Curing mosquitoes with genetic approaches for malaria control
A population modification approach involves spreading genes/elements through the populations to make mosquitoes refractory to the parasite.Parasite refractoriness of mosquito vectors can be achieved by genetic manipulations of mosquito endogenous effectors and host factors or by introducing exogenou...
Saved in:
Published in | Trends in parasitology Vol. 40; no. 6; pp. 487 - 499 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A population modification approach involves spreading genes/elements through the populations to make mosquitoes refractory to the parasite.Parasite refractoriness of mosquito vectors can be achieved by genetic manipulations of mosquito endogenous effectors and host factors or by introducing exogenous effectors into the mosquito genome.Gene-drive technology allows the spread and persistence of the desired genes/elements within targeted populations.The success of transgenic mosquitoes in spreading and maintaining desired genes/elements in the field relies on their performance compared with wild types.Field implementation of the transgenic applications is a phase-by-phase process that is subject to public acceptance and regulations.
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in ‘curing’ Anopheles vectors of the malaria parasite.
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in ‘curing’ Anopheles vectors of the malaria parasite. |
---|---|
AbstractList | A population modification approach involves spreading genes/elements through the populations to make mosquitoes refractory to the parasite.Parasite refractoriness of mosquito vectors can be achieved by genetic manipulations of mosquito endogenous effectors and host factors or by introducing exogenous effectors into the mosquito genome.Gene-drive technology allows the spread and persistence of the desired genes/elements within targeted populations.The success of transgenic mosquitoes in spreading and maintaining desired genes/elements in the field relies on their performance compared with wild types.Field implementation of the transgenic applications is a phase-by-phase process that is subject to public acceptance and regulations.
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in ‘curing’ Anopheles vectors of the malaria parasite.
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in ‘curing’ Anopheles vectors of the malaria parasite. Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the last decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in ‘curing’ Anopheles vectors of the malaria parasite. Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite.Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite. Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite. |
Author | Kefi, Mary Cardoso-Jaime, Victor Saab, Sally A. Dimopoulos, George |
Author_xml | – sequence: 1 givenname: Mary orcidid: 0009-0006-5205-7449 surname: Kefi fullname: Kefi, Mary organization: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA – sequence: 2 givenname: Victor orcidid: 0000-0003-4605-092X surname: Cardoso-Jaime fullname: Cardoso-Jaime, Victor organization: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA – sequence: 3 givenname: Sally A. orcidid: 0009-0005-6655-0894 surname: Saab fullname: Saab, Sally A. organization: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA – sequence: 4 givenname: George orcidid: 0000-0001-6755-8111 surname: Dimopoulos fullname: Dimopoulos, George email: gdimopo1@jhu.edu organization: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38760256$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gzgnlyGWXsZ3YWSQOaAUtUiUucLac8aT1ksSp7RT13-PVLhx6WKSRbVnPM7LfuWRnU5iIsbcc1hy4-rBbz3ktQNRrKMXhBbvgtearBkCfHc_1RohzdpnSDoA3Wm9esXPZagWiURfs03aJfrqrxpAeFp8Dpeq3z_fVHU2UPVZ2nmOweF_u-xCr0Q42elthmHIMw2v2srdDojfH_Yr9_Prlx_Zmdfv9-tv28-0KaynyyjknOoReE-i-26hWSy2FBNfLBrly2LUoNwhOylo2ijvVOSoL1yj6FrS8Yu8PfctjHhZK2Yw-IQ2DnSgsyUjeSKXLT-v_o9AopQFUU9B3R3TpRnJmjn608cn8TacAcAAwhpQi9f8QDmY_ALMzczb7ARgoxaEo6pmCPtvs93lZP5wSPx5EKjk-eoomoacJyflImI0L_pTcPpNx8JNHO_yip9PqHyYMsGE |
CitedBy_id | crossref_primary_10_1590_0074_02760240247 crossref_primary_10_1186_s40249_024_01256_7 crossref_primary_10_1016_j_isci_2024_111520 crossref_primary_10_1186_s12936_024_05226_0 |
Cites_doi | 10.1126/science.1091789 10.1128/mBio.01631-17 10.1016/S1471-4922(03)00144-2 10.1016/j.tibtech.2020.08.011 10.1016/j.pt.2021.08.009 10.7554/eLife.93142 10.1016/j.ibmb.2020.103509 10.3390/insects9030095 10.1371/journal.pone.0035210 10.1073/pnas.1521077112 10.1038/46463 10.3389/fbioe.2023.1261123 10.1186/s12936-016-1207-8 10.1371/journal.ppat.1006898 10.1038/s41467-024-44907-x 10.1016/j.ibmb.2023.104048 10.1038/s41467-020-19426-0 10.1371/journal.pone.0021572 10.1016/j.tibtech.2022.06.013 10.1111/j.1365-3024.2006.00804.x 10.1038/s41467-021-24790-6 10.1073/pnas.1720354115 10.1101/cshperspect.a025619 10.1089/vbz.2019.2606 10.1038/nature09937 10.1371/journal.ppat.1010538 10.1159/000353602 10.1021/acssynbio.9b00436 10.1371/journal.ppat.1005872 10.1111/j.1365-2583.2004.00549.x 10.3390/genes12010119 10.3389/fgene.2022.891218 10.1371/journal.ppat.1008985 10.1016/j.chom.2012.09.004 10.1111/j.1365-2583.2006.00645.x 10.1073/pnas.0504950102 10.1038/nbt1152 10.1073/pnas.2004838117 10.1093/genetics/iyac072 10.1371/journal.pgen.1007039 10.1126/sciadv.abo1733 10.1016/j.dci.2016.09.012 10.1038/s41467-020-15204-0 10.1371/journal.ppat.1002737 10.1111/j.1365-2583.2004.00557.x 10.1371/annotation/738ac91f-8c41-4bf5-9a39-bddf0b777a89 10.1146/annurev-micro-090817-062427 10.4269/ajtmh.2007.76.1118 10.1016/j.pt.2018.04.011 10.1073/pnas.241491198 10.1016/j.meegid.2023.105419 10.1126/sciadv.aay5898 10.3390/biom13010016 10.1016/j.pt.2020.02.001 10.7554/eLife.58791 10.3389/fphys.2017.00608 10.1371/journal.pgen.1008440 10.1371/journal.ppat.1008453 10.1371/journal.ppat.1000335 10.1371/journal.ppat.1010837 10.1016/j.mib.2009.06.010 10.1371/journal.pbio.3001515 10.1016/S0965-1748(97)00093-3 10.1016/j.dci.2014.10.016 10.1111/j.1365-2583.2012.01168.x 10.1126/science.1199115 10.1371/journal.ppat.1002458 10.1371/journal.ppat.1011440 10.1371/journal.ppat.1003790 10.1371/journal.ppat.1002017 10.1146/annurev-micro-011320-025557 10.1371/journal.ppat.1006113 10.1159/000452797 10.1038/s41564-022-01099-8 10.1016/j.pop.2018.05.001 10.1038/417452a 10.1007/978-1-60327-295-7_5 10.1038/nature15535 10.1016/j.micinf.2008.05.004 10.3389/fgene.2019.01072 10.1073/pnas.0702239104 10.1080/20477724.2018.1427192 10.1126/science.1258096 10.1038/nbt.3439 10.1016/j.ibmb.2020.103339 10.1093/g3journal/jkab369 10.1016/S0166-6851(02)00040-3 10.1073/pnas.2221118120 10.1073/pnas.1919709117 10.1073/pnas.1207738109 10.1073/pnas.2010214117 10.1038/s41467-022-30606-y 10.1016/j.cell.2016.07.055 10.1371/journal.pntd.0001317 10.3389/fcimb.2017.00258 10.1371/journal.ppat.0030192 10.1038/nbt.4245 10.1038/s41467-021-24214-5 10.1186/s12936-018-2634-5 10.1016/j.pt.2020.05.011 10.1080/07388551.2021.1933891 10.1038/35016096 10.7554/eLife.65939 10.1074/jbc.M206647200 10.1126/science.aak9691 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.pt.2024.04.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine Biology Public Health |
EISSN | 1471-5007 |
EndPage | 499 |
ExternalDocumentID | 38760256 10_1016_j_pt_2024_04_010 S1471492224000928 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAAJQ AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYJJ AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CJTIS CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM L7B LUGTX M41 MO0 N9A O-L O9- OAUVE OD- OO. OZT P-8 P-9 PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSH SSZ T5K Z5R ZCA ~G- AACTN AAIAV AFCTW AFKWA AJOXV AMFUW RCE RIG SSI AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c432t-ddd2bc0f7e07fb9687373230df35c16dcb8c39c0d3343561d6bded6b17c2f8073 |
IEDL.DBID | .~1 |
ISSN | 1471-4922 1471-5007 |
IngestDate | Thu May 22 01:43:11 EDT 2025 Mon Aug 18 09:43:24 EDT 2025 Mon Jul 21 06:00:14 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 Tue Jul 01 05:01:49 EDT 2025 Tue Jun 18 08:50:48 EDT 2024 Tue Aug 26 16:31:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Plasmodium malaria vectors Anopheles transgenesis population modification |
Language | English |
License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-ddd2bc0f7e07fb9687373230df35c16dcb8c39c0d3343561d6bded6b17c2f8073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4605-092X 0009-0005-6655-0894 0000-0001-6755-8111 0009-0006-5205-7449 |
PMID | 38760256 |
PQID | 3056670065 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3153674924 proquest_miscellaneous_3056670065 pubmed_primary_38760256 crossref_primary_10_1016_j_pt_2024_04_010 crossref_citationtrail_10_1016_j_pt_2024_04_010 elsevier_sciencedirect_doi_10_1016_j_pt_2024_04_010 elsevier_clinicalkey_doi_10_1016_j_pt_2024_04_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in parasitology |
PublicationTitleAlternate | Trends Parasitol |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Simões (bb0335) 2017; 8 Kandul (bb0550) 2021; 10 Dong (bb0305) 2012; 12 Benedict (bb0500) 2023 Pham (bb0065) 2019; 15 Golnar (bb0560) 2021; 39 Osta (bb0330) 2004; 303 Doudna, Charpentier (bb0420) 2014; 346 Chandrasegaran (bb0015) 2020; 36 Fang (bb0385) 2011; 331 Meister (bb0270) 2005; 102 Klug (bb0355) 2023; 19 Kojin (bb0395) 2016; 15 Marshall, North (bb0565) 2023 D'Amato (bb0545) 2024; 15 Garrood (bb0555) 2021; 118 Zhang (bb0245) 2020; 10 Sousa (bb0250) 2020; 16 Overton (bb0525) 2023 O'Brochta (bb0350) 2019; 18 James (bb0450) 2020; 20 Moreira (bb0405) 2002; 277 Wang (bb0465) 2022; 18 Volohonsky (bb0300) 2017; 13 Simões (bb0105) 2017; 67 Gendrin (bb0150) 2017; 9 Dong (bb0320) 2020; 16 Berghammer (bb0225) 1999; 402 Marshall (bb0485) 2019; 10 Sumitani (bb0375) 2013; 22 Garrood (bb0425) 2022; 13 Hammond (bb0520) 2017; 13 Hoermann (bb0125) 2022; 8 Devos (bb0505) 2022; 42 Das (bb0360) 2009 Lombardo (bb0205) 2005; 14 Rodrigues (bb0145) 2012; 7 Dimopoulos (bb0325) 2023 Corby-Harris (bb0310) 2010; 6 Isaacs (bb0365) 2011; 7 World Health Organization (bb0005) 2023 Carballar-Lejarazú (bb0070) 2023; 120 Ghosh, Jacobs-Lorena (bb0085) 2009; 12 Carter (bb0115) 2013; 9 Shaw (bb0460) 2022; 38 Kyrou (bb0430) 2018; 36 Dennison (bb0315) 2015; 49 Ghosh (bb0380) 2001; 98 Pascini (bb0120) 2022; 13 Powell (bb0455) 2022; 221 Pondeville (bb0210) 2020; 120 Hammond (bb0050) 2016; 34 Ukegbu (bb0260) 2020; 117 Catteruccia, Levashina (bb0130) 2009; 555 Catteruccia (bb0135) 2000; 405 Dong (bb0295) 2011; 7 Isaacs (bb0370) 2012; 109 Taxiarchi (bb0535) 2021; 12 Connolly (bb0515) 2023; 41 Oringanje (bb0100) 2021; 12 World Health Organization (bb0495) 2014 Sun (bb0055) 2017; 8 Edwards (bb0185) 1997; 27 Anderson (bb0220) 2020; 9 Simões (bb0110) 2022; 20 Hoermann (bb0445) 2021; 10 Chang (bb0475) 2021; 128 Benedict, Robinson (bb0040) 2003; 19 Graumans (bb0345) 2020; 36 Menard, Dondorp (bb0025) 2017; 7 Laurens (bb0030) 2018; 72 Kumar (bb0095) 2018; 9 Magnusson (bb0235) 2011; 6 Adolfi (bb0540) 2020; 11 Nourani (bb0570) 2023; 109 Champer (bb0530) 2018; 115 Dong (bb0160) 2018; 14 Chen (bb0190) 2007; 76 Dong (bb0175) 2020; 6 Jin (bb0265) 2024; 164 Carballar-Lejarazú (bb0440) 2020; 117 Whitten (bb0080) 2006; 28 Kormos (bb0580) 2023; 11 Bahia (bb0280) 2011; 5 Zakovic, Levashina (bb0285) 2017; 7 Belavilas-Trovas (bb0470) 2023; 19 Alphey, Andreasen (bb0045) 2002; 121 Yamamoto (bb0410) 2016; 12 Garver (bb0140) 2009; 5 Caragata (bb0035) 2020; 74 Schmidt (bb0510) 2020; 11 Green (bb0180) 2023; 12 Yang (bb0340) 2019; 217 Carballar-Lejarazú, James (bb0415) 2017; 111 Catteruccia (bb0230) 2005; 23 Dinglasan (bb0390) 2007; 104 Clayton (bb0090) 2014; 6 Gantz (bb0165) 2015; 112 Yoshida, Watanabe (bb0200) 2006; 15 Pike (bb0480) 2017; 357 Nash (bb0240) 2019; 8 Lavazec, Bourgouin (bb0490) 2008; 10 Guissou (bb0575) 2022; 22 Windbichler (bb0060) 2011; 473 Yoshida (bb0400) 2007; 3 Cowman (bb0075) 2016; 167 Garver (bb0290) 2012; 8 Bottino-Rojas, James (bb0170) 2022; 13 Lee (bb0010) 2018; 45 Bhatt (bb0020) 2015; 526 Ito (bb0155) 2002; 417 Simões (bb0275) 2018; 34 Abraham (bb0195) 2005; 14 Terradas (bb0215) 2022; 12 Hammond (bb0435) 2021; 12 Feng (bb0255) 2022; 7 Hammond (10.1016/j.pt.2024.04.010_bb0050) 2016; 34 Wang (10.1016/j.pt.2024.04.010_bb0465) 2022; 18 Dong (10.1016/j.pt.2024.04.010_bb0295) 2011; 7 Lavazec (10.1016/j.pt.2024.04.010_bb0490) 2008; 10 Champer (10.1016/j.pt.2024.04.010_bb0530) 2018; 115 Kumar (10.1016/j.pt.2024.04.010_bb0095) 2018; 9 Yamamoto (10.1016/j.pt.2024.04.010_bb0410) 2016; 12 Pike (10.1016/j.pt.2024.04.010_bb0480) 2017; 357 Benedict (10.1016/j.pt.2024.04.010_bb0040) 2003; 19 Anderson (10.1016/j.pt.2024.04.010_bb0220) 2020; 9 Catteruccia (10.1016/j.pt.2024.04.010_bb0230) 2005; 23 D'Amato (10.1016/j.pt.2024.04.010_bb0545) 2024; 15 Sun (10.1016/j.pt.2024.04.010_bb0055) 2017; 8 Menard (10.1016/j.pt.2024.04.010_bb0025) 2017; 7 Kandul (10.1016/j.pt.2024.04.010_bb0550) 2021; 10 Guissou (10.1016/j.pt.2024.04.010_bb0575) 2022; 22 Feng (10.1016/j.pt.2024.04.010_bb0255) 2022; 7 Edwards (10.1016/j.pt.2024.04.010_bb0185) 1997; 27 Chandrasegaran (10.1016/j.pt.2024.04.010_bb0015) 2020; 36 Overton (10.1016/j.pt.2024.04.010_bb0525) 2023 Garver (10.1016/j.pt.2024.04.010_bb0140) 2009; 5 Connolly (10.1016/j.pt.2024.04.010_bb0515) 2023; 41 Hoermann (10.1016/j.pt.2024.04.010_bb0125) 2022; 8 Garver (10.1016/j.pt.2024.04.010_bb0290) 2012; 8 Adolfi (10.1016/j.pt.2024.04.010_bb0540) 2020; 11 Lee (10.1016/j.pt.2024.04.010_bb0010) 2018; 45 Carballar-Lejarazú (10.1016/j.pt.2024.04.010_bb0415) 2017; 111 Devos (10.1016/j.pt.2024.04.010_bb0505) 2022; 42 Fang (10.1016/j.pt.2024.04.010_bb0385) 2011; 331 Marshall (10.1016/j.pt.2024.04.010_bb0565) 2023 Berghammer (10.1016/j.pt.2024.04.010_bb0225) 1999; 402 Alphey (10.1016/j.pt.2024.04.010_bb0045) 2002; 121 Simões (10.1016/j.pt.2024.04.010_bb0110) 2022; 20 Terradas (10.1016/j.pt.2024.04.010_bb0215) 2022; 12 O'Brochta (10.1016/j.pt.2024.04.010_bb0350) 2019; 18 Osta (10.1016/j.pt.2024.04.010_bb0330) 2004; 303 James (10.1016/j.pt.2024.04.010_bb0450) 2020; 20 Pondeville (10.1016/j.pt.2024.04.010_bb0210) 2020; 120 Green (10.1016/j.pt.2024.04.010_bb0180) 2023; 12 Marshall (10.1016/j.pt.2024.04.010_bb0485) 2019; 10 Clayton (10.1016/j.pt.2024.04.010_bb0090) 2014; 6 Schmidt (10.1016/j.pt.2024.04.010_bb0510) 2020; 11 Graumans (10.1016/j.pt.2024.04.010_bb0345) 2020; 36 Nourani (10.1016/j.pt.2024.04.010_bb0570) 2023; 109 Lombardo (10.1016/j.pt.2024.04.010_bb0205) 2005; 14 Powell (10.1016/j.pt.2024.04.010_bb0455) 2022; 221 Pham (10.1016/j.pt.2024.04.010_bb0065) 2019; 15 Oringanje (10.1016/j.pt.2024.04.010_bb0100) 2021; 12 Caragata (10.1016/j.pt.2024.04.010_bb0035) 2020; 74 Belavilas-Trovas (10.1016/j.pt.2024.04.010_bb0470) 2023; 19 Yoshida (10.1016/j.pt.2024.04.010_bb0200) 2006; 15 Corby-Harris (10.1016/j.pt.2024.04.010_bb0310) 2010; 6 Jin (10.1016/j.pt.2024.04.010_bb0265) 2024; 164 Simões (10.1016/j.pt.2024.04.010_bb0275) 2018; 34 Ukegbu (10.1016/j.pt.2024.04.010_bb0260) 2020; 117 Magnusson (10.1016/j.pt.2024.04.010_bb0235) 2011; 6 Volohonsky (10.1016/j.pt.2024.04.010_bb0300) 2017; 13 Kormos (10.1016/j.pt.2024.04.010_bb0580) 2023; 11 Hoermann (10.1016/j.pt.2024.04.010_bb0445) 2021; 10 Dong (10.1016/j.pt.2024.04.010_bb0160) 2018; 14 Taxiarchi (10.1016/j.pt.2024.04.010_bb0535) 2021; 12 Cowman (10.1016/j.pt.2024.04.010_bb0075) 2016; 167 Sumitani (10.1016/j.pt.2024.04.010_bb0375) 2013; 22 Kyrou (10.1016/j.pt.2024.04.010_bb0430) 2018; 36 Dennison (10.1016/j.pt.2024.04.010_bb0315) 2015; 49 Meister (10.1016/j.pt.2024.04.010_bb0270) 2005; 102 Isaacs (10.1016/j.pt.2024.04.010_bb0365) 2011; 7 Pascini (10.1016/j.pt.2024.04.010_bb0120) 2022; 13 Gantz (10.1016/j.pt.2024.04.010_bb0165) 2015; 112 Ghosh (10.1016/j.pt.2024.04.010_bb0085) 2009; 12 Laurens (10.1016/j.pt.2024.04.010_bb0030) 2018; 72 Ito (10.1016/j.pt.2024.04.010_bb0155) 2002; 417 World Health Organization (10.1016/j.pt.2024.04.010_bb0005) 2023 Dong (10.1016/j.pt.2024.04.010_bb0320) 2020; 16 Simões (10.1016/j.pt.2024.04.010_bb0335) 2017; 8 Das (10.1016/j.pt.2024.04.010_bb0360) 2009 Rodrigues (10.1016/j.pt.2024.04.010_bb0145) 2012; 7 Catteruccia (10.1016/j.pt.2024.04.010_bb0130) 2009; 555 Nash (10.1016/j.pt.2024.04.010_bb0240) 2019; 8 Whitten (10.1016/j.pt.2024.04.010_bb0080) 2006; 28 Bottino-Rojas (10.1016/j.pt.2024.04.010_bb0170) 2022; 13 Yang (10.1016/j.pt.2024.04.010_bb0340) 2019; 217 Gendrin (10.1016/j.pt.2024.04.010_bb0150) 2017; 9 Ghosh (10.1016/j.pt.2024.04.010_bb0380) 2001; 98 Chang (10.1016/j.pt.2024.04.010_bb0475) 2021; 128 Bhatt (10.1016/j.pt.2024.04.010_bb0020) 2015; 526 Bahia (10.1016/j.pt.2024.04.010_bb0280) 2011; 5 Hammond (10.1016/j.pt.2024.04.010_bb0435) 2021; 12 Moreira (10.1016/j.pt.2024.04.010_bb0405) 2002; 277 Carballar-Lejarazú (10.1016/j.pt.2024.04.010_bb0440) 2020; 117 Yoshida (10.1016/j.pt.2024.04.010_bb0400) 2007; 3 Catteruccia (10.1016/j.pt.2024.04.010_bb0135) 2000; 405 Carballar-Lejarazú (10.1016/j.pt.2024.04.010_bb0070) 2023; 120 Windbichler (10.1016/j.pt.2024.04.010_bb0060) 2011; 473 Garrood (10.1016/j.pt.2024.04.010_bb0555) 2021; 118 Shaw (10.1016/j.pt.2024.04.010_bb0460) 2022; 38 Dinglasan (10.1016/j.pt.2024.04.010_bb0390) 2007; 104 Golnar (10.1016/j.pt.2024.04.010_bb0560) 2021; 39 Zakovic (10.1016/j.pt.2024.04.010_bb0285) 2017; 7 Sousa (10.1016/j.pt.2024.04.010_bb0250) 2020; 16 Kojin (10.1016/j.pt.2024.04.010_bb0395) 2016; 15 Carter (10.1016/j.pt.2024.04.010_bb0115) 2013; 9 Benedict (10.1016/j.pt.2024.04.010_bb0500) 2023 Hammond (10.1016/j.pt.2024.04.010_bb0520) 2017; 13 Zhang (10.1016/j.pt.2024.04.010_bb0245) 2020; 10 Isaacs (10.1016/j.pt.2024.04.010_bb0370) 2012; 109 Simões (10.1016/j.pt.2024.04.010_bb0105) 2017; 67 Dong (10.1016/j.pt.2024.04.010_bb0305) 2012; 12 Klug (10.1016/j.pt.2024.04.010_bb0355) 2023; 19 Doudna (10.1016/j.pt.2024.04.010_bb0420) 2014; 346 Abraham (10.1016/j.pt.2024.04.010_bb0195) 2005; 14 World Health Organization (10.1016/j.pt.2024.04.010_bb0495) 2014 Dong (10.1016/j.pt.2024.04.010_bb0175) 2020; 6 Dimopoulos (10.1016/j.pt.2024.04.010_bb0325) 2023 Chen (10.1016/j.pt.2024.04.010_bb0190) 2007; 76 Garrood (10.1016/j.pt.2024.04.010_bb0425) 2022; 13 |
References_xml | – volume: 34 start-page: 78 year: 2016 end-page: 83 ident: bb0050 article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector publication-title: Nat. Biotechnol. – volume: 217 year: 2019 ident: bb0340 article-title: Disruption of mosGILT in publication-title: J. Exp. Med. – volume: 41 start-page: 154 year: 2023 end-page: 164 ident: bb0515 article-title: Gene drive in species complexes: defining target organisms publication-title: Trends Biotechnol. – volume: 22 start-page: 41 year: 2013 end-page: 51 ident: bb0375 article-title: Reduction of malaria transmission by transgenic mosquitoes expressing an antisporozoite antibody in their salivary glands publication-title: Insect Mol. Biol. – volume: 20 start-page: 237 year: 2020 end-page: 251 ident: bb0450 article-title: Toward the definition of efficacy and safety criteria for advancing gene drive-modified mosquitoes to field testing publication-title: Vector Borne Zoonotic Dis. – volume: 109 year: 2023 ident: bb0570 article-title: CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for publication-title: Infect. Genet. Evol. – volume: 405 start-page: 959 year: 2000 end-page: 962 ident: bb0135 article-title: Stable germline transformation of the malaria mosquito publication-title: Nature – volume: 6 start-page: 169 year: 2014 end-page: 181 ident: bb0090 article-title: The publication-title: J. Innate Immun. – volume: 14 year: 2018 ident: bb0160 article-title: CRISPR/Cas9-mediated gene knockout of publication-title: PLoS Pathog. – volume: 76 start-page: 1118 year: 2007 end-page: 1124 ident: bb0190 article-title: The publication-title: Am. J. Trop. Med. Hyg. – volume: 11 start-page: 1425 year: 2020 ident: bb0510 article-title: Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of publication-title: Nat. Commun. – volume: 7 year: 2011 ident: bb0365 article-title: Engineered resistance to publication-title: PLoS Pathog. – volume: 8 year: 2012 ident: bb0290 article-title: Imd pathway factors and effectors in infection intensity-dependent anti- publication-title: PLoS Pathog. – volume: 109 start-page: E1922 year: 2012 end-page: E1930 ident: bb0370 article-title: Transgenic publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 year: 2016 ident: bb0410 article-title: Inhibition of malaria infection in transgenic anopheline mosquitoes lacking salivary gland cells publication-title: PLoS Pathog. – volume: 72 start-page: 273 year: 2018 end-page: 292 ident: bb0030 article-title: The promise of a malaria vaccine-are we closer? publication-title: Ann. Rev. Microbiol. – volume: 128 year: 2021 ident: bb0475 article-title: Regulation of antimicrobial peptides by juvenile hormone and its receptor, methoprene-tolerant, in the mosquito publication-title: Insect Biochem. Mol. Biol. – volume: 346 year: 2014 ident: bb0420 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science – volume: 167 start-page: 610 year: 2016 end-page: 624 ident: bb0075 article-title: Malaria: biology and disease publication-title: Cell – volume: 3 year: 2007 ident: bb0400 article-title: Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development publication-title: PLoS Pathog. – volume: 120 year: 2023 ident: bb0070 article-title: Dual effector population modification gene-drive strains of the African malaria mosquitoes, publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 36 start-page: 393 year: 2020 end-page: 403 ident: bb0015 article-title: Linking mosquito ecology, traits, behavior, and disease transmission publication-title: Trends Parasitol. – volume: 28 start-page: 121 year: 2006 end-page: 130 ident: bb0080 article-title: Mosquito midguts and malaria: cell biology, compartmentalization and immunology publication-title: Parasite Immunol. – volume: 164 year: 2024 ident: bb0265 article-title: Serine protease homolog pairs CLIPA4-A6, A4-A7Δ, and A4-A12 act as cofactors for proteolytic activation of prophenoloxidase-2 and -7 in publication-title: Insect Biochem. Mol. Biol. – volume: 36 start-page: 1062 year: 2018 end-page: 1066 ident: bb0430 article-title: A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged publication-title: Nat. Biotechnol. – volume: 112 start-page: E6736 year: 2015 end-page: E6743 ident: bb0165 article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 69 year: 2009 end-page: 85 ident: bb0360 article-title: Specificity of the innate immune system: a closer look at the mosquito pattern-recognition receptor repertoire publication-title: Insect Infection and Immunity: Evolution, Ecology, and Mechanisms – volume: 10 start-page: 845 year: 2008 end-page: 849 ident: bb0490 article-title: Mosquito-based transmission blocking vaccines for interrupting publication-title: Microbes Infect. – volume: 27 start-page: 1063 year: 1997 end-page: 1072 ident: bb0185 article-title: Rapid induction by a blood meal of a carboxypeptidase gene in the gut of the mosquito publication-title: Insect Biochem. Mol. Biol. – volume: 12 start-page: 521 year: 2012 end-page: 530 ident: bb0305 article-title: Anopheles NF-κB-regulated splicing factors direct pathogen-specific repertoires of the hypervariable pattern recognition receptor AgDscam publication-title: Cell Host Microbe – volume: 118 year: 2021 ident: bb0555 article-title: Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 3 year: 2023 end-page: 18 ident: bb0325 article-title: Current scenario of malaria and the transformative power of gene drive-based technologies publication-title: Mosquito Gene Drives and the Malaria Eradication Agenda – volume: 555 start-page: 63 year: 2009 end-page: 75 ident: bb0130 article-title: RNAi in the malaria vector, publication-title: Methods Mol. Biol. – volume: 221 year: 2022 ident: bb0455 article-title: Modifying mosquitoes to suppress disease transmission: is the long wait over? publication-title: Genetics – volume: 10 year: 2021 ident: bb0550 article-title: A confinable home-and-rescue gene drive for population modification publication-title: eLife – volume: 12 year: 2022 ident: bb0215 article-title: High-resolution in situ analysis of Cas9 germline transcript distributions in gene-drive publication-title: G3 (Bethesda) – volume: 6 year: 2010 ident: bb0310 article-title: Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in publication-title: PLoS Pathog. – volume: 11 start-page: 5553 year: 2020 ident: bb0540 article-title: Efficient population modification gene-drive rescue system in the malaria mosquito publication-title: Nat. Commun. – volume: 5 year: 2009 ident: bb0140 article-title: Caspar controls resistance to publication-title: PLoS Pathog. – volume: 9 start-page: 678 year: 2020 end-page: 681 ident: bb0220 article-title: Expanding the CRISPR toolbox in culicine mosquitoes: in vitro validation of Pol III promoters publication-title: ACS Synth. Biol. – volume: 34 start-page: 603 year: 2018 end-page: 616 ident: bb0275 article-title: Diverse host and restriction factors regulate mosquito-pathogen interactions publication-title: Trends Parasitol. – volume: 36 start-page: 705 year: 2020 end-page: 716 ident: bb0345 article-title: When is a publication-title: Trends Parasitol. – volume: 473 start-page: 212 year: 2011 end-page: 215 ident: bb0060 article-title: A synthetic homing endonuclease-based gene drive system in the human malaria mosquito publication-title: Nature – volume: 8 year: 2019 ident: bb0240 article-title: Integral gene drives for population replacement publication-title: Biol. Open – volume: 115 start-page: 5522 year: 2018 end-page: 5527 ident: bb0530 article-title: Reducing resistance allele formation in CRISPR gene drive publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 22 start-page: 18 year: 2022 end-page: 28 ident: bb0575 article-title: Preparing an insectary in Burkina Faso to support research in genetic technologies for malaria control publication-title: Vector Borne Zoonotic Dis. – volume: 120 year: 2020 ident: bb0210 article-title: Hemocyte-targeted gene expression in the female malaria mosquito using the hemolectin promoter from publication-title: Insect Biochem. Mol. Biol. – volume: 6 year: 2011 ident: bb0235 article-title: Transcription regulation of sex-biased genes during ontogeny in the malaria vector publication-title: PLoS One – volume: 331 start-page: 1074 year: 2011 end-page: 1077 ident: bb0385 article-title: Development of transgenic fungi that kill human malaria parasites in mosquitoes publication-title: Science – volume: 10 year: 2021 ident: bb0445 article-title: Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement publication-title: eLife – volume: 6 year: 2020 ident: bb0175 article-title: Versatile transgenic multistage effector-gene combinations for publication-title: Sci. Adv. – volume: 8 year: 2017 ident: bb0335 article-title: Immune regulation of publication-title: mBio – volume: 15 start-page: 952 year: 2024 ident: bb0545 article-title: Anti-CRISPR publication-title: Nat. Commun. – volume: 303 start-page: 2030 year: 2004 end-page: 2032 ident: bb0330 article-title: Effects of mosquito genes on publication-title: Science – volume: 38 start-page: 124 year: 2022 end-page: 135 ident: bb0460 article-title: development in publication-title: Trends Parasitol. – volume: 12 year: 2023 ident: bb0180 article-title: A population modification gene drive targeting both Saglin and Lipophorin impairs publication-title: eLife – volume: 18 start-page: 2 year: 2019 ident: bb0350 article-title: Is Saglin a mosquito salivary gland receptor for publication-title: Malar. J. – volume: 13 year: 2017 ident: bb0300 article-title: Transgenic expression of the anti-parasitic factor TEP1 in the malaria mosquito publication-title: PLoS Pathog. – volume: 9 year: 2013 ident: bb0115 article-title: Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of publication-title: PLoS Pathog. – year: 2014 ident: bb0495 article-title: Guidance Framework for Testing of Genetically Modified Mosquitoes – volume: 74 start-page: 455 year: 2020 end-page: 475 ident: bb0035 article-title: Prospects and pitfalls: next-generation tools to control mosquito-transmitted disease publication-title: Ann. Rev. Microbiol. – volume: 15 start-page: 153 year: 2016 ident: bb0395 article-title: Endogenously-expressed NH2-terminus of circumsporozoite protein interferes with sporozoite invasion of mosquito salivary glands publication-title: Malar. J. – volume: 7 year: 2011 ident: bb0295 article-title: Engineered publication-title: PLoS Pathog. – volume: 42 start-page: 254 year: 2022 end-page: 270 ident: bb0505 article-title: Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment publication-title: Crit. Rev. Biotechnol. – volume: 16 year: 2020 ident: bb0250 article-title: The CLIP-domain serine protease CLIPC9 regulates melanization downstream of SPCLIP1, CLIPA8, and CLIPA28 in the malaria vector publication-title: PLoS Pathog. – volume: 13 year: 2022 ident: bb0425 article-title: Driving down malaria transmission with engineered gene drives publication-title: Front. Genet. – volume: 12 start-page: 119 year: 2021 ident: bb0100 article-title: Overexpression of activated AMPK in the publication-title: Genes (Basel) – volume: 20 year: 2022 ident: bb0110 article-title: C-type lectin 4 regulates broad-spectrum melanization-based refractoriness to malaria parasites publication-title: PLoS Biol. – volume: 16 year: 2020 ident: bb0320 article-title: Broad spectrum immunomodulatory effects of publication-title: PLoS Pathog. – volume: 9 start-page: 333 year: 2017 end-page: 342 ident: bb0150 article-title: The peptidoglycan recognition proteins PGRPLA and PGRPLB regulate publication-title: J. Innate Immun. – volume: 13 start-page: 2949 year: 2022 ident: bb0120 article-title: Transgenic publication-title: Nat. Commun. – year: 2023 ident: bb0525 article-title: Upper bound on the mutational burden imposed by a CRISPR-Cas9 gene-drive element publication-title: bioRxiv – volume: 98 start-page: 13278 year: 2001 end-page: 13281 ident: bb0380 article-title: Targeting publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 year: 2022 ident: bb0125 article-title: Gene drive mosquitoes can aid malaria elimination by retarding publication-title: Sci. Adv. – volume: 8 start-page: 608 year: 2017 ident: bb0055 article-title: Progress and prospects of CRISPR/Cas systems in insects and other arthropods publication-title: Front. Physiol. – volume: 39 start-page: 211 year: 2021 end-page: 214 ident: bb0560 article-title: Embracing dynamic models for gene drive management publication-title: Trends Biotechnol. – volume: 18 year: 2022 ident: bb0465 article-title: Ecdysone signaling mediates the trade-off between immunity and reproduction via suppression of amyloids in the mosquito publication-title: PLoS Pathog. – volume: 7 start-page: 258 year: 2017 ident: bb0285 article-title: NF-κB-like signaling pathway REL2 in immune defenses of the malaria vector publication-title: Front. Cell. Infect. Microbiol. – volume: 357 start-page: 1396 year: 2017 end-page: 1399 ident: bb0480 article-title: Changes in the microbiota cause genetically modified publication-title: Science – volume: 12 start-page: 3977 year: 2021 ident: bb0535 article-title: A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression publication-title: Nat. Commun. – volume: 121 start-page: 173 year: 2002 end-page: 178 ident: bb0045 article-title: Dominant lethality and insect population control publication-title: Mol. Biochem. Parasitol. – volume: 402 start-page: 370 year: 1999 end-page: 371 ident: bb0225 article-title: A universal marker for transgenic insects publication-title: Nature – volume: 12 start-page: 394 year: 2009 end-page: 400 ident: bb0085 article-title: sporozoite invasion of the mosquito salivary gland publication-title: Curr. Opin. Microbiol. – volume: 417 start-page: 452 year: 2002 end-page: 455 ident: bb0155 article-title: Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite publication-title: Nature – volume: 526 start-page: 207 year: 2015 end-page: 211 ident: bb0020 article-title: The effect of malaria control on publication-title: Nature – volume: 14 start-page: 207 year: 2005 end-page: 216 ident: bb0205 article-title: An publication-title: Insect Mol. Biol. – volume: 67 start-page: 257 year: 2017 end-page: 265 ident: bb0105 article-title: The publication-title: Dev. Comp. Immunol. – volume: 111 start-page: 424 year: 2017 end-page: 435 ident: bb0415 article-title: Population modification of anopheline species to control malaria transmission publication-title: Pathog. Glob. Health – volume: 5 year: 2011 ident: bb0280 article-title: The JAK-STAT pathway controls publication-title: PLoS Negl. Trop. Dis. – volume: 117 start-page: 22805 year: 2020 end-page: 22814 ident: bb0440 article-title: Next-generation gene drive for population modification of the malaria vector mosquito, publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 13 year: 2017 ident: bb0520 article-title: The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito publication-title: PLoS Genet. – volume: 10 year: 2020 ident: bb0245 article-title: CLIPB10 is a terminal protease in the regulatory network that controls melanization in the African malaria mosquito publication-title: Front. Cell. Infect. Microbiol. – start-page: 115 year: 2023 end-page: 140 ident: bb0500 article-title: Large cage trials of gene drive mosquitoes: does size matter? publication-title: Mosquito Gene Drives and the Malaria Eradication Agenda – volume: 19 start-page: 349 year: 2003 end-page: 355 ident: bb0040 article-title: The first releases of transgenic mosquitoes: an argument for the sterile insect technique publication-title: Trends Parasitol. – volume: 117 start-page: 7363 year: 2020 end-page: 7373 ident: bb0260 article-title: PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 14 start-page: 271 year: 2005 end-page: 279 ident: bb0195 article-title: Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements publication-title: Insect Mol. Biol. – volume: 10 start-page: 1072 year: 2019 ident: bb0485 article-title: Winning the tug-of-war between effector gene design and pathogen evolution in vector population replacement strategies publication-title: Front. Genet. – volume: 15 start-page: 403 year: 2006 end-page: 410 ident: bb0200 article-title: Robust salivary gland-specific transgene expression in publication-title: Insect Mol. Biol. – volume: 23 start-page: 1414 year: 2005 end-page: 1417 ident: bb0230 article-title: An publication-title: Nat. Biotechnol. – volume: 19 year: 2023 ident: bb0355 article-title: The salivary protein Saglin facilitates efficient midgut colonization of publication-title: PLoS Pathog. – volume: 11 year: 2023 ident: bb0580 article-title: Conceptual risk assessment of mosquito population modification gene-drive systems to control malaria transmission: preliminary hazards list workshops publication-title: Front. Bioeng. Biotechnol. – volume: 12 start-page: 4589 year: 2021 ident: bb0435 article-title: Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field publication-title: Nat. Commun. – volume: 104 start-page: 13461 year: 2007 end-page: 13466 ident: bb0390 article-title: Disruption of publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2023 ident: bb0005 article-title: World Malaria Report 2023 – volume: 277 start-page: 40839 year: 2002 end-page: 40843 ident: bb0405 article-title: Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes publication-title: J. Biol. Chem. – volume: 7 year: 2017 ident: bb0025 article-title: Antimalarial drug resistance: a threat to malaria elimination publication-title: Cold Spring Harb. Perspect. Med. – volume: 45 start-page: 393 year: 2018 end-page: 407 ident: bb0010 article-title: Mosquito-borne diseases publication-title: Prim. Care – start-page: 197 year: 2023 end-page: 237 ident: bb0565 article-title: Modeling priorities as gene drive mosquito projects transition from lab to field publication-title: Mosquito Gene Drives and the Malaria Eradication Agenda – volume: 102 start-page: 11420 year: 2005 end-page: 11425 ident: bb0270 article-title: Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 19 year: 2023 ident: bb0470 article-title: Long non-coding RNAs regulate publication-title: PLoS Pathog. – volume: 15 year: 2019 ident: bb0065 article-title: Experimental population modification of the malaria vector mosquito, publication-title: PLoS Genet. – volume: 9 start-page: 95 year: 2018 ident: bb0095 article-title: Mosquito innate immunity publication-title: Insects – volume: 7 start-page: 707 year: 2022 end-page: 715 ident: bb0255 article-title: Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota publication-title: Nat. Microbiol. – volume: 7 year: 2012 ident: bb0145 article-title: An epithelial serine protease, AgESP, is required for publication-title: PLoS One – volume: 13 start-page: 16 year: 2022 ident: bb0170 article-title: Use of insect promoters in genetic engineering to control mosquito-borne diseases publication-title: Biomolecules – volume: 49 start-page: 170 year: 2015 end-page: 178 ident: bb0315 article-title: MicroRNA-regulation of publication-title: Dev. Comp. Immunol. – volume: 303 start-page: 2030 year: 2004 ident: 10.1016/j.pt.2024.04.010_bb0330 article-title: Effects of mosquito genes on Plasmodium development publication-title: Science doi: 10.1126/science.1091789 – volume: 8 year: 2017 ident: 10.1016/j.pt.2024.04.010_bb0335 article-title: Immune regulation of Plasmodium is Anopheles species specific and infection intensity dependent publication-title: mBio doi: 10.1128/mBio.01631-17 – volume: 19 start-page: 349 year: 2003 ident: 10.1016/j.pt.2024.04.010_bb0040 article-title: The first releases of transgenic mosquitoes: an argument for the sterile insect technique publication-title: Trends Parasitol. doi: 10.1016/S1471-4922(03)00144-2 – volume: 39 start-page: 211 year: 2021 ident: 10.1016/j.pt.2024.04.010_bb0560 article-title: Embracing dynamic models for gene drive management publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.08.011 – volume: 38 start-page: 124 year: 2022 ident: 10.1016/j.pt.2024.04.010_bb0460 article-title: Plasmodium development in Anopheles: a tale of shared resources publication-title: Trends Parasitol. doi: 10.1016/j.pt.2021.08.009 – volume: 12 year: 2023 ident: 10.1016/j.pt.2024.04.010_bb0180 article-title: A population modification gene drive targeting both Saglin and Lipophorin impairs Plasmodium transmission in Anopheles mosquitoes publication-title: eLife doi: 10.7554/eLife.93142 – volume: 128 year: 2021 ident: 10.1016/j.pt.2024.04.010_bb0475 article-title: Regulation of antimicrobial peptides by juvenile hormone and its receptor, methoprene-tolerant, in the mosquito Aedes aegypti publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2020.103509 – volume: 9 start-page: 95 year: 2018 ident: 10.1016/j.pt.2024.04.010_bb0095 article-title: Mosquito innate immunity publication-title: Insects doi: 10.3390/insects9030095 – volume: 7 year: 2012 ident: 10.1016/j.pt.2024.04.010_bb0145 article-title: An epithelial serine protease, AgESP, is required for Plasmodium invasion in the mosquito Anopheles gambiae publication-title: PLoS One doi: 10.1371/journal.pone.0035210 – volume: 112 start-page: E6736 year: 2015 ident: 10.1016/j.pt.2024.04.010_bb0165 article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1521077112 – volume: 402 start-page: 370 year: 1999 ident: 10.1016/j.pt.2024.04.010_bb0225 article-title: A universal marker for transgenic insects publication-title: Nature doi: 10.1038/46463 – volume: 11 year: 2023 ident: 10.1016/j.pt.2024.04.010_bb0580 article-title: Conceptual risk assessment of mosquito population modification gene-drive systems to control malaria transmission: preliminary hazards list workshops publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2023.1261123 – volume: 15 start-page: 153 year: 2016 ident: 10.1016/j.pt.2024.04.010_bb0395 article-title: Endogenously-expressed NH2-terminus of circumsporozoite protein interferes with sporozoite invasion of mosquito salivary glands publication-title: Malar. J. doi: 10.1186/s12936-016-1207-8 – volume: 14 year: 2018 ident: 10.1016/j.pt.2024.04.010_bb0160 article-title: CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006898 – volume: 15 start-page: 952 year: 2024 ident: 10.1016/j.pt.2024.04.010_bb0545 article-title: Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cages publication-title: Nat. Commun. doi: 10.1038/s41467-024-44907-x – volume: 164 year: 2024 ident: 10.1016/j.pt.2024.04.010_bb0265 article-title: Serine protease homolog pairs CLIPA4-A6, A4-A7Δ, and A4-A12 act as cofactors for proteolytic activation of prophenoloxidase-2 and -7 in Anopheles gambiae publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2023.104048 – volume: 11 start-page: 5553 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0540 article-title: Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi publication-title: Nat. Commun. doi: 10.1038/s41467-020-19426-0 – volume: 6 year: 2011 ident: 10.1016/j.pt.2024.04.010_bb0235 article-title: Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae publication-title: PLoS One doi: 10.1371/journal.pone.0021572 – volume: 41 start-page: 154 year: 2023 ident: 10.1016/j.pt.2024.04.010_bb0515 article-title: Gene drive in species complexes: defining target organisms publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2022.06.013 – volume: 28 start-page: 121 year: 2006 ident: 10.1016/j.pt.2024.04.010_bb0080 article-title: Mosquito midguts and malaria: cell biology, compartmentalization and immunology publication-title: Parasite Immunol. doi: 10.1111/j.1365-3024.2006.00804.x – year: 2014 ident: 10.1016/j.pt.2024.04.010_bb0495 – volume: 10 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0245 article-title: CLIPB10 is a terminal protease in the regulatory network that controls melanization in the African malaria mosquito Anopheles gambiae publication-title: Front. Cell. Infect. Microbiol. – volume: 12 start-page: 4589 year: 2021 ident: 10.1016/j.pt.2024.04.010_bb0435 article-title: Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field publication-title: Nat. Commun. doi: 10.1038/s41467-021-24790-6 – volume: 115 start-page: 5522 year: 2018 ident: 10.1016/j.pt.2024.04.010_bb0530 article-title: Reducing resistance allele formation in CRISPR gene drive publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1720354115 – volume: 7 year: 2017 ident: 10.1016/j.pt.2024.04.010_bb0025 article-title: Antimalarial drug resistance: a threat to malaria elimination publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a025619 – volume: 20 start-page: 237 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0450 article-title: Toward the definition of efficacy and safety criteria for advancing gene drive-modified mosquitoes to field testing publication-title: Vector Borne Zoonotic Dis. doi: 10.1089/vbz.2019.2606 – volume: 473 start-page: 212 year: 2011 ident: 10.1016/j.pt.2024.04.010_bb0060 article-title: A synthetic homing endonuclease-based gene drive system in the human malaria mosquito publication-title: Nature doi: 10.1038/nature09937 – volume: 19 year: 2023 ident: 10.1016/j.pt.2024.04.010_bb0355 article-title: The salivary protein Saglin facilitates efficient midgut colonization of Anopheles mosquitoes by malaria parasites publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1010538 – volume: 6 start-page: 169 year: 2014 ident: 10.1016/j.pt.2024.04.010_bb0090 article-title: The Anopheles innate immune system in the defense against malaria infection publication-title: J. Innate Immun. doi: 10.1159/000353602 – volume: 9 start-page: 678 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0220 article-title: Expanding the CRISPR toolbox in culicine mosquitoes: in vitro validation of Pol III promoters publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.9b00436 – volume: 12 year: 2016 ident: 10.1016/j.pt.2024.04.010_bb0410 article-title: Inhibition of malaria infection in transgenic anopheline mosquitoes lacking salivary gland cells publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005872 – volume: 22 start-page: 18 year: 2022 ident: 10.1016/j.pt.2024.04.010_bb0575 article-title: Preparing an insectary in Burkina Faso to support research in genetic technologies for malaria control publication-title: Vector Borne Zoonotic Dis. – volume: 14 start-page: 207 year: 2005 ident: 10.1016/j.pt.2024.04.010_bb0205 article-title: An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.2004.00549.x – volume: 12 start-page: 119 year: 2021 ident: 10.1016/j.pt.2024.04.010_bb0100 article-title: Overexpression of activated AMPK in the Anopheles stephensi midgut impacts mosquito metabolism, reproduction and Plasmodium resistance publication-title: Genes (Basel) doi: 10.3390/genes12010119 – volume: 13 year: 2022 ident: 10.1016/j.pt.2024.04.010_bb0425 article-title: Driving down malaria transmission with engineered gene drives publication-title: Front. Genet. doi: 10.3389/fgene.2022.891218 – volume: 16 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0250 article-title: The CLIP-domain serine protease CLIPC9 regulates melanization downstream of SPCLIP1, CLIPA8, and CLIPA28 in the malaria vector Anopheles gambiae publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008985 – volume: 12 start-page: 521 year: 2012 ident: 10.1016/j.pt.2024.04.010_bb0305 article-title: Anopheles NF-κB-regulated splicing factors direct pathogen-specific repertoires of the hypervariable pattern recognition receptor AgDscam publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.09.004 – volume: 15 start-page: 403 year: 2006 ident: 10.1016/j.pt.2024.04.010_bb0200 article-title: Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.2006.00645.x – volume: 102 start-page: 11420 year: 2005 ident: 10.1016/j.pt.2024.04.010_bb0270 article-title: Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0504950102 – volume: 23 start-page: 1414 year: 2005 ident: 10.1016/j.pt.2024.04.010_bb0230 article-title: An Anopheles transgenic sexing strain for vector control publication-title: Nat. Biotechnol. doi: 10.1038/nbt1152 – volume: 118 year: 2021 ident: 10.1016/j.pt.2024.04.010_bb0555 article-title: Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2004838117 – volume: 221 year: 2022 ident: 10.1016/j.pt.2024.04.010_bb0455 article-title: Modifying mosquitoes to suppress disease transmission: is the long wait over? publication-title: Genetics doi: 10.1093/genetics/iyac072 – volume: 13 year: 2017 ident: 10.1016/j.pt.2024.04.010_bb0520 article-title: The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007039 – volume: 8 year: 2022 ident: 10.1016/j.pt.2024.04.010_bb0125 article-title: Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development publication-title: Sci. Adv. doi: 10.1126/sciadv.abo1733 – volume: 67 start-page: 257 year: 2017 ident: 10.1016/j.pt.2024.04.010_bb0105 article-title: The Anopheles FBN9 immune factor mediates Plasmodium species-specific defense through transgenic fat body expression publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2016.09.012 – year: 2023 ident: 10.1016/j.pt.2024.04.010_bb0005 – volume: 11 start-page: 1425 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0510 article-title: Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of Anopheles and Aedes mosquitoes publication-title: Nat. Commun. doi: 10.1038/s41467-020-15204-0 – volume: 8 year: 2012 ident: 10.1016/j.pt.2024.04.010_bb0290 article-title: Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002737 – volume: 14 start-page: 271 year: 2005 ident: 10.1016/j.pt.2024.04.010_bb0195 article-title: Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.2004.00557.x – volume: 6 year: 2010 ident: 10.1016/j.pt.2024.04.010_bb0310 article-title: Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes publication-title: PLoS Pathog. doi: 10.1371/annotation/738ac91f-8c41-4bf5-9a39-bddf0b777a89 – volume: 72 start-page: 273 year: 2018 ident: 10.1016/j.pt.2024.04.010_bb0030 article-title: The promise of a malaria vaccine-are we closer? publication-title: Ann. Rev. Microbiol. doi: 10.1146/annurev-micro-090817-062427 – volume: 76 start-page: 1118 year: 2007 ident: 10.1016/j.pt.2024.04.010_bb0190 article-title: The Anopheles gambiae vitellogenin gene (VGT2) promoter directs persistent accumulation of a reporter gene product in transgenic Anopheles stephensi following multiple bloodmeals publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.2007.76.1118 – volume: 34 start-page: 603 year: 2018 ident: 10.1016/j.pt.2024.04.010_bb0275 article-title: Diverse host and restriction factors regulate mosquito-pathogen interactions publication-title: Trends Parasitol. doi: 10.1016/j.pt.2018.04.011 – volume: 98 start-page: 13278 year: 2001 ident: 10.1016/j.pt.2024.04.010_bb0380 article-title: Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.241491198 – volume: 109 year: 2023 ident: 10.1016/j.pt.2024.04.010_bb0570 article-title: CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2023.105419 – volume: 6 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0175 article-title: Versatile transgenic multistage effector-gene combinations for Plasmodium falciparum suppression in Anopheles publication-title: Sci. Adv. doi: 10.1126/sciadv.aay5898 – volume: 13 start-page: 16 year: 2022 ident: 10.1016/j.pt.2024.04.010_bb0170 article-title: Use of insect promoters in genetic engineering to control mosquito-borne diseases publication-title: Biomolecules doi: 10.3390/biom13010016 – volume: 36 start-page: 393 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0015 article-title: Linking mosquito ecology, traits, behavior, and disease transmission publication-title: Trends Parasitol. doi: 10.1016/j.pt.2020.02.001 – volume: 10 year: 2021 ident: 10.1016/j.pt.2024.04.010_bb0445 article-title: Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement publication-title: eLife doi: 10.7554/eLife.58791 – volume: 8 start-page: 608 year: 2017 ident: 10.1016/j.pt.2024.04.010_bb0055 article-title: Progress and prospects of CRISPR/Cas systems in insects and other arthropods publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00608 – volume: 15 year: 2019 ident: 10.1016/j.pt.2024.04.010_bb0065 article-title: Experimental population modification of the malaria vector mosquito, Anopheles stephensi publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008440 – volume: 16 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0320 article-title: Broad spectrum immunomodulatory effects of Anopheles gambiae microRNAs and their use for transgenic suppression of Plasmodium publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008453 – start-page: 115 year: 2023 ident: 10.1016/j.pt.2024.04.010_bb0500 article-title: Large cage trials of gene drive mosquitoes: does size matter? – volume: 5 year: 2009 ident: 10.1016/j.pt.2024.04.010_bb0140 article-title: Caspar controls resistance to Plasmodium falciparum in diverse anopheline species publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000335 – volume: 18 year: 2022 ident: 10.1016/j.pt.2024.04.010_bb0465 article-title: Ecdysone signaling mediates the trade-off between immunity and reproduction via suppression of amyloids in the mosquito Aedes aegypti publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1010837 – volume: 217 year: 2019 ident: 10.1016/j.pt.2024.04.010_bb0340 article-title: Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection publication-title: J. Exp. Med. – volume: 12 start-page: 394 year: 2009 ident: 10.1016/j.pt.2024.04.010_bb0085 article-title: Plasmodium sporozoite invasion of the mosquito salivary gland publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2009.06.010 – volume: 20 year: 2022 ident: 10.1016/j.pt.2024.04.010_bb0110 article-title: C-type lectin 4 regulates broad-spectrum melanization-based refractoriness to malaria parasites publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3001515 – volume: 27 start-page: 1063 year: 1997 ident: 10.1016/j.pt.2024.04.010_bb0185 article-title: Rapid induction by a blood meal of a carboxypeptidase gene in the gut of the mosquito Anopheles gambiae publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/S0965-1748(97)00093-3 – volume: 49 start-page: 170 year: 2015 ident: 10.1016/j.pt.2024.04.010_bb0315 article-title: MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2014.10.016 – volume: 22 start-page: 41 year: 2013 ident: 10.1016/j.pt.2024.04.010_bb0375 article-title: Reduction of malaria transmission by transgenic mosquitoes expressing an antisporozoite antibody in their salivary glands publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.2012.01168.x – volume: 331 start-page: 1074 year: 2011 ident: 10.1016/j.pt.2024.04.010_bb0385 article-title: Development of transgenic fungi that kill human malaria parasites in mosquitoes publication-title: Science doi: 10.1126/science.1199115 – volume: 7 year: 2011 ident: 10.1016/j.pt.2024.04.010_bb0295 article-title: Engineered Anopheles immunity to Plasmodium infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002458 – volume: 19 year: 2023 ident: 10.1016/j.pt.2024.04.010_bb0470 article-title: Long non-coding RNAs regulate Aedes aegypti vector competence for Zika virus and reproduction publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1011440 – volume: 9 year: 2013 ident: 10.1016/j.pt.2024.04.010_bb0115 article-title: Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003790 – volume: 7 year: 2011 ident: 10.1016/j.pt.2024.04.010_bb0365 article-title: Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002017 – start-page: 197 year: 2023 ident: 10.1016/j.pt.2024.04.010_bb0565 article-title: Modeling priorities as gene drive mosquito projects transition from lab to field – start-page: 69 year: 2009 ident: 10.1016/j.pt.2024.04.010_bb0360 article-title: Specificity of the innate immune system: a closer look at the mosquito pattern-recognition receptor repertoire – volume: 74 start-page: 455 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0035 article-title: Prospects and pitfalls: next-generation tools to control mosquito-transmitted disease publication-title: Ann. Rev. Microbiol. doi: 10.1146/annurev-micro-011320-025557 – volume: 13 year: 2017 ident: 10.1016/j.pt.2024.04.010_bb0300 article-title: Transgenic expression of the anti-parasitic factor TEP1 in the malaria mosquito Anopheles gambiae publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006113 – volume: 9 start-page: 333 year: 2017 ident: 10.1016/j.pt.2024.04.010_bb0150 article-title: The peptidoglycan recognition proteins PGRPLA and PGRPLB regulate Anopheles immunity to bacteria and affect infection by Plasmodium publication-title: J. Innate Immun. doi: 10.1159/000452797 – volume: 7 start-page: 707 year: 2022 ident: 10.1016/j.pt.2024.04.010_bb0255 article-title: Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota publication-title: Nat. Microbiol. doi: 10.1038/s41564-022-01099-8 – volume: 45 start-page: 393 year: 2018 ident: 10.1016/j.pt.2024.04.010_bb0010 article-title: Mosquito-borne diseases publication-title: Prim. Care doi: 10.1016/j.pop.2018.05.001 – volume: 417 start-page: 452 year: 2002 ident: 10.1016/j.pt.2024.04.010_bb0155 article-title: Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite publication-title: Nature doi: 10.1038/417452a – start-page: 3 year: 2023 ident: 10.1016/j.pt.2024.04.010_bb0325 article-title: Current scenario of malaria and the transformative power of gene drive-based technologies – volume: 555 start-page: 63 year: 2009 ident: 10.1016/j.pt.2024.04.010_bb0130 article-title: RNAi in the malaria vector, Anopheles gambiae publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60327-295-7_5 – volume: 526 start-page: 207 year: 2015 ident: 10.1016/j.pt.2024.04.010_bb0020 article-title: The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015 publication-title: Nature doi: 10.1038/nature15535 – volume: 10 start-page: 845 year: 2008 ident: 10.1016/j.pt.2024.04.010_bb0490 article-title: Mosquito-based transmission blocking vaccines for interrupting Plasmodium development publication-title: Microbes Infect. doi: 10.1016/j.micinf.2008.05.004 – volume: 10 start-page: 1072 year: 2019 ident: 10.1016/j.pt.2024.04.010_bb0485 article-title: Winning the tug-of-war between effector gene design and pathogen evolution in vector population replacement strategies publication-title: Front. Genet. doi: 10.3389/fgene.2019.01072 – volume: 104 start-page: 13461 year: 2007 ident: 10.1016/j.pt.2024.04.010_bb0390 article-title: Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0702239104 – volume: 111 start-page: 424 year: 2017 ident: 10.1016/j.pt.2024.04.010_bb0415 article-title: Population modification of anopheline species to control malaria transmission publication-title: Pathog. Glob. Health doi: 10.1080/20477724.2018.1427192 – volume: 346 year: 2014 ident: 10.1016/j.pt.2024.04.010_bb0420 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science doi: 10.1126/science.1258096 – volume: 34 start-page: 78 year: 2016 ident: 10.1016/j.pt.2024.04.010_bb0050 article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3439 – volume: 120 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0210 article-title: Hemocyte-targeted gene expression in the female malaria mosquito using the hemolectin promoter from Drosophila publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2020.103339 – volume: 12 year: 2022 ident: 10.1016/j.pt.2024.04.010_bb0215 article-title: High-resolution in situ analysis of Cas9 germline transcript distributions in gene-drive Anopheles mosquitoes publication-title: G3 (Bethesda) doi: 10.1093/g3journal/jkab369 – volume: 121 start-page: 173 year: 2002 ident: 10.1016/j.pt.2024.04.010_bb0045 article-title: Dominant lethality and insect population control publication-title: Mol. Biochem. Parasitol. doi: 10.1016/S0166-6851(02)00040-3 – volume: 120 year: 2023 ident: 10.1016/j.pt.2024.04.010_bb0070 article-title: Dual effector population modification gene-drive strains of the African malaria mosquitoes, Anopheles gambiae and Anopheles coluzzii publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2221118120 – volume: 117 start-page: 7363 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0260 article-title: PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1919709117 – volume: 109 start-page: E1922 year: 2012 ident: 10.1016/j.pt.2024.04.010_bb0370 article-title: Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1207738109 – volume: 117 start-page: 22805 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0440 article-title: Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2010214117 – volume: 13 start-page: 2949 year: 2022 ident: 10.1016/j.pt.2024.04.010_bb0120 article-title: Transgenic Anopheles mosquitoes expressing human PAI-1 impair malaria transmission publication-title: Nat. Commun. doi: 10.1038/s41467-022-30606-y – volume: 167 start-page: 610 year: 2016 ident: 10.1016/j.pt.2024.04.010_bb0075 article-title: Malaria: biology and disease publication-title: Cell doi: 10.1016/j.cell.2016.07.055 – volume: 5 year: 2011 ident: 10.1016/j.pt.2024.04.010_bb0280 article-title: The JAK-STAT pathway controls Plasmodium vivax load in early stages of Anopheles aquasalis infection publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0001317 – volume: 7 start-page: 258 year: 2017 ident: 10.1016/j.pt.2024.04.010_bb0285 article-title: NF-κB-like signaling pathway REL2 in immune defenses of the malaria vector Anopheles gambiae publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2017.00258 – volume: 3 year: 2007 ident: 10.1016/j.pt.2024.04.010_bb0400 article-title: Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0030192 – volume: 36 start-page: 1062 year: 2018 ident: 10.1016/j.pt.2024.04.010_bb0430 article-title: A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4245 – volume: 12 start-page: 3977 year: 2021 ident: 10.1016/j.pt.2024.04.010_bb0535 article-title: A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression publication-title: Nat. Commun. doi: 10.1038/s41467-021-24214-5 – volume: 18 start-page: 2 year: 2019 ident: 10.1016/j.pt.2024.04.010_bb0350 article-title: Is Saglin a mosquito salivary gland receptor for Plasmodium falciparum? publication-title: Malar. J. doi: 10.1186/s12936-018-2634-5 – volume: 36 start-page: 705 year: 2020 ident: 10.1016/j.pt.2024.04.010_bb0345 article-title: When is a Plasmodium-infected mosquito an infectious mosquito? publication-title: Trends Parasitol. doi: 10.1016/j.pt.2020.05.011 – volume: 42 start-page: 254 year: 2022 ident: 10.1016/j.pt.2024.04.010_bb0505 article-title: Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2021.1933891 – volume: 8 year: 2019 ident: 10.1016/j.pt.2024.04.010_bb0240 article-title: Integral gene drives for population replacement publication-title: Biol. Open – year: 2023 ident: 10.1016/j.pt.2024.04.010_bb0525 article-title: Upper bound on the mutational burden imposed by a CRISPR-Cas9 gene-drive element publication-title: bioRxiv – volume: 405 start-page: 959 year: 2000 ident: 10.1016/j.pt.2024.04.010_bb0135 article-title: Stable germline transformation of the malaria mosquito Anopheles stephensi publication-title: Nature doi: 10.1038/35016096 – volume: 10 year: 2021 ident: 10.1016/j.pt.2024.04.010_bb0550 article-title: A confinable home-and-rescue gene drive for population modification publication-title: eLife doi: 10.7554/eLife.65939 – volume: 277 start-page: 40839 year: 2002 ident: 10.1016/j.pt.2024.04.010_bb0405 article-title: Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206647200 – volume: 357 start-page: 1396 year: 2017 ident: 10.1016/j.pt.2024.04.010_bb0480 article-title: Changes in the microbiota cause genetically modified Anopheles to spread in a population publication-title: Science doi: 10.1126/science.aak9691 |
SSID | ssj0015779 |
Score | 2.476198 |
SecondaryResourceType | review_article |
Snippet | A population modification approach involves spreading genes/elements through the populations to make mosquitoes refractory to the parasite.Parasite... Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 487 |
SubjectTerms | Animals Animals, Genetically Modified Anopheles Anopheles - genetics Anopheles - parasitology genetically modified organisms Humans malaria Malaria - prevention & control Malaria - transmission malaria vectors Mosquito Control - methods Mosquito Vectors - genetics Mosquito Vectors - parasitology parasites parasitology Plasmodium population modification public health transgenesis |
Title | Curing mosquitoes with genetic approaches for malaria control |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1471492224000928 https://dx.doi.org/10.1016/j.pt.2024.04.010 https://www.ncbi.nlm.nih.gov/pubmed/38760256 https://www.proquest.com/docview/3056670065 https://www.proquest.com/docview/3153674924 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KxqAvo8vWNd1aNNjLHtzoy1b8WMpCttG-bCl5E7IkQ0bzsSV52Mv-9t3ZcmDQZTAwBosT2NLp7nfW704A70SZO1lLnzmEG5lGF5o59LMZHfIgZAh1jJScfHtXTKb60yyfHcFNlwtDtMpk-1ub3ljr1DJMozlcz-fDLwLtqi5lw4LkpaSEX60NafnVrz3NQ-SmqbdHwhlJp63KluO1Jjal1E2xU8qhfdw1_Q16Ni5ofALPEnZk1-3rPYejuOzD0_Y0yZ996N8TtaXJr2W3acv8BVBdUXRPbLHafN_h8o0bRv9eGSoO5S-yrqg4tiN-ZQuHoe7csURhfwnT8YevN5MsnZmQea3kNgshyMrz2kRu6qosRkYZhWFGqFXuRRF8NfKq9DwohUCpEKGoQsSbMF7WI1zvp9BbrpbxDJjnwmkq0FXpoJ3AEByxBoLx2nDuR8YNYNgNl_WpoDida_FgO-bYN7veWhpgy_ESfADv9z3WbTGNA7KimwHbJYmiWbNo6Q_0Ufs-fyjRP3q97SbY4tqiDRO3jKvdxlJ4RWlMRX5ABl1GYVCz9ABetdqx_zaFroYw5fl_vddrOKanlpf2BnrbH7t4gQhoW102Kn4JT64_fp7c_QZCHwJ2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5Sh9JeQuu-3PSxhV56EN6XtNIxhASniX1pUnJbVrsrcGlst7YP_fedkVaGQOtCQegg7cBqd3bmG80L4KOocicb6TOHcCPTqEIzh3o2oyYPQobQxEjJydNZMbnRn2_z2wM47XNhKKwyyf5OprfSOj0Zp9Ucr-bz8ReBclVXso2C5JUsH8AhVafKB3B4cnE5me2cCblpS-7R-IwIkreyC_NaUUCl1G29U0qj_bN2-hv6bLXQ-RM4SvCRnXQzfAoHcTGEh11DyV9DGH6l6JY2xZZNk9f8GVBpUdRQ7G65_rHFExzXjH6_MuQdSmFkfV1xfI4Qlt05tHbnjqUo9udwc352fTrJUtuEzGslN1kIQdaeNyZy09RVURplFFoaoVG5F0XwdelV5XlQCrFSIUJRh4g3YbxsSjzyL2CwWC7iK2CeC6epRletg3YCrXCEG4jHG8O5L40bwbhfLutTTXFqbfHd9sFj3-xqY2mBLcdL8BF82lGsunoae8aKfgdsnyeKks2isN9Do3Y09_joH1Qf-g22eLzIZ-IWcbldW7KwKJOpyPeMQa1RGOQsPYKXHXfsvk2htiFY-fq_5vUeHk2up1f26mJ2eQyP6U0XpvYGBpuf2_gWAdGmfpcY_jcc9wUn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Curing+mosquitoes+with+genetic+approaches+for+malaria+control&rft.jtitle=Trends+in+parasitology&rft.au=Kefi%2C+Mary&rft.au=Cardoso-Jaime%2C+Victor&rft.au=Saab%2C+Sally+A.&rft.au=Dimopoulos%2C+George&rft.date=2024-06-01&rft.issn=1471-4922&rft.volume=40&rft.issue=6&rft.spage=487&rft.epage=499&rft_id=info:doi/10.1016%2Fj.pt.2024.04.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pt_2024_04_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-4922&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-4922&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-4922&client=summon |