s12936-018-2634-5
10.1016/j.pt.2020.05.011
10.1080/07388551.2021.1933891
10.1038/35016096
10.7554/eLife.65939
10.1074/jbc.M206647200
10.1126/science.aak9691
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.pt.2024.04.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
Biology
Public Health
EISSN 1471-5007
EndPage 499
ExternalDocumentID 38760256
10_1016_j_pt_2024_04_010
S1471492224000928
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAAJQ
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYJJ
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CJTIS
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
L7B
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OD-
OO.
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSZ
T5K
Z5R
ZCA
~G-
AACTN
AAIAV
AFCTW
AFKWA
AJOXV
AMFUW
RCE
RIG
SSI
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c432t-ddd2bc0f7e07fb9687373230df35c16dcb8c39c0d3343561d6bded6b17c2f8073
IEDL.DBID .~1
ISSN 1471-4922
1471-5007
IngestDate Thu May 22 01:43:11 EDT 2025
Mon Aug 18 09:43:24 EDT 2025
Mon Jul 21 06:00:14 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Tue Jul 01 05:01:49 EDT 2025
Tue Jun 18 08:50:48 EDT 2024
Tue Aug 26 16:31:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Plasmodium
malaria vectors
Anopheles
transgenesis
population modification
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-ddd2bc0f7e07fb9687373230df35c16dcb8c39c0d3343561d6bded6b17c2f8073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4605-092X
0009-0005-6655-0894
0000-0001-6755-8111
0009-0006-5205-7449
PMID 38760256
PQID 3056670065
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_3153674924
proquest_miscellaneous_3056670065
pubmed_primary_38760256
crossref_primary_10_1016_j_pt_2024_04_010
crossref_citationtrail_10_1016_j_pt_2024_04_010
elsevier_sciencedirect_doi_10_1016_j_pt_2024_04_010
elsevier_clinicalkey_doi_10_1016_j_pt_2024_04_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in parasitology
PublicationTitleAlternate Trends Parasitol
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Simões (bb0335) 2017; 8
Kandul (bb0550) 2021; 10
Dong (bb0305) 2012; 12
Benedict (bb0500) 2023
Pham (bb0065) 2019; 15
Golnar (bb0560) 2021; 39
Osta (bb0330) 2004; 303
Doudna, Charpentier (bb0420) 2014; 346
Chandrasegaran (bb0015) 2020; 36
Fang (bb0385) 2011; 331
Meister (bb0270) 2005; 102
Klug (bb0355) 2023; 19
Kojin (bb0395) 2016; 15
Marshall, North (bb0565) 2023
D'Amato (bb0545) 2024; 15
Garrood (bb0555) 2021; 118
Zhang (bb0245) 2020; 10
Sousa (bb0250) 2020; 16
Overton (bb0525) 2023
O'Brochta (bb0350) 2019; 18
James (bb0450) 2020; 20
Moreira (bb0405) 2002; 277
Wang (bb0465) 2022; 18
Volohonsky (bb0300) 2017; 13
Simões (bb0105) 2017; 67
Gendrin (bb0150) 2017; 9
Dong (bb0320) 2020; 16
Berghammer (bb0225) 1999; 402
Marshall (bb0485) 2019; 10
Sumitani (bb0375) 2013; 22
Garrood (bb0425) 2022; 13
Hammond (bb0520) 2017; 13
Hoermann (bb0125) 2022; 8
Devos (bb0505) 2022; 42
Das (bb0360) 2009
Lombardo (bb0205) 2005; 14
Rodrigues (bb0145) 2012; 7
Dimopoulos (bb0325) 2023
Corby-Harris (bb0310) 2010; 6
Isaacs (bb0365) 2011; 7
World Health Organization (bb0005) 2023
Carballar-Lejarazú (bb0070) 2023; 120
Ghosh, Jacobs-Lorena (bb0085) 2009; 12
Carter (bb0115) 2013; 9
Shaw (bb0460) 2022; 38
Kyrou (bb0430) 2018; 36
Dennison (bb0315) 2015; 49
Ghosh (bb0380) 2001; 98
Pascini (bb0120) 2022; 13
Powell (bb0455) 2022; 221
Pondeville (bb0210) 2020; 120
Hammond (bb0050) 2016; 34
Ukegbu (bb0260) 2020; 117
Catteruccia, Levashina (bb0130) 2009; 555
Catteruccia (bb0135) 2000; 405
Dong (bb0295) 2011; 7
Isaacs (bb0370) 2012; 109
Taxiarchi (bb0535) 2021; 12
Connolly (bb0515) 2023; 41
Oringanje (bb0100) 2021; 12
World Health Organization (bb0495) 2014
Sun (bb0055) 2017; 8
Edwards (bb0185) 1997; 27
Anderson (bb0220) 2020; 9
Simões (bb0110) 2022; 20
Hoermann (bb0445) 2021; 10
Chang (bb0475) 2021; 128
Benedict, Robinson (bb0040) 2003; 19
Graumans (bb0345) 2020; 36
Menard, Dondorp (bb0025) 2017; 7
Laurens (bb0030) 2018; 72
Kumar (bb0095) 2018; 9
Magnusson (bb0235) 2011; 6
Adolfi (bb0540) 2020; 11
Nourani (bb0570) 2023; 109
Champer (bb0530) 2018; 115
Dong (bb0160) 2018; 14
Chen (bb0190) 2007; 76
Dong (bb0175) 2020; 6
Jin (bb0265) 2024; 164
Carballar-Lejarazú (bb0440) 2020; 117
Whitten (bb0080) 2006; 28
Kormos (bb0580) 2023; 11
Bahia (bb0280) 2011; 5
Zakovic, Levashina (bb0285) 2017; 7
Belavilas-Trovas (bb0470) 2023; 19
Alphey, Andreasen (bb0045) 2002; 121
Yamamoto (bb0410) 2016; 12
Garver (bb0140) 2009; 5
Caragata (bb0035) 2020; 74
Schmidt (bb0510) 2020; 11
Green (bb0180) 2023; 12
Yang (bb0340) 2019; 217
Carballar-Lejarazú, James (bb0415) 2017; 111
Catteruccia (bb0230) 2005; 23
Dinglasan (bb0390) 2007; 104
Clayton (bb0090) 2014; 6
Gantz (bb0165) 2015; 112
Yoshida, Watanabe (bb0200) 2006; 15
Pike (bb0480) 2017; 357
Nash (bb0240) 2019; 8
Lavazec, Bourgouin (bb0490) 2008; 10
Guissou (bb0575) 2022; 22
Windbichler (bb0060) 2011; 473
Yoshida (bb0400) 2007; 3
Cowman (bb0075) 2016; 167
Garver (bb0290) 2012; 8
Bottino-Rojas, James (bb0170) 2022; 13
Lee (bb0010) 2018; 45
Bhatt (bb0020) 2015; 526
Ito (bb0155) 2002; 417
Simões (bb0275) 2018; 34
Abraham (bb0195) 2005; 14
Terradas (bb0215) 2022; 12
Hammond (bb0435) 2021; 12
Feng (bb0255) 2022; 7
Hammond (10.1016/j.pt.2024.04.010_bb0050) 2016; 34
Wang (10.1016/j.pt.2024.04.010_bb0465) 2022; 18
Dong (10.1016/j.pt.2024.04.010_bb0295) 2011; 7
Lavazec (10.1016/j.pt.2024.04.010_bb0490) 2008; 10
Champer (10.1016/j.pt.2024.04.010_bb0530) 2018; 115
Kumar (10.1016/j.pt.2024.04.010_bb0095) 2018; 9
Yamamoto (10.1016/j.pt.2024.04.010_bb0410) 2016; 12
Pike (10.1016/j.pt.2024.04.010_bb0480) 2017; 357
Benedict (10.1016/j.pt.2024.04.010_bb0040) 2003; 19
Anderson (10.1016/j.pt.2024.04.010_bb0220) 2020; 9
Catteruccia (10.1016/j.pt.2024.04.010_bb0230) 2005; 23
D'Amato (10.1016/j.pt.2024.04.010_bb0545) 2024; 15
Sun (10.1016/j.pt.2024.04.010_bb0055) 2017; 8
Menard (10.1016/j.pt.2024.04.010_bb0025) 2017; 7
Kandul (10.1016/j.pt.2024.04.010_bb0550) 2021; 10
Guissou (10.1016/j.pt.2024.04.010_bb0575) 2022; 22
Feng (10.1016/j.pt.2024.04.010_bb0255) 2022; 7
Edwards (10.1016/j.pt.2024.04.010_bb0185) 1997; 27
Chandrasegaran (10.1016/j.pt.2024.04.010_bb0015) 2020; 36
Overton (10.1016/j.pt.2024.04.010_bb0525) 2023
Garver (10.1016/j.pt.2024.04.010_bb0140) 2009; 5
Connolly (10.1016/j.pt.2024.04.010_bb0515) 2023; 41
Hoermann (10.1016/j.pt.2024.04.010_bb0125) 2022; 8
Garver (10.1016/j.pt.2024.04.010_bb0290) 2012; 8
Adolfi (10.1016/j.pt.2024.04.010_bb0540) 2020; 11
Lee (10.1016/j.pt.2024.04.010_bb0010) 2018; 45
Carballar-Lejarazú (10.1016/j.pt.2024.04.010_bb0415) 2017; 111
Devos (10.1016/j.pt.2024.04.010_bb0505) 2022; 42
Fang (10.1016/j.pt.2024.04.010_bb0385) 2011; 331
Marshall (10.1016/j.pt.2024.04.010_bb0565) 2023
Berghammer (10.1016/j.pt.2024.04.010_bb0225) 1999; 402
Alphey (10.1016/j.pt.2024.04.010_bb0045) 2002; 121
Simões (10.1016/j.pt.2024.04.010_bb0110) 2022; 20
Terradas (10.1016/j.pt.2024.04.010_bb0215) 2022; 12
O'Brochta (10.1016/j.pt.2024.04.010_bb0350) 2019; 18
Osta (10.1016/j.pt.2024.04.010_bb0330) 2004; 303
James (10.1016/j.pt.2024.04.010_bb0450) 2020; 20
Pondeville (10.1016/j.pt.2024.04.010_bb0210) 2020; 120
Green (10.1016/j.pt.2024.04.010_bb0180) 2023; 12
Marshall (10.1016/j.pt.2024.04.010_bb0485) 2019; 10
Clayton (10.1016/j.pt.2024.04.010_bb0090) 2014; 6
Schmidt (10.1016/j.pt.2024.04.010_bb0510) 2020; 11
Graumans (10.1016/j.pt.2024.04.010_bb0345) 2020; 36
Nourani (10.1016/j.pt.2024.04.010_bb0570) 2023; 109
Lombardo (10.1016/j.pt.2024.04.010_bb0205) 2005; 14
Powell (10.1016/j.pt.2024.04.010_bb0455) 2022; 221
Pham (10.1016/j.pt.2024.04.010_bb0065) 2019; 15
Oringanje (10.1016/j.pt.2024.04.010_bb0100) 2021; 12
Caragata (10.1016/j.pt.2024.04.010_bb0035) 2020; 74
Belavilas-Trovas (10.1016/j.pt.2024.04.010_bb0470) 2023; 19
Yoshida (10.1016/j.pt.2024.04.010_bb0200) 2006; 15
Corby-Harris (10.1016/j.pt.2024.04.010_bb0310) 2010; 6
Jin (10.1016/j.pt.2024.04.010_bb0265) 2024; 164
Simões (10.1016/j.pt.2024.04.010_bb0275) 2018; 34
Ukegbu (10.1016/j.pt.2024.04.010_bb0260) 2020; 117
Magnusson (10.1016/j.pt.2024.04.010_bb0235) 2011; 6
Volohonsky (10.1016/j.pt.2024.04.010_bb0300) 2017; 13
Kormos (10.1016/j.pt.2024.04.010_bb0580) 2023; 11
Hoermann (10.1016/j.pt.2024.04.010_bb0445) 2021; 10
Dong (10.1016/j.pt.2024.04.010_bb0160) 2018; 14
Taxiarchi (10.1016/j.pt.2024.04.010_bb0535) 2021; 12
Cowman (10.1016/j.pt.2024.04.010_bb0075) 2016; 167
Sumitani (10.1016/j.pt.2024.04.010_bb0375) 2013; 22
Kyrou (10.1016/j.pt.2024.04.010_bb0430) 2018; 36
Dennison (10.1016/j.pt.2024.04.010_bb0315) 2015; 49
Meister (10.1016/j.pt.2024.04.010_bb0270) 2005; 102
Isaacs (10.1016/j.pt.2024.04.010_bb0365) 2011; 7
Pascini (10.1016/j.pt.2024.04.010_bb0120) 2022; 13
Gantz (10.1016/j.pt.2024.04.010_bb0165) 2015; 112
Ghosh (10.1016/j.pt.2024.04.010_bb0085) 2009; 12
Laurens (10.1016/j.pt.2024.04.010_bb0030) 2018; 72
Ito (10.1016/j.pt.2024.04.010_bb0155) 2002; 417
World Health Organization (10.1016/j.pt.2024.04.010_bb0005) 2023
Dong (10.1016/j.pt.2024.04.010_bb0320) 2020; 16
Simões (10.1016/j.pt.2024.04.010_bb0335) 2017; 8
Das (10.1016/j.pt.2024.04.010_bb0360) 2009
Rodrigues (10.1016/j.pt.2024.04.010_bb0145) 2012; 7
Catteruccia (10.1016/j.pt.2024.04.010_bb0130) 2009; 555
Nash (10.1016/j.pt.2024.04.010_bb0240) 2019; 8
Whitten (10.1016/j.pt.2024.04.010_bb0080) 2006; 28
Bottino-Rojas (10.1016/j.pt.2024.04.010_bb0170) 2022; 13
Yang (10.1016/j.pt.2024.04.010_bb0340) 2019; 217
Gendrin (10.1016/j.pt.2024.04.010_bb0150) 2017; 9
Ghosh (10.1016/j.pt.2024.04.010_bb0380) 2001; 98
Chang (10.1016/j.pt.2024.04.010_bb0475) 2021; 128
Bhatt (10.1016/j.pt.2024.04.010_bb0020) 2015; 526
Bahia (10.1016/j.pt.2024.04.010_bb0280) 2011; 5
Hammond (10.1016/j.pt.2024.04.010_bb0435) 2021; 12
Moreira (10.1016/j.pt.2024.04.010_bb0405) 2002; 277
Carballar-Lejarazú (10.1016/j.pt.2024.04.010_bb0440) 2020; 117
Yoshida (10.1016/j.pt.2024.04.010_bb0400) 2007; 3
Catteruccia (10.1016/j.pt.2024.04.010_bb0135) 2000; 405
Carballar-Lejarazú (10.1016/j.pt.2024.04.010_bb0070) 2023; 120
Windbichler (10.1016/j.pt.2024.04.010_bb0060) 2011; 473
Garrood (10.1016/j.pt.2024.04.010_bb0555) 2021; 118
Shaw (10.1016/j.pt.2024.04.010_bb0460) 2022; 38
Dinglasan (10.1016/j.pt.2024.04.010_bb0390) 2007; 104
Golnar (10.1016/j.pt.2024.04.010_bb0560) 2021; 39
Zakovic (10.1016/j.pt.2024.04.010_bb0285) 2017; 7
Sousa (10.1016/j.pt.2024.04.010_bb0250) 2020; 16
Kojin (10.1016/j.pt.2024.04.010_bb0395) 2016; 15
Carter (10.1016/j.pt.2024.04.010_bb0115) 2013; 9
Benedict (10.1016/j.pt.2024.04.010_bb0500) 2023
Hammond (10.1016/j.pt.2024.04.010_bb0520) 2017; 13
Zhang (10.1016/j.pt.2024.04.010_bb0245) 2020; 10
Isaacs (10.1016/j.pt.2024.04.010_bb0370) 2012; 109
Simões (10.1016/j.pt.2024.04.010_bb0105) 2017; 67
Dong (10.1016/j.pt.2024.04.010_bb0305) 2012; 12
Klug (10.1016/j.pt.2024.04.010_bb0355) 2023; 19
Doudna (10.1016/j.pt.2024.04.010_bb0420) 2014; 346
Abraham (10.1016/j.pt.2024.04.010_bb0195) 2005; 14
World Health Organization (10.1016/j.pt.2024.04.010_bb0495) 2014
Dong (10.1016/j.pt.2024.04.010_bb0175) 2020; 6
Dimopoulos (10.1016/j.pt.2024.04.010_bb0325) 2023
Chen (10.1016/j.pt.2024.04.010_bb0190) 2007; 76
Garrood (10.1016/j.pt.2024.04.010_bb0425) 2022; 13
References_xml – volume: 34
  start-page: 78
  year: 2016
  end-page: 83
  ident: bb0050
  article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector
  publication-title: Nat. Biotechnol.
– volume: 217
  year: 2019
  ident: bb0340
  article-title: Disruption of mosGILT in
  publication-title: J. Exp. Med.
– volume: 41
  start-page: 154
  year: 2023
  end-page: 164
  ident: bb0515
  article-title: Gene drive in species complexes: defining target organisms
  publication-title: Trends Biotechnol.
– volume: 22
  start-page: 41
  year: 2013
  end-page: 51
  ident: bb0375
  article-title: Reduction of malaria transmission by transgenic mosquitoes expressing an antisporozoite antibody in their salivary glands
  publication-title: Insect Mol. Biol.
– volume: 20
  start-page: 237
  year: 2020
  end-page: 251
  ident: bb0450
  article-title: Toward the definition of efficacy and safety criteria for advancing gene drive-modified mosquitoes to field testing
  publication-title: Vector Borne Zoonotic Dis.
– volume: 109
  year: 2023
  ident: bb0570
  article-title: CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for
  publication-title: Infect. Genet. Evol.
– volume: 405
  start-page: 959
  year: 2000
  end-page: 962
  ident: bb0135
  article-title: Stable germline transformation of the malaria mosquito
  publication-title: Nature
– volume: 6
  start-page: 169
  year: 2014
  end-page: 181
  ident: bb0090
  article-title: The
  publication-title: J. Innate Immun.
– volume: 14
  year: 2018
  ident: bb0160
  article-title: CRISPR/Cas9-mediated gene knockout of
  publication-title: PLoS Pathog.
– volume: 76
  start-page: 1118
  year: 2007
  end-page: 1124
  ident: bb0190
  article-title: The
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 11
  start-page: 1425
  year: 2020
  ident: bb0510
  article-title: Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of
  publication-title: Nat. Commun.
– volume: 7
  year: 2011
  ident: bb0365
  article-title: Engineered resistance to
  publication-title: PLoS Pathog.
– volume: 8
  year: 2012
  ident: bb0290
  article-title: Imd pathway factors and effectors in infection intensity-dependent anti-
  publication-title: PLoS Pathog.
– volume: 109
  start-page: E1922
  year: 2012
  end-page: E1930
  ident: bb0370
  article-title: Transgenic
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  year: 2016
  ident: bb0410
  article-title: Inhibition of malaria infection in transgenic anopheline mosquitoes lacking salivary gland cells
  publication-title: PLoS Pathog.
– volume: 72
  start-page: 273
  year: 2018
  end-page: 292
  ident: bb0030
  article-title: The promise of a malaria vaccine-are we closer?
  publication-title: Ann. Rev. Microbiol.
– volume: 128
  year: 2021
  ident: bb0475
  article-title: Regulation of antimicrobial peptides by juvenile hormone and its receptor, methoprene-tolerant, in the mosquito
  publication-title: Insect Biochem. Mol. Biol.
– volume: 346
  year: 2014
  ident: bb0420
  article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9
  publication-title: Science
– volume: 167
  start-page: 610
  year: 2016
  end-page: 624
  ident: bb0075
  article-title: Malaria: biology and disease
  publication-title: Cell
– volume: 3
  year: 2007
  ident: bb0400
  article-title: Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development
  publication-title: PLoS Pathog.
– volume: 120
  year: 2023
  ident: bb0070
  article-title: Dual effector population modification gene-drive strains of the African malaria mosquitoes,
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 36
  start-page: 393
  year: 2020
  end-page: 403
  ident: bb0015
  article-title: Linking mosquito ecology, traits, behavior, and disease transmission
  publication-title: Trends Parasitol.
– volume: 28
  start-page: 121
  year: 2006
  end-page: 130
  ident: bb0080
  article-title: Mosquito midguts and malaria: cell biology, compartmentalization and immunology
  publication-title: Parasite Immunol.
– volume: 164
  year: 2024
  ident: bb0265
  article-title: Serine protease homolog pairs CLIPA4-A6, A4-A7Δ, and A4-A12 act as cofactors for proteolytic activation of prophenoloxidase-2 and -7 in
  publication-title: Insect Biochem. Mol. Biol.
– volume: 36
  start-page: 1062
  year: 2018
  end-page: 1066
  ident: bb0430
  article-title: A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged
  publication-title: Nat. Biotechnol.
– volume: 112
  start-page: E6736
  year: 2015
  end-page: E6743
  ident: bb0165
  article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 69
  year: 2009
  end-page: 85
  ident: bb0360
  article-title: Specificity of the innate immune system: a closer look at the mosquito pattern-recognition receptor repertoire
  publication-title: Insect Infection and Immunity: Evolution, Ecology, and Mechanisms
– volume: 10
  start-page: 845
  year: 2008
  end-page: 849
  ident: bb0490
  article-title: Mosquito-based transmission blocking vaccines for interrupting
  publication-title: Microbes Infect.
– volume: 27
  start-page: 1063
  year: 1997
  end-page: 1072
  ident: bb0185
  article-title: Rapid induction by a blood meal of a carboxypeptidase gene in the gut of the mosquito
  publication-title: Insect Biochem. Mol. Biol.
– volume: 12
  start-page: 521
  year: 2012
  end-page: 530
  ident: bb0305
  article-title: Anopheles NF-κB-regulated splicing factors direct pathogen-specific repertoires of the hypervariable pattern recognition receptor AgDscam
  publication-title: Cell Host Microbe
– volume: 118
  year: 2021
  ident: bb0555
  article-title: Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 3
  year: 2023
  end-page: 18
  ident: bb0325
  article-title: Current scenario of malaria and the transformative power of gene drive-based technologies
  publication-title: Mosquito Gene Drives and the Malaria Eradication Agenda
– volume: 555
  start-page: 63
  year: 2009
  end-page: 75
  ident: bb0130
  article-title: RNAi in the malaria vector,
  publication-title: Methods Mol. Biol.
– volume: 221
  year: 2022
  ident: bb0455
  article-title: Modifying mosquitoes to suppress disease transmission: is the long wait over?
  publication-title: Genetics
– volume: 10
  year: 2021
  ident: bb0550
  article-title: A confinable home-and-rescue gene drive for population modification
  publication-title: eLife
– volume: 12
  year: 2022
  ident: bb0215
  article-title: High-resolution in situ analysis of Cas9 germline transcript distributions in gene-drive
  publication-title: G3 (Bethesda)
– volume: 6
  year: 2010
  ident: bb0310
  article-title: Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in
  publication-title: PLoS Pathog.
– volume: 11
  start-page: 5553
  year: 2020
  ident: bb0540
  article-title: Efficient population modification gene-drive rescue system in the malaria mosquito
  publication-title: Nat. Commun.
– volume: 5
  year: 2009
  ident: bb0140
  article-title: Caspar controls resistance to
  publication-title: PLoS Pathog.
– volume: 9
  start-page: 678
  year: 2020
  end-page: 681
  ident: bb0220
  article-title: Expanding the CRISPR toolbox in culicine mosquitoes: in vitro validation of Pol III promoters
  publication-title: ACS Synth. Biol.
– volume: 34
  start-page: 603
  year: 2018
  end-page: 616
  ident: bb0275
  article-title: Diverse host and restriction factors regulate mosquito-pathogen interactions
  publication-title: Trends Parasitol.
– volume: 36
  start-page: 705
  year: 2020
  end-page: 716
  ident: bb0345
  article-title: When is a
  publication-title: Trends Parasitol.
– volume: 473
  start-page: 212
  year: 2011
  end-page: 215
  ident: bb0060
  article-title: A synthetic homing endonuclease-based gene drive system in the human malaria mosquito
  publication-title: Nature
– volume: 8
  year: 2019
  ident: bb0240
  article-title: Integral gene drives for population replacement
  publication-title: Biol. Open
– volume: 115
  start-page: 5522
  year: 2018
  end-page: 5527
  ident: bb0530
  article-title: Reducing resistance allele formation in CRISPR gene drive
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 22
  start-page: 18
  year: 2022
  end-page: 28
  ident: bb0575
  article-title: Preparing an insectary in Burkina Faso to support research in genetic technologies for malaria control
  publication-title: Vector Borne Zoonotic Dis.
– volume: 120
  year: 2020
  ident: bb0210
  article-title: Hemocyte-targeted gene expression in the female malaria mosquito using the hemolectin promoter from
  publication-title: Insect Biochem. Mol. Biol.
– volume: 6
  year: 2011
  ident: bb0235
  article-title: Transcription regulation of sex-biased genes during ontogeny in the malaria vector
  publication-title: PLoS One
– volume: 331
  start-page: 1074
  year: 2011
  end-page: 1077
  ident: bb0385
  article-title: Development of transgenic fungi that kill human malaria parasites in mosquitoes
  publication-title: Science
– volume: 10
  year: 2021
  ident: bb0445
  article-title: Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement
  publication-title: eLife
– volume: 6
  year: 2020
  ident: bb0175
  article-title: Versatile transgenic multistage effector-gene combinations for
  publication-title: Sci. Adv.
– volume: 8
  year: 2017
  ident: bb0335
  article-title: Immune regulation of
  publication-title: mBio
– volume: 15
  start-page: 952
  year: 2024
  ident: bb0545
  article-title: Anti-CRISPR
  publication-title: Nat. Commun.
– volume: 303
  start-page: 2030
  year: 2004
  end-page: 2032
  ident: bb0330
  article-title: Effects of mosquito genes on
  publication-title: Science
– volume: 38
  start-page: 124
  year: 2022
  end-page: 135
  ident: bb0460
  article-title: development in
  publication-title: Trends Parasitol.
– volume: 12
  year: 2023
  ident: bb0180
  article-title: A population modification gene drive targeting both Saglin and Lipophorin impairs
  publication-title: eLife
– volume: 18
  start-page: 2
  year: 2019
  ident: bb0350
  article-title: Is Saglin a mosquito salivary gland receptor for
  publication-title: Malar. J.
– volume: 13
  year: 2017
  ident: bb0300
  article-title: Transgenic expression of the anti-parasitic factor TEP1 in the malaria mosquito
  publication-title: PLoS Pathog.
– volume: 9
  year: 2013
  ident: bb0115
  article-title: Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of
  publication-title: PLoS Pathog.
– year: 2014
  ident: bb0495
  article-title: Guidance Framework for Testing of Genetically Modified Mosquitoes
– volume: 74
  start-page: 455
  year: 2020
  end-page: 475
  ident: bb0035
  article-title: Prospects and pitfalls: next-generation tools to control mosquito-transmitted disease
  publication-title: Ann. Rev. Microbiol.
– volume: 15
  start-page: 153
  year: 2016
  ident: bb0395
  article-title: Endogenously-expressed NH2-terminus of circumsporozoite protein interferes with sporozoite invasion of mosquito salivary glands
  publication-title: Malar. J.
– volume: 7
  year: 2011
  ident: bb0295
  article-title: Engineered
  publication-title: PLoS Pathog.
– volume: 42
  start-page: 254
  year: 2022
  end-page: 270
  ident: bb0505
  article-title: Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment
  publication-title: Crit. Rev. Biotechnol.
– volume: 16
  year: 2020
  ident: bb0250
  article-title: The CLIP-domain serine protease CLIPC9 regulates melanization downstream of SPCLIP1, CLIPA8, and CLIPA28 in the malaria vector
  publication-title: PLoS Pathog.
– volume: 13
  year: 2022
  ident: bb0425
  article-title: Driving down malaria transmission with engineered gene drives
  publication-title: Front. Genet.
– volume: 12
  start-page: 119
  year: 2021
  ident: bb0100
  article-title: Overexpression of activated AMPK in the
  publication-title: Genes (Basel)
– volume: 20
  year: 2022
  ident: bb0110
  article-title: C-type lectin 4 regulates broad-spectrum melanization-based refractoriness to malaria parasites
  publication-title: PLoS Biol.
– volume: 16
  year: 2020
  ident: bb0320
  article-title: Broad spectrum immunomodulatory effects of
  publication-title: PLoS Pathog.
– volume: 9
  start-page: 333
  year: 2017
  end-page: 342
  ident: bb0150
  article-title: The peptidoglycan recognition proteins PGRPLA and PGRPLB regulate
  publication-title: J. Innate Immun.
– volume: 13
  start-page: 2949
  year: 2022
  ident: bb0120
  article-title: Transgenic
  publication-title: Nat. Commun.
– year: 2023
  ident: bb0525
  article-title: Upper bound on the mutational burden imposed by a CRISPR-Cas9 gene-drive element
  publication-title: bioRxiv
– volume: 98
  start-page: 13278
  year: 2001
  end-page: 13281
  ident: bb0380
  article-title: Targeting
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  year: 2022
  ident: bb0125
  article-title: Gene drive mosquitoes can aid malaria elimination by retarding
  publication-title: Sci. Adv.
– volume: 8
  start-page: 608
  year: 2017
  ident: bb0055
  article-title: Progress and prospects of CRISPR/Cas systems in insects and other arthropods
  publication-title: Front. Physiol.
– volume: 39
  start-page: 211
  year: 2021
  end-page: 214
  ident: bb0560
  article-title: Embracing dynamic models for gene drive management
  publication-title: Trends Biotechnol.
– volume: 18
  year: 2022
  ident: bb0465
  article-title: Ecdysone signaling mediates the trade-off between immunity and reproduction via suppression of amyloids in the mosquito
  publication-title: PLoS Pathog.
– volume: 7
  start-page: 258
  year: 2017
  ident: bb0285
  article-title: NF-κB-like signaling pathway REL2 in immune defenses of the malaria vector
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 357
  start-page: 1396
  year: 2017
  end-page: 1399
  ident: bb0480
  article-title: Changes in the microbiota cause genetically modified
  publication-title: Science
– volume: 12
  start-page: 3977
  year: 2021
  ident: bb0535
  article-title: A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression
  publication-title: Nat. Commun.
– volume: 121
  start-page: 173
  year: 2002
  end-page: 178
  ident: bb0045
  article-title: Dominant lethality and insect population control
  publication-title: Mol. Biochem. Parasitol.
– volume: 402
  start-page: 370
  year: 1999
  end-page: 371
  ident: bb0225
  article-title: A universal marker for transgenic insects
  publication-title: Nature
– volume: 12
  start-page: 394
  year: 2009
  end-page: 400
  ident: bb0085
  article-title: sporozoite invasion of the mosquito salivary gland
  publication-title: Curr. Opin. Microbiol.
– volume: 417
  start-page: 452
  year: 2002
  end-page: 455
  ident: bb0155
  article-title: Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite
  publication-title: Nature
– volume: 526
  start-page: 207
  year: 2015
  end-page: 211
  ident: bb0020
  article-title: The effect of malaria control on
  publication-title: Nature
– volume: 14
  start-page: 207
  year: 2005
  end-page: 216
  ident: bb0205
  article-title: An
  publication-title: Insect Mol. Biol.
– volume: 67
  start-page: 257
  year: 2017
  end-page: 265
  ident: bb0105
  article-title: The
  publication-title: Dev. Comp. Immunol.
– volume: 111
  start-page: 424
  year: 2017
  end-page: 435
  ident: bb0415
  article-title: Population modification of anopheline species to control malaria transmission
  publication-title: Pathog. Glob. Health
– volume: 5
  year: 2011
  ident: bb0280
  article-title: The JAK-STAT pathway controls
  publication-title: PLoS Negl. Trop. Dis.
– volume: 117
  start-page: 22805
  year: 2020
  end-page: 22814
  ident: bb0440
  article-title: Next-generation gene drive for population modification of the malaria vector mosquito,
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 13
  year: 2017
  ident: bb0520
  article-title: The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito
  publication-title: PLoS Genet.
– volume: 10
  year: 2020
  ident: bb0245
  article-title: CLIPB10 is a terminal protease in the regulatory network that controls melanization in the African malaria mosquito
  publication-title: Front. Cell. Infect. Microbiol.
– start-page: 115
  year: 2023
  end-page: 140
  ident: bb0500
  article-title: Large cage trials of gene drive mosquitoes: does size matter?
  publication-title: Mosquito Gene Drives and the Malaria Eradication Agenda
– volume: 19
  start-page: 349
  year: 2003
  end-page: 355
  ident: bb0040
  article-title: The first releases of transgenic mosquitoes: an argument for the sterile insect technique
  publication-title: Trends Parasitol.
– volume: 117
  start-page: 7363
  year: 2020
  end-page: 7373
  ident: bb0260
  article-title: PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 14
  start-page: 271
  year: 2005
  end-page: 279
  ident: bb0195
  article-title: Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements
  publication-title: Insect Mol. Biol.
– volume: 10
  start-page: 1072
  year: 2019
  ident: bb0485
  article-title: Winning the tug-of-war between effector gene design and pathogen evolution in vector population replacement strategies
  publication-title: Front. Genet.
– volume: 15
  start-page: 403
  year: 2006
  end-page: 410
  ident: bb0200
  article-title: Robust salivary gland-specific transgene expression in
  publication-title: Insect Mol. Biol.
– volume: 23
  start-page: 1414
  year: 2005
  end-page: 1417
  ident: bb0230
  article-title: An
  publication-title: Nat. Biotechnol.
– volume: 19
  year: 2023
  ident: bb0355
  article-title: The salivary protein Saglin facilitates efficient midgut colonization of
  publication-title: PLoS Pathog.
– volume: 11
  year: 2023
  ident: bb0580
  article-title: Conceptual risk assessment of mosquito population modification gene-drive systems to control malaria transmission: preliminary hazards list workshops
  publication-title: Front. Bioeng. Biotechnol.
– volume: 12
  start-page: 4589
  year: 2021
  ident: bb0435
  article-title: Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field
  publication-title: Nat. Commun.
– volume: 104
  start-page: 13461
  year: 2007
  end-page: 13466
  ident: bb0390
  article-title: Disruption of
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2023
  ident: bb0005
  article-title: World Malaria Report 2023
– volume: 277
  start-page: 40839
  year: 2002
  end-page: 40843
  ident: bb0405
  article-title: Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes
  publication-title: J. Biol. Chem.
– volume: 7
  year: 2017
  ident: bb0025
  article-title: Antimalarial drug resistance: a threat to malaria elimination
  publication-title: Cold Spring Harb. Perspect. Med.
– volume: 45
  start-page: 393
  year: 2018
  end-page: 407
  ident: bb0010
  article-title: Mosquito-borne diseases
  publication-title: Prim. Care
– start-page: 197
  year: 2023
  end-page: 237
  ident: bb0565
  article-title: Modeling priorities as gene drive mosquito projects transition from lab to field
  publication-title: Mosquito Gene Drives and the Malaria Eradication Agenda
– volume: 102
  start-page: 11420
  year: 2005
  end-page: 11425
  ident: bb0270
  article-title: Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 19
  year: 2023
  ident: bb0470
  article-title: Long non-coding RNAs regulate
  publication-title: PLoS Pathog.
– volume: 15
  year: 2019
  ident: bb0065
  article-title: Experimental population modification of the malaria vector mosquito,
  publication-title: PLoS Genet.
– volume: 9
  start-page: 95
  year: 2018
  ident: bb0095
  article-title: Mosquito innate immunity
  publication-title: Insects
– volume: 7
  start-page: 707
  year: 2022
  end-page: 715
  ident: bb0255
  article-title: Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota
  publication-title: Nat. Microbiol.
– volume: 7
  year: 2012
  ident: bb0145
  article-title: An epithelial serine protease, AgESP, is required for
  publication-title: PLoS One
– volume: 13
  start-page: 16
  year: 2022
  ident: bb0170
  article-title: Use of insect promoters in genetic engineering to control mosquito-borne diseases
  publication-title: Biomolecules
– volume: 49
  start-page: 170
  year: 2015
  end-page: 178
  ident: bb0315
  article-title: MicroRNA-regulation of
  publication-title: Dev. Comp. Immunol.
– volume: 303
  start-page: 2030
  year: 2004
  ident: 10.1016/j.pt.2024.04.010_bb0330
  article-title: Effects of mosquito genes on Plasmodium development
  publication-title: Science
  doi: 10.1126/science.1091789
– volume: 8
  year: 2017
  ident: 10.1016/j.pt.2024.04.010_bb0335
  article-title: Immune regulation of Plasmodium is Anopheles species specific and infection intensity dependent
  publication-title: mBio
  doi: 10.1128/mBio.01631-17
– volume: 19
  start-page: 349
  year: 2003
  ident: 10.1016/j.pt.2024.04.010_bb0040
  article-title: The first releases of transgenic mosquitoes: an argument for the sterile insect technique
  publication-title: Trends Parasitol.
  doi: 10.1016/S1471-4922(03)00144-2
– volume: 39
  start-page: 211
  year: 2021
  ident: 10.1016/j.pt.2024.04.010_bb0560
  article-title: Embracing dynamic models for gene drive management
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.08.011
– volume: 38
  start-page: 124
  year: 2022
  ident: 10.1016/j.pt.2024.04.010_bb0460
  article-title: Plasmodium development in Anopheles: a tale of shared resources
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2021.08.009
– volume: 12
  year: 2023
  ident: 10.1016/j.pt.2024.04.010_bb0180
  article-title: A population modification gene drive targeting both Saglin and Lipophorin impairs Plasmodium transmission in Anopheles mosquitoes
  publication-title: eLife
  doi: 10.7554/eLife.93142
– volume: 128
  year: 2021
  ident: 10.1016/j.pt.2024.04.010_bb0475
  article-title: Regulation of antimicrobial peptides by juvenile hormone and its receptor, methoprene-tolerant, in the mosquito Aedes aegypti
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2020.103509
– volume: 9
  start-page: 95
  year: 2018
  ident: 10.1016/j.pt.2024.04.010_bb0095
  article-title: Mosquito innate immunity
  publication-title: Insects
  doi: 10.3390/insects9030095
– volume: 7
  year: 2012
  ident: 10.1016/j.pt.2024.04.010_bb0145
  article-title: An epithelial serine protease, AgESP, is required for Plasmodium invasion in the mosquito Anopheles gambiae
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035210
– volume: 112
  start-page: E6736
  year: 2015
  ident: 10.1016/j.pt.2024.04.010_bb0165
  article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1521077112
– volume: 402
  start-page: 370
  year: 1999
  ident: 10.1016/j.pt.2024.04.010_bb0225
  article-title: A universal marker for transgenic insects
  publication-title: Nature
  doi: 10.1038/46463
– volume: 11
  year: 2023
  ident: 10.1016/j.pt.2024.04.010_bb0580
  article-title: Conceptual risk assessment of mosquito population modification gene-drive systems to control malaria transmission: preliminary hazards list workshops
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2023.1261123
– volume: 15
  start-page: 153
  year: 2016
  ident: 10.1016/j.pt.2024.04.010_bb0395
  article-title: Endogenously-expressed NH2-terminus of circumsporozoite protein interferes with sporozoite invasion of mosquito salivary glands
  publication-title: Malar. J.
  doi: 10.1186/s12936-016-1207-8
– volume: 14
  year: 2018
  ident: 10.1016/j.pt.2024.04.010_bb0160
  article-title: CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006898
– volume: 15
  start-page: 952
  year: 2024
  ident: 10.1016/j.pt.2024.04.010_bb0545
  article-title: Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cages
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-44907-x
– volume: 164
  year: 2024
  ident: 10.1016/j.pt.2024.04.010_bb0265
  article-title: Serine protease homolog pairs CLIPA4-A6, A4-A7Δ, and A4-A12 act as cofactors for proteolytic activation of prophenoloxidase-2 and -7 in Anopheles gambiae
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2023.104048
– volume: 11
  start-page: 5553
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0540
  article-title: Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19426-0
– volume: 6
  year: 2011
  ident: 10.1016/j.pt.2024.04.010_bb0235
  article-title: Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021572
– volume: 41
  start-page: 154
  year: 2023
  ident: 10.1016/j.pt.2024.04.010_bb0515
  article-title: Gene drive in species complexes: defining target organisms
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2022.06.013
– volume: 28
  start-page: 121
  year: 2006
  ident: 10.1016/j.pt.2024.04.010_bb0080
  article-title: Mosquito midguts and malaria: cell biology, compartmentalization and immunology
  publication-title: Parasite Immunol.
  doi: 10.1111/j.1365-3024.2006.00804.x
– year: 2014
  ident: 10.1016/j.pt.2024.04.010_bb0495
– volume: 10
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0245
  article-title: CLIPB10 is a terminal protease in the regulatory network that controls melanization in the African malaria mosquito Anopheles gambiae
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 12
  start-page: 4589
  year: 2021
  ident: 10.1016/j.pt.2024.04.010_bb0435
  article-title: Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24790-6
– volume: 115
  start-page: 5522
  year: 2018
  ident: 10.1016/j.pt.2024.04.010_bb0530
  article-title: Reducing resistance allele formation in CRISPR gene drive
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1720354115
– volume: 7
  year: 2017
  ident: 10.1016/j.pt.2024.04.010_bb0025
  article-title: Antimalarial drug resistance: a threat to malaria elimination
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a025619
– volume: 20
  start-page: 237
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0450
  article-title: Toward the definition of efficacy and safety criteria for advancing gene drive-modified mosquitoes to field testing
  publication-title: Vector Borne Zoonotic Dis.
  doi: 10.1089/vbz.2019.2606
– volume: 473
  start-page: 212
  year: 2011
  ident: 10.1016/j.pt.2024.04.010_bb0060
  article-title: A synthetic homing endonuclease-based gene drive system in the human malaria mosquito
  publication-title: Nature
  doi: 10.1038/nature09937
– volume: 19
  year: 2023
  ident: 10.1016/j.pt.2024.04.010_bb0355
  article-title: The salivary protein Saglin facilitates efficient midgut colonization of Anopheles mosquitoes by malaria parasites
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1010538
– volume: 6
  start-page: 169
  year: 2014
  ident: 10.1016/j.pt.2024.04.010_bb0090
  article-title: The Anopheles innate immune system in the defense against malaria infection
  publication-title: J. Innate Immun.
  doi: 10.1159/000353602
– volume: 9
  start-page: 678
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0220
  article-title: Expanding the CRISPR toolbox in culicine mosquitoes: in vitro validation of Pol III promoters
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.9b00436
– volume: 12
  year: 2016
  ident: 10.1016/j.pt.2024.04.010_bb0410
  article-title: Inhibition of malaria infection in transgenic anopheline mosquitoes lacking salivary gland cells
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005872
– volume: 22
  start-page: 18
  year: 2022
  ident: 10.1016/j.pt.2024.04.010_bb0575
  article-title: Preparing an insectary in Burkina Faso to support research in genetic technologies for malaria control
  publication-title: Vector Borne Zoonotic Dis.
– volume: 14
  start-page: 207
  year: 2005
  ident: 10.1016/j.pt.2024.04.010_bb0205
  article-title: An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.2004.00549.x
– volume: 12
  start-page: 119
  year: 2021
  ident: 10.1016/j.pt.2024.04.010_bb0100
  article-title: Overexpression of activated AMPK in the Anopheles stephensi midgut impacts mosquito metabolism, reproduction and Plasmodium resistance
  publication-title: Genes (Basel)
  doi: 10.3390/genes12010119
– volume: 13
  year: 2022
  ident: 10.1016/j.pt.2024.04.010_bb0425
  article-title: Driving down malaria transmission with engineered gene drives
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2022.891218
– volume: 16
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0250
  article-title: The CLIP-domain serine protease CLIPC9 regulates melanization downstream of SPCLIP1, CLIPA8, and CLIPA28 in the malaria vector Anopheles gambiae
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008985
– volume: 12
  start-page: 521
  year: 2012
  ident: 10.1016/j.pt.2024.04.010_bb0305
  article-title: Anopheles NF-κB-regulated splicing factors direct pathogen-specific repertoires of the hypervariable pattern recognition receptor AgDscam
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.09.004
– volume: 15
  start-page: 403
  year: 2006
  ident: 10.1016/j.pt.2024.04.010_bb0200
  article-title: Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.2006.00645.x
– volume: 102
  start-page: 11420
  year: 2005
  ident: 10.1016/j.pt.2024.04.010_bb0270
  article-title: Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0504950102
– volume: 23
  start-page: 1414
  year: 2005
  ident: 10.1016/j.pt.2024.04.010_bb0230
  article-title: An Anopheles transgenic sexing strain for vector control
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1152
– volume: 118
  year: 2021
  ident: 10.1016/j.pt.2024.04.010_bb0555
  article-title: Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2004838117
– volume: 221
  year: 2022
  ident: 10.1016/j.pt.2024.04.010_bb0455
  article-title: Modifying mosquitoes to suppress disease transmission: is the long wait over?
  publication-title: Genetics
  doi: 10.1093/genetics/iyac072
– volume: 13
  year: 2017
  ident: 10.1016/j.pt.2024.04.010_bb0520
  article-title: The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007039
– volume: 8
  year: 2022
  ident: 10.1016/j.pt.2024.04.010_bb0125
  article-title: Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abo1733
– volume: 67
  start-page: 257
  year: 2017
  ident: 10.1016/j.pt.2024.04.010_bb0105
  article-title: The Anopheles FBN9 immune factor mediates Plasmodium species-specific defense through transgenic fat body expression
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2016.09.012
– year: 2023
  ident: 10.1016/j.pt.2024.04.010_bb0005
– volume: 11
  start-page: 1425
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0510
  article-title: Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of Anopheles and Aedes mosquitoes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15204-0
– volume: 8
  year: 2012
  ident: 10.1016/j.pt.2024.04.010_bb0290
  article-title: Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002737
– volume: 14
  start-page: 271
  year: 2005
  ident: 10.1016/j.pt.2024.04.010_bb0195
  article-title: Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.2004.00557.x
– volume: 6
  year: 2010
  ident: 10.1016/j.pt.2024.04.010_bb0310
  article-title: Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes
  publication-title: PLoS Pathog.
  doi: 10.1371/annotation/738ac91f-8c41-4bf5-9a39-bddf0b777a89
– volume: 72
  start-page: 273
  year: 2018
  ident: 10.1016/j.pt.2024.04.010_bb0030
  article-title: The promise of a malaria vaccine-are we closer?
  publication-title: Ann. Rev. Microbiol.
  doi: 10.1146/annurev-micro-090817-062427
– volume: 76
  start-page: 1118
  year: 2007
  ident: 10.1016/j.pt.2024.04.010_bb0190
  article-title: The Anopheles gambiae vitellogenin gene (VGT2) promoter directs persistent accumulation of a reporter gene product in transgenic Anopheles stephensi following multiple bloodmeals
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.2007.76.1118
– volume: 34
  start-page: 603
  year: 2018
  ident: 10.1016/j.pt.2024.04.010_bb0275
  article-title: Diverse host and restriction factors regulate mosquito-pathogen interactions
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2018.04.011
– volume: 98
  start-page: 13278
  year: 2001
  ident: 10.1016/j.pt.2024.04.010_bb0380
  article-title: Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.241491198
– volume: 109
  year: 2023
  ident: 10.1016/j.pt.2024.04.010_bb0570
  article-title: CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2023.105419
– volume: 6
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0175
  article-title: Versatile transgenic multistage effector-gene combinations for Plasmodium falciparum suppression in Anopheles
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay5898
– volume: 13
  start-page: 16
  year: 2022
  ident: 10.1016/j.pt.2024.04.010_bb0170
  article-title: Use of insect promoters in genetic engineering to control mosquito-borne diseases
  publication-title: Biomolecules
  doi: 10.3390/biom13010016
– volume: 36
  start-page: 393
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0015
  article-title: Linking mosquito ecology, traits, behavior, and disease transmission
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2020.02.001
– volume: 10
  year: 2021
  ident: 10.1016/j.pt.2024.04.010_bb0445
  article-title: Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement
  publication-title: eLife
  doi: 10.7554/eLife.58791
– volume: 8
  start-page: 608
  year: 2017
  ident: 10.1016/j.pt.2024.04.010_bb0055
  article-title: Progress and prospects of CRISPR/Cas systems in insects and other arthropods
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2017.00608
– volume: 15
  year: 2019
  ident: 10.1016/j.pt.2024.04.010_bb0065
  article-title: Experimental population modification of the malaria vector mosquito, Anopheles stephensi
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1008440
– volume: 16
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0320
  article-title: Broad spectrum immunomodulatory effects of Anopheles gambiae microRNAs and their use for transgenic suppression of Plasmodium
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008453
– start-page: 115
  year: 2023
  ident: 10.1016/j.pt.2024.04.010_bb0500
  article-title: Large cage trials of gene drive mosquitoes: does size matter?
– volume: 5
  year: 2009
  ident: 10.1016/j.pt.2024.04.010_bb0140
  article-title: Caspar controls resistance to Plasmodium falciparum in diverse anopheline species
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000335
– volume: 18
  year: 2022
  ident: 10.1016/j.pt.2024.04.010_bb0465
  article-title: Ecdysone signaling mediates the trade-off between immunity and reproduction via suppression of amyloids in the mosquito Aedes aegypti
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1010837
– volume: 217
  year: 2019
  ident: 10.1016/j.pt.2024.04.010_bb0340
  article-title: Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection
  publication-title: J. Exp. Med.
– volume: 12
  start-page: 394
  year: 2009
  ident: 10.1016/j.pt.2024.04.010_bb0085
  article-title: Plasmodium sporozoite invasion of the mosquito salivary gland
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2009.06.010
– volume: 20
  year: 2022
  ident: 10.1016/j.pt.2024.04.010_bb0110
  article-title: C-type lectin 4 regulates broad-spectrum melanization-based refractoriness to malaria parasites
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3001515
– volume: 27
  start-page: 1063
  year: 1997
  ident: 10.1016/j.pt.2024.04.010_bb0185
  article-title: Rapid induction by a blood meal of a carboxypeptidase gene in the gut of the mosquito Anopheles gambiae
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/S0965-1748(97)00093-3
– volume: 49
  start-page: 170
  year: 2015
  ident: 10.1016/j.pt.2024.04.010_bb0315
  article-title: MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2014.10.016
– volume: 22
  start-page: 41
  year: 2013
  ident: 10.1016/j.pt.2024.04.010_bb0375
  article-title: Reduction of malaria transmission by transgenic mosquitoes expressing an antisporozoite antibody in their salivary glands
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.2012.01168.x
– volume: 331
  start-page: 1074
  year: 2011
  ident: 10.1016/j.pt.2024.04.010_bb0385
  article-title: Development of transgenic fungi that kill human malaria parasites in mosquitoes
  publication-title: Science
  doi: 10.1126/science.1199115
– volume: 7
  year: 2011
  ident: 10.1016/j.pt.2024.04.010_bb0295
  article-title: Engineered Anopheles immunity to Plasmodium infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002458
– volume: 19
  year: 2023
  ident: 10.1016/j.pt.2024.04.010_bb0470
  article-title: Long non-coding RNAs regulate Aedes aegypti vector competence for Zika virus and reproduction
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1011440
– volume: 9
  year: 2013
  ident: 10.1016/j.pt.2024.04.010_bb0115
  article-title: Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003790
– volume: 7
  year: 2011
  ident: 10.1016/j.pt.2024.04.010_bb0365
  article-title: Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002017
– start-page: 197
  year: 2023
  ident: 10.1016/j.pt.2024.04.010_bb0565
  article-title: Modeling priorities as gene drive mosquito projects transition from lab to field
– start-page: 69
  year: 2009
  ident: 10.1016/j.pt.2024.04.010_bb0360
  article-title: Specificity of the innate immune system: a closer look at the mosquito pattern-recognition receptor repertoire
– volume: 74
  start-page: 455
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0035
  article-title: Prospects and pitfalls: next-generation tools to control mosquito-transmitted disease
  publication-title: Ann. Rev. Microbiol.
  doi: 10.1146/annurev-micro-011320-025557
– volume: 13
  year: 2017
  ident: 10.1016/j.pt.2024.04.010_bb0300
  article-title: Transgenic expression of the anti-parasitic factor TEP1 in the malaria mosquito Anopheles gambiae
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006113
– volume: 9
  start-page: 333
  year: 2017
  ident: 10.1016/j.pt.2024.04.010_bb0150
  article-title: The peptidoglycan recognition proteins PGRPLA and PGRPLB regulate Anopheles immunity to bacteria and affect infection by Plasmodium
  publication-title: J. Innate Immun.
  doi: 10.1159/000452797
– volume: 7
  start-page: 707
  year: 2022
  ident: 10.1016/j.pt.2024.04.010_bb0255
  article-title: Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-022-01099-8
– volume: 45
  start-page: 393
  year: 2018
  ident: 10.1016/j.pt.2024.04.010_bb0010
  article-title: Mosquito-borne diseases
  publication-title: Prim. Care
  doi: 10.1016/j.pop.2018.05.001
– volume: 417
  start-page: 452
  year: 2002
  ident: 10.1016/j.pt.2024.04.010_bb0155
  article-title: Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite
  publication-title: Nature
  doi: 10.1038/417452a
– start-page: 3
  year: 2023
  ident: 10.1016/j.pt.2024.04.010_bb0325
  article-title: Current scenario of malaria and the transformative power of gene drive-based technologies
– volume: 555
  start-page: 63
  year: 2009
  ident: 10.1016/j.pt.2024.04.010_bb0130
  article-title: RNAi in the malaria vector, Anopheles gambiae
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60327-295-7_5
– volume: 526
  start-page: 207
  year: 2015
  ident: 10.1016/j.pt.2024.04.010_bb0020
  article-title: The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015
  publication-title: Nature
  doi: 10.1038/nature15535
– volume: 10
  start-page: 845
  year: 2008
  ident: 10.1016/j.pt.2024.04.010_bb0490
  article-title: Mosquito-based transmission blocking vaccines for interrupting Plasmodium development
  publication-title: Microbes Infect.
  doi: 10.1016/j.micinf.2008.05.004
– volume: 10
  start-page: 1072
  year: 2019
  ident: 10.1016/j.pt.2024.04.010_bb0485
  article-title: Winning the tug-of-war between effector gene design and pathogen evolution in vector population replacement strategies
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.01072
– volume: 104
  start-page: 13461
  year: 2007
  ident: 10.1016/j.pt.2024.04.010_bb0390
  article-title: Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0702239104
– volume: 111
  start-page: 424
  year: 2017
  ident: 10.1016/j.pt.2024.04.010_bb0415
  article-title: Population modification of anopheline species to control malaria transmission
  publication-title: Pathog. Glob. Health
  doi: 10.1080/20477724.2018.1427192
– volume: 346
  year: 2014
  ident: 10.1016/j.pt.2024.04.010_bb0420
  article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9
  publication-title: Science
  doi: 10.1126/science.1258096
– volume: 34
  start-page: 78
  year: 2016
  ident: 10.1016/j.pt.2024.04.010_bb0050
  article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3439
– volume: 120
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0210
  article-title: Hemocyte-targeted gene expression in the female malaria mosquito using the hemolectin promoter from Drosophila
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2020.103339
– volume: 12
  year: 2022
  ident: 10.1016/j.pt.2024.04.010_bb0215
  article-title: High-resolution in situ analysis of Cas9 germline transcript distributions in gene-drive Anopheles mosquitoes
  publication-title: G3 (Bethesda)
  doi: 10.1093/g3journal/jkab369
– volume: 121
  start-page: 173
  year: 2002
  ident: 10.1016/j.pt.2024.04.010_bb0045
  article-title: Dominant lethality and insect population control
  publication-title: Mol. Biochem. Parasitol.
  doi: 10.1016/S0166-6851(02)00040-3
– volume: 120
  year: 2023
  ident: 10.1016/j.pt.2024.04.010_bb0070
  article-title: Dual effector population modification gene-drive strains of the African malaria mosquitoes, Anopheles gambiae and Anopheles coluzzii
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2221118120
– volume: 117
  start-page: 7363
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0260
  article-title: PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1919709117
– volume: 109
  start-page: E1922
  year: 2012
  ident: 10.1016/j.pt.2024.04.010_bb0370
  article-title: Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1207738109
– volume: 117
  start-page: 22805
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0440
  article-title: Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2010214117
– volume: 13
  start-page: 2949
  year: 2022
  ident: 10.1016/j.pt.2024.04.010_bb0120
  article-title: Transgenic Anopheles mosquitoes expressing human PAI-1 impair malaria transmission
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30606-y
– volume: 167
  start-page: 610
  year: 2016
  ident: 10.1016/j.pt.2024.04.010_bb0075
  article-title: Malaria: biology and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.055
– volume: 5
  year: 2011
  ident: 10.1016/j.pt.2024.04.010_bb0280
  article-title: The JAK-STAT pathway controls Plasmodium vivax load in early stages of Anopheles aquasalis infection
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0001317
– volume: 7
  start-page: 258
  year: 2017
  ident: 10.1016/j.pt.2024.04.010_bb0285
  article-title: NF-κB-like signaling pathway REL2 in immune defenses of the malaria vector Anopheles gambiae
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2017.00258
– volume: 3
  year: 2007
  ident: 10.1016/j.pt.2024.04.010_bb0400
  article-title: Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.0030192
– volume: 36
  start-page: 1062
  year: 2018
  ident: 10.1016/j.pt.2024.04.010_bb0430
  article-title: A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4245
– volume: 12
  start-page: 3977
  year: 2021
  ident: 10.1016/j.pt.2024.04.010_bb0535
  article-title: A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24214-5
– volume: 18
  start-page: 2
  year: 2019
  ident: 10.1016/j.pt.2024.04.010_bb0350
  article-title: Is Saglin a mosquito salivary gland receptor for Plasmodium falciparum?
  publication-title: Malar. J.
  doi: 10.1186/s12936-018-2634-5
– volume: 36
  start-page: 705
  year: 2020
  ident: 10.1016/j.pt.2024.04.010_bb0345
  article-title: When is a Plasmodium-infected mosquito an infectious mosquito?
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2020.05.011
– volume: 42
  start-page: 254
  year: 2022
  ident: 10.1016/j.pt.2024.04.010_bb0505
  article-title: Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2021.1933891
– volume: 8
  year: 2019
  ident: 10.1016/j.pt.2024.04.010_bb0240
  article-title: Integral gene drives for population replacement
  publication-title: Biol. Open
– year: 2023
  ident: 10.1016/j.pt.2024.04.010_bb0525
  article-title: Upper bound on the mutational burden imposed by a CRISPR-Cas9 gene-drive element
  publication-title: bioRxiv
– volume: 405
  start-page: 959
  year: 2000
  ident: 10.1016/j.pt.2024.04.010_bb0135
  article-title: Stable germline transformation of the malaria mosquito Anopheles stephensi
  publication-title: Nature
  doi: 10.1038/35016096
– volume: 10
  year: 2021
  ident: 10.1016/j.pt.2024.04.010_bb0550
  article-title: A confinable home-and-rescue gene drive for population modification
  publication-title: eLife
  doi: 10.7554/eLife.65939
– volume: 277
  start-page: 40839
  year: 2002
  ident: 10.1016/j.pt.2024.04.010_bb0405
  article-title: Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206647200
– volume: 357
  start-page: 1396
  year: 2017
  ident: 10.1016/j.pt.2024.04.010_bb0480
  article-title: Changes in the microbiota cause genetically modified Anopheles to spread in a population
  publication-title: Science
  doi: 10.1126/science.aak9691
SSID ssj0015779
Score 2.476198
SecondaryResourceType review_article
Snippet A population modification approach involves spreading genes/elements through the populations to make mosquitoes refractory to the parasite.Parasite...
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 487
SubjectTerms Animals
Animals, Genetically Modified
Anopheles
Anopheles - genetics
Anopheles - parasitology
genetically modified organisms
Humans
malaria
Malaria - prevention & control
Malaria - transmission
malaria vectors
Mosquito Control - methods
Mosquito Vectors - genetics
Mosquito Vectors - parasitology
parasites
parasitology
Plasmodium
population modification
public health
transgenesis
Title Curing mosquitoes with genetic approaches for malaria control
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1471492224000928
https://dx.doi.org/10.1016/j.pt.2024.04.010
https://www.ncbi.nlm.nih.gov/pubmed/38760256
https://www.proquest.com/docview/3056670065
https://www.proquest.com/docview/3153674924
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KxqAvo8vWNd1aNNjLHtzoy1b8WMpCttG-bCl5E7IkQ0bzsSV52Mv-9t3ZcmDQZTAwBosT2NLp7nfW704A70SZO1lLnzmEG5lGF5o59LMZHfIgZAh1jJScfHtXTKb60yyfHcFNlwtDtMpk-1ub3ljr1DJMozlcz-fDLwLtqi5lw4LkpaSEX60NafnVrz3NQ-SmqbdHwhlJp63KluO1Jjal1E2xU8qhfdw1_Q16Ni5ofALPEnZk1-3rPYejuOzD0_Y0yZ996N8TtaXJr2W3acv8BVBdUXRPbLHafN_h8o0bRv9eGSoO5S-yrqg4tiN-ZQuHoe7csURhfwnT8YevN5MsnZmQea3kNgshyMrz2kRu6qosRkYZhWFGqFXuRRF8NfKq9DwohUCpEKGoQsSbMF7WI1zvp9BbrpbxDJjnwmkq0FXpoJ3AEByxBoLx2nDuR8YNYNgNl_WpoDida_FgO-bYN7veWhpgy_ESfADv9z3WbTGNA7KimwHbJYmiWbNo6Q_0Ufs-fyjRP3q97SbY4tqiDRO3jKvdxlJ4RWlMRX5ABl1GYVCz9ABetdqx_zaFroYw5fl_vddrOKanlpf2BnrbH7t4gQhoW102Kn4JT64_fp7c_QZCHwJ2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5Sh9JeQuu-3PSxhV56EN6XtNIxhASniX1pUnJbVrsrcGlst7YP_fedkVaGQOtCQegg7cBqd3bmG80L4KOocicb6TOHcCPTqEIzh3o2oyYPQobQxEjJydNZMbnRn2_z2wM47XNhKKwyyf5OprfSOj0Zp9Ucr-bz8ReBclVXso2C5JUsH8AhVafKB3B4cnE5me2cCblpS-7R-IwIkreyC_NaUUCl1G29U0qj_bN2-hv6bLXQ-RM4SvCRnXQzfAoHcTGEh11DyV9DGH6l6JY2xZZNk9f8GVBpUdRQ7G65_rHFExzXjH6_MuQdSmFkfV1xfI4Qlt05tHbnjqUo9udwc352fTrJUtuEzGslN1kIQdaeNyZy09RVURplFFoaoVG5F0XwdelV5XlQCrFSIUJRh4g3YbxsSjzyL2CwWC7iK2CeC6epRletg3YCrXCEG4jHG8O5L40bwbhfLutTTXFqbfHd9sFj3-xqY2mBLcdL8BF82lGsunoae8aKfgdsnyeKks2isN9Do3Y09_joH1Qf-g22eLzIZ-IWcbldW7KwKJOpyPeMQa1RGOQsPYKXHXfsvk2htiFY-fq_5vUeHk2up1f26mJ2eQyP6U0XpvYGBpuf2_gWAdGmfpcY_jcc9wUn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Curing+mosquitoes+with+genetic+approaches+for+malaria+control&rft.jtitle=Trends+in+parasitology&rft.au=Kefi%2C+Mary&rft.au=Cardoso-Jaime%2C+Victor&rft.au=Saab%2C+Sally+A.&rft.au=Dimopoulos%2C+George&rft.date=2024-06-01&rft.issn=1471-4922&rft.volume=40&rft.issue=6&rft.spage=487&rft.epage=499&rft_id=info:doi/10.1016%2Fj.pt.2024.04.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pt_2024_04_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-4922&client=summon