An efficient method for segmentation of images based on fractional calculus and natural selection
► Two new methods for segmentation of images based on DPSO and FODPSO were proposed. ► Those were used to overcome the disadvantages of other evolutionary methods. ► FODPSO is able to find better thresholds with more stability in less CPU time. Image segmentation has been widely used in document ima...
Saved in:
Published in | Expert systems with applications Vol. 39; no. 16; pp. 12407 - 12417 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.11.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Two new methods for segmentation of images based on DPSO and FODPSO were proposed. ► Those were used to overcome the disadvantages of other evolutionary methods. ► FODPSO is able to find better thresholds with more stability in less CPU time.
Image segmentation has been widely used in document image analysis for extraction of printed characters, map processing in order to find lines, legends, and characters, topological features extraction for extraction of geographical information, and quality inspection of materials where defective parts must be delineated among many other applications. In image analysis, the efficient segmentation of images into meaningful objects is important for classification and object recognition. This paper presents two novel methods for segmentation of images based on the Fractional-Order Darwinian Particle Swarm Optimization (FODPSO) and Darwinian Particle Swarm Optimization (DPSO) for determining the n-1 optimal n-level threshold on a given image. The efficiency of the proposed methods is compared with other well-known thresholding segmentation methods. Experimental results show that the proposed methods perform better than other methods when considering a number of different measures. |
---|---|
AbstractList | Image segmentation has been widely used in document image analysis for extraction of printed characters, map processing in order to find lines, legends, and characters, topological features extraction for extraction of geographical information, and quality inspection of materials where defective parts must be delineated among many other applications. In image analysis, the efficient segmentation of images into meaningful objects is important for classification and object recognition. This paper presents two novel methods for segmentation of images based on the Fractional-Order Darwinian Particle Swarm Optimization (FODPSO) and Darwinian Particle Swarm Optimization (DPSO) for determining the n-1 optimal n-level threshold on a given image. The efficiency of the proposed methods is compared with other well-known thresholding segmentation methods. Experimental results show that the proposed methods perform better than other methods when considering a number of different measures. ► Two new methods for segmentation of images based on DPSO and FODPSO were proposed. ► Those were used to overcome the disadvantages of other evolutionary methods. ► FODPSO is able to find better thresholds with more stability in less CPU time. Image segmentation has been widely used in document image analysis for extraction of printed characters, map processing in order to find lines, legends, and characters, topological features extraction for extraction of geographical information, and quality inspection of materials where defective parts must be delineated among many other applications. In image analysis, the efficient segmentation of images into meaningful objects is important for classification and object recognition. This paper presents two novel methods for segmentation of images based on the Fractional-Order Darwinian Particle Swarm Optimization (FODPSO) and Darwinian Particle Swarm Optimization (DPSO) for determining the n-1 optimal n-level threshold on a given image. The efficiency of the proposed methods is compared with other well-known thresholding segmentation methods. Experimental results show that the proposed methods perform better than other methods when considering a number of different measures. |
Author | Ghamisi, Pedram Couceiro, Micael S. Ferreira, Nuno M.F. Benediktsson, Jón Atli |
Author_xml | – sequence: 1 givenname: Pedram surname: Ghamisi fullname: Ghamisi, Pedram email: p.ghamisi@gmail.com organization: Geodesy & Geomatics Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran – sequence: 2 givenname: Micael S. surname: Couceiro fullname: Couceiro, Micael S. email: micaelcouceiro@isr.uc.pt, micael@isec.pt organization: Institute of Systems and Robotics, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal – sequence: 3 givenname: Jón Atli surname: Benediktsson fullname: Benediktsson, Jón Atli email: benedikt@hi.is organization: Faculty of Electrical and Computer Engineering, University of Iceland, Saemundargotu 2, 101 Reykjavik, Iceland – sequence: 4 givenname: Nuno M.F. surname: Ferreira fullname: Ferreira, Nuno M.F. email: nunomig@isec.pt organization: RoboCorp at the Electrical Engineering Department, Engineering Institute of Coimbra, Rua Pedro Nunes – Quinta da Nora, 3030-199 Coimbra, Portugal |
BookMark | eNqFkcFq3DAQhkXYQHeTvEBPOvZid2TLlg25LEubFgK5tGchj0aJFq-VSHZL375ytqcekpPg1_cPzDc7tpnCRIx9FFAKEO3nY0nptykrEFUJsgTVXbCt6FRdtKqvN2wLfaMKKZT8wHYpHQGEAlBbZvYTJ-c8eppmfqL5KVjuQuSJHk85MrMPEw-O-5N5pMQHk8jyHLlocP0zI0cz4jIuiZvJ8snMS8xhopFegWt26cyY6Obfe8V-fv3y4_CtuH-4-37Y3xco62ourELpjOuqAXvZDQ4bKypoERqHKKlvQLW2rq0TgyPRu0Eh9r0RUgBaa019xT6d5z7H8LJQmvXJJ6RxNBOFJem8sIC6q4R6H4Wuyhy0TUarM4oxpBTJ6eeYVcQ_GdKren3Uq3q9qtcgdVafS91_JfRnk3M0fny7enuuUlb1y1PUaT0NkvUx-9Q2-LfqfwEXraOh |
CitedBy_id | crossref_primary_10_1109_JSTARS_2015_2398835 crossref_primary_10_1016_j_indcrop_2017_06_069 crossref_primary_10_1109_TCSVT_2016_2576918 crossref_primary_10_1155_2013_927591 crossref_primary_10_1007_s11042_019_08138_3 crossref_primary_10_1109_LGRS_2013_2257675 crossref_primary_10_1007_s11042_017_4363_0 crossref_primary_10_1155_2014_794574 crossref_primary_10_1007_s11045_019_00645_8 crossref_primary_10_1016_j_bspc_2016_07_008 crossref_primary_10_1016_j_procs_2015_02_064 crossref_primary_10_1140_epjp_i2018_11840_4 crossref_primary_10_1109_JSTARS_2020_3003053 crossref_primary_10_1017_S1431927619014752 crossref_primary_10_1007_s00530_015_0477_2 crossref_primary_10_1007_s11760_019_01533_1 crossref_primary_10_1016_j_engappai_2021_104193 crossref_primary_10_1109_MGRS_2017_2762087 crossref_primary_10_1016_j_oregeorev_2022_104767 crossref_primary_10_32604_cmc_2023_027606 crossref_primary_10_1016_j_neucom_2018_09_034 crossref_primary_10_1049_el_2016_2951 crossref_primary_10_7319_kogsis_2014_22_1_023 crossref_primary_10_1016_j_aej_2020_08_049 crossref_primary_10_1142_S0219467822500127 crossref_primary_10_1049_iet_ipr_2018_6150 crossref_primary_10_1016_j_eswa_2017_04_023 crossref_primary_10_1016_j_bspc_2022_104046 crossref_primary_10_1016_j_eswa_2021_115651 crossref_primary_10_1016_j_jocs_2018_01_003 crossref_primary_10_1007_s00521_021_05771_8 crossref_primary_10_1016_j_asoc_2016_02_030 crossref_primary_10_1016_j_inffus_2021_09_018 crossref_primary_10_1007_s11042_022_13959_w crossref_primary_10_1109_TCE_2014_7027348 crossref_primary_10_3390_ai5030067 crossref_primary_10_1016_j_robot_2013_10_004 crossref_primary_10_1155_2017_6783209 crossref_primary_10_1007_s11071_014_1305_5 crossref_primary_10_4304_jmm_9_9_1097_1104 crossref_primary_10_1109_TGRS_2016_2561842 crossref_primary_10_1016_j_eswa_2020_113428 crossref_primary_10_1049_iet_ipr_2013_0602 crossref_primary_10_1155_2016_1578056 crossref_primary_10_1016_j_ecss_2019_05_005 crossref_primary_10_1016_j_ijleo_2016_11_039 crossref_primary_10_1186_s13662_023_03762_8 crossref_primary_10_1142_S0219691318500480 crossref_primary_10_1177_0967033520966693 crossref_primary_10_1109_JBHI_2017_2740500 crossref_primary_10_1007_s10586_024_04525_0 crossref_primary_10_1016_j_infrared_2019_103051 crossref_primary_10_1007_s42044_021_00084_4 crossref_primary_10_1108_COMPEL_11_2022_0380 crossref_primary_10_1016_j_chaos_2021_111658 crossref_primary_10_1016_j_petrol_2015_01_004 crossref_primary_10_1007_s13198_014_0278_6 crossref_primary_10_1007_s12524_018_0804_0 crossref_primary_10_1016_j_asoc_2020_106147 crossref_primary_10_1016_j_engappai_2020_103662 crossref_primary_10_1155_2017_3295769 crossref_primary_10_1007_s40998_019_00251_1 crossref_primary_10_1016_j_matpr_2021_02_614 crossref_primary_10_1016_j_eswa_2017_08_029 crossref_primary_10_1109_TGRS_2013_2260552 crossref_primary_10_1016_j_bbe_2019_04_004 crossref_primary_10_1007_s00521_022_07922_x crossref_primary_10_1007_s11042_020_09727_3 crossref_primary_10_1016_j_apm_2020_08_038 crossref_primary_10_1016_j_jvcir_2018_07_005 crossref_primary_10_1080_00207160_2020_1817411 crossref_primary_10_1371_journal_pone_0162985 crossref_primary_10_1186_s13662_022_03728_2 crossref_primary_10_1002_rcs_2487 crossref_primary_10_1080_17686733_2021_1974209 crossref_primary_10_25046_aj060317 crossref_primary_10_1007_s12524_019_01005_6 crossref_primary_10_2174_1574893614666181220094918 crossref_primary_10_1007_s11831_019_09334_y crossref_primary_10_1186_s12938_016_0129_6 crossref_primary_10_46532_978_81_950008_1_4_058 crossref_primary_10_1016_j_compbiomed_2018_10_016 crossref_primary_10_1007_s00500_017_2794_1 crossref_primary_10_3934_mbe_2023423 crossref_primary_10_1016_j_infrared_2018_08_007 crossref_primary_10_11121_ijocta_2023_1265 crossref_primary_10_1007_s11042_022_13093_7 crossref_primary_10_1109_LGRS_2016_2595108 crossref_primary_10_1016_j_cogsys_2018_12_009 crossref_primary_10_1007_s11760_016_0927_0 crossref_primary_10_1016_j_eswa_2015_07_025 crossref_primary_10_1142_S0219467821500522 crossref_primary_10_1155_2014_974024 crossref_primary_10_1016_j_matchar_2020_110806 crossref_primary_10_1109_TGRS_2014_2367010 crossref_primary_10_1007_s11042_020_08931_5 crossref_primary_10_1016_j_chaos_2018_07_004 crossref_primary_10_4015_S1016237218500114 crossref_primary_10_1109_ACCESS_2019_2908718 crossref_primary_10_1016_j_eswa_2013_10_059 crossref_primary_10_1007_s12555_021_0392_6 crossref_primary_10_3390_a13100249 crossref_primary_10_1016_j_eswa_2020_113210 crossref_primary_10_1016_j_eswa_2017_02_042 crossref_primary_10_1016_j_jobe_2021_102379 crossref_primary_10_1117_1_JEI_27_5_051226 crossref_primary_10_1016_j_cam_2020_113339 crossref_primary_10_1109_ACCESS_2024_3369039 crossref_primary_10_1016_j_amc_2014_04_103 crossref_primary_10_1016_j_asoc_2021_107641 crossref_primary_10_1109_TGRS_2014_2358934 crossref_primary_10_1109_TGRS_2013_2292544 crossref_primary_10_37394_23205_2022_21_17 crossref_primary_10_1142_S0219467821500340 crossref_primary_10_1007_s13534_019_00135_7 crossref_primary_10_1515_jisys_2017_0028 crossref_primary_10_1007_s11042_015_2788_x crossref_primary_10_1016_j_neucom_2014_02_020 crossref_primary_10_1016_j_swevo_2019_100591 crossref_primary_10_1109_TAFE_2024_3365202 crossref_primary_10_1007_s00521_016_2645_5 crossref_primary_10_1016_j_bspc_2019_101841 crossref_primary_10_1007_s11771_016_3135_8 crossref_primary_10_1142_S0219843621500122 crossref_primary_10_1016_j_eswa_2015_03_028 crossref_primary_10_1007_s11042_020_09396_2 crossref_primary_10_1016_j_apm_2017_02_015 crossref_primary_10_1007_s11042_022_11983_4 crossref_primary_10_1109_ACCESS_2020_2993577 crossref_primary_10_1007_s11554_023_01372_x crossref_primary_10_1002_mma_5329 crossref_primary_10_1016_j_asoc_2017_03_018 crossref_primary_10_1145_3380743 crossref_primary_10_1007_s11071_014_1288_2 crossref_primary_10_1016_j_aej_2020_08_024 crossref_primary_10_1016_j_cnsns_2020_105448 crossref_primary_10_1007_s11042_020_10064_8 crossref_primary_10_1016_j_eswa_2014_09_043 crossref_primary_10_1007_s11071_017_3613_z crossref_primary_10_1016_j_conbuildmat_2016_09_037 crossref_primary_10_1109_JSTARS_2014_2298876 crossref_primary_10_1016_j_neucom_2021_10_122 crossref_primary_10_3934_dcdss_2018007 crossref_primary_10_1007_s11042_018_5815_x crossref_primary_10_1080_10106049_2018_1544290 crossref_primary_10_1007_s13369_015_1791_x crossref_primary_10_1016_j_buildenv_2018_06_003 crossref_primary_10_3390_info8010016 crossref_primary_10_1016_j_eswa_2015_10_043 crossref_primary_10_1016_j_eswa_2019_01_024 crossref_primary_10_1007_s11071_014_1302_8 crossref_primary_10_1049_iet_ipr_2017_1149 |
Cites_doi | 10.1016/0031-3203(86)90030-0 10.1016/0734-189X(85)90125-2 10.1016/S0165-1684(03)00181-6 10.1016/S0165-1684(98)00167-4 10.1155/2010/639801 10.1109/ICEC.1998.699326 10.1016/1069-0115(94)00019-X 10.1016/j.engappai.2009.09.011 10.1109/TIP.2002.806231 10.1016/S0031-3203(97)00113-1 10.1007/s11071-009-9649-y 10.1016/0167-8655(95)80011-H 10.1109/34.935844 10.1109/TIP.2005.860348 10.1117/12.159638 10.2514/6.2002-1235 10.1002/tee.20326 10.1016/j.cnsns.2009.05.020 10.1016/0031-3203(90)90103-R 10.1016/0031-3203(94)E0043-K 10.1007/978-3-319-19635-0_2 10.1080/15325000600748871 10.1016/j.engappai.2010.12.001 10.1016/j.patcog.2009.04.013 10.1109/IROS.2010.5652380 10.1049/ip-vis:19951850 10.1117/1.1631315 10.1016/0146-664X(81)90038-1 10.1155/S0161171203301486 10.1016/0165-1684(80)90020-1 10.5120/903-1279 10.1109/TEVC.2007.896686 10.1016/j.ipl.2006.10.005 10.1109/TSMC.1979.4310076 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd |
Copyright_xml | – notice: 2012 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2012.04.078 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 12417 |
ExternalDocumentID | 10_1016_j_eswa_2012_04_078 S0957417412006756 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ACNTT ACRPL ACVFH ADCNI ADJOM ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF R2- SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD JQ2 L7M L~C L~D EFKBS |
ID | FETCH-LOGICAL-c432t-d7c4faf82bc948bfc5d1206c05fcc4e95076d33df1bfe19fb7cc99a1410cddda3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Mon Jul 21 11:09:39 EDT 2025 Fri Jul 11 02:45:13 EDT 2025 Tue Jul 01 03:12:17 EDT 2025 Thu Apr 24 23:02:20 EDT 2025 Fri Feb 23 02:26:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Image processing Multilevel segmentation Swarm Optimization |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-d7c4faf82bc948bfc5d1206c05fcc4e95076d33df1bfe19fb7cc99a1410cddda3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1082217065 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1701038217 proquest_miscellaneous_1082217065 crossref_primary_10_1016_j_eswa_2012_04_078 crossref_citationtrail_10_1016_j_eswa_2012_04_078 elsevier_sciencedirect_doi_10_1016_j_eswa_2012_04_078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-15 |
PublicationDateYYYYMMDD | 2012-11-15 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Venter, G., & Sobieszczanski-Sobieski, J. (2002). Particle swarm optimization. In (pp. 1-8). Saha, Udupa (b0195) 2001; 23 Yin, Chen (b0260) 1993; 2 Hammouche, Diaf, Siarry (b0075) 2010; 23 Floreano, Mattiussi (b0065) 2008 Santana, P., Alves, N., Correia, L., & Barata, J. (2010). Swarm-based visual saliency for trail detection. In Hu, Hou, Nowinski (b0085) 2006; 15 Fogel (b0070) 2000 Pun (b0185) 1981; 16 (b0190) 2007 Tobias, Seara (b0230) 2002; 11 . (pp. 39–43). Tsai (b0235) 1995; 16 Couceiro, M. S., Ferreira, N. M. F., & Machado, J. A. T. (2011). In Fan, Han, Wang (b0060) 2009; 42 Kulkarni, Venayagamoorthy (b0120) 2010; 40 Couceiro, M. S., Luz, J. M. A., Figueiredo, C. M., Ferreira, N. M. F., & Dias, G. (2010). Parameter estimation for a mathematical model of the golf putting. In Sezgin, Sankur (b0215) 2004; 13 Veeramachaneni, Peram, Mohan, Osadciw (b0240) 2003; Vol. 2723 Kittler, Illingworth (b0115) 1986; 19 Li, Zhao, Cheng (b0140) 1995; 4 (pp. 1474–1487). Pires, E. J. S., Oliveira, P. B. M., Machado, J. A. T., & Cunha, J. B. (2006). Particle Swarm Optimization versus genetic algorithm in manipulator trajectory planning. In Ortigueira, Machado (b0155) 2003; 83 Kennedy, J., & Spears, W. (1998). Matching algorithms to problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In Sathya, Kayalvizhi (b0205) 2010; 5 Couceiro, Luz, Figueiredo, Ferreira (b0040) 2012; Vol. 30 Debnath (b0045) 2003; 54 Alrashidi, El-Hawary (b0005) 2006; v34 i12 Jiang, Luo, Yang (b0090) 2007; 102 Podlubny (b0175) 1999; Vol. 198 Pun (b0180) 1980; 2 (Vol. 3498, pp. 253–258). Kennedy, J., & Eberhart, R. (1995). A new optimizer using particle swarm theory. In Pires, Machado, Oliveira, Cunha, Mendes (b0170) 2010; 61 Machado, Silva, Barbosa, Jesus, Reis, Marcos (b0145) 2010 Yin (b0255) 1999; 72 Kapur, Sahoo, Wong (b0100) 1985; 2 Kulkarni, Venayagamoorthy (b0125) 2010; SMC-C40 Cheng, Chen, Li (b0015) 1998; 31 Otsu (b0160) 1979; SMC-9 Brink (b0010) 1995; 142 Omran, M. G. H. (2004). Particle swarm optimization methods for pattern recognition and image processing. PhD Thesis, University of Pretoria, Pretoria. Sathya, Kayalvizhi (b0210) 2011; 24 Del Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (b0050) 2008; 12 Huang, Wang (b0080) 1995; 28 Lim, Lee (b0135) 1990; 23 Lai, Tseng (b0130) 2004; 1 Eberhart, Shi (b0055) 1998 Yasuda, Iwasaki, Ueno, Aiyoshi (b0250) 2008; 3 Couceiro, Ferreira, Machado (b0035) 2010; 15 Tillett, J., Rao, T. M., Sahin, F., Rao, R., & Brockport, S. (2005). Darwinian Particle Swarm Optimization. In Tang, J., Zhu, J., & Sun, Z. (2005). A novel path panning approach based on appart and particle swarm optimization. In Hu (10.1016/j.eswa.2012.04.078_b0085) 2006; 15 Alrashidi (10.1016/j.eswa.2012.04.078_b0005) 2006; v34 i12 Lai (10.1016/j.eswa.2012.04.078_b0130) 2004; 1 Yin (10.1016/j.eswa.2012.04.078_b0255) 1999; 72 10.1016/j.eswa.2012.04.078_b0165 10.1016/j.eswa.2012.04.078_b0200 Couceiro (10.1016/j.eswa.2012.04.078_b0035) 2010; 15 Veeramachaneni (10.1016/j.eswa.2012.04.078_b0240) 2003; Vol. 2723 10.1016/j.eswa.2012.04.078_b0245 Lim (10.1016/j.eswa.2012.04.078_b0135) 1990; 23 Couceiro (10.1016/j.eswa.2012.04.078_b0040) 2012; Vol. 30 Fogel (10.1016/j.eswa.2012.04.078_b0070) 2000 Sathya (10.1016/j.eswa.2012.04.078_b0210) 2011; 24 Eberhart (10.1016/j.eswa.2012.04.078_b0055) 1998 Cheng (10.1016/j.eswa.2012.04.078_b0015) 1998; 31 Fan (10.1016/j.eswa.2012.04.078_b0060) 2009; 42 Podlubny (10.1016/j.eswa.2012.04.078_b0175) 1999; Vol. 198 Del Valle (10.1016/j.eswa.2012.04.078_b0050) 2008; 12 Kulkarni (10.1016/j.eswa.2012.04.078_b0125) 2010; SMC-C40 10.1016/j.eswa.2012.04.078_b0030 10.1016/j.eswa.2012.04.078_b0110 Saha (10.1016/j.eswa.2012.04.078_b0195) 2001; 23 Li (10.1016/j.eswa.2012.04.078_b0140) 1995; 4 Tsai (10.1016/j.eswa.2012.04.078_b0235) 1995; 16 (10.1016/j.eswa.2012.04.078_b0190) 2007 10.1016/j.eswa.2012.04.078_b0105 10.1016/j.eswa.2012.04.078_b0225 Brink (10.1016/j.eswa.2012.04.078_b0010) 1995; 142 Otsu (10.1016/j.eswa.2012.04.078_b0160) 1979; SMC-9 Debnath (10.1016/j.eswa.2012.04.078_b0045) 2003; 54 Kittler (10.1016/j.eswa.2012.04.078_b0115) 1986; 19 10.1016/j.eswa.2012.04.078_b0020 Kulkarni (10.1016/j.eswa.2012.04.078_b0120) 2010; 40 10.1016/j.eswa.2012.04.078_b0220 Pun (10.1016/j.eswa.2012.04.078_b0185) 1981; 16 Kapur (10.1016/j.eswa.2012.04.078_b0100) 1985; 2 Pun (10.1016/j.eswa.2012.04.078_b0180) 1980; 2 Floreano (10.1016/j.eswa.2012.04.078_b0065) 2008 10.1016/j.eswa.2012.04.078_b0150 Hammouche (10.1016/j.eswa.2012.04.078_b0075) 2010; 23 Jiang (10.1016/j.eswa.2012.04.078_b0090) 2007; 102 Huang (10.1016/j.eswa.2012.04.078_b0080) 1995; 28 Ortigueira (10.1016/j.eswa.2012.04.078_b0155) 2003; 83 Yasuda (10.1016/j.eswa.2012.04.078_b0250) 2008; 3 Machado (10.1016/j.eswa.2012.04.078_b0145) 2010 Sathya (10.1016/j.eswa.2012.04.078_b0205) 2010; 5 Yin (10.1016/j.eswa.2012.04.078_b0260) 1993; 2 Tobias (10.1016/j.eswa.2012.04.078_b0230) 2002; 11 Sezgin (10.1016/j.eswa.2012.04.078_b0215) 2004; 13 Pires (10.1016/j.eswa.2012.04.078_b0170) 2010; 61 |
References_xml | – reference: Santana, P., Alves, N., Correia, L., & Barata, J. (2010). Swarm-based visual saliency for trail detection. In – volume: 15 start-page: 895 year: 2010 end-page: 910 ident: b0035 article-title: Application of fractional algoritms in the control of a robotic bird publication-title: Journal of Communications in Nonlinear Science and Numerical Simulation – Special Issue – volume: v34 i12 start-page: 1349 year: 2006 end-page: 1357 ident: b0005 article-title: A survey of particle swarm optimization applications in power system operations publication-title: Electric Power Component Systems – volume: 54 start-page: 3413 year: 2003 end-page: 3442 ident: b0045 article-title: Recent applications of fractional calculus to science and engineering publication-title: International Journal of Mathematics and Mathematical Sciences – volume: 28 start-page: 41 year: 1995 end-page: 51 ident: b0080 article-title: Image thresholding by minimizing the measure of fuzziness publication-title: Pattern Recognition – volume: Vol. 198 year: 1999 ident: b0175 article-title: Fractional differential equations publication-title: Mathematics in Science and Engineering – volume: 2 start-page: 337 year: 1993 end-page: 344 ident: b0260 article-title: New method for multilevel thresholding using the symmetry and duality of the histogram publication-title: Journal of Electronics and Imaging – volume: 11 start-page: 1457 year: 2002 end-page: 1465 ident: b0230 article-title: Image segmentation by histogram thresholding using fuzzy sets publication-title: IEEE Transactions on Image Processing – volume: 72 start-page: 85 year: 1999 end-page: 95 ident: b0255 article-title: A fast scheme for optimal thresholding using genetic algorithms publication-title: Signal Processing – volume: 142 start-page: 128 year: 1995 end-page: 132 ident: b0010 article-title: Minimum spatial entropy threshold selection publication-title: IEE Proceedings on Vision Image and Signal Processing – volume: 23 start-page: 689 year: 2001 end-page: 706 ident: b0195 article-title: Optimum image thresholding via class uncertainty and region homogeneity publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: SMC-C40 start-page: 663 year: 2010 end-page: 675 ident: b0125 article-title: Bio-inspired algorithms for autonomous deployment and localization of sensor nodes publication-title: IEEE Transactions – volume: 4 start-page: 49 year: 1995 end-page: 56 ident: b0140 article-title: Fuzzy entropy threshold approach to breast cancer detection publication-title: Information Sciences – volume: 42 start-page: 2527 year: 2009 end-page: 2540 ident: b0060 article-title: Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation publication-title: Pattern Recognition – volume: 13 start-page: 146 year: 2004 end-page: 168 ident: b0215 article-title: Survey over image thresholding techniques and quantitative performance evaluation publication-title: Journal of Electronic Imaging – reference: Couceiro, M. S., Ferreira, N. M. F., & Machado, J. A. T. (2011). In – year: 2008 ident: b0065 article-title: Bio-inspired artificial intelligence: Theories, methods, and technologies – reference: (Vol. 3498, pp. 253–258). – volume: 23 start-page: 676 year: 2010 end-page: 688 ident: b0075 article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem publication-title: Engineering Applications of Artificial Intelligence – reference: Venter, G., & Sobieszczanski-Sobieski, J. (2002). Particle swarm optimization. In – volume: 31 start-page: 857 year: 1998 end-page: 870 ident: b0015 article-title: Threshold selection based on fuzzy c-partition entropy approach publication-title: Pattern Recognition – reference: (pp. 1-8). – volume: 5 start-page: 39 year: 2010 end-page: 46 ident: b0205 article-title: PSO based tsallistresholding selection procedure for image segmentation publication-title: International Journal of Computer Applications – reference: Kennedy, J., & Spears, W. (1998). Matching algorithms to problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In – volume: 40 start-page: 663 year: 2010 end-page: 675 ident: b0120 article-title: Bio-inspired algorithms for autonomous deployment and localization of sensor publication-title: IEEE Transactions on Systems – volume: 1 start-page: 143 year: 2004 end-page: 152 ident: b0130 article-title: A hybrid approach using Gaussian smoothing and genetic algorithm for multilevel thresholding publication-title: International Journal of Hybrid Intelligent Systems – start-page: 1 year: 2010 end-page: 34 ident: b0145 article-title: Some applications of fractional calculus in engineering publication-title: Hindawi Publishing Corporation Mathematical Problems in Engineering – volume: 23 start-page: 935 year: 1990 end-page: 952 ident: b0135 article-title: On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques publication-title: Pattern Recognition – volume: 3 start-page: 642 year: 2008 end-page: 659 ident: b0250 article-title: Particle swarm optimization: A numerical stability analysis and parameter adjustment based on swarm activity publication-title: IEEE Transactions on Electrical and Electronic Engineering – start-page: 611 year: 1998 end-page: 619 ident: b0055 article-title: Comparison between genetic algorithms and particle swarm optimization publication-title: Proceedings of the seventh annual conference on evolutionary programming – reference: (pp. 39–43). – reference: Kennedy, J., & Eberhart, R. (1995). A new optimizer using particle swarm theory. In – volume: 83 start-page: 2285 year: 2003 end-page: 2480 ident: b0155 article-title: Special Issue on fractional signal processing publication-title: Signal Process – volume: 15 start-page: 228 year: 2006 end-page: 240 ident: b0085 article-title: Supervised range-constrained thresholding publication-title: IEEE Transactions on Image Processing – reference: Pires, E. J. S., Oliveira, P. B. M., Machado, J. A. T., & Cunha, J. B. (2006). Particle Swarm Optimization versus genetic algorithm in manipulator trajectory planning. In – reference: Couceiro, M. S., Luz, J. M. A., Figueiredo, C. M., Ferreira, N. M. F., & Dias, G. (2010). Parameter estimation for a mathematical model of the golf putting. In – reference: Tillett, J., Rao, T. M., Sahin, F., Rao, R., & Brockport, S. (2005). Darwinian Particle Swarm Optimization. In – reference: Tang, J., Zhu, J., & Sun, Z. (2005). A novel path panning approach based on appart and particle swarm optimization. In – volume: 61 start-page: 295 year: 2010 end-page: 301 ident: b0170 article-title: Particle swarm optimization with fractional-order velocity publication-title: Journal on Nonlinear Dynamics – reference: Omran, M. G. H. (2004). Particle swarm optimization methods for pattern recognition and image processing. PhD Thesis, University of Pretoria, Pretoria. – year: 2007 ident: b0190 publication-title: Advances in Fractional Calculus - Theoretical Developments and Applications in Physics and Engineering – reference: (pp. 1474–1487). – volume: 19 start-page: 41 year: 1986 end-page: 47 ident: b0115 article-title: Minimum error thresholding publication-title: Pattern Recognition – volume: 102 start-page: 8 year: 2007 end-page: 16 ident: b0090 article-title: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm publication-title: Information Processing Letters – volume: 16 start-page: 210 year: 1981 end-page: 239 ident: b0185 article-title: Entropy thresholding: A new approach publication-title: Computer Vision Graphics Image Processing – year: 2000 ident: b0070 article-title: Evolutionary computation: Toward a new philosophy of machine intelligence – volume: Vol. 30 start-page: 107 year: 2012 end-page: 121 ident: b0040 article-title: Modeling and control of biologically inspired flying robots publication-title: Robotica – volume: 2 start-page: 273 year: 1985 end-page: 285 ident: b0100 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Computer Vision Graphics Image Processing – volume: 24 year: 2011 ident: b0210 article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation publication-title: Journal Engineering Applications of Artificial Intelligence – volume: SMC-9 start-page: 62 year: 1979 end-page: 66 ident: b0160 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man, Cybernetics – volume: 16 start-page: 653 year: 1995 end-page: 666 ident: b0235 article-title: A fast thresholding selection procedure for multimodal and unimodal histograms publication-title: Pattern Recognition Letters – volume: 2 start-page: 223 year: 1980 end-page: 237 ident: b0180 article-title: A new method for grey-level picture thresholding using the entropy of the histogram publication-title: Signal Processing – reference: . – volume: 12 start-page: 171 year: 2008 end-page: 195 ident: b0050 article-title: Particle swarm optimization: Basic concepts, variants and applications in power systems publication-title: IEEE Transactions on Evolutionary Computation – volume: Vol. 2723 year: 2003 ident: b0240 article-title: Optimization using particle swarm with near neighbor interactions publication-title: Lecture notes computer science – volume: 19 start-page: 41 year: 1986 ident: 10.1016/j.eswa.2012.04.078_b0115 article-title: Minimum error thresholding publication-title: Pattern Recognition doi: 10.1016/0031-3203(86)90030-0 – volume: 2 start-page: 273 year: 1985 ident: 10.1016/j.eswa.2012.04.078_b0100 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Computer Vision Graphics Image Processing doi: 10.1016/0734-189X(85)90125-2 – volume: 83 start-page: 2285 year: 2003 ident: 10.1016/j.eswa.2012.04.078_b0155 article-title: Special Issue on fractional signal processing publication-title: Signal Process doi: 10.1016/S0165-1684(03)00181-6 – volume: 72 start-page: 85 year: 1999 ident: 10.1016/j.eswa.2012.04.078_b0255 article-title: A fast scheme for optimal thresholding using genetic algorithms publication-title: Signal Processing doi: 10.1016/S0165-1684(98)00167-4 – volume: Vol. 198 year: 1999 ident: 10.1016/j.eswa.2012.04.078_b0175 article-title: Fractional differential equations – start-page: 1 year: 2010 ident: 10.1016/j.eswa.2012.04.078_b0145 article-title: Some applications of fractional calculus in engineering publication-title: Hindawi Publishing Corporation Mathematical Problems in Engineering doi: 10.1155/2010/639801 – volume: Vol. 2723 year: 2003 ident: 10.1016/j.eswa.2012.04.078_b0240 article-title: Optimization using particle swarm with near neighbor interactions – ident: 10.1016/j.eswa.2012.04.078_b0110 doi: 10.1109/ICEC.1998.699326 – ident: 10.1016/j.eswa.2012.04.078_b0105 – volume: 4 start-page: 49 year: 1995 ident: 10.1016/j.eswa.2012.04.078_b0140 article-title: Fuzzy entropy threshold approach to breast cancer detection publication-title: Information Sciences doi: 10.1016/1069-0115(94)00019-X – volume: Vol. 30 start-page: 107 year: 2012 ident: 10.1016/j.eswa.2012.04.078_b0040 article-title: Modeling and control of biologically inspired flying robots – volume: 40 start-page: 663 issue: 6 year: 2010 ident: 10.1016/j.eswa.2012.04.078_b0120 article-title: Bio-inspired algorithms for autonomous deployment and localization of sensor publication-title: IEEE Transactions on Systems – volume: 23 start-page: 676 year: 2010 ident: 10.1016/j.eswa.2012.04.078_b0075 article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2009.09.011 – volume: 1 start-page: 143 issue: 3 year: 2004 ident: 10.1016/j.eswa.2012.04.078_b0130 article-title: A hybrid approach using Gaussian smoothing and genetic algorithm for multilevel thresholding publication-title: International Journal of Hybrid Intelligent Systems – volume: 11 start-page: 1457 year: 2002 ident: 10.1016/j.eswa.2012.04.078_b0230 article-title: Image segmentation by histogram thresholding using fuzzy sets publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2002.806231 – year: 2000 ident: 10.1016/j.eswa.2012.04.078_b0070 – volume: 31 start-page: 857 year: 1998 ident: 10.1016/j.eswa.2012.04.078_b0015 article-title: Threshold selection based on fuzzy c-partition entropy approach publication-title: Pattern Recognition doi: 10.1016/S0031-3203(97)00113-1 – volume: 61 start-page: 295 year: 2010 ident: 10.1016/j.eswa.2012.04.078_b0170 article-title: Particle swarm optimization with fractional-order velocity publication-title: Journal on Nonlinear Dynamics doi: 10.1007/s11071-009-9649-y – volume: 16 start-page: 653 year: 1995 ident: 10.1016/j.eswa.2012.04.078_b0235 article-title: A fast thresholding selection procedure for multimodal and unimodal histograms publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(95)80011-H – volume: 23 start-page: 689 year: 2001 ident: 10.1016/j.eswa.2012.04.078_b0195 article-title: Optimum image thresholding via class uncertainty and region homogeneity publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.935844 – ident: 10.1016/j.eswa.2012.04.078_b0165 – year: 2007 ident: 10.1016/j.eswa.2012.04.078_b0190 – volume: 15 start-page: 228 year: 2006 ident: 10.1016/j.eswa.2012.04.078_b0085 article-title: Supervised range-constrained thresholding publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2005.860348 – ident: 10.1016/j.eswa.2012.04.078_b0020 – volume: 2 start-page: 337 year: 1993 ident: 10.1016/j.eswa.2012.04.078_b0260 article-title: New method for multilevel thresholding using the symmetry and duality of the histogram publication-title: Journal of Electronics and Imaging doi: 10.1117/12.159638 – ident: 10.1016/j.eswa.2012.04.078_b0150 – ident: 10.1016/j.eswa.2012.04.078_b0245 doi: 10.2514/6.2002-1235 – volume: 3 start-page: 642 year: 2008 ident: 10.1016/j.eswa.2012.04.078_b0250 article-title: Particle swarm optimization: A numerical stability analysis and parameter adjustment based on swarm activity publication-title: IEEE Transactions on Electrical and Electronic Engineering doi: 10.1002/tee.20326 – volume: 15 start-page: 895 issue: 4 year: 2010 ident: 10.1016/j.eswa.2012.04.078_b0035 article-title: Application of fractional algoritms in the control of a robotic bird publication-title: Journal of Communications in Nonlinear Science and Numerical Simulation – Special Issue doi: 10.1016/j.cnsns.2009.05.020 – volume: 23 start-page: 935 year: 1990 ident: 10.1016/j.eswa.2012.04.078_b0135 article-title: On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques publication-title: Pattern Recognition doi: 10.1016/0031-3203(90)90103-R – ident: 10.1016/j.eswa.2012.04.078_b0225 – volume: 28 start-page: 41 year: 1995 ident: 10.1016/j.eswa.2012.04.078_b0080 article-title: Image thresholding by minimizing the measure of fuzziness publication-title: Pattern Recognition doi: 10.1016/0031-3203(94)E0043-K – ident: 10.1016/j.eswa.2012.04.078_b0030 doi: 10.1007/978-3-319-19635-0_2 – start-page: 611 year: 1998 ident: 10.1016/j.eswa.2012.04.078_b0055 article-title: Comparison between genetic algorithms and particle swarm optimization – volume: v34 i12 start-page: 1349 year: 2006 ident: 10.1016/j.eswa.2012.04.078_b0005 article-title: A survey of particle swarm optimization applications in power system operations publication-title: Electric Power Component Systems doi: 10.1080/15325000600748871 – volume: SMC-C40 start-page: 663 issue: 6 year: 2010 ident: 10.1016/j.eswa.2012.04.078_b0125 article-title: Bio-inspired algorithms for autonomous deployment and localization of sensor nodes publication-title: IEEE Transactions – volume: 24 issue: 4 year: 2011 ident: 10.1016/j.eswa.2012.04.078_b0210 article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation publication-title: Journal Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2010.12.001 – volume: 42 start-page: 2527 year: 2009 ident: 10.1016/j.eswa.2012.04.078_b0060 article-title: Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.04.013 – ident: 10.1016/j.eswa.2012.04.078_b0200 doi: 10.1109/IROS.2010.5652380 – volume: 142 start-page: 128 year: 1995 ident: 10.1016/j.eswa.2012.04.078_b0010 article-title: Minimum spatial entropy threshold selection publication-title: IEE Proceedings on Vision Image and Signal Processing doi: 10.1049/ip-vis:19951850 – year: 2008 ident: 10.1016/j.eswa.2012.04.078_b0065 – volume: 13 start-page: 146 issue: 1 year: 2004 ident: 10.1016/j.eswa.2012.04.078_b0215 article-title: Survey over image thresholding techniques and quantitative performance evaluation publication-title: Journal of Electronic Imaging doi: 10.1117/1.1631315 – volume: 16 start-page: 210 year: 1981 ident: 10.1016/j.eswa.2012.04.078_b0185 article-title: Entropy thresholding: A new approach publication-title: Computer Vision Graphics Image Processing doi: 10.1016/0146-664X(81)90038-1 – volume: 54 start-page: 3413 year: 2003 ident: 10.1016/j.eswa.2012.04.078_b0045 article-title: Recent applications of fractional calculus to science and engineering publication-title: International Journal of Mathematics and Mathematical Sciences doi: 10.1155/S0161171203301486 – volume: 2 start-page: 223 year: 1980 ident: 10.1016/j.eswa.2012.04.078_b0180 article-title: A new method for grey-level picture thresholding using the entropy of the histogram publication-title: Signal Processing doi: 10.1016/0165-1684(80)90020-1 – volume: 5 start-page: 39 issue: 4 year: 2010 ident: 10.1016/j.eswa.2012.04.078_b0205 article-title: PSO based tsallistresholding selection procedure for image segmentation publication-title: International Journal of Computer Applications doi: 10.5120/903-1279 – volume: 12 start-page: 171 issue: 2 year: 2008 ident: 10.1016/j.eswa.2012.04.078_b0050 article-title: Particle swarm optimization: Basic concepts, variants and applications in power systems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.896686 – volume: 102 start-page: 8 issue: 1 year: 2007 ident: 10.1016/j.eswa.2012.04.078_b0090 article-title: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm publication-title: Information Processing Letters doi: 10.1016/j.ipl.2006.10.005 – volume: SMC-9 start-page: 62 year: 1979 ident: 10.1016/j.eswa.2012.04.078_b0160 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man, Cybernetics doi: 10.1109/TSMC.1979.4310076 – ident: 10.1016/j.eswa.2012.04.078_b0220 |
SSID | ssj0017007 |
Score | 2.5135667 |
Snippet | ► Two new methods for segmentation of images based on DPSO and FODPSO were proposed. ► Those were used to overcome the disadvantages of other evolutionary... Image segmentation has been widely used in document image analysis for extraction of printed characters, map processing in order to find lines, legends, and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12407 |
SubjectTerms | Expert systems Extraction Image analysis Image processing Image segmentation Inspection Multilevel segmentation Optimization Segmentation Swarm Optimization |
Title | An efficient method for segmentation of images based on fractional calculus and natural selection |
URI | https://dx.doi.org/10.1016/j.eswa.2012.04.078 https://www.proquest.com/docview/1082217065 https://www.proquest.com/docview/1701038217 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXrz4FuuLFbxJ2myym8exiKUqeNFCb8tmH1LRtDQt3vztziQbQZEehFyyzJIwszsz2cx8HyFXSZrY0GUsiNIiDLhKeFCkmiMyYmRc7BCiC6stHpPRmN9PxGSD3LS9MFhW6X1_49Nrb-1H-l6b_fl02n-C5ADCIVz4VZwKhN3mPMVV3vv8LvNA-Lm0wdtLA5T2jTNNjZetPhB7CM8DeS9EqrW_g9MvN13HnuEu2fZJIx0077VHNmy5T3ZaQgbq9-cBUYOS2hoTAkIJbcihKWSltLIv777JqKQzR6fv4EYqiiHMUBhyi6a_AR4CNsMTwYqq0tAa9hMGq5otBwQOyXh4-3wzCjyHQqB5HC0DA4p3ymVRoXOeFU4LA_pKdCic1tzmkA4mJo6NY4WzLHdgKJ3nCqs_tTFGxUekU85Ke0xoyAyDCTFjMbhXZTLmsjBR1gghVMJUl7BWeVJ7gHHkuXiTbSXZq0SFS1S4DLkEhXfJ9feceQOvsVZatDaRPxaJBP-_dt5la0AJuwd_iajSzlYVwqNGESIIiTUyKXJhZCB28s_nn5ItvMMWRibOSGe5WNlzyGWWxUW9WC_I5uDuYfT4BZAw9LQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCba9NBeukc3rHtqwG6DG8uWZPsYFCvSJctlLdCbIOsxpFidIE7Rvz_Slgt0GHIY4JNMQgYpkbREfgT4ogrl01DyJCvqNBFGiaQurCBkxMyFPBBEF2VbLNT0Wny_kTd7cD7UwlBaZbT9vU3vrHUcGUdpjtfL5fgnBgfoDvGhv-JCqn04IHQqOYKDyeVsuni8TCjSvmoa6RNiiLUzfZqXbx8IfoiOBMVZSt3W_u2f_rLUnfu5eA7HMW5kk_7TXsCeb17Cs6EnA4tb9ATMpGG-g4VAb8L6_tAMA1PW-l93sc6oYavAlndoSVpGXswxHAqbvsQBJ0G10aFgy0zjWIf8iYNt1zAHCV7B9cW3q_NpEtsoJFbk2TZxKPtgQpnVthJlHax0KDJlUxmsFb7CiFC5PHeB18HzKqCubFUZSgC1zjmTv4ZRs2r8G2ApdxwZcs5ztLDGlTyUqTLeSSmN4uYU-CA8bSPGOLW6-K2HZLJbTQLXJHCdCo0CP4WvjzzrHmFjJ7UcdKKfrBONLmAn3-dBgRo3EN2KmMav7ltCSM0yAhGSO2gKaodRItnb_5z_ExxOr37M9fxyMXsHR_SGKhq5fA-j7ebef8DQZlt_jEv3D-6s92U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+method+for+segmentation+of+images+based+on+fractional+calculus+and+natural+selection&rft.jtitle=Expert+systems+with+applications&rft.au=Ghamisi%2C+Pedram&rft.au=Couceiro%2C+Micael+S&rft.au=Benediktsson%2C+Jon+Atli&rft.au=Ferreira%2C+Nuno+MF&rft.date=2012-11-15&rft.issn=0957-4174&rft.volume=39&rft.issue=16&rft.spage=12407&rft.epage=12417&rft_id=info:doi/10.1016%2Fj.eswa.2012.04.078&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |