Graph neural networks for clinical risk prediction based on electronic health records: A survey

This study aims to comprehensively review the use of graph neural networks (GNNs) for clinical risk prediction based on electronic health records (EHRs). The primary goal is to provide an overview of the state-of-the-art of this subject, highlighting ongoing research efforts and identifying existing...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical informatics Vol. 151; p. 104616
Main Authors Oss Boll, Heloísa, Amirahmadi, Ali, Ghazani, Mirfarid Musavian, Morais, Wagner Ourique de, Freitas, Edison Pignaton de, Soliman, Amira, Etminani, Farzaneh, Byttner, Stefan, Recamonde-Mendoza, Mariana
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aims to comprehensively review the use of graph neural networks (GNNs) for clinical risk prediction based on electronic health records (EHRs). The primary goal is to provide an overview of the state-of-the-art of this subject, highlighting ongoing research efforts and identifying existing challenges in developing effective GNNs for improved prediction of clinical risks. A search was conducted in the Scopus, PubMed, ACM Digital Library, and Embase databases to identify relevant English-language papers that used GNNs for clinical risk prediction based on EHR data. The study includes original research papers published between January 2009 and May 2023. Following the initial screening process, 50 articles were included in the data collection. A significant increase in publications from 2020 was observed, with most selected papers focusing on diagnosis prediction (n = 36). The study revealed that the graph attention network (GAT) (n = 19) was the most prevalent architecture, and MIMIC-III (n = 23) was the most common data resource. GNNs are relevant tools for predicting clinical risk by accounting for the relational aspects among medical events and entities and managing large volumes of EHR data. Future studies in this area may address challenges such as EHR data heterogeneity, multimodality, and model interpretability, aiming to develop more holistic GNN models that can produce more accurate predictions, be effectively implemented in clinical settings, and ultimately improve patient care. [Display omitted]
AbstractList Objective: This study aims to comprehensively review the use of graph neural networks (GNNs) for clinical risk prediction based on electronic health records (EHRs). The primary goal is to provide an overview of the state-of-the-art of this subject, highlighting ongoing research efforts and identifying existing challenges in developing effective GNNs for improved prediction of clinical risks. Methods: A search was conducted in the Scopus, PubMed, ACM Digital Library, and Embase databases to identify relevant English-language papers that used GNNs for clinical risk prediction based on EHR data. The study includes original research papers published between January 2009 and May 2023. Results: Following the initial screening process, 50 articles were included in the data collection. A significant increase in publications from 2020 was observed, with most selected papers focusing on diagnosis prediction (n = 36). The study revealed that the graph attention network (GAT) (n = 19) was the most prevalent architecture, and MIMIC-III (n = 23) was the most common data resource. Conclusion: GNNs are relevant tools for predicting clinical risk by accounting for the relational aspects among medical events and entities and managing large volumes of EHR data. Future studies in this area may address challenges such as EHR data heterogeneity, multimodality, and model interpretability, aiming to develop more holistic GNN models that can produce more accurate predictions, be effectively implemented in clinical settings, and ultimately improve patient care. © 2024 The Authors
This study aims to comprehensively review the use of graph neural networks (GNNs) for clinical risk prediction based on electronic health records (EHRs). The primary goal is to provide an overview of the state-of-the-art of this subject, highlighting ongoing research efforts and identifying existing challenges in developing effective GNNs for improved prediction of clinical risks.OBJECTIVEThis study aims to comprehensively review the use of graph neural networks (GNNs) for clinical risk prediction based on electronic health records (EHRs). The primary goal is to provide an overview of the state-of-the-art of this subject, highlighting ongoing research efforts and identifying existing challenges in developing effective GNNs for improved prediction of clinical risks.A search was conducted in the Scopus, PubMed, ACM Digital Library, and Embase databases to identify relevant English-language papers that used GNNs for clinical risk prediction based on EHR data. The study includes original research papers published between January 2009 and May 2023.METHODSA search was conducted in the Scopus, PubMed, ACM Digital Library, and Embase databases to identify relevant English-language papers that used GNNs for clinical risk prediction based on EHR data. The study includes original research papers published between January 2009 and May 2023.Following the initial screening process, 50 articles were included in the data collection. A significant increase in publications from 2020 was observed, with most selected papers focusing on diagnosis prediction (n = 36). The study revealed that the graph attention network (GAT) (n = 19) was the most prevalent architecture, and MIMIC-III (n = 23) was the most common data resource.RESULTSFollowing the initial screening process, 50 articles were included in the data collection. A significant increase in publications from 2020 was observed, with most selected papers focusing on diagnosis prediction (n = 36). The study revealed that the graph attention network (GAT) (n = 19) was the most prevalent architecture, and MIMIC-III (n = 23) was the most common data resource.GNNs are relevant tools for predicting clinical risk by accounting for the relational aspects among medical events and entities and managing large volumes of EHR data. Future studies in this area may address challenges such as EHR data heterogeneity, multimodality, and model interpretability, aiming to develop more holistic GNN models that can produce more accurate predictions, be effectively implemented in clinical settings, and ultimately improve patient care.CONCLUSIONGNNs are relevant tools for predicting clinical risk by accounting for the relational aspects among medical events and entities and managing large volumes of EHR data. Future studies in this area may address challenges such as EHR data heterogeneity, multimodality, and model interpretability, aiming to develop more holistic GNN models that can produce more accurate predictions, be effectively implemented in clinical settings, and ultimately improve patient care.
This study aims to comprehensively review the use of graph neural networks (GNNs) for clinical risk prediction based on electronic health records (EHRs). The primary goal is to provide an overview of the state-of-the-art of this subject, highlighting ongoing research efforts and identifying existing challenges in developing effective GNNs for improved prediction of clinical risks. A search was conducted in the Scopus, PubMed, ACM Digital Library, and Embase databases to identify relevant English-language papers that used GNNs for clinical risk prediction based on EHR data. The study includes original research papers published between January 2009 and May 2023. Following the initial screening process, 50 articles were included in the data collection. A significant increase in publications from 2020 was observed, with most selected papers focusing on diagnosis prediction (n = 36). The study revealed that the graph attention network (GAT) (n = 19) was the most prevalent architecture, and MIMIC-III (n = 23) was the most common data resource. GNNs are relevant tools for predicting clinical risk by accounting for the relational aspects among medical events and entities and managing large volumes of EHR data. Future studies in this area may address challenges such as EHR data heterogeneity, multimodality, and model interpretability, aiming to develop more holistic GNN models that can produce more accurate predictions, be effectively implemented in clinical settings, and ultimately improve patient care.
This study aims to comprehensively review the use of graph neural networks (GNNs) for clinical risk prediction based on electronic health records (EHRs). The primary goal is to provide an overview of the state-of-the-art of this subject, highlighting ongoing research efforts and identifying existing challenges in developing effective GNNs for improved prediction of clinical risks. A search was conducted in the Scopus, PubMed, ACM Digital Library, and Embase databases to identify relevant English-language papers that used GNNs for clinical risk prediction based on EHR data. The study includes original research papers published between January 2009 and May 2023. Following the initial screening process, 50 articles were included in the data collection. A significant increase in publications from 2020 was observed, with most selected papers focusing on diagnosis prediction (n = 36). The study revealed that the graph attention network (GAT) (n = 19) was the most prevalent architecture, and MIMIC-III (n = 23) was the most common data resource. GNNs are relevant tools for predicting clinical risk by accounting for the relational aspects among medical events and entities and managing large volumes of EHR data. Future studies in this area may address challenges such as EHR data heterogeneity, multimodality, and model interpretability, aiming to develop more holistic GNN models that can produce more accurate predictions, be effectively implemented in clinical settings, and ultimately improve patient care. [Display omitted]
ArticleNumber 104616
Author Ghazani, Mirfarid Musavian
Recamonde-Mendoza, Mariana
Etminani, Farzaneh
Oss Boll, Heloísa
Freitas, Edison Pignaton de
Soliman, Amira
Morais, Wagner Ourique de
Amirahmadi, Ali
Byttner, Stefan
Author_xml – sequence: 1
  givenname: Heloísa
  orcidid: 0000-0001-8121-2002
  surname: Oss Boll
  fullname: Oss Boll, Heloísa
  email: hoboll@inf.ufrgs.br
  organization: Institute of Informatics, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, 91501-970, RS, Brazil
– sequence: 2
  givenname: Ali
  surname: Amirahmadi
  fullname: Amirahmadi, Ali
  organization: School of Information Technology, Halmstad University, Kristian IV:s väg 3, Halmstad, 301 18, Sweden
– sequence: 3
  givenname: Mirfarid Musavian
  surname: Ghazani
  fullname: Ghazani, Mirfarid Musavian
  organization: School of Information Technology, Halmstad University, Kristian IV:s väg 3, Halmstad, 301 18, Sweden
– sequence: 4
  givenname: Wagner Ourique de
  surname: Morais
  fullname: Morais, Wagner Ourique de
  organization: School of Information Technology, Halmstad University, Kristian IV:s väg 3, Halmstad, 301 18, Sweden
– sequence: 5
  givenname: Edison Pignaton de
  surname: Freitas
  fullname: Freitas, Edison Pignaton de
  organization: Institute of Informatics, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, 91501-970, RS, Brazil
– sequence: 6
  givenname: Amira
  surname: Soliman
  fullname: Soliman, Amira
  organization: School of Information Technology, Halmstad University, Kristian IV:s väg 3, Halmstad, 301 18, Sweden
– sequence: 7
  givenname: Farzaneh
  surname: Etminani
  fullname: Etminani, Farzaneh
  organization: School of Information Technology, Halmstad University, Kristian IV:s väg 3, Halmstad, 301 18, Sweden
– sequence: 8
  givenname: Stefan
  surname: Byttner
  fullname: Byttner, Stefan
  organization: School of Information Technology, Halmstad University, Kristian IV:s väg 3, Halmstad, 301 18, Sweden
– sequence: 9
  givenname: Mariana
  surname: Recamonde-Mendoza
  fullname: Recamonde-Mendoza, Mariana
  organization: Institute of Informatics, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, 91501-970, RS, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38423267$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-53018$$DView record from Swedish Publication Index
BookMark eNp9kc1u1DAUhS1URH_gAdggL5HQDP5L4sBqVNqCVKmbwtZy7GviaSYOttOqb1-P0s6CRVf32vq-uzjnFB2NYQSEPlKypoTWX7frbefXjDBR3qKm9Rt0QivOVkRIcnTYa3GMTlPaEkJpVdXv0DGXgnFWNydIXUU99XiEOeqhjPwQ4l3CLkRsBj96U36jT3d4imC9yT6MuNMJLC4LDGByDIXCPegh9ziCCdGmb3iD0xzv4fE9euv0kODD8zxDvy8vbs9_rq5vrn6db65XRnCWV7aTTFpDQDSSStIaZ5uqragmrGGV6BxzWhtHO0sdaSrpHKeMyRYErZnkHT9DX5a76QGmuVNT9DsdH1XQXv3wfzYqxL-q71XFCZWF_rzQUwz_ZkhZ7XwyMAx6hDAnxVouWCNaIQr66Rmdux3Yw-GXCAtAF8DEkFIEd0AoUfua1FaVmtS-JrXUVJzmP8f4rPfh5qj98Kr5fTGhhHnvIapkPIymlFOyz8oG_4r9BOweq-c
CitedBy_id crossref_primary_10_1007_s00371_024_03579_w
Cites_doi 10.1016/j.jbi.2020.103426
10.1093/jamia/ocy068
10.1089/big.2020.0070
10.3844/jcssp.2021.762.775
10.3390/app122211709
10.1136/bmj.n71
10.1016/j.jbi.2021.103980
10.1007/s11280-020-00794-y
10.1016/j.eswa.2022.117921
10.5334/egems.268
10.1038/s41597-023-01974-x
10.2196/23586
10.1186/s12859-015-0549-5
10.1145/3465055
10.1016/j.artmed.2022.102329
10.1109/TNN.2008.2005605
10.1049/cit2.12166
10.1016/j.jbi.2023.104430
10.1109/MSP.2017.2693418
10.1145/3568022
10.1016/j.compbiomed.2022.106245
10.1016/j.neucom.2021.04.039
10.1007/s10462-023-10466-8
10.1038/s41598-022-12201-9
10.1088/1742-6596/2188/1/012007
10.1038/s41598-022-25693-2
10.3934/mbe.2023369
10.1038/srep26094
10.1109/TCYB.2021.3109881
10.1038/s41598-021-85255-w
10.1093/jamia/ocad008
10.1038/s41597-022-01899-x
10.1109/JBHI.2020.3004143
10.1613/jair.1.14768
10.3389/fchem.2021.787194
10.1371/journal.pone.0211116
10.1097/CCM.0000000000004583
10.2196/20645
10.1038/s41598-022-22956-w
10.3390/healthcare11071031
10.1016/j.artmed.2022.102439
10.1109/ACCESS.2023.3257406
10.1016/j.isci.2022.104970
10.1109/JBHI.2023.3236888
10.1016/j.aiopen.2021.01.001
10.1016/j.ijmedinf.2016.09.014
10.1016/j.jbi.2020.103671
10.1186/s12911-020-1072-9
10.1038/sdata.2018.178
10.1145/3466782
10.1111/exsy.13175
10.1109/TKDE.2020.2981333
10.3934/mbe.2022492
10.1145/3236009
10.1007/s10916-020-1538-4
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
AAXBQ
ADTPV
AOWAS
D8T
D8Z
ZZAVC
DOI 10.1016/j.jbi.2024.104616
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
SWEPUB Högskolan i Halmstad full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Högskolan i Halmstad
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Public Health
EISSN 1532-0480
ExternalDocumentID oai_DiVA_org_hh_53018
38423267
10_1016_j_jbi_2024_104616
S1532046424000340
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
ABBOA
ABBQC
ABDPE
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEXQZ
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BAWUL
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DIK
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UAP
UHS
UNMZH
XPP
ZGI
ZMT
ZU3
~G-
AAYWO
AAYXX
ACIEU
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
NPM
7X8
AAXBQ
ADTPV
AOWAS
D8T
D8Z
ZZAVC
ID FETCH-LOGICAL-c432t-db828dc0e4781809cfd75951a027254bf2faacf1bd1f0758ff312289e416283b3
IEDL.DBID .~1
ISSN 1532-0464
1532-0480
IngestDate Thu Aug 21 06:40:27 EDT 2025
Thu Jul 10 23:59:14 EDT 2025
Mon Jul 21 05:57:49 EDT 2025
Thu Apr 24 23:10:27 EDT 2025
Tue Jul 01 05:25:27 EDT 2025
Sun Apr 06 06:54:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CNN
LSTM
Keyword
GNN
GAE
Graph neural networks
GRU
EHR
Deep learning
Graph representation learning
GCN
RNN
GAT
Electronic health records
Artificial intelligence
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-db828dc0e4781809cfd75951a027254bf2faacf1bd1f0758ff312289e416283b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8121-2002
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1532046424000340
PMID 38423267
PQID 2934274944
PQPubID 23479
ParticipantIDs swepub_primary_oai_DiVA_org_hh_53018
proquest_miscellaneous_2934274944
pubmed_primary_38423267
crossref_primary_10_1016_j_jbi_2024_104616
crossref_citationtrail_10_1016_j_jbi_2024_104616
elsevier_sciencedirect_doi_10_1016_j_jbi_2024_104616
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical informatics
PublicationTitleAlternate J Biomed Inform
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ma, You, Xiao, Chitta, Zhou, Gao (b46) 2018
Bengio, Courville, Vincent (b8) 2014
Tang, Tariq, Dunnmon, Sharma, Elugunti, Rubin, Patel, Banerjee (b115) 2023
Miotto, Li, Kidd, Dudley (b40) 2016; 6
Lu, Uddin (b13) 2023; 11
Amirahmadi, Ohlsson, Etminani (b14) 2023; 144
Zhang, Zhou, Song, Sui, Zhao, Jiang, Yuan (b104) 2022
Daigavane, Ravindran, Aggarwal (b69) 2021; 6
Rudy, Khan, Bower, Patel, Foraker (b130) 2019; 7
Cai, Sun, Song, Zhang, Hong, Li (b109) 2022
Cui, Lu, Wang, Xu, Ma, Yu, Yu, Kan, Fu, Ling, Ho, Wang, Yang (b24) 2023
Cheng, Wang, Zhang, Hu (b41) 2016
(b43) 2023
Shi, Guo, Wu, Li, Li (b86) 2021
Jha, Saha, Singh (b60) 2022; 12
Chaudhari, Mithal, Polatkan, Ramanath (b74) 2021; 12
Zhang, Hu, Zhou, Song, Zhao, Huang (b108) 2022; 19
Theodorou, Xiao, Sun (b5) 2023
Khan, Mobaraki (b120) 2023
Zheng, Xie, Xu, He, Zhang, You, Yang, Chen (b3) 2017; 97
Alves, Ferreira, Maricato, Alberto, Dias, Jose Aguiar Coelho (b58) 2022; 9
Yang, Zhang, Zhang (b91) 2021
Xu, Ying, Qian, Zhuang, Zhang, Wang, Wu, Xiong (b95) 2022
Lee, Kwon, Park, Cho, Kwon, Lee (b81) 2020; 48
Rocheteau, Tong, Veličković, Lane, Liò (b26) 2021
Sun, Dong, Shi, He, Huang (b87) 2021; 2
Sanchez-Lengeling, Reif, Pearce, Wiltschko (b55) 2021; 6
Xu, Xi, Chen, Sheng, Ma, Cui (b23) 2022; 12
Yuan, Yu, Gui, Ji (b135) 2022
Zhang, Gong, Barnes (b44) 2017
Choi, Bahadori, Schuetz, Stewart, Sun (b33) 2016
(b126) 2020
Chikwendu, Zhang, Agyemang, Adjei-Mensah, Chima, Ejiyi (b21) 2023; 78
Hettige, Li, Wang, Le, Buntine (b51) 2020
Chowdhury, Zhang, Yu, Luo (b84) 2020
Zhang, Cui, Zhu (b75) 2022; 34
Li, Qian, Zhang, Liu (b80) 2020; 8
Xie, Yuan, Ning, Ong, Feng, Hsu, Chakraborty, Liu (b7) 2022; 126
Choi, Xiao, Stewart, Sun (b49) 2018
Jiang, Luo (b22) 2022; 207
Veličković (b56) 2023
Xu, Hu, Leskovec, Jegelka (b67) 2019
Qu, Cui, Xu (b97) 2022
Wang, Chen, Chen (b25) 2020
Zhao, Li, Zhao, Zhu (b106) 2022
Hamilton, Ying, Leskovec (b76) 2018
Golmaei, Luo (b89) 2021
Ye, Cui, Wang, Luo, Xiao, Ma (b30) 2021
Yuan, Chen, Lu, Huang (b129) 2020
Choi, Chiu, Sontag (b38) 2016; 2016
Wu, Xu, Hu, Huang (b27) 2023; 30
Liu, Li, Peng, He, Yu (b29) 2020
Schrodt, Dudchenko, Knaup-Gregori, Ganzinger (b32) 2020; 44
Choi, Bahadori, Kulas, Schuetz, Stewart, Sun (b34) 2017
Pham, Tran, Phung, Venkatesh (b42) 2017
Agarwal, Queen, Lakkaraju, Zitnik (b132) 2023; 10
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b73) 2017; vol. 30
Yin, Zhao, Qian, Lv, Zhang (b123) 2019
Choi, Bahadori, Song, Stewart, Sun (b45) 2017
Wang, Fung, Hung (b82) 2020
(b127) 2021
Choi, Bahadori, Searles, Coffey, Sun (b37) 2016
Lee, Jiang, Yu (b79) 2020; 106
Sun, Yin, Chen, Chen, Cui, Yang (b17) 2021; 25
Guidotti, Monreale, Ruggieri, Turini, Giannotti, Pedreschi (b131) 2019; 51
Ma, Chitta, Zhou, You, Sun, Gao (b35) 2017
Kanchinadam, Gauher (b103) 2022
Zou, Pesaranghader, Song, Verma, Buckeridge, Li (b107) 2022; 12
Weng, Szolovits (b15) 2019
Fu, Leung, Raulli, Kallmes, Kinsman, Nelson, Clark, Luetmer, Kingsbury, Kent, Liu (b4) 2020; 20
Panagopoulos, Nikolentzos, Vazirgiannis (b61) 2021; Vol. 35
Si, Du, Li, Jiang, Miller, Wang, Jim Zheng, Roberts (b1) 2021; 115
Li, Li, Yang, Zhou, Yang, Zhang, Wang (b112) 2023; 40
Choi, Xu, Li, Dusenberry, Flores, Xue, Dai (b16) 2020; Vol. 34
van der Maaten, Hinton (b121) 2008; 9
Gori, Monfardini, Scarselli (b64) 2005; Vol. 2
Lu, Reddy, Ning (b31) 2023; 53
Xiao, Choi, Sun (b11) 2018; 25
Page, McKenzie, Bossuyt, Boutron, Hoffmann, Mulrow, Shamseer, Tetzlaff, Akl, Brennan, Chou, Glanville, Grimshaw, Hróbjartsson, Lalu, Li, Loder, Mayo-Wilson, McDonald, McGuinness, Stewart, Thomas, Tricco, Welch, Whiting, Moher (b78) 2021; 372
Chen, Chen, Zhang, Ji, Fu, Zhao, Chen, Wu, Aggarwal, Lu (b72) 2021
Li, Qian, Zhang, Liu (b28) 2020
Carson, Mullin, Sanchez, Lu, Yang, Menezes, Cook (b2) 2019; 14
Lin, Yang, Jiang, Yin (b63) 2021; 48
Zong, Ngo, Stone, Wen, Zhao, Yu, Liu, Huang, Wang, Jiang (b116) 2021; 9
Jiang, Yang (b53) 2020; 28
Li, Yang, Gong (b100) 2022
Bronstein, Bruna, LeCun, Szlam, Vandergheynst (b20) 2017; 34
Wang, Chen, Pi, Boots (b50) 2020; 23
Ahmed, Alam, Hassan, Rozbu, Ishtiak, Rafa, Mofijur, Shawkat Ali, Gandomi (b9) 2023; 56
Vinas, Zheng, Hayes (b90) 2021
(b92) 2021; vol. 12817
Johnson, Bulgarelli, Shen, Gayles, Shammout, Horng, Pollard, Hao, Moody, Gow, Lehman, Celi, Mark (b119) 2023; 10
Song, Cheong, Yin, Cheung, Fung, Poon (b47) 2019
Gao, Zheng, Li, Li, Qin, Piao, Quan, Chang, Jin, He, Li (b57) 2023; 1
Liu, Wang, He, Liao, Jian (b122) 2022; 2188
Suo, Xue, Gao, Zhang (b10) 2016
Pieroni, Cabroni, Fallucchi, Scarpato (b94) 2021; 17
Nguyen, Tran, Wickramasinghe, Venkatesh (b36) 2016
Chowdhury, Chen, Wen, Ma, Dai, Yu, Fu, Jiang, Zong (b12) 2023
Lu, Han, Ning (b102) 2022; Vol. 36
Mohi ud din, Qureshi (b68) 2023; 45
Zhou, Cui, Hu, Zhang, Yang, Liu, Wang, Li, Sun (b54) 2020; 1
(b125) 2023
An, Li, Chen (b101) 2022; 151
Do, Yang, Lee, Kim, Kho (b113) 2023; 11
Lu, Reddy, Chakraborty, Kleinberg, Ning (b93) 2021
Sun, Yang, Feng, Xu, Fan, Tian (b96) 2022
Pollard, Johnson, Raffa, Celi, Mark, Badawi (b118) 2018; 5
Xuanyuan, Barbiero, Georgiev, Magister, Lió (b134) 2023
Zhu, Razavian (b18) 2021
Wang, Wen, Chen, Cao, Huang, Qian, Zheng (b88) 2021
Wang, Liu (b83) 2020
Cho, Ahn, Gwon, Kang, Kim, Seo, Choi, Kim, Han, Kee, Jun, Kim (b99) 2022; 12
Veličković, Cucurull, Casanova, Romero, Liò, Bengio (b59) 2018
Gao, Wang, Wang, Yang, Gao, Wang, Tang, Xie (b48) 2019
Ying, Bourgeois, You, Zitnik, Leskovec (b133) 2019
Kipf, Welling (b70) 2017
Kipf, Welling (b77) 2016
Li, Yin, Yang, Qian, Zhang (b52) 2020; 22
Johnson, Pollard, Mark (b117) 2015
Ma, Wang, Chu, Ma, Tang, Zhao, Yuan, Wang (b110) 2022
Jiang, Wang, Wang, Ma, Guan (b98) 2022; 130
Wu, Wang, Wang, Zhao, Yuan (b85) 2021; 11
Ernst, Siu, Weikum (b124) 2015; 16
Wells, Nowacki, Chagin, Kattan (b6) 2013; 1
Maurya, Liu, Murata (b66) 2023; 8
Kazemi, Goel, Jain, Kobyzev, Sethi, Forsyth, Poupart (b128) 2019
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b65) 2009; 20
Gao, Zheng, Li, Li, Qin, Piao, Quan, Chang, Jin, He, Li (b71) 2023; 1
Li, Feng (b114) 2023; 20
Che, Kale, Li, Bahadori, Liu (b39) 2015
Bongini, Bianchini, Scarselli (b62) 2021; 450
Yao, Cao, Russell, Chang, Frieder, Fineman (b111) 2022
Dong, Wong, Lyu, Abell-Hart, Deng, Liu, Hajagos, Rosenthal, Chen, Wang (b19) 2023; 135
Jin, Koh, Wen, Zambon, Alippi, Webb, King, Pan (b136) 2023
Gao, Yang, Heintz, Barrows, Albers, Stapel, Warfield, Cross, Sun (b105) 2022; 25
Sanchez-Lengeling (10.1016/j.jbi.2024.104616_b55) 2021; 6
Gao (10.1016/j.jbi.2024.104616_b105) 2022; 25
Wu (10.1016/j.jbi.2024.104616_b85) 2021; 11
Wells (10.1016/j.jbi.2024.104616_b6) 2013; 1
Suo (10.1016/j.jbi.2024.104616_b10) 2016
Ma (10.1016/j.jbi.2024.104616_b35) 2017
Chowdhury (10.1016/j.jbi.2024.104616_b12) 2023
Tang (10.1016/j.jbi.2024.104616_b115) 2023
Lu (10.1016/j.jbi.2024.104616_b13) 2023; 11
Chaudhari (10.1016/j.jbi.2024.104616_b74) 2021; 12
Hamilton (10.1016/j.jbi.2024.104616_b76) 2018
Lu (10.1016/j.jbi.2024.104616_b93) 2021
Kanchinadam (10.1016/j.jbi.2024.104616_b103) 2022
Theodorou (10.1016/j.jbi.2024.104616_b5) 2023
Choi (10.1016/j.jbi.2024.104616_b33) 2016
Zhang (10.1016/j.jbi.2024.104616_b108) 2022; 19
Wang (10.1016/j.jbi.2024.104616_b82) 2020
Kipf (10.1016/j.jbi.2024.104616_b70) 2017
Jiang (10.1016/j.jbi.2024.104616_b53) 2020; 28
Song (10.1016/j.jbi.2024.104616_b47) 2019
Cai (10.1016/j.jbi.2024.104616_b109) 2022
Lee (10.1016/j.jbi.2024.104616_b81) 2020; 48
Ying (10.1016/j.jbi.2024.104616_b133) 2019
Choi (10.1016/j.jbi.2024.104616_b49) 2018
Jha (10.1016/j.jbi.2024.104616_b60) 2022; 12
(10.1016/j.jbi.2024.104616_b125) 2023
Rocheteau (10.1016/j.jbi.2024.104616_b26) 2021
Lee (10.1016/j.jbi.2024.104616_b79) 2020; 106
Bengio (10.1016/j.jbi.2024.104616_b8) 2014
Zhang (10.1016/j.jbi.2024.104616_b104) 2022
Shi (10.1016/j.jbi.2024.104616_b86) 2021
Xu (10.1016/j.jbi.2024.104616_b23) 2022; 12
Che (10.1016/j.jbi.2024.104616_b39) 2015
Lin (10.1016/j.jbi.2024.104616_b63) 2021; 48
(10.1016/j.jbi.2024.104616_b43) 2023
Kazemi (10.1016/j.jbi.2024.104616_b128) 2019
Qu (10.1016/j.jbi.2024.104616_b97) 2022
Schrodt (10.1016/j.jbi.2024.104616_b32) 2020; 44
Yin (10.1016/j.jbi.2024.104616_b123) 2019
Bronstein (10.1016/j.jbi.2024.104616_b20) 2017; 34
Pham (10.1016/j.jbi.2024.104616_b42) 2017
Gao (10.1016/j.jbi.2024.104616_b57) 2023; 1
Ma (10.1016/j.jbi.2024.104616_b110) 2022
Gao (10.1016/j.jbi.2024.104616_b48) 2019
Gori (10.1016/j.jbi.2024.104616_b64) 2005; Vol. 2
Ernst (10.1016/j.jbi.2024.104616_b124) 2015; 16
Daigavane (10.1016/j.jbi.2024.104616_b69) 2021; 6
Rudy (10.1016/j.jbi.2024.104616_b130) 2019; 7
Fu (10.1016/j.jbi.2024.104616_b4) 2020; 20
Zong (10.1016/j.jbi.2024.104616_b116) 2021; 9
Jin (10.1016/j.jbi.2024.104616_b136) 2023
Xie (10.1016/j.jbi.2024.104616_b7) 2022; 126
Khan (10.1016/j.jbi.2024.104616_b120) 2023
Si (10.1016/j.jbi.2024.104616_b1) 2021; 115
Nguyen (10.1016/j.jbi.2024.104616_b36) 2016
Ma (10.1016/j.jbi.2024.104616_b46) 2018
Zheng (10.1016/j.jbi.2024.104616_b3) 2017; 97
Yuan (10.1016/j.jbi.2024.104616_b129) 2020
Veličković (10.1016/j.jbi.2024.104616_b56) 2023
Yuan (10.1016/j.jbi.2024.104616_b135) 2022
Lu (10.1016/j.jbi.2024.104616_b31) 2023; 53
Sun (10.1016/j.jbi.2024.104616_b87) 2021; 2
Zhu (10.1016/j.jbi.2024.104616_b18) 2021
Vaswani (10.1016/j.jbi.2024.104616_b73) 2017; vol. 30
Lu (10.1016/j.jbi.2024.104616_b102) 2022; Vol. 36
Zhang (10.1016/j.jbi.2024.104616_b44) 2017
Yang (10.1016/j.jbi.2024.104616_b91) 2021
Li (10.1016/j.jbi.2024.104616_b80) 2020; 8
Kipf (10.1016/j.jbi.2024.104616_b77) 2016
Li (10.1016/j.jbi.2024.104616_b100) 2022
Zou (10.1016/j.jbi.2024.104616_b107) 2022; 12
An (10.1016/j.jbi.2024.104616_b101) 2022; 151
(10.1016/j.jbi.2024.104616_b126) 2020
Miotto (10.1016/j.jbi.2024.104616_b40) 2016; 6
Pollard (10.1016/j.jbi.2024.104616_b118) 2018; 5
Ye (10.1016/j.jbi.2024.104616_b30) 2021
Ahmed (10.1016/j.jbi.2024.104616_b9) 2023; 56
(10.1016/j.jbi.2024.104616_b92) 2021; vol. 12817
Pieroni (10.1016/j.jbi.2024.104616_b94) 2021; 17
Choi (10.1016/j.jbi.2024.104616_b45) 2017
Chikwendu (10.1016/j.jbi.2024.104616_b21) 2023; 78
Chowdhury (10.1016/j.jbi.2024.104616_b84) 2020
Amirahmadi (10.1016/j.jbi.2024.104616_b14) 2023; 144
Li (10.1016/j.jbi.2024.104616_b28) 2020
Zhang (10.1016/j.jbi.2024.104616_b75) 2022; 34
Choi (10.1016/j.jbi.2024.104616_b34) 2017
Gao (10.1016/j.jbi.2024.104616_b71) 2023; 1
Chen (10.1016/j.jbi.2024.104616_b72) 2021
Bongini (10.1016/j.jbi.2024.104616_b62) 2021; 450
Page (10.1016/j.jbi.2024.104616_b78) 2021; 372
Xuanyuan (10.1016/j.jbi.2024.104616_b134) 2023
Maurya (10.1016/j.jbi.2024.104616_b66) 2023; 8
Dong (10.1016/j.jbi.2024.104616_b19) 2023; 135
Choi (10.1016/j.jbi.2024.104616_b37) 2016
Vinas (10.1016/j.jbi.2024.104616_b90) 2021
Wang (10.1016/j.jbi.2024.104616_b50) 2020; 23
Golmaei (10.1016/j.jbi.2024.104616_b89) 2021
Carson (10.1016/j.jbi.2024.104616_b2) 2019; 14
Panagopoulos (10.1016/j.jbi.2024.104616_b61) 2021; Vol. 35
Wang (10.1016/j.jbi.2024.104616_b88) 2021
Jiang (10.1016/j.jbi.2024.104616_b98) 2022; 130
Agarwal (10.1016/j.jbi.2024.104616_b132) 2023; 10
Wang (10.1016/j.jbi.2024.104616_b25) 2020
van der Maaten (10.1016/j.jbi.2024.104616_b121) 2008; 9
Zhou (10.1016/j.jbi.2024.104616_b54) 2020; 1
Scarselli (10.1016/j.jbi.2024.104616_b65) 2009; 20
Jiang (10.1016/j.jbi.2024.104616_b22) 2022; 207
Liu (10.1016/j.jbi.2024.104616_b29) 2020
Yao (10.1016/j.jbi.2024.104616_b111) 2022
Cho (10.1016/j.jbi.2024.104616_b99) 2022; 12
Guidotti (10.1016/j.jbi.2024.104616_b131) 2019; 51
Wu (10.1016/j.jbi.2024.104616_b27) 2023; 30
(10.1016/j.jbi.2024.104616_b127) 2021
Cheng (10.1016/j.jbi.2024.104616_b41) 2016
Johnson (10.1016/j.jbi.2024.104616_b117) 2015
Xiao (10.1016/j.jbi.2024.104616_b11) 2018; 25
Sun (10.1016/j.jbi.2024.104616_b17) 2021; 25
Li (10.1016/j.jbi.2024.104616_b52) 2020; 22
Choi (10.1016/j.jbi.2024.104616_b38) 2016; 2016
Choi (10.1016/j.jbi.2024.104616_b16) 2020; Vol. 34
Alves (10.1016/j.jbi.2024.104616_b58) 2022; 9
Veličković (10.1016/j.jbi.2024.104616_b59) 2018
Sun (10.1016/j.jbi.2024.104616_b96) 2022
Do (10.1016/j.jbi.2024.104616_b113) 2023; 11
Weng (10.1016/j.jbi.2024.104616_b15) 2019
Zhao (10.1016/j.jbi.2024.104616_b106) 2022
Mohi ud din (10.1016/j.jbi.2024.104616_b68) 2023; 45
Cui (10.1016/j.jbi.2024.104616_b24) 2023
Liu (10.1016/j.jbi.2024.104616_b122) 2022; 2188
Li (10.1016/j.jbi.2024.104616_b114) 2023; 20
Xu (10.1016/j.jbi.2024.104616_b67) 2019
Li (10.1016/j.jbi.2024.104616_b112) 2023; 40
Wang (10.1016/j.jbi.2024.104616_b83) 2020
Xu (10.1016/j.jbi.2024.104616_b95) 2022
Hettige (10.1016/j.jbi.2024.104616_b51) 2020
Johnson (10.1016/j.jbi.2024.104616_b119) 2023; 10
References_xml – start-page: 19
  year: 2023
  ident: b24
  article-title: A survey on knowledge graphs for healthcare: Resources, application progress, and promise
  publication-title: ICML 3rd Workshop on Interpretable Machine Learning in Healthcare
– start-page: 214
  year: 2017
  end-page: 221
  ident: b44
  article-title: HCNN: Heterogeneous convolutional neural networks for comorbid risk prediction with electronic health records
  publication-title: 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)
– start-page: 4961
  year: 2020
  end-page: 4970
  ident: b82
  article-title: DUGRA: Dual-graph representation learning for health information networks
  publication-title: 2020 IEEE International Conference on Big Data (Big Data)
– start-page: 194
  year: 2021
  end-page: 198
  ident: b91
  article-title: Medical assistant diagnosis method based on graph neural network and attention mechanism
  publication-title: 2021 the 3rd World Symposium on Software Engineering
– volume: 48
  start-page: e1106
  year: 2020
  end-page: e1111
  ident: b81
  article-title: Graph convolutional networks-based noisy data imputation in electronic health record
  publication-title: Crit. Care Med.
– year: 2019
  ident: b133
  article-title: GNNExplainer: Generating explanations for graph neural networks
– volume: Vol. 34
  start-page: 606
  year: 2020
  end-page: 613
  ident: b16
  article-title: Learning the graphical structure of electronic health records with graph convolutional transformer
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 3385
  year: 2022
  end-page: 3390
  ident: b97
  article-title: Disease risk prediction via heterogeneous graph attention networks
  publication-title: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– volume: 11
  start-page: 29091
  year: 2023
  end-page: 29100
  ident: b113
  article-title: Rapid response system based on graph attention network for predicting in-hospital clinical deterioration
  publication-title: IEEE Access
– volume: 5
  year: 2018
  ident: b118
  article-title: The eICU Collaborative Research Database, a freely available multi-center database for critical care research
  publication-title: Sci. Data
– year: 2023
  ident: b120
  article-title: Interpretability methods for graph neural networks
– volume: 40
  year: 2023
  ident: b112
  article-title: Knowledge-aware representation learning for diagnosis prediction
  publication-title: Expert Syst.
– volume: 2
  start-page: 1
  year: 2021
  end-page: 18
  ident: b87
  article-title: Attention-based deep recurrent model for survival prediction
  publication-title: ACM Trans. Comput. Healthc.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b121
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: b72
  article-title: Bridging the gap between spatial and spectral domains: A survey on graph neural networks
– volume: 20
  start-page: 60
  year: 2020
  ident: b4
  article-title: Assessment of the impact of EHR heterogeneity for clinical research through a case study of silent brain infarction
  publication-title: BMC Med. Inform. Decis. Mak.
– volume: 56
  start-page: 13521
  year: 2023
  end-page: 13617
  ident: b9
  article-title: Deep learning modelling techniques: current progress, applications, advantages, and challenges
  publication-title: Artif. Intell. Rev.
– volume: 25
  year: 2022
  ident: b105
  article-title: MedML: Fusing medical knowledge and machine learning models for early pediatric COVID-19 hospitalization and severity prediction
  publication-title: iScience
– start-page: 1
  year: 2022
  end-page: 10
  ident: b106
  article-title: Knowledge guided feature aggregation for the prediction of chronic obstructive pulmonary disease with Chinese EMRs
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– start-page: 1
  year: 2023
  end-page: 12
  ident: b115
  article-title: Predicting 30-day all-cause hospital readmission using multimodal spatiotemporal graph neural networks
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 23
  start-page: 2739
  year: 2020
  end-page: 2752
  ident: b50
  article-title: Graph augmented triplet architecture for fine-grained patient similarity
  publication-title: World Wide Web
– year: 2023
  ident: b56
  article-title: Everything is connected: Graph neural networks
– volume: 8
  start-page: 379
  year: 2020
  end-page: 390
  ident: b80
  article-title: Graph neural network-based diagnosis prediction
  publication-title: Big Data
– year: 2014
  ident: b8
  article-title: Representation learning: A review and new perspectives
– volume: vol. 12817
  year: 2021
  ident: b92
  article-title: Readmission prediction with knowledge graph attention and RNN-based ordinary differential equations
  publication-title: Lecture Notes in Computer Science
– volume: 6
  start-page: 26094
  year: 2016
  ident: b40
  article-title: Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
  publication-title: Sci. Rep.
– volume: 16
  start-page: 157
  year: 2015
  ident: b124
  article-title: KnowLife: a versatile approach for constructing a large knowledge graph for biomedical sciences
  publication-title: BMC Bioinform.
– volume: 12
  start-page: 17868
  year: 2022
  ident: b107
  article-title: Modeling electronic health record data using an end-to-end knowledge-graph-informed topic model
  publication-title: Sci. Rep.
– volume: 1
  start-page: 1
  year: 2023
  end-page: 51
  ident: b71
  article-title: A survey of graph neural networks for recommender systems: Challenges, methods, and directions
  publication-title: ACM Trans. Recomm. Syst.
– volume: 144
  year: 2023
  ident: b14
  article-title: Deep learning prediction models based on EHR trajectories: A systematic review
  publication-title: J. Biomed. Inform.
– volume: 78
  start-page: 287
  year: 2023
  end-page: 356
  ident: b21
  article-title: A comprehensive survey on deep graph representation learning methods
  publication-title: J. Artificial Intelligence Res.
– start-page: 1397
  year: 2021
  end-page: 1409
  ident: b30
  article-title: MedPath: Augmenting health risk prediction via medical knowledge paths
  publication-title: Proceedings of the Web Conference 2021
– volume: 9
  year: 2022
  ident: b58
  article-title: Graph neural networks as a potential tool in improving virtual screening programs
  publication-title: Front. Chem.
– volume: 1
  start-page: 3:1
  year: 2023
  end-page: 3:51
  ident: b57
  article-title: A survey of graph neural networks for recommender systems: Challenges, methods, and directions
  publication-title: ACM Trans. Recomm. Syst.
– year: 2018
  ident: b76
  article-title: Representation learning on graphs: Methods and applications
– volume: 12
  start-page: 53:1
  year: 2021
  end-page: 53:32
  ident: b74
  article-title: An attentive survey of attention models
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 30
  start-page: 846
  year: 2023
  end-page: 858
  ident: b27
  article-title: A hierarchical multilabel graph attention network method to predict the deterioration paths of chronic hepatitis B patients
  publication-title: J. Amer. Med. Inform. Assoc.
– volume: 372
  start-page: n71
  year: 2021
  ident: b78
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ
– year: 2018
  ident: b49
  article-title: MiME: Multilevel medical embedding of electronic health records for predictive healthcare
– year: 2016
  ident: b36
  article-title: Deepr: A convolutional net for medical records
– volume: 126
  year: 2022
  ident: b7
  article-title: Deep learning for temporal data representation in electronic health records: A systematic review of challenges and methodologies
  publication-title: J. Biomed. Inform.
– year: 2015
  ident: b117
  article-title: MIMIC-III clinical database
– volume: 34
  start-page: 249
  year: 2022
  end-page: 270
  ident: b75
  article-title: Deep learning on graphs: A survey
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 507
  year: 2015
  end-page: 516
  ident: b39
  article-title: Deep computational phenotyping
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2016
  ident: b77
  article-title: Variational graph auto-encoders
– volume: 12
  start-page: 8360
  year: 2022
  ident: b60
  article-title: Prediction of protein–protein interaction using graph neural networks
  publication-title: Sci. Rep.
– start-page: 4613
  year: 2019
  end-page: 4619
  ident: b47
  article-title: Medical concept embedding with multiple ontological representations
  publication-title: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
– start-page: 1730
  year: 2022
  end-page: 1733
  ident: b96
  article-title: EHR2HG: Modeling of EHRs data based on hypergraphs for disease prediction
  publication-title: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– year: 2022
  ident: b109
  article-title: Hypergraph Contrastive Learning for Electronic Health Records
– start-page: 1152
  year: 2022
  end-page: 1161
  ident: b100
  article-title: Patient similarity via medical attributed heterogeneous graph convolutional network
  publication-title: Int. J. Comput. Sci.
– volume: 51
  start-page: 1
  year: 2019
  end-page: 42
  ident: b131
  article-title: A survey of methods for explaining Black Box Models
  publication-title: ACM Comput. Surv.
– start-page: 432
  year: 2016
  end-page: 440
  ident: b41
  article-title: Risk prediction with electronic health records: A deep learning approach
  publication-title: Proceedings of the 2016 SIAM International Conference on Data Mining
– year: 2023
  ident: b134
  article-title: Global concept-based interpretability for graph neural networks via neuron analysis
– year: 2021
  ident: b127
  article-title: ICD - ICD-9-CM - international classification of diseases, ninth revision, clinical modification
– volume: 12
  start-page: 21152
  year: 2022
  ident: b99
  article-title: Heterogeneous graph construction and HinSAGE learning from electronic medical records
  publication-title: Sci. Rep.
– volume: 6
  year: 2021
  ident: b69
  article-title: Understanding convolutions on graphs
  publication-title: Distill
– year: 2021
  ident: b90
  article-title: A graph-based imputation method for sparse medical records
– volume: 130
  year: 2022
  ident: b98
  article-title: Gated tree-based graph attention network (GTGAT) for medical knowledge graph reasoning
  publication-title: Artif. Intell. Med.
– volume: 22
  year: 2020
  ident: b52
  article-title: Marrying medical domain knowledge with deep learning on electronic health records: A deep visual analytics approach
  publication-title: J. Med. Internet Res.
– start-page: 369
  year: 2020
  end-page: 376
  ident: b84
  article-title: Med2Meta: Learning representations of medical concepts with meta-embeddings:
  publication-title: Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies
– volume: 20
  start-page: 8428
  year: 2023
  end-page: 8445
  ident: b114
  article-title: Patient multi-relational graph structure learning for diabetes clinical assistant diagnosis
  publication-title: Math. Biosci. Eng.
– volume: Vol. 35
  start-page: 4838
  year: 2021
  end-page: 4845
  ident: b61
  article-title: Transfer graph neural networks for pandemic forecasting
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 25
  start-page: 1419
  year: 2018
  end-page: 1428
  ident: b11
  article-title: Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review
  publication-title: J. Amer. Med. Inform. Assoc.
– volume: 48
  year: 2021
  ident: b63
  article-title: Learning patient similarity via heterogeneous medical knowledge graph embedding
  publication-title: Int. J. Comput. Sci.
– start-page: 1036
  year: 2019
  end-page: 1041
  ident: b48
  article-title: CAMP: Co-attention memory networks for diagnosis prediction in healthcare
  publication-title: 2019 IEEE International Conference on Data Mining (ICDM)
– year: 2016
  ident: b33
  article-title: Doctor AI: Predicting clinical events via recurrent neural networks
– start-page: 743
  year: 2018
  end-page: 752
  ident: b46
  article-title: KAME: Knowledge-based attention model for diagnosis prediction in healthcare
  publication-title: Proceedings of the 27th ACM International Conference on Information and Knowledge Management
– start-page: 1617
  year: 2021
  end-page: 1622
  ident: b86
  article-title: Multi-relational EHR representation learning with infusing information of Diagnosis and Medication
  publication-title: 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)
– volume: 14
  year: 2019
  ident: b2
  article-title: Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records
  publication-title: PLoS One
– start-page: 394
  year: 2016
  end-page: 403
  ident: b10
  article-title: Risk factor analysis based on deep learning models
  publication-title: Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics
– start-page: 1196
  year: 2020
  end-page: 1205
  ident: b29
  article-title: Heterogeneous similarity graph neural network on electronic health records
  publication-title: 2020 IEEE International Conference on Big Data (Big Data)
– volume: Vol. 2
  start-page: 729
  year: 2005
  end-page: 734
  ident: b64
  article-title: A new model for learning in graph domains
  publication-title: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005
– year: 2019
  ident: b128
  article-title: Representation learning for dynamic graphs: A survey
– volume: 10
  start-page: 144
  year: 2023
  ident: b132
  article-title: Evaluating explainability for graph neural networks
  publication-title: Sci. Data
– volume: 135
  year: 2023
  ident: b19
  article-title: An integrated LSTM-HeteroRGNN model for interpretable opioid overdose risk prediction
  publication-title: Artif. Intell. Med.
– year: 2020
  ident: b51
  article-title: MedGraph: Structural and temporal representation learning of electronic medical records
– start-page: 3349
  year: 2021
  end-page: 3358
  ident: b88
  article-title: Online disease diagnosis with inductive heterogeneous graph convolutional networks
  publication-title: Proceedings of the Web Conference 2021
– volume: Vol. 36
  start-page: 4567
  year: 2022
  end-page: 4574
  ident: b102
  article-title: Context-aware health event prediction via transition functions on dynamic disease graphs
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2022
  ident: b135
  article-title: Explainability in graph neural networks: A taxonomic survey
– start-page: 1
  year: 2022
  end-page: 12
  ident: b95
  article-title: Time-aware context-gated graph attention network for clinical risk prediction
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 106
  year: 2020
  ident: b79
  article-title: Harmonized representation learning on dynamic EHR graphs
  publication-title: J. Biomed. Inform.
– volume: 2188
  year: 2022
  ident: b122
  article-title: Recent advances in representation learning for electronic health records: A systematic review
  publication-title: J. Phys. Conf. Ser.
– start-page: 1
  year: 2020
  end-page: 7
  ident: b25
  article-title: Joint medical ontology representation learning for healthcare predictions
  publication-title: 2020 International Joint Conference on Neural Networks (IJCNN)
– year: 2019
  ident: b15
  article-title: Representation learning for electronic health records
– start-page: 3393
  year: 2020
  end-page: 3399
  ident: b129
  article-title: The graph-based mutual attentive network for automatic diagnosis
  publication-title: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence
– start-page: 1903
  year: 2017
  end-page: 1911
  ident: b35
  article-title: Dipole: Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 115
  year: 2021
  ident: b1
  article-title: Deep representation learning of patient data from Electronic Health Records (EHR): A systematic review
  publication-title: J. Biomed. Inform.
– year: 2018
  ident: b59
  article-title: Graph attention networks
– volume: 11
  start-page: 5858
  year: 2021
  ident: b85
  article-title: Leveraging graph-based hierarchical medical entity embedding for healthcare applications
  publication-title: Sci. Rep.
– year: 2017
  ident: b34
  article-title: RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism
– volume: 1
  start-page: 7
  year: 2013
  ident: b6
  article-title: Strategies for handling missing data in electronic health record derived data
  publication-title: eGEMs J. Electron. Health Data Methods
– volume: 9
  year: 2021
  ident: b116
  article-title: Leveraging genetic reports and electronic health records for the prediction of primary cancers: Algorithm development and validation study
  publication-title: JMIR Med. Inform.
– volume: 151
  year: 2022
  ident: b101
  article-title: MERGE: A multi-graph attentive representation learning framework integrating group information from similar patients
  publication-title: Comput. Biol. Med.
– year: 2023
  ident: b12
  article-title: Predicting physiological response in heart failure management: A graph representation learning approach using electronic health records
– volume: 6
  year: 2021
  ident: b55
  article-title: A gentle introduction to graph neural networks
  publication-title: Distill
– volume: 34
  start-page: 18
  year: 2017
  end-page: 42
  ident: b20
  article-title: Geometric deep learning: Going beyond Euclidean data
  publication-title: IEEE Signal Process. Mag.
– start-page: 1
  year: 2022
  end-page: 14
  ident: b110
  article-title: Patient health representation learning via correlational sparse prior of medical features
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 97
  start-page: 120
  year: 2017
  end-page: 127
  ident: b3
  article-title: A machine learning-based framework to identify type 2 diabetes through electronic health records
  publication-title: Int. J. Med. Inform.
– volume: 45
  start-page: 221
  year: 2023
  end-page: 230
  ident: b68
  article-title: A review of challenges and solutions in the design and implementation of deep graph neural networks
  publication-title: Int. J. Comput. Appl.
– year: 2020
  ident: b126
  article-title: CMeKG(Chinese medical knowledge graph) Dataset_Tianchi datasets
– year: 2017
  ident: b42
  article-title: DeepCare: A deep dynamic memory model for predictive medicine
– start-page: 1296
  year: 2022
  end-page: 1303
  ident: b103
  article-title: Predicting clinical events via graph neural networks
  publication-title: 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)
– volume: 1
  start-page: 57
  year: 2020
  end-page: 81
  ident: b54
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
– start-page: 787
  year: 2017
  end-page: 795
  ident: b45
  article-title: GRAM: Graph-based attention model for healthcare representation learning
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 44
  start-page: 86
  year: 2020
  ident: b32
  article-title: Graph-representation of patient data: a systematic literature review
  publication-title: J. Med. Syst.
– year: 2022
  ident: b104
  article-title: PM2F2N: Patient multi-view multi-modal feature fusion networks for clinical outcome prediction
  publication-title: ACL Anthol.
– volume: 12
  start-page: 11709
  year: 2022
  ident: b23
  article-title: A survey of deep learning for electronic health records
  publication-title: Appl. Sci.
– start-page: 19
  year: 2020
  end-page: 27
  ident: b28
  article-title: Knowledge guided diagnosis prediction via graph spatial-temporal network
  publication-title: Proceedings of the 2020 SIAM International Conference on Data Mining
– volume: 10
  start-page: 1
  year: 2023
  ident: b119
  article-title: MIMIC-IV, a freely accessible electronic health record dataset
  publication-title: Sci. Data
– volume: 450
  start-page: 242
  year: 2021
  end-page: 252
  ident: b62
  article-title: Molecular generative graph neural networks for drug discovery
  publication-title: Neurocomputing
– volume: vol. 30
  start-page: 1
  year: 2017
  end-page: 11
  ident: b73
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– volume: 25
  start-page: 818
  year: 2021
  end-page: 826
  ident: b17
  article-title: Disease prediction via graph neural networks
  publication-title: IEEE J. Biomed. Health Inform.
– start-page: 738
  year: 2019
  end-page: 747
  ident: b123
  article-title: Domain knowledge guided deep learning with electronic health records
  publication-title: 2019 IEEE International Conference on Data Mining (ICDM)
– volume: 19
  start-page: 10533
  year: 2022
  end-page: 10549
  ident: b108
  article-title: Graph-based structural knowledge-aware network for diagnosis assistant
  publication-title: Math. Biosci. Eng.
– year: 2022
  ident: b111
  article-title: Self-supervised representation learning on electronic health records with graph kernel infomax
– volume: 2016
  start-page: 41
  year: 2016
  end-page: 50
  ident: b38
  article-title: Learning low-dimensional representations of medical concepts
  publication-title: AMIA Summits Transl. Sci. Proc.
– year: 2019
  ident: b67
  article-title: How powerful are graph neural networks?
– volume: 8
  start-page: 14
  year: 2023
  end-page: 28
  ident: b66
  article-title: Feature selection: Key to enhance node classification with graph neural networks
  publication-title: CAAI Trans. Intell. Technol.
– year: 2023
  ident: b136
  article-title: A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection
– start-page: 3529
  year: 2021
  end-page: 3535
  ident: b93
  article-title: Collaborative graph learning with auxiliary text for temporal event prediction in healthcare
  publication-title: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
– start-page: 1
  year: 2021
  end-page: 13
  ident: b18
  article-title: Variationally regularized graph-based representation learning for electronic health records
  publication-title: Proceedings of the Conference on Health, Inference, and Learning
– volume: 28
  year: 2020
  ident: b53
  article-title: Learning graph-based embedding from EHRs for time-aware patient similarity
  publication-title: Eng. Lett.
– year: 2023
  ident: b125
  article-title: HCUP-US tools & software page
– year: 2021
  ident: b26
  article-title: Predicting patient outcomes with graph representation learning
– volume: 11
  year: 2023
  ident: b13
  article-title: Disease prediction using graph machine learning based on electronic health data: A review of approaches and trends
  publication-title: Healthcare
– year: 2023
  ident: b43
  article-title: International classification of diseases (ICD)
– volume: 207
  year: 2022
  ident: b22
  article-title: Graph neural network for traffic forecasting: A survey
  publication-title: Expert Syst. Appl.
– volume: 17
  start-page: 762
  year: 2021
  end-page: 775
  ident: b94
  article-title: Predictive modeling applied to structured clinical data extracted from electronic health records: An architectural hypothesis and A first experiment
  publication-title: J. Comput. Sci.
– year: 2023
  ident: b5
  article-title: Synthesize high-dimensional longitudinal electronic health records via hierarchical autoregressive language model
– volume: 20
  start-page: 61
  year: 2009
  end-page: 80
  ident: b65
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
– year: 2016
  ident: b37
  article-title: Multi-layer representation learning for medical concepts
– start-page: 2105
  year: 2020
  end-page: 2108
  ident: b83
  article-title: TAGNet: Temporal aware graph convolution network for clinical information extraction
  publication-title: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– volume: 53
  start-page: 2124
  year: 2023
  end-page: 2136
  ident: b31
  article-title: Self-supervised graph learning with hyperbolic embedding for temporal health event prediction
  publication-title: IEEE Trans. Cybern.
– start-page: 1
  year: 2021
  end-page: 9
  ident: b89
  article-title: DeepNote-GNN: predicting hospital readmission using clinical notes and patient network
  publication-title: Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics
– volume: 7
  start-page: 30
  year: 2019
  ident: b130
  article-title: Cardiovascular health trends in electronic health record data (2012–2015): A Cross-Sectional Analysis of The Guideline Advantage™
  publication-title: eGEMs
– year: 2017
  ident: b70
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 1
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b89
  article-title: DeepNote-GNN: predicting hospital readmission using clinical notes and patient network
– volume: 106
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b79
  article-title: Harmonized representation learning on dynamic EHR graphs
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2020.103426
– volume: 25
  start-page: 1419
  issue: 10
  year: 2018
  ident: 10.1016/j.jbi.2024.104616_b11
  article-title: Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review
  publication-title: J. Amer. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocy068
– start-page: 1036
  year: 2019
  ident: 10.1016/j.jbi.2024.104616_b48
  article-title: CAMP: Co-attention memory networks for diagnosis prediction in healthcare
– start-page: 4961
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b82
  article-title: DUGRA: Dual-graph representation learning for health information networks
– volume: 8
  start-page: 379
  issue: 5
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b80
  article-title: Graph neural network-based diagnosis prediction
  publication-title: Big Data
  doi: 10.1089/big.2020.0070
– volume: vol. 12817
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b92
  article-title: Readmission prediction with knowledge graph attention and RNN-based ordinary differential equations
– volume: 17
  start-page: 762
  issue: 9
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b94
  article-title: Predictive modeling applied to structured clinical data extracted from electronic health records: An architectural hypothesis and A first experiment
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2021.762.775
– year: 2019
  ident: 10.1016/j.jbi.2024.104616_b15
– volume: 12
  start-page: 11709
  issue: 22
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b23
  article-title: A survey of deep learning for electronic health records
  publication-title: Appl. Sci.
  doi: 10.3390/app122211709
– volume: 372
  start-page: n71
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b78
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ
  doi: 10.1136/bmj.n71
– start-page: 1730
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b96
  article-title: EHR2HG: Modeling of EHRs data based on hypergraphs for disease prediction
– year: 2023
  ident: 10.1016/j.jbi.2024.104616_b12
– year: 2017
  ident: 10.1016/j.jbi.2024.104616_b42
– year: 2023
  ident: 10.1016/j.jbi.2024.104616_b136
– start-page: 743
  year: 2018
  ident: 10.1016/j.jbi.2024.104616_b46
  article-title: KAME: Knowledge-based attention model for diagnosis prediction in healthcare
– volume: 126
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b7
  article-title: Deep learning for temporal data representation in electronic health records: A systematic review of challenges and methodologies
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2021.103980
– volume: 23
  start-page: 2739
  issue: 5
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b50
  article-title: Graph augmented triplet architecture for fine-grained patient similarity
  publication-title: World Wide Web
  doi: 10.1007/s11280-020-00794-y
– volume: 28
  issue: 4
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b53
  article-title: Learning graph-based embedding from EHRs for time-aware patient similarity
  publication-title: Eng. Lett.
– start-page: 432
  year: 2016
  ident: 10.1016/j.jbi.2024.104616_b41
  article-title: Risk prediction with electronic health records: A deep learning approach
– year: 2016
  ident: 10.1016/j.jbi.2024.104616_b33
– volume: 45
  start-page: 221
  issue: 3
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b68
  article-title: A review of challenges and solutions in the design and implementation of deep graph neural networks
  publication-title: Int. J. Comput. Appl.
– volume: 207
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b22
  article-title: Graph neural network for traffic forecasting: A survey
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117921
– volume: 7
  start-page: 30
  issue: 1
  year: 2019
  ident: 10.1016/j.jbi.2024.104616_b130
  article-title: Cardiovascular health trends in electronic health record data (2012–2015): A Cross-Sectional Analysis of The Guideline Advantage™
  publication-title: eGEMs
  doi: 10.5334/egems.268
– year: 2023
  ident: 10.1016/j.jbi.2024.104616_b5
– year: 2023
  ident: 10.1016/j.jbi.2024.104616_b125
– volume: 10
  start-page: 144
  issue: 1
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b132
  article-title: Evaluating explainability for graph neural networks
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-01974-x
– volume: Vol. 36
  start-page: 4567
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b102
  article-title: Context-aware health event prediction via transition functions on dynamic disease graphs
– volume: 9
  issue: 5
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b116
  article-title: Leveraging genetic reports and electronic health records for the prediction of primary cancers: Algorithm development and validation study
  publication-title: JMIR Med. Inform.
  doi: 10.2196/23586
– year: 2017
  ident: 10.1016/j.jbi.2024.104616_b34
– year: 2022
  ident: 10.1016/j.jbi.2024.104616_b111
– year: 2018
  ident: 10.1016/j.jbi.2024.104616_b59
– volume: 16
  start-page: 157
  issue: 1
  year: 2015
  ident: 10.1016/j.jbi.2024.104616_b124
  article-title: KnowLife: a versatile approach for constructing a large knowledge graph for biomedical sciences
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-015-0549-5
– volume: Vol. 34
  start-page: 606
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b16
  article-title: Learning the graphical structure of electronic health records with graph convolutional transformer
– volume: 6
  issue: 9
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b69
  article-title: Understanding convolutions on graphs
  publication-title: Distill
– volume: 12
  start-page: 53:1
  issue: 5
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b74
  article-title: An attentive survey of attention models
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3465055
– volume: 130
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b98
  article-title: Gated tree-based graph attention network (GTGAT) for medical knowledge graph reasoning
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2022.102329
– volume: Vol. 2
  start-page: 729
  year: 2005
  ident: 10.1016/j.jbi.2024.104616_b64
  article-title: A new model for learning in graph domains
– year: 2023
  ident: 10.1016/j.jbi.2024.104616_b134
– start-page: 1
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b18
  article-title: Variationally regularized graph-based representation learning for electronic health records
– year: 2018
  ident: 10.1016/j.jbi.2024.104616_b49
– year: 2023
  ident: 10.1016/j.jbi.2024.104616_b43
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 10.1016/j.jbi.2024.104616_b65
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– volume: 8
  start-page: 14
  issue: 1
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b66
  article-title: Feature selection: Key to enhance node classification with graph neural networks
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/cit2.12166
– volume: 144
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b14
  article-title: Deep learning prediction models based on EHR trajectories: A systematic review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2023.104430
– year: 2021
  ident: 10.1016/j.jbi.2024.104616_b127
– start-page: 19
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b28
  article-title: Knowledge guided diagnosis prediction via graph spatial-temporal network
– start-page: 1296
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b103
  article-title: Predicting clinical events via graph neural networks
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  ident: 10.1016/j.jbi.2024.104616_b20
  article-title: Geometric deep learning: Going beyond Euclidean data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– start-page: 1
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b25
  article-title: Joint medical ontology representation learning for healthcare predictions
– volume: 1
  start-page: 3:1
  issue: 1
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b57
  article-title: A survey of graph neural networks for recommender systems: Challenges, methods, and directions
  publication-title: ACM Trans. Recomm. Syst.
  doi: 10.1145/3568022
– start-page: 1617
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b86
  article-title: Multi-relational EHR representation learning with infusing information of Diagnosis and Medication
– start-page: 3349
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b88
  article-title: Online disease diagnosis with inductive heterogeneous graph convolutional networks
– volume: 151
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b101
  article-title: MERGE: A multi-graph attentive representation learning framework integrating group information from similar patients
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106245
– volume: 450
  start-page: 242
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b62
  article-title: Molecular generative graph neural networks for drug discovery
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.039
– start-page: 214
  year: 2017
  ident: 10.1016/j.jbi.2024.104616_b44
  article-title: HCNN: Heterogeneous convolutional neural networks for comorbid risk prediction with electronic health records
– year: 2014
  ident: 10.1016/j.jbi.2024.104616_b8
– start-page: 738
  year: 2019
  ident: 10.1016/j.jbi.2024.104616_b123
  article-title: Domain knowledge guided deep learning with electronic health records
– year: 2019
  ident: 10.1016/j.jbi.2024.104616_b67
– start-page: 1397
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b30
  article-title: MedPath: Augmenting health risk prediction via medical knowledge paths
– year: 2020
  ident: 10.1016/j.jbi.2024.104616_b126
– volume: 56
  start-page: 13521
  issue: 11
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b9
  article-title: Deep learning modelling techniques: current progress, applications, advantages, and challenges
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10466-8
– year: 2023
  ident: 10.1016/j.jbi.2024.104616_b56
– volume: 48
  issue: 4
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b63
  article-title: Learning patient similarity via heterogeneous medical knowledge graph embedding
  publication-title: Int. J. Comput. Sci.
– volume: 12
  start-page: 8360
  issue: 1
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b60
  article-title: Prediction of protein–protein interaction using graph neural networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-12201-9
– start-page: 1152
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b100
  article-title: Patient similarity via medical attributed heterogeneous graph convolutional network
  publication-title: Int. J. Comput. Sci.
– year: 2021
  ident: 10.1016/j.jbi.2024.104616_b26
– volume: 2188
  issue: 1
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b122
  article-title: Recent advances in representation learning for electronic health records: A systematic review
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2188/1/012007
– year: 2016
  ident: 10.1016/j.jbi.2024.104616_b77
– volume: 12
  start-page: 21152
  issue: 1
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b99
  article-title: Heterogeneous graph construction and HinSAGE learning from electronic medical records
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-25693-2
– start-page: 787
  year: 2017
  ident: 10.1016/j.jbi.2024.104616_b45
  article-title: GRAM: Graph-based attention model for healthcare representation learning
– year: 2018
  ident: 10.1016/j.jbi.2024.104616_b76
– start-page: 1
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b106
  article-title: Knowledge guided feature aggregation for the prediction of chronic obstructive pulmonary disease with Chinese EMRs
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 20
  start-page: 8428
  issue: 5
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b114
  article-title: Patient multi-relational graph structure learning for diabetes clinical assistant diagnosis
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2023369
– start-page: 1
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b95
  article-title: Time-aware context-gated graph attention network for clinical risk prediction
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 6
  start-page: 26094
  issue: 1
  year: 2016
  ident: 10.1016/j.jbi.2024.104616_b40
  article-title: Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
  publication-title: Sci. Rep.
  doi: 10.1038/srep26094
– volume: 53
  start-page: 2124
  issue: 4
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b31
  article-title: Self-supervised graph learning with hyperbolic embedding for temporal health event prediction
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3109881
– start-page: 369
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b84
  article-title: Med2Meta: Learning representations of medical concepts with meta-embeddings:
– volume: 11
  start-page: 5858
  issue: 1
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b85
  article-title: Leveraging graph-based hierarchical medical entity embedding for healthcare applications
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-85255-w
– start-page: 507
  year: 2015
  ident: 10.1016/j.jbi.2024.104616_b39
  article-title: Deep computational phenotyping
– year: 2016
  ident: 10.1016/j.jbi.2024.104616_b37
– volume: 30
  start-page: 846
  issue: 5
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b27
  article-title: A hierarchical multilabel graph attention network method to predict the deterioration paths of chronic hepatitis B patients
  publication-title: J. Amer. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocad008
– year: 2021
  ident: 10.1016/j.jbi.2024.104616_b72
– start-page: 1196
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b29
  article-title: Heterogeneous similarity graph neural network on electronic health records
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b119
  article-title: MIMIC-IV, a freely accessible electronic health record dataset
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01899-x
– year: 2022
  ident: 10.1016/j.jbi.2024.104616_b135
– volume: 25
  start-page: 818
  issue: 3
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b17
  article-title: Disease prediction via graph neural networks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3004143
– volume: 78
  start-page: 287
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b21
  article-title: A comprehensive survey on deep graph representation learning methods
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.1.14768
– year: 2016
  ident: 10.1016/j.jbi.2024.104616_b36
– year: 2020
  ident: 10.1016/j.jbi.2024.104616_b51
– volume: 9
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b58
  article-title: Graph neural networks as a potential tool in improving virtual screening programs
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2021.787194
– volume: 14
  issue: 2
  year: 2019
  ident: 10.1016/j.jbi.2024.104616_b2
  article-title: Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0211116
– volume: 1
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b71
  article-title: A survey of graph neural networks for recommender systems: Challenges, methods, and directions
  publication-title: ACM Trans. Recomm. Syst.
  doi: 10.1145/3568022
– start-page: 3393
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b129
  article-title: The graph-based mutual attentive network for automatic diagnosis
– year: 2019
  ident: 10.1016/j.jbi.2024.104616_b133
– volume: vol. 30
  start-page: 1
  year: 2017
  ident: 10.1016/j.jbi.2024.104616_b73
  article-title: Attention is all you need
– start-page: 3529
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b93
  article-title: Collaborative graph learning with auxiliary text for temporal event prediction in healthcare
– start-page: 1
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b110
  article-title: Patient health representation learning via correlational sparse prior of medical features
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 4613
  year: 2019
  ident: 10.1016/j.jbi.2024.104616_b47
  article-title: Medical concept embedding with multiple ontological representations
– year: 2017
  ident: 10.1016/j.jbi.2024.104616_b70
– start-page: 1903
  year: 2017
  ident: 10.1016/j.jbi.2024.104616_b35
  article-title: Dipole: Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks
– start-page: 2105
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b83
  article-title: TAGNet: Temporal aware graph convolution network for clinical information extraction
– volume: 6
  issue: 9
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b55
  article-title: A gentle introduction to graph neural networks
  publication-title: Distill
– volume: 48
  start-page: e1106
  issue: 11
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b81
  article-title: Graph convolutional networks-based noisy data imputation in electronic health record
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0000000000004583
– volume: 22
  issue: 9
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b52
  article-title: Marrying medical domain knowledge with deep learning on electronic health records: A deep visual analytics approach
  publication-title: J. Med. Internet Res.
  doi: 10.2196/20645
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: 10.1016/j.jbi.2024.104616_b121
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– start-page: 194
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b91
  article-title: Medical assistant diagnosis method based on graph neural network and attention mechanism
– volume: 12
  start-page: 17868
  issue: 1
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b107
  article-title: Modeling electronic health record data using an end-to-end knowledge-graph-informed topic model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-22956-w
– start-page: 394
  year: 2016
  ident: 10.1016/j.jbi.2024.104616_b10
  article-title: Risk factor analysis based on deep learning models
– volume: 11
  issue: 7
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b13
  article-title: Disease prediction using graph machine learning based on electronic health data: A review of approaches and trends
  publication-title: Healthcare
  doi: 10.3390/healthcare11071031
– volume: 135
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b19
  article-title: An integrated LSTM-HeteroRGNN model for interpretable opioid overdose risk prediction
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2022.102439
– year: 2019
  ident: 10.1016/j.jbi.2024.104616_b128
– volume: 11
  start-page: 29091
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b113
  article-title: Rapid response system based on graph attention network for predicting in-hospital clinical deterioration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3257406
– volume: 25
  issue: 9
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b105
  article-title: MedML: Fusing medical knowledge and machine learning models for early pediatric COVID-19 hospitalization and severity prediction
  publication-title: iScience
  doi: 10.1016/j.isci.2022.104970
– start-page: 1
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b115
  article-title: Predicting 30-day all-cause hospital readmission using multimodal spatiotemporal graph neural networks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2023.3236888
– volume: Vol. 35
  start-page: 4838
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b61
  article-title: Transfer graph neural networks for pandemic forecasting
– volume: 1
  start-page: 7
  issue: 3
  year: 2013
  ident: 10.1016/j.jbi.2024.104616_b6
  article-title: Strategies for handling missing data in electronic health record derived data
  publication-title: eGEMs J. Electron. Health Data Methods
– volume: 1
  start-page: 57
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b54
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– year: 2015
  ident: 10.1016/j.jbi.2024.104616_b117
– year: 2022
  ident: 10.1016/j.jbi.2024.104616_b104
  article-title: PM2F2N: Patient multi-view multi-modal feature fusion networks for clinical outcome prediction
  publication-title: ACL Anthol.
– year: 2021
  ident: 10.1016/j.jbi.2024.104616_b90
– volume: 97
  start-page: 120
  year: 2017
  ident: 10.1016/j.jbi.2024.104616_b3
  article-title: A machine learning-based framework to identify type 2 diabetes through electronic health records
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2016.09.014
– year: 2022
  ident: 10.1016/j.jbi.2024.104616_b109
– volume: 115
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b1
  article-title: Deep representation learning of patient data from Electronic Health Records (EHR): A systematic review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2020.103671
– volume: 20
  start-page: 60
  issue: 1
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b4
  article-title: Assessment of the impact of EHR heterogeneity for clinical research through a case study of silent brain infarction
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-020-1072-9
– volume: 5
  issue: 1
  year: 2018
  ident: 10.1016/j.jbi.2024.104616_b118
  article-title: The eICU Collaborative Research Database, a freely available multi-center database for critical care research
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.178
– volume: 2
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.jbi.2024.104616_b87
  article-title: Attention-based deep recurrent model for survival prediction
  publication-title: ACM Trans. Comput. Healthc.
  doi: 10.1145/3466782
– volume: 40
  issue: 3
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b112
  article-title: Knowledge-aware representation learning for diagnosis prediction
  publication-title: Expert Syst.
  doi: 10.1111/exsy.13175
– volume: 34
  start-page: 249
  issue: 1
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b75
  article-title: Deep learning on graphs: A survey
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.2981333
– volume: 19
  start-page: 10533
  issue: 10
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b108
  article-title: Graph-based structural knowledge-aware network for diagnosis assistant
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2022492
– volume: 51
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.jbi.2024.104616_b131
  article-title: A survey of methods for explaining Black Box Models
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3236009
– start-page: 3385
  year: 2022
  ident: 10.1016/j.jbi.2024.104616_b97
  article-title: Disease risk prediction via heterogeneous graph attention networks
– year: 2023
  ident: 10.1016/j.jbi.2024.104616_b120
– volume: 44
  start-page: 86
  issue: 4
  year: 2020
  ident: 10.1016/j.jbi.2024.104616_b32
  article-title: Graph-representation of patient data: a systematic literature review
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-1538-4
– volume: 2016
  start-page: 41
  year: 2016
  ident: 10.1016/j.jbi.2024.104616_b38
  article-title: Learning low-dimensional representations of medical concepts
  publication-title: AMIA Summits Transl. Sci. Proc.
– start-page: 19
  year: 2023
  ident: 10.1016/j.jbi.2024.104616_b24
  article-title: A survey on knowledge graphs for healthcare: Resources, application progress, and promise
SSID ssj0011556
Score 2.421682
SecondaryResourceType review_article
Snippet This study aims to comprehensively review the use of graph neural networks (GNNs) for clinical risk prediction based on electronic health records (EHRs). The...
Objective: This study aims to comprehensively review the use of graph neural networks (GNNs) for clinical risk prediction based on electronic health records...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104616
SubjectTerms Artificial intelligence
Deep learning
Electronic health records
Graph neural networks
Graph representation learning
IDC
Keyword
Title Graph neural networks for clinical risk prediction based on electronic health records: A survey
URI https://dx.doi.org/10.1016/j.jbi.2024.104616
https://www.ncbi.nlm.nih.gov/pubmed/38423267
https://www.proquest.com/docview/2934274944
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-53018
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NRZqGENrKgA6YjNQnpNAmcVqHt9DRdYNN06BT36zYsVmnKa2aFokX_nbu4qRsY9rDXvLhxJbls8-_830BtHUU60AJyhGmjcdxBXkis8rTeIl7wjc8In_nk9PeaMyPJ9FkAwa1LwyZVVa83_H0kltXJZ1qNDvz6bTz3aecBhzxMy-jrJDcznmfZvnHP2szDwQ8ZQZX-pnMGHmt2SxtvK7UFEXEgJeaTkp5fv_e9D_2vBNYtNyMhtvwvEKRLHEd3YENkzfh6Y3Ygk3YPKm05k145s7mmHM5egHykKJUMwpliY3kzhC8YAhfWe0oycjknM0X1AaRjtFulzF8-Jc3hzkfSubOeYpPLGHFavHL_N6F8fDLj8HIqxIteJqHwdLLFMpdme4a8jsV3VjbrB8h9EpRZkUBUtnApqm2vsp8ixBDWBv6AUpqBtEcwhMVvoRGPsvNa2BKYTuBRtalNBc2QHgpeBopbDwNdRC3oFsPsdRVFHJKhnEta3OzK4lUkUQV6ajSgg_rKnMXguOhn3lNN3lrHkncIh6q9r6mscT1RUqTNDezVSERDnGU3GPOW_DKEX_di1CQmrvXb0HbzYb1FwrafTC9SORs8VNeXsoI-ajYe1zf3sAWvTnDt7fQWC5W5h0ioaXaL6f6PjxJBuffzuh-9HV0iqVHk89_AZqaCXc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hkAYTQqPAKDAwUp-QQpvEKQ5vFVtXBuWFgvpmxY69Fk1p1Q-kvexv5y5OOhgTD7xEUexYls---53vC6Cmo1gHSlCNMG08jifIE6lVnsZH3BS-4RHFO3dvmp07_qMf9ZfgooyFIbfKgvc7np5z6-JLvVjN-ng4rN_6VNOAI37meZYV1NtXOB5fKmNw-mfh54GIJy_hSr3Jj5GXps3cyetBDVFHDHhu6qSa5_8XTq_B5z-ZRXNp1P4EGwWMZC03001YMlkFPj5LLliBD93CbF6BdXc5x1zM0RbI75SmmlEuSxwkc57gU4b4lZWRkox8ztl4QmMQ7RiJu5Thy9_COcwFUTJ30TM9Zy02nU8eze9tuGt_6110vKLSgqd5GMy8VKHileqGocBT0Yi1Tc8ixF4JKq2oQSob2CTR1lepbxFjCGtDP0BVzSCcQ3yiwh1YzkaZ2QWmFI4TaORdSnNhA8SXgieRwsGTUAdxFRrlEktdpCGnahi_ZOlv9iCRKpKoIh1VqnCy-GXscnC81ZmXdJMvNpJEGfHWb8cljSUeMLKaJJkZzacS8RBH1T3mvAqfHfEXswgF2bmbZ1Woud2waKGs3V-H9y05mvyUg4GMkJGKvffN7QhWO73utby-vLnahzVqcV5wB7A8m8zNF4RFM3WYb_snFI4IbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+neural+networks+for+clinical+risk+prediction+based+on+electronic+health+records%3A+A+survey&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Oss+Boll%2C+Helo%C3%ADsa&rft.au=Amirahmadi%2C+Ali&rft.au=Ghazani%2C+Mirfarid+Musavian&rft.au=Morais%2C+Wagner+Ourique+de&rft.date=2024-03-01&rft.issn=1532-0480&rft.eissn=1532-0480&rft.volume=151&rft.spage=104616&rft_id=info:doi/10.1016%2Fj.jbi.2024.104616&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon