An efficient method for segmentation of images based on fractional calculus and natural selection

► Two new methods for segmentation of images based on DPSO and FODPSO were proposed. ► Those were used to overcome the disadvantages of other evolutionary methods. ► FODPSO is able to find better thresholds with more stability in less CPU time. Image segmentation has been widely used in document ima...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 39; no. 16; pp. 12407 - 12417
Main Authors Ghamisi, Pedram, Couceiro, Micael S., Benediktsson, Jón Atli, Ferreira, Nuno M.F.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.11.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Two new methods for segmentation of images based on DPSO and FODPSO were proposed. ► Those were used to overcome the disadvantages of other evolutionary methods. ► FODPSO is able to find better thresholds with more stability in less CPU time. Image segmentation has been widely used in document image analysis for extraction of printed characters, map processing in order to find lines, legends, and characters, topological features extraction for extraction of geographical information, and quality inspection of materials where defective parts must be delineated among many other applications. In image analysis, the efficient segmentation of images into meaningful objects is important for classification and object recognition. This paper presents two novel methods for segmentation of images based on the Fractional-Order Darwinian Particle Swarm Optimization (FODPSO) and Darwinian Particle Swarm Optimization (DPSO) for determining the n-1 optimal n-level threshold on a given image. The efficiency of the proposed methods is compared with other well-known thresholding segmentation methods. Experimental results show that the proposed methods perform better than other methods when considering a number of different measures.
AbstractList Image segmentation has been widely used in document image analysis for extraction of printed characters, map processing in order to find lines, legends, and characters, topological features extraction for extraction of geographical information, and quality inspection of materials where defective parts must be delineated among many other applications. In image analysis, the efficient segmentation of images into meaningful objects is important for classification and object recognition. This paper presents two novel methods for segmentation of images based on the Fractional-Order Darwinian Particle Swarm Optimization (FODPSO) and Darwinian Particle Swarm Optimization (DPSO) for determining the n-1 optimal n-level threshold on a given image. The efficiency of the proposed methods is compared with other well-known thresholding segmentation methods. Experimental results show that the proposed methods perform better than other methods when considering a number of different measures.
► Two new methods for segmentation of images based on DPSO and FODPSO were proposed. ► Those were used to overcome the disadvantages of other evolutionary methods. ► FODPSO is able to find better thresholds with more stability in less CPU time. Image segmentation has been widely used in document image analysis for extraction of printed characters, map processing in order to find lines, legends, and characters, topological features extraction for extraction of geographical information, and quality inspection of materials where defective parts must be delineated among many other applications. In image analysis, the efficient segmentation of images into meaningful objects is important for classification and object recognition. This paper presents two novel methods for segmentation of images based on the Fractional-Order Darwinian Particle Swarm Optimization (FODPSO) and Darwinian Particle Swarm Optimization (DPSO) for determining the n-1 optimal n-level threshold on a given image. The efficiency of the proposed methods is compared with other well-known thresholding segmentation methods. Experimental results show that the proposed methods perform better than other methods when considering a number of different measures.
Author Ghamisi, Pedram
Couceiro, Micael S.
Ferreira, Nuno M.F.
Benediktsson, Jón Atli
Author_xml – sequence: 1
  givenname: Pedram
  surname: Ghamisi
  fullname: Ghamisi, Pedram
  email: p.ghamisi@gmail.com
  organization: Geodesy & Geomatics Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 2
  givenname: Micael S.
  surname: Couceiro
  fullname: Couceiro, Micael S.
  email: micaelcouceiro@isr.uc.pt, micael@isec.pt
  organization: Institute of Systems and Robotics, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal
– sequence: 3
  givenname: Jón Atli
  surname: Benediktsson
  fullname: Benediktsson, Jón Atli
  email: benedikt@hi.is
  organization: Faculty of Electrical and Computer Engineering, University of Iceland, Saemundargotu 2, 101 Reykjavik, Iceland
– sequence: 4
  givenname: Nuno M.F.
  surname: Ferreira
  fullname: Ferreira, Nuno M.F.
  email: nunomig@isec.pt
  organization: RoboCorp at the Electrical Engineering Department, Engineering Institute of Coimbra, Rua Pedro Nunes – Quinta da Nora, 3030-199 Coimbra, Portugal
BookMark eNqFkcFq3DAQhkXYQHeTvEBPOvZid2TLlg25LEubFgK5tGchj0aJFq-VSHZL375ytqcekpPg1_cPzDc7tpnCRIx9FFAKEO3nY0nptykrEFUJsgTVXbCt6FRdtKqvN2wLfaMKKZT8wHYpHQGEAlBbZvYTJ-c8eppmfqL5KVjuQuSJHk85MrMPEw-O-5N5pMQHk8jyHLlocP0zI0cz4jIuiZvJ8snMS8xhopFegWt26cyY6Obfe8V-fv3y4_CtuH-4-37Y3xco62ourELpjOuqAXvZDQ4bKypoERqHKKlvQLW2rq0TgyPRu0Eh9r0RUgBaa019xT6d5z7H8LJQmvXJJ6RxNBOFJem8sIC6q4R6H4Wuyhy0TUarM4oxpBTJ6eeYVcQ_GdKren3Uq3q9qtcgdVafS91_JfRnk3M0fny7enuuUlb1y1PUaT0NkvUx-9Q2-LfqfwEXraOh
CitedBy_id crossref_primary_10_1109_JSTARS_2015_2398835
crossref_primary_10_1016_j_indcrop_2017_06_069
crossref_primary_10_1109_TCSVT_2016_2576918
crossref_primary_10_1155_2013_927591
crossref_primary_10_1007_s11042_019_08138_3
crossref_primary_10_1109_LGRS_2013_2257675
crossref_primary_10_1007_s11042_017_4363_0
crossref_primary_10_1155_2014_794574
crossref_primary_10_1007_s11045_019_00645_8
crossref_primary_10_1016_j_bspc_2016_07_008
crossref_primary_10_1016_j_procs_2015_02_064
crossref_primary_10_1140_epjp_i2018_11840_4
crossref_primary_10_1109_JSTARS_2020_3003053
crossref_primary_10_1017_S1431927619014752
crossref_primary_10_1007_s00530_015_0477_2
crossref_primary_10_1007_s11760_019_01533_1
crossref_primary_10_1016_j_engappai_2021_104193
crossref_primary_10_1109_MGRS_2017_2762087
crossref_primary_10_1016_j_oregeorev_2022_104767
crossref_primary_10_32604_cmc_2023_027606
crossref_primary_10_1016_j_neucom_2018_09_034
crossref_primary_10_1049_el_2016_2951
crossref_primary_10_7319_kogsis_2014_22_1_023
crossref_primary_10_1016_j_aej_2020_08_049
crossref_primary_10_1142_S0219467822500127
crossref_primary_10_1049_iet_ipr_2018_6150
crossref_primary_10_1016_j_eswa_2017_04_023
crossref_primary_10_1016_j_bspc_2022_104046
crossref_primary_10_1016_j_eswa_2021_115651
crossref_primary_10_1016_j_jocs_2018_01_003
crossref_primary_10_1007_s00521_021_05771_8
crossref_primary_10_1016_j_asoc_2016_02_030
crossref_primary_10_1016_j_inffus_2021_09_018
crossref_primary_10_1007_s11042_022_13959_w
crossref_primary_10_1109_TCE_2014_7027348
crossref_primary_10_3390_ai5030067
crossref_primary_10_1016_j_robot_2013_10_004
crossref_primary_10_1155_2017_6783209
crossref_primary_10_1007_s11071_014_1305_5
crossref_primary_10_4304_jmm_9_9_1097_1104
crossref_primary_10_1109_TGRS_2016_2561842
crossref_primary_10_1016_j_eswa_2020_113428
crossref_primary_10_1049_iet_ipr_2013_0602
crossref_primary_10_1155_2016_1578056
crossref_primary_10_1016_j_ecss_2019_05_005
crossref_primary_10_1016_j_ijleo_2016_11_039
crossref_primary_10_1186_s13662_023_03762_8
crossref_primary_10_1142_S0219691318500480
crossref_primary_10_1177_0967033520966693
crossref_primary_10_1109_JBHI_2017_2740500
crossref_primary_10_1007_s10586_024_04525_0
crossref_primary_10_1016_j_infrared_2019_103051
crossref_primary_10_1007_s42044_021_00084_4
crossref_primary_10_1108_COMPEL_11_2022_0380
crossref_primary_10_1016_j_chaos_2021_111658
crossref_primary_10_1016_j_petrol_2015_01_004
crossref_primary_10_1007_s13198_014_0278_6
crossref_primary_10_1007_s12524_018_0804_0
crossref_primary_10_1016_j_asoc_2020_106147
crossref_primary_10_1016_j_engappai_2020_103662
crossref_primary_10_1155_2017_3295769
crossref_primary_10_1007_s40998_019_00251_1
crossref_primary_10_1016_j_matpr_2021_02_614
crossref_primary_10_1016_j_eswa_2017_08_029
crossref_primary_10_1109_TGRS_2013_2260552
crossref_primary_10_1016_j_bbe_2019_04_004
crossref_primary_10_1007_s00521_022_07922_x
crossref_primary_10_1007_s11042_020_09727_3
crossref_primary_10_1016_j_apm_2020_08_038
crossref_primary_10_1016_j_jvcir_2018_07_005
crossref_primary_10_1080_00207160_2020_1817411
crossref_primary_10_1371_journal_pone_0162985
crossref_primary_10_1186_s13662_022_03728_2
crossref_primary_10_1002_rcs_2487
crossref_primary_10_1080_17686733_2021_1974209
crossref_primary_10_25046_aj060317
crossref_primary_10_1007_s12524_019_01005_6
crossref_primary_10_2174_1574893614666181220094918
crossref_primary_10_1007_s11831_019_09334_y
crossref_primary_10_1186_s12938_016_0129_6
crossref_primary_10_46532_978_81_950008_1_4_058
crossref_primary_10_1016_j_compbiomed_2018_10_016
crossref_primary_10_1007_s00500_017_2794_1
crossref_primary_10_3934_mbe_2023423
crossref_primary_10_1016_j_infrared_2018_08_007
crossref_primary_10_11121_ijocta_2023_1265
crossref_primary_10_1007_s11042_022_13093_7
crossref_primary_10_1109_LGRS_2016_2595108
crossref_primary_10_1016_j_cogsys_2018_12_009
crossref_primary_10_1007_s11760_016_0927_0
crossref_primary_10_1016_j_eswa_2015_07_025
crossref_primary_10_1142_S0219467821500522
crossref_primary_10_1155_2014_974024
crossref_primary_10_1016_j_matchar_2020_110806
crossref_primary_10_1109_TGRS_2014_2367010
crossref_primary_10_1007_s11042_020_08931_5
crossref_primary_10_1016_j_chaos_2018_07_004
crossref_primary_10_4015_S1016237218500114
crossref_primary_10_1109_ACCESS_2019_2908718
crossref_primary_10_1016_j_eswa_2013_10_059
crossref_primary_10_1007_s12555_021_0392_6
crossref_primary_10_3390_a13100249
crossref_primary_10_1016_j_eswa_2020_113210
crossref_primary_10_1016_j_eswa_2017_02_042
crossref_primary_10_1016_j_jobe_2021_102379
crossref_primary_10_1117_1_JEI_27_5_051226
crossref_primary_10_1016_j_cam_2020_113339
crossref_primary_10_1109_ACCESS_2024_3369039
crossref_primary_10_1016_j_amc_2014_04_103
crossref_primary_10_1016_j_asoc_2021_107641
crossref_primary_10_1109_TGRS_2014_2358934
crossref_primary_10_1109_TGRS_2013_2292544
crossref_primary_10_37394_23205_2022_21_17
crossref_primary_10_1142_S0219467821500340
crossref_primary_10_1007_s13534_019_00135_7
crossref_primary_10_1515_jisys_2017_0028
crossref_primary_10_1007_s11042_015_2788_x
crossref_primary_10_1016_j_neucom_2014_02_020
crossref_primary_10_1016_j_swevo_2019_100591
crossref_primary_10_1109_TAFE_2024_3365202
crossref_primary_10_1007_s00521_016_2645_5
crossref_primary_10_1016_j_bspc_2019_101841
crossref_primary_10_1007_s11771_016_3135_8
crossref_primary_10_1142_S0219843621500122
crossref_primary_10_1016_j_eswa_2015_03_028
crossref_primary_10_1007_s11042_020_09396_2
crossref_primary_10_1016_j_apm_2017_02_015
crossref_primary_10_1007_s11042_022_11983_4
crossref_primary_10_1109_ACCESS_2020_2993577
crossref_primary_10_1007_s11554_023_01372_x
crossref_primary_10_1002_mma_5329
crossref_primary_10_1016_j_asoc_2017_03_018
crossref_primary_10_1145_3380743
crossref_primary_10_1007_s11071_014_1288_2
crossref_primary_10_1016_j_aej_2020_08_024
crossref_primary_10_1016_j_cnsns_2020_105448
crossref_primary_10_1007_s11042_020_10064_8
crossref_primary_10_1016_j_eswa_2014_09_043
crossref_primary_10_1007_s11071_017_3613_z
crossref_primary_10_1016_j_conbuildmat_2016_09_037
crossref_primary_10_1109_JSTARS_2014_2298876
crossref_primary_10_1016_j_neucom_2021_10_122
crossref_primary_10_3934_dcdss_2018007
crossref_primary_10_1007_s11042_018_5815_x
crossref_primary_10_1080_10106049_2018_1544290
crossref_primary_10_1007_s13369_015_1791_x
crossref_primary_10_1016_j_buildenv_2018_06_003
crossref_primary_10_3390_info8010016
crossref_primary_10_1016_j_eswa_2015_10_043
crossref_primary_10_1016_j_eswa_2019_01_024
crossref_primary_10_1007_s11071_014_1302_8
crossref_primary_10_1049_iet_ipr_2017_1149
Cites_doi 10.1016/0031-3203(86)90030-0
10.1016/0734-189X(85)90125-2
10.1016/S0165-1684(03)00181-6
10.1016/S0165-1684(98)00167-4
10.1155/2010/639801
10.1109/ICEC.1998.699326
10.1016/1069-0115(94)00019-X
10.1016/j.engappai.2009.09.011
10.1109/TIP.2002.806231
10.1016/S0031-3203(97)00113-1
10.1007/s11071-009-9649-y
10.1016/0167-8655(95)80011-H
10.1109/34.935844
10.1109/TIP.2005.860348
10.1117/12.159638
10.2514/6.2002-1235
10.1002/tee.20326
10.1016/j.cnsns.2009.05.020
10.1016/0031-3203(90)90103-R
10.1016/0031-3203(94)E0043-K
10.1007/978-3-319-19635-0_2
10.1080/15325000600748871
10.1016/j.engappai.2010.12.001
10.1016/j.patcog.2009.04.013
10.1109/IROS.2010.5652380
10.1049/ip-vis:19951850
10.1117/1.1631315
10.1016/0146-664X(81)90038-1
10.1155/S0161171203301486
10.1016/0165-1684(80)90020-1
10.5120/903-1279
10.1109/TEVC.2007.896686
10.1016/j.ipl.2006.10.005
10.1109/TSMC.1979.4310076
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright_xml – notice: 2012 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2012.04.078
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 12417
ExternalDocumentID 10_1016_j_eswa_2012_04_078
S0957417412006756
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ACNTT
ACRPL
ACVFH
ADCNI
ADJOM
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
R2-
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
JQ2
L7M
L~C
L~D
EFKBS
ID FETCH-LOGICAL-c432t-d7c4faf82bc948bfc5d1206c05fcc4e95076d33df1bfe19fb7cc99a1410cddda3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Mon Jul 21 11:09:39 EDT 2025
Fri Jul 11 02:45:13 EDT 2025
Tue Jul 01 03:12:17 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Fri Feb 23 02:26:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Image processing
Multilevel segmentation
Swarm Optimization
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-d7c4faf82bc948bfc5d1206c05fcc4e95076d33df1bfe19fb7cc99a1410cddda3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1082217065
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1701038217
proquest_miscellaneous_1082217065
crossref_primary_10_1016_j_eswa_2012_04_078
crossref_citationtrail_10_1016_j_eswa_2012_04_078
elsevier_sciencedirect_doi_10_1016_j_eswa_2012_04_078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-15
PublicationDateYYYYMMDD 2012-11-15
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Venter, G., & Sobieszczanski-Sobieski, J. (2002). Particle swarm optimization. In
(pp. 1-8).
Saha, Udupa (b0195) 2001; 23
Yin, Chen (b0260) 1993; 2
Hammouche, Diaf, Siarry (b0075) 2010; 23
Floreano, Mattiussi (b0065) 2008
Santana, P., Alves, N., Correia, L., & Barata, J. (2010). Swarm-based visual saliency for trail detection. In
Hu, Hou, Nowinski (b0085) 2006; 15
Fogel (b0070) 2000
Pun (b0185) 1981; 16
(b0190) 2007
Tobias, Seara (b0230) 2002; 11
.
(pp. 39–43).
Tsai (b0235) 1995; 16
Couceiro, M. S., Ferreira, N. M. F., & Machado, J. A. T. (2011). In
Fan, Han, Wang (b0060) 2009; 42
Kulkarni, Venayagamoorthy (b0120) 2010; 40
Couceiro, M. S., Luz, J. M. A., Figueiredo, C. M., Ferreira, N. M. F., & Dias, G. (2010). Parameter estimation for a mathematical model of the golf putting. In
Sezgin, Sankur (b0215) 2004; 13
Veeramachaneni, Peram, Mohan, Osadciw (b0240) 2003; Vol. 2723
Kittler, Illingworth (b0115) 1986; 19
Li, Zhao, Cheng (b0140) 1995; 4
(pp. 1474–1487).
Pires, E. J. S., Oliveira, P. B. M., Machado, J. A. T., & Cunha, J. B. (2006). Particle Swarm Optimization versus genetic algorithm in manipulator trajectory planning. In
Ortigueira, Machado (b0155) 2003; 83
Kennedy, J., & Spears, W. (1998). Matching algorithms to problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In
Sathya, Kayalvizhi (b0205) 2010; 5
Couceiro, Luz, Figueiredo, Ferreira (b0040) 2012; Vol. 30
Debnath (b0045) 2003; 54
Alrashidi, El-Hawary (b0005) 2006; v34 i12
Jiang, Luo, Yang (b0090) 2007; 102
Podlubny (b0175) 1999; Vol. 198
Pun (b0180) 1980; 2
(Vol. 3498, pp. 253–258).
Kennedy, J., & Eberhart, R. (1995). A new optimizer using particle swarm theory. In
Pires, Machado, Oliveira, Cunha, Mendes (b0170) 2010; 61
Machado, Silva, Barbosa, Jesus, Reis, Marcos (b0145) 2010
Yin (b0255) 1999; 72
Kapur, Sahoo, Wong (b0100) 1985; 2
Kulkarni, Venayagamoorthy (b0125) 2010; SMC-C40
Cheng, Chen, Li (b0015) 1998; 31
Otsu (b0160) 1979; SMC-9
Brink (b0010) 1995; 142
Omran, M. G. H. (2004). Particle swarm optimization methods for pattern recognition and image processing. PhD Thesis, University of Pretoria, Pretoria.
Sathya, Kayalvizhi (b0210) 2011; 24
Del Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (b0050) 2008; 12
Huang, Wang (b0080) 1995; 28
Lim, Lee (b0135) 1990; 23
Lai, Tseng (b0130) 2004; 1
Eberhart, Shi (b0055) 1998
Yasuda, Iwasaki, Ueno, Aiyoshi (b0250) 2008; 3
Couceiro, Ferreira, Machado (b0035) 2010; 15
Tillett, J., Rao, T. M., Sahin, F., Rao, R., & Brockport, S. (2005). Darwinian Particle Swarm Optimization. In
Tang, J., Zhu, J., & Sun, Z. (2005). A novel path panning approach based on appart and particle swarm optimization. In
Hu (10.1016/j.eswa.2012.04.078_b0085) 2006; 15
Alrashidi (10.1016/j.eswa.2012.04.078_b0005) 2006; v34 i12
Lai (10.1016/j.eswa.2012.04.078_b0130) 2004; 1
Yin (10.1016/j.eswa.2012.04.078_b0255) 1999; 72
10.1016/j.eswa.2012.04.078_b0165
10.1016/j.eswa.2012.04.078_b0200
Couceiro (10.1016/j.eswa.2012.04.078_b0035) 2010; 15
Veeramachaneni (10.1016/j.eswa.2012.04.078_b0240) 2003; Vol. 2723
10.1016/j.eswa.2012.04.078_b0245
Lim (10.1016/j.eswa.2012.04.078_b0135) 1990; 23
Couceiro (10.1016/j.eswa.2012.04.078_b0040) 2012; Vol. 30
Fogel (10.1016/j.eswa.2012.04.078_b0070) 2000
Sathya (10.1016/j.eswa.2012.04.078_b0210) 2011; 24
Eberhart (10.1016/j.eswa.2012.04.078_b0055) 1998
Cheng (10.1016/j.eswa.2012.04.078_b0015) 1998; 31
Fan (10.1016/j.eswa.2012.04.078_b0060) 2009; 42
Podlubny (10.1016/j.eswa.2012.04.078_b0175) 1999; Vol. 198
Del Valle (10.1016/j.eswa.2012.04.078_b0050) 2008; 12
Kulkarni (10.1016/j.eswa.2012.04.078_b0125) 2010; SMC-C40
10.1016/j.eswa.2012.04.078_b0030
10.1016/j.eswa.2012.04.078_b0110
Saha (10.1016/j.eswa.2012.04.078_b0195) 2001; 23
Li (10.1016/j.eswa.2012.04.078_b0140) 1995; 4
Tsai (10.1016/j.eswa.2012.04.078_b0235) 1995; 16
(10.1016/j.eswa.2012.04.078_b0190) 2007
10.1016/j.eswa.2012.04.078_b0105
10.1016/j.eswa.2012.04.078_b0225
Brink (10.1016/j.eswa.2012.04.078_b0010) 1995; 142
Otsu (10.1016/j.eswa.2012.04.078_b0160) 1979; SMC-9
Debnath (10.1016/j.eswa.2012.04.078_b0045) 2003; 54
Kittler (10.1016/j.eswa.2012.04.078_b0115) 1986; 19
10.1016/j.eswa.2012.04.078_b0020
Kulkarni (10.1016/j.eswa.2012.04.078_b0120) 2010; 40
10.1016/j.eswa.2012.04.078_b0220
Pun (10.1016/j.eswa.2012.04.078_b0185) 1981; 16
Kapur (10.1016/j.eswa.2012.04.078_b0100) 1985; 2
Pun (10.1016/j.eswa.2012.04.078_b0180) 1980; 2
Floreano (10.1016/j.eswa.2012.04.078_b0065) 2008
10.1016/j.eswa.2012.04.078_b0150
Hammouche (10.1016/j.eswa.2012.04.078_b0075) 2010; 23
Jiang (10.1016/j.eswa.2012.04.078_b0090) 2007; 102
Huang (10.1016/j.eswa.2012.04.078_b0080) 1995; 28
Ortigueira (10.1016/j.eswa.2012.04.078_b0155) 2003; 83
Yasuda (10.1016/j.eswa.2012.04.078_b0250) 2008; 3
Machado (10.1016/j.eswa.2012.04.078_b0145) 2010
Sathya (10.1016/j.eswa.2012.04.078_b0205) 2010; 5
Yin (10.1016/j.eswa.2012.04.078_b0260) 1993; 2
Tobias (10.1016/j.eswa.2012.04.078_b0230) 2002; 11
Sezgin (10.1016/j.eswa.2012.04.078_b0215) 2004; 13
Pires (10.1016/j.eswa.2012.04.078_b0170) 2010; 61
References_xml – reference: Santana, P., Alves, N., Correia, L., & Barata, J. (2010). Swarm-based visual saliency for trail detection. In
– volume: 15
  start-page: 895
  year: 2010
  end-page: 910
  ident: b0035
  article-title: Application of fractional algoritms in the control of a robotic bird
  publication-title: Journal of Communications in Nonlinear Science and Numerical Simulation – Special Issue
– volume: v34 i12
  start-page: 1349
  year: 2006
  end-page: 1357
  ident: b0005
  article-title: A survey of particle swarm optimization applications in power system operations
  publication-title: Electric Power Component Systems
– volume: 54
  start-page: 3413
  year: 2003
  end-page: 3442
  ident: b0045
  article-title: Recent applications of fractional calculus to science and engineering
  publication-title: International Journal of Mathematics and Mathematical Sciences
– volume: 28
  start-page: 41
  year: 1995
  end-page: 51
  ident: b0080
  article-title: Image thresholding by minimizing the measure of fuzziness
  publication-title: Pattern Recognition
– volume: Vol. 198
  year: 1999
  ident: b0175
  article-title: Fractional differential equations
  publication-title: Mathematics in Science and Engineering
– volume: 2
  start-page: 337
  year: 1993
  end-page: 344
  ident: b0260
  article-title: New method for multilevel thresholding using the symmetry and duality of the histogram
  publication-title: Journal of Electronics and Imaging
– volume: 11
  start-page: 1457
  year: 2002
  end-page: 1465
  ident: b0230
  article-title: Image segmentation by histogram thresholding using fuzzy sets
  publication-title: IEEE Transactions on Image Processing
– volume: 72
  start-page: 85
  year: 1999
  end-page: 95
  ident: b0255
  article-title: A fast scheme for optimal thresholding using genetic algorithms
  publication-title: Signal Processing
– volume: 142
  start-page: 128
  year: 1995
  end-page: 132
  ident: b0010
  article-title: Minimum spatial entropy threshold selection
  publication-title: IEE Proceedings on Vision Image and Signal Processing
– volume: 23
  start-page: 689
  year: 2001
  end-page: 706
  ident: b0195
  article-title: Optimum image thresholding via class uncertainty and region homogeneity
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: SMC-C40
  start-page: 663
  year: 2010
  end-page: 675
  ident: b0125
  article-title: Bio-inspired algorithms for autonomous deployment and localization of sensor nodes
  publication-title: IEEE Transactions
– volume: 4
  start-page: 49
  year: 1995
  end-page: 56
  ident: b0140
  article-title: Fuzzy entropy threshold approach to breast cancer detection
  publication-title: Information Sciences
– volume: 42
  start-page: 2527
  year: 2009
  end-page: 2540
  ident: b0060
  article-title: Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation
  publication-title: Pattern Recognition
– volume: 13
  start-page: 146
  year: 2004
  end-page: 168
  ident: b0215
  article-title: Survey over image thresholding techniques and quantitative performance evaluation
  publication-title: Journal of Electronic Imaging
– reference: Couceiro, M. S., Ferreira, N. M. F., & Machado, J. A. T. (2011). In
– year: 2008
  ident: b0065
  article-title: Bio-inspired artificial intelligence: Theories, methods, and technologies
– reference: (Vol. 3498, pp. 253–258).
– volume: 23
  start-page: 676
  year: 2010
  end-page: 688
  ident: b0075
  article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Venter, G., & Sobieszczanski-Sobieski, J. (2002). Particle swarm optimization. In
– volume: 31
  start-page: 857
  year: 1998
  end-page: 870
  ident: b0015
  article-title: Threshold selection based on fuzzy c-partition entropy approach
  publication-title: Pattern Recognition
– reference: (pp. 1-8).
– volume: 5
  start-page: 39
  year: 2010
  end-page: 46
  ident: b0205
  article-title: PSO based tsallistresholding selection procedure for image segmentation
  publication-title: International Journal of Computer Applications
– reference: Kennedy, J., & Spears, W. (1998). Matching algorithms to problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In
– volume: 40
  start-page: 663
  year: 2010
  end-page: 675
  ident: b0120
  article-title: Bio-inspired algorithms for autonomous deployment and localization of sensor
  publication-title: IEEE Transactions on Systems
– volume: 1
  start-page: 143
  year: 2004
  end-page: 152
  ident: b0130
  article-title: A hybrid approach using Gaussian smoothing and genetic algorithm for multilevel thresholding
  publication-title: International Journal of Hybrid Intelligent Systems
– start-page: 1
  year: 2010
  end-page: 34
  ident: b0145
  article-title: Some applications of fractional calculus in engineering
  publication-title: Hindawi Publishing Corporation Mathematical Problems in Engineering
– volume: 23
  start-page: 935
  year: 1990
  end-page: 952
  ident: b0135
  article-title: On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques
  publication-title: Pattern Recognition
– volume: 3
  start-page: 642
  year: 2008
  end-page: 659
  ident: b0250
  article-title: Particle swarm optimization: A numerical stability analysis and parameter adjustment based on swarm activity
  publication-title: IEEE Transactions on Electrical and Electronic Engineering
– start-page: 611
  year: 1998
  end-page: 619
  ident: b0055
  article-title: Comparison between genetic algorithms and particle swarm optimization
  publication-title: Proceedings of the seventh annual conference on evolutionary programming
– reference: (pp. 39–43).
– reference: Kennedy, J., & Eberhart, R. (1995). A new optimizer using particle swarm theory. In
– volume: 83
  start-page: 2285
  year: 2003
  end-page: 2480
  ident: b0155
  article-title: Special Issue on fractional signal processing
  publication-title: Signal Process
– volume: 15
  start-page: 228
  year: 2006
  end-page: 240
  ident: b0085
  article-title: Supervised range-constrained thresholding
  publication-title: IEEE Transactions on Image Processing
– reference: Pires, E. J. S., Oliveira, P. B. M., Machado, J. A. T., & Cunha, J. B. (2006). Particle Swarm Optimization versus genetic algorithm in manipulator trajectory planning. In
– reference: Couceiro, M. S., Luz, J. M. A., Figueiredo, C. M., Ferreira, N. M. F., & Dias, G. (2010). Parameter estimation for a mathematical model of the golf putting. In
– reference: Tillett, J., Rao, T. M., Sahin, F., Rao, R., & Brockport, S. (2005). Darwinian Particle Swarm Optimization. In
– reference: Tang, J., Zhu, J., & Sun, Z. (2005). A novel path panning approach based on appart and particle swarm optimization. In
– volume: 61
  start-page: 295
  year: 2010
  end-page: 301
  ident: b0170
  article-title: Particle swarm optimization with fractional-order velocity
  publication-title: Journal on Nonlinear Dynamics
– reference: Omran, M. G. H. (2004). Particle swarm optimization methods for pattern recognition and image processing. PhD Thesis, University of Pretoria, Pretoria.
– year: 2007
  ident: b0190
  publication-title: Advances in Fractional Calculus - Theoretical Developments and Applications in Physics and Engineering
– reference: (pp. 1474–1487).
– volume: 19
  start-page: 41
  year: 1986
  end-page: 47
  ident: b0115
  article-title: Minimum error thresholding
  publication-title: Pattern Recognition
– volume: 102
  start-page: 8
  year: 2007
  end-page: 16
  ident: b0090
  article-title: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm
  publication-title: Information Processing Letters
– volume: 16
  start-page: 210
  year: 1981
  end-page: 239
  ident: b0185
  article-title: Entropy thresholding: A new approach
  publication-title: Computer Vision Graphics Image Processing
– year: 2000
  ident: b0070
  article-title: Evolutionary computation: Toward a new philosophy of machine intelligence
– volume: Vol. 30
  start-page: 107
  year: 2012
  end-page: 121
  ident: b0040
  article-title: Modeling and control of biologically inspired flying robots
  publication-title: Robotica
– volume: 2
  start-page: 273
  year: 1985
  end-page: 285
  ident: b0100
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer Vision Graphics Image Processing
– volume: 24
  year: 2011
  ident: b0210
  article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
  publication-title: Journal Engineering Applications of Artificial Intelligence
– volume: SMC-9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b0160
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, Cybernetics
– volume: 16
  start-page: 653
  year: 1995
  end-page: 666
  ident: b0235
  article-title: A fast thresholding selection procedure for multimodal and unimodal histograms
  publication-title: Pattern Recognition Letters
– volume: 2
  start-page: 223
  year: 1980
  end-page: 237
  ident: b0180
  article-title: A new method for grey-level picture thresholding using the entropy of the histogram
  publication-title: Signal Processing
– reference: .
– volume: 12
  start-page: 171
  year: 2008
  end-page: 195
  ident: b0050
  article-title: Particle swarm optimization: Basic concepts, variants and applications in power systems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: Vol. 2723
  year: 2003
  ident: b0240
  article-title: Optimization using particle swarm with near neighbor interactions
  publication-title: Lecture notes computer science
– volume: 19
  start-page: 41
  year: 1986
  ident: 10.1016/j.eswa.2012.04.078_b0115
  article-title: Minimum error thresholding
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(86)90030-0
– volume: 2
  start-page: 273
  year: 1985
  ident: 10.1016/j.eswa.2012.04.078_b0100
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer Vision Graphics Image Processing
  doi: 10.1016/0734-189X(85)90125-2
– volume: 83
  start-page: 2285
  year: 2003
  ident: 10.1016/j.eswa.2012.04.078_b0155
  article-title: Special Issue on fractional signal processing
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(03)00181-6
– volume: 72
  start-page: 85
  year: 1999
  ident: 10.1016/j.eswa.2012.04.078_b0255
  article-title: A fast scheme for optimal thresholding using genetic algorithms
  publication-title: Signal Processing
  doi: 10.1016/S0165-1684(98)00167-4
– volume: Vol. 198
  year: 1999
  ident: 10.1016/j.eswa.2012.04.078_b0175
  article-title: Fractional differential equations
– start-page: 1
  year: 2010
  ident: 10.1016/j.eswa.2012.04.078_b0145
  article-title: Some applications of fractional calculus in engineering
  publication-title: Hindawi Publishing Corporation Mathematical Problems in Engineering
  doi: 10.1155/2010/639801
– volume: Vol. 2723
  year: 2003
  ident: 10.1016/j.eswa.2012.04.078_b0240
  article-title: Optimization using particle swarm with near neighbor interactions
– ident: 10.1016/j.eswa.2012.04.078_b0110
  doi: 10.1109/ICEC.1998.699326
– ident: 10.1016/j.eswa.2012.04.078_b0105
– volume: 4
  start-page: 49
  year: 1995
  ident: 10.1016/j.eswa.2012.04.078_b0140
  article-title: Fuzzy entropy threshold approach to breast cancer detection
  publication-title: Information Sciences
  doi: 10.1016/1069-0115(94)00019-X
– volume: Vol. 30
  start-page: 107
  year: 2012
  ident: 10.1016/j.eswa.2012.04.078_b0040
  article-title: Modeling and control of biologically inspired flying robots
– volume: 40
  start-page: 663
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2012.04.078_b0120
  article-title: Bio-inspired algorithms for autonomous deployment and localization of sensor
  publication-title: IEEE Transactions on Systems
– volume: 23
  start-page: 676
  year: 2010
  ident: 10.1016/j.eswa.2012.04.078_b0075
  article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2009.09.011
– volume: 1
  start-page: 143
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2012.04.078_b0130
  article-title: A hybrid approach using Gaussian smoothing and genetic algorithm for multilevel thresholding
  publication-title: International Journal of Hybrid Intelligent Systems
– volume: 11
  start-page: 1457
  year: 2002
  ident: 10.1016/j.eswa.2012.04.078_b0230
  article-title: Image segmentation by histogram thresholding using fuzzy sets
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2002.806231
– year: 2000
  ident: 10.1016/j.eswa.2012.04.078_b0070
– volume: 31
  start-page: 857
  year: 1998
  ident: 10.1016/j.eswa.2012.04.078_b0015
  article-title: Threshold selection based on fuzzy c-partition entropy approach
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(97)00113-1
– volume: 61
  start-page: 295
  year: 2010
  ident: 10.1016/j.eswa.2012.04.078_b0170
  article-title: Particle swarm optimization with fractional-order velocity
  publication-title: Journal on Nonlinear Dynamics
  doi: 10.1007/s11071-009-9649-y
– volume: 16
  start-page: 653
  year: 1995
  ident: 10.1016/j.eswa.2012.04.078_b0235
  article-title: A fast thresholding selection procedure for multimodal and unimodal histograms
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(95)80011-H
– volume: 23
  start-page: 689
  year: 2001
  ident: 10.1016/j.eswa.2012.04.078_b0195
  article-title: Optimum image thresholding via class uncertainty and region homogeneity
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.935844
– ident: 10.1016/j.eswa.2012.04.078_b0165
– year: 2007
  ident: 10.1016/j.eswa.2012.04.078_b0190
– volume: 15
  start-page: 228
  year: 2006
  ident: 10.1016/j.eswa.2012.04.078_b0085
  article-title: Supervised range-constrained thresholding
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2005.860348
– ident: 10.1016/j.eswa.2012.04.078_b0020
– volume: 2
  start-page: 337
  year: 1993
  ident: 10.1016/j.eswa.2012.04.078_b0260
  article-title: New method for multilevel thresholding using the symmetry and duality of the histogram
  publication-title: Journal of Electronics and Imaging
  doi: 10.1117/12.159638
– ident: 10.1016/j.eswa.2012.04.078_b0150
– ident: 10.1016/j.eswa.2012.04.078_b0245
  doi: 10.2514/6.2002-1235
– volume: 3
  start-page: 642
  year: 2008
  ident: 10.1016/j.eswa.2012.04.078_b0250
  article-title: Particle swarm optimization: A numerical stability analysis and parameter adjustment based on swarm activity
  publication-title: IEEE Transactions on Electrical and Electronic Engineering
  doi: 10.1002/tee.20326
– volume: 15
  start-page: 895
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2012.04.078_b0035
  article-title: Application of fractional algoritms in the control of a robotic bird
  publication-title: Journal of Communications in Nonlinear Science and Numerical Simulation – Special Issue
  doi: 10.1016/j.cnsns.2009.05.020
– volume: 23
  start-page: 935
  year: 1990
  ident: 10.1016/j.eswa.2012.04.078_b0135
  article-title: On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(90)90103-R
– ident: 10.1016/j.eswa.2012.04.078_b0225
– volume: 28
  start-page: 41
  year: 1995
  ident: 10.1016/j.eswa.2012.04.078_b0080
  article-title: Image thresholding by minimizing the measure of fuzziness
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(94)E0043-K
– ident: 10.1016/j.eswa.2012.04.078_b0030
  doi: 10.1007/978-3-319-19635-0_2
– start-page: 611
  year: 1998
  ident: 10.1016/j.eswa.2012.04.078_b0055
  article-title: Comparison between genetic algorithms and particle swarm optimization
– volume: v34 i12
  start-page: 1349
  year: 2006
  ident: 10.1016/j.eswa.2012.04.078_b0005
  article-title: A survey of particle swarm optimization applications in power system operations
  publication-title: Electric Power Component Systems
  doi: 10.1080/15325000600748871
– volume: SMC-C40
  start-page: 663
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2012.04.078_b0125
  article-title: Bio-inspired algorithms for autonomous deployment and localization of sensor nodes
  publication-title: IEEE Transactions
– volume: 24
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2012.04.078_b0210
  article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
  publication-title: Journal Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2010.12.001
– volume: 42
  start-page: 2527
  year: 2009
  ident: 10.1016/j.eswa.2012.04.078_b0060
  article-title: Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.04.013
– ident: 10.1016/j.eswa.2012.04.078_b0200
  doi: 10.1109/IROS.2010.5652380
– volume: 142
  start-page: 128
  year: 1995
  ident: 10.1016/j.eswa.2012.04.078_b0010
  article-title: Minimum spatial entropy threshold selection
  publication-title: IEE Proceedings on Vision Image and Signal Processing
  doi: 10.1049/ip-vis:19951850
– year: 2008
  ident: 10.1016/j.eswa.2012.04.078_b0065
– volume: 13
  start-page: 146
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2012.04.078_b0215
  article-title: Survey over image thresholding techniques and quantitative performance evaluation
  publication-title: Journal of Electronic Imaging
  doi: 10.1117/1.1631315
– volume: 16
  start-page: 210
  year: 1981
  ident: 10.1016/j.eswa.2012.04.078_b0185
  article-title: Entropy thresholding: A new approach
  publication-title: Computer Vision Graphics Image Processing
  doi: 10.1016/0146-664X(81)90038-1
– volume: 54
  start-page: 3413
  year: 2003
  ident: 10.1016/j.eswa.2012.04.078_b0045
  article-title: Recent applications of fractional calculus to science and engineering
  publication-title: International Journal of Mathematics and Mathematical Sciences
  doi: 10.1155/S0161171203301486
– volume: 2
  start-page: 223
  year: 1980
  ident: 10.1016/j.eswa.2012.04.078_b0180
  article-title: A new method for grey-level picture thresholding using the entropy of the histogram
  publication-title: Signal Processing
  doi: 10.1016/0165-1684(80)90020-1
– volume: 5
  start-page: 39
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2012.04.078_b0205
  article-title: PSO based tsallistresholding selection procedure for image segmentation
  publication-title: International Journal of Computer Applications
  doi: 10.5120/903-1279
– volume: 12
  start-page: 171
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2012.04.078_b0050
  article-title: Particle swarm optimization: Basic concepts, variants and applications in power systems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.896686
– volume: 102
  start-page: 8
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2012.04.078_b0090
  article-title: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm
  publication-title: Information Processing Letters
  doi: 10.1016/j.ipl.2006.10.005
– volume: SMC-9
  start-page: 62
  year: 1979
  ident: 10.1016/j.eswa.2012.04.078_b0160
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– ident: 10.1016/j.eswa.2012.04.078_b0220
SSID ssj0017007
Score 2.5135667
Snippet ► Two new methods for segmentation of images based on DPSO and FODPSO were proposed. ► Those were used to overcome the disadvantages of other evolutionary...
Image segmentation has been widely used in document image analysis for extraction of printed characters, map processing in order to find lines, legends, and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12407
SubjectTerms Expert systems
Extraction
Image analysis
Image processing
Image segmentation
Inspection
Multilevel segmentation
Optimization
Segmentation
Swarm Optimization
Title An efficient method for segmentation of images based on fractional calculus and natural selection
URI https://dx.doi.org/10.1016/j.eswa.2012.04.078
https://www.proquest.com/docview/1082217065
https://www.proquest.com/docview/1701038217
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXrz4FuuLFbxJ2myym8exiKUqeNFCb8tmH1LRtDQt3vztziQbQZEehFyyzJIwszsz2cx8HyFXSZrY0GUsiNIiDLhKeFCkmiMyYmRc7BCiC6stHpPRmN9PxGSD3LS9MFhW6X1_49Nrb-1H-l6b_fl02n-C5ADCIVz4VZwKhN3mPMVV3vv8LvNA-Lm0wdtLA5T2jTNNjZetPhB7CM8DeS9EqrW_g9MvN13HnuEu2fZJIx0077VHNmy5T3ZaQgbq9-cBUYOS2hoTAkIJbcihKWSltLIv777JqKQzR6fv4EYqiiHMUBhyi6a_AR4CNsMTwYqq0tAa9hMGq5otBwQOyXh4-3wzCjyHQqB5HC0DA4p3ymVRoXOeFU4LA_pKdCic1tzmkA4mJo6NY4WzLHdgKJ3nCqs_tTFGxUekU85Ke0xoyAyDCTFjMbhXZTLmsjBR1gghVMJUl7BWeVJ7gHHkuXiTbSXZq0SFS1S4DLkEhXfJ9feceQOvsVZatDaRPxaJBP-_dt5la0AJuwd_iajSzlYVwqNGESIIiTUyKXJhZCB28s_nn5ItvMMWRibOSGe5WNlzyGWWxUW9WC_I5uDuYfT4BZAw9LQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCba9NBeukc3rHtqwG6DG8uWZPsYFCvSJctlLdCbIOsxpFidIE7Rvz_Slgt0GHIY4JNMQgYpkbREfgT4ogrl01DyJCvqNBFGiaQurCBkxMyFPBBEF2VbLNT0Wny_kTd7cD7UwlBaZbT9vU3vrHUcGUdpjtfL5fgnBgfoDvGhv-JCqn04IHQqOYKDyeVsuni8TCjSvmoa6RNiiLUzfZqXbx8IfoiOBMVZSt3W_u2f_rLUnfu5eA7HMW5kk_7TXsCeb17Cs6EnA4tb9ATMpGG-g4VAb8L6_tAMA1PW-l93sc6oYavAlndoSVpGXswxHAqbvsQBJ0G10aFgy0zjWIf8iYNt1zAHCV7B9cW3q_NpEtsoJFbk2TZxKPtgQpnVthJlHax0KDJlUxmsFb7CiFC5PHeB18HzKqCubFUZSgC1zjmTv4ZRs2r8G2ApdxwZcs5ztLDGlTyUqTLeSSmN4uYU-CA8bSPGOLW6-K2HZLJbTQLXJHCdCo0CP4WvjzzrHmFjJ7UcdKKfrBONLmAn3-dBgRo3EN2KmMav7ltCSM0yAhGSO2gKaodRItnb_5z_ExxOr37M9fxyMXsHR_SGKhq5fA-j7ebef8DQZlt_jEv3D-6s92U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+method+for+segmentation+of+images+based+on+fractional+calculus+and+natural+selection&rft.jtitle=Expert+systems+with+applications&rft.au=Ghamisi%2C+Pedram&rft.au=Couceiro%2C+Micael+S&rft.au=Benediktsson%2C+Jon+Atli&rft.au=Ferreira%2C+Nuno+MF&rft.date=2012-11-15&rft.issn=0957-4174&rft.volume=39&rft.issue=16&rft.spage=12407&rft.epage=12417&rft_id=info:doi/10.1016%2Fj.eswa.2012.04.078&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon